
Signal Theory and Communications Department

EM based algorithms for Malaria
diagnose via crowdsourcing

Carles Dı́az Vilor

Supervised by:
Margarita Cabrera Bean

Alba Pagès Zamora



Abstract

We live in a world in which medicine and technology are more united than ever. That is why
in the last few years, lots of research groups initially dedicated to the development of technologies,
have started to investigate in a field in which progresses are needed in order to protect the humanity
against diseases, an this field is the medicine one. This work, following this trend, is focused
on one of the diseases that affects the bast majority of tropical countries, Malaria. Along this
final Degree Thesis, this disease will be the center of the work, firstly trying to sensitize the reader
about its importance and after that, once the objectives have been defined, develop signal processing
techniques and algorithms that in the end will count and detect malaria parasites via crowdsourcing,
system that is explained in the Introduction chapter.

1



Resum

Vivim en un món el qual medicina i tecnologia cada cop estan més units. És per això que durant els
últims anys, molts grups de recerca que inicialment es dedicaven al desenvolupament de tecnologia,
s’han submergit en un camp en el qual es necessiten mes avenços per poder protegir l’ésser humà
d’enfermetats, és a dir, el món de la medicina. Aquest treball, seguint aquesta tendència, es centra
en una de les enfermetats que més afecta a päısos de zones tropicals, la Malaria. Durant aquest
projecte de final de grau es parlarà sobre aquesta enfermetat i es podrà sensibilitzar el lector de la
seva importancia. Un cop els objectius del treball han estat fixats es desenvoluparan tècniques i
algorismes de processament del senyal la finalitat dels qual serà la de contar i detectar paràsits de
malaria mitjançant crowdsourcing, sistema explicat a la introducció.

2



Resumen

Vivimos en un mundo en el que medicina y tecnoloǵıa cada vez van más de la mano. Es por ello
que durante los últimos años, muchos grupos de investigación inicialmente dedicados al desarrollo de
tecnoloǵıa, han desembarcado en un campo en el cual se necesitan avances para poder proteger al ser
humano de enfermedades, es decir, el campo de la medicina. Este proyecto, siguiendo esta tendencia,
se centra en una de las enfermedades que más afecta a páıses de zonas tropicales, la Malaria. A
lo largo de este trabajo final de grado se hablará de esta enfermedad y se podrá sensibilizar al
lector de su importancia. Una vez se han fijado los objetivos, se desarrollaran técnicas y algoritmos
de procesado de señal cuya finalidad será la de contar y detectar parásitos de malaria mediante
crowdsourcing, sistema explicado en la introducción.

3



Acknowledgments

I want to dedicate this section to the people that has helped me during my final degree thesis.
Firstly, I would like to thank my tutors Margarita Cabrera Bean and Alba Pagès Zamora for the
knowledge and help that have provided me throughout this time.

Secondly, the majority of the simulations have been done in servers from the ETSETB, so I
must thank to the computer support department that helped me with software problems during the
project.

Thirdly, I would like to thank the MalariaSpot research group for allowing us to use their images
during the work in order to obtain results with real data.

Finally, thanks to my parents for the support that they have given to me during this period.

4



Contents

1 Introduction 9

2 Clustering Stage 12
2.1 Outliers Expectation Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Counter-wise Expectation Maximization . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Detection Stage 23
3.1 Batch EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Recursive EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Incremental Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Two-stage algorithm 31

5 On-line 34
5.1 Recursive EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Budget 40

7 Conclusions 41

Appendices 43

A Work Plan 44
A.1 Work Packages, Tasks and Milestones . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.2 Gantt Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B Incremental Newton 46

5



List of Figures

2.1 Real blood sample (a) and the same sample with 21 worldwide gamers’ tags and its
ground truth in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Evolution of the function L(X ,θk, M̂k) in a single realization. . . . . . . . . . . . . 15
2.3 Image (a) contains the tags given by 20 gamers and the position of the ground truth.

Image (b) shows the cluster centroids found by the algorithms using the tags of (a).
The data was generated synthetically. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Image (a) contains the tags given by 50 gamers and the position of the ground truth.
Image (b) shows the cluster centroids found by the algorithms using the tags of (a).
The data was generated synthetically. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Real blood sample containing Malaria parasites . . . . . . . . . . . . . . . . . . . . . 19
2.6 In (a) tags and ground truth of a realization with 20 gamers is shown. In (b) the

centroids found by CEM with the ground truth. . . . . . . . . . . . . . . . . . . . . . 20
2.7 In (a) tags and ground truth of a realization with 50 gamers is shown. In (b) the

centroids found by CEM with the ground truth. . . . . . . . . . . . . . . . . . . . . . 20
2.8 Real blood sample containing Malaria parasites . . . . . . . . . . . . . . . . . . . . . 21
2.9 In (a) tags and ground truth of a realization with 20 gamers is shown. In (b) the

centroids found by CEM with the ground truth too. . . . . . . . . . . . . . . . . . . 21
2.10 In (a) tags and ground truth of a realization with 50 gamers is shown. In (b) the

centroids found by CEM with the ground truth too. . . . . . . . . . . . . . . . . . . 22

3.1 FN rate as a function of the FP obtained with synthetic data for MAP, EM and MV
as decision systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 The three sub-figures on top, show the evolution of the MSE of the parameters mea-
sured un dB over time increases. Under them, sensitivity and precision are plotted.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 The first three sub-figures show the evolution of the MSE of the parameters measured
un dB during time. Then the sensitivity and precision are plotted. . . . . . . . . . . 29

3.4 The first three sub-figures show the evolution of the MSE of the parameters measured
un dB during time. Then the sensitivity and precision are plotted. . . . . . . . . . . 30

4.1 In (a) the real blood sample containing the parasites and in (b) the same but with
the ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 In (a) tags and ground truth of a realization with 21 gamers is shown and in (b) the
same but with 51 annotators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 MSE of the parameter estimates and both Sensitivity and Precision rates as a function
of time for M = 15. As it can be seen both algorithms converge fast but always the
Batch EM has better results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 MSE of the parameter estimates and both Sensitivity and Precision rates as a function
of time for M = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 MSE of the parameter estimates and both Sensitivity and Precision rates as a function
of time for M = 15 but decreasing the reliability parameters. . . . . . . . . . . . . . 37

5.4 Sensitivity (left) and precision (right) for I1 from Rmin = 10 to Rmax = 25. . . . . . 38
5.5 Sensitivity (left) and precision (right) for I2 from Rmin = 10 to Rmax = 25. . . . . . 38
5.6 Sensitivity (left) and precision (right) for I3 from Rmin = 10 to Rmax = 25. . . . . . 39

6



LIST OF FIGURES

A.1 Gantt diagram of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7



List of Tables

2.1 Clustering Performance; Sensibility and Precision with synthetic data for 20 and 50
gamers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Clustering Sensitivity&Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Clustering Sensitivity and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Detection Sensitivity & Precision. Images I1 , I2 and I3 . . . . . . . . . . . . . . . . 33

6.1 Server features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8



Chapter 1

Introduction

Malaria is a worldwide infectious disease that affects humans and animals, caused by a parasite
belonging to the Plasmodium family. After the infection, the parasites, flow through the bloodstream
until they arrive to the liver. Once they are in the liver the maturation process yields to the new
stage of the parasites, called merozoites. Then these parasites enter the bloodstream and infect the
red blood cells, causing its break and infecting more cells. The first symptoms, which are mainly
fever, vomiting and headache, usually occur ten days to four weeks after infection, although they
my appear even at eight days or up to one year after infection.

It is known that the main transmitter of this disease is the mosquito, but there are other ways, such
as from the mother to the fetus or via blood transfusions. This disease is a major health problem in
the vast majority of tropical and subtropical countries and The United States Centers for Disease
Control and Prevention estimates that 300-500 million cases of malaria occur each year causing
the death to more than one million people. Moreover, in some regions of the world, mosquitoes
that transmit malaria have developed resistance against insecticides and also the parasites to the
antibiotics which have led to the difficulty of controlling both the infection and the spread. Its
diagnostic method is by blood examination mostly, demanding trained technicians and consequently
a time consuming and expensive task. It is known that this disease can be treated, but the main
reason of its mortality is due to that the medicines do not arrive in time or because of the lack of
resources in those underdeveloped countries, but maybe the most difficult part of the process is its
detection and this work is focused on that, the detection. In here a methodology is presented, that
nowadays is widely used for lots of applications, the crowdsourcing.

A crowdsourcing methodology is the one in which a problem is broadcasted through open call
asking for contributions from Internet users, providing their solutions, which can be needed services,
ideas, decisions etc. The relationship between this methodology and Malaria detection is that by
showing a real blood smear, worldwide people can make its own contribution by delivering its opinion
(whether if it contains or not parasites) and in the end by taking into account a group of people,
make a decision on that sample. Obviously, people who have no idea about how the parasites are,
in terms of shape, color and other morphologic properties, do not deliver reliable opinions, and that
is why a previous stage of learning is needed. This learning period consists on tagging images whose
ground truth (the position of the parasites in the image) is available by the system. In the case that
during the learning stage a human achieves good detection results (its decisions are compared with
the ground truth in order to see his/her performance) then this human’s tags could be used to make
decisions in images without ground truth, and in the end have reliable decisions with no experts in
Malaria during the process.

The gold standard technique to diagnose this infection is via microscopic examination of Giemsa-
stained thick and thin blood films for counting the parasites. However, there are some research
groups that use crowdsourcing aiming to detect malaria. The first example that uses crowdsourced
data for malaria is The Ozcan Research Group from the UCLA university [12] [13] [14]. This group
has its own website and their main objective is to train people in order to detect the malaria infected
cells. At the end of each game, the gamer is given a score based on its performance and also a training

9



CHAPTER 1. INTRODUCTION

feedback in the form of a list of images, containing their false positives and false negatives and in
addition, the doubtful cells that they miss-categorized. The aim of this group is to connect large
databases to user-friendly games and web-interfaces in order to train and educate medical personal
as well as for training machine learning algorithms to automate the diagnosis.

The second example, that will drive this work and indeed motivated it, is the MalariaSpot group
[10] [11]. In their project, annotators/gamers are asked to identify malaria parasites in digitized
blood smears. This group belongs to the Universidad Politécnica de Madrid (UPM) and has gone
one step further in the malaria automated diagnostics by developing human-machine algorithms
based on processing crowdsourced data. By means of dedicated on-line platforms, this project
offers digitized blood images, via its website, to volunteers who, after a training period, deliver
their clicks/tags that are processed by a central decision algorithm. During this work, once the
algorithms have been designed, in order to test them with real data, images and the corresponding
decisions of the gamers from this group have been used due to a collaboration between research
groups from the Universitat Politècnica de Catalunya (UPC) and UPM. The images used in this
work that were provided by the MalariaSpot team come from Mozambique, more exactly from the
Health Investigation Center of Manhia and were acquired by using a conventional light microscope,
a Nokia Xperia Z2 and an on market plastic adapter to attach and align the cellphone camera to the
oculars lens of the microscope. The central algorithm has two stages, the first one, corresponding
to the clustering, groups the clicks delivered by the gamers, and the second stage makes a decision
on each cluster, whether it is a parasite or not. There are different ways of processing data for both
stages. For example, in the clustering step, image processing techniques are commonly used. After
acquiring and digitizing the image, some filters are used in order to reduce noise and in the end via
image segmentation the Red Blood Cells (RBCs), containing the parasites, are delimited. It must be
said that segmentation techniques work well with thin blood smears, whereas in this work thick ones
will be used. Other methods that try to locate RBCs such as Support Vector Machines (SVM) and
Neural Networks (NN). In the other step, the detection one, quorum algorithms are used widespread
obtaining acceptable accuracy results, but they may be overtaken by more complex algorithms such
as Expectation Maximization (EM) algorithms, which take into account more parameters in order
to make a decision on each of the clusters.

As mentioned before, this work will be driven in the same way as the work from the MalariaSpot
team. The system will consist of a clustering stage, with the aim of grouping the gamers’ tags
forming clusters or potential parasites, and then a detection stage, that will provide a binary decision
on each cluster representing if that cluster is a parasite or not. For both stages EM algorithms
will be developed and tested with both synthetic and real data, looking for a system capable to
detect, with high sensitivity and precision rates, malaria parasites. It must be said that both EM
algorithms developed for clustering and detection maximize a cost function by executing two steps,
the expectation, that calculates the value of a set of variables and the maximization, which calculates
the value of a set of parameters in order to maximize the cost function. These two steps, expectation
and maximization, will be run until convergence. Due to that the collaboration with the team from
Madrid started in 2015, there is some previous work done that has been used along this work, and
some theoretical framework tested with synthetic data is published in:

• Margarita Cabrera-Bean, Carles Diaz-Vilor and Josep Vidal, ”Impact of noisy annotators
reliability in a crowdsourcing system performance”, European Signal Processing Conference,
August 2016.

This first paper studies how the error probability is degradated when the MAP criteria is applied
and the estimates of the reliability parameters of the gamers contain some error. There is a second
publication, whose the main difference with respect to the previous one is that in here real data is
used and also that the algorithms used are based on EM.

• Margarita Cabrera-Bean, Alba Pagès-Zamora, Carles Diaz-Vilor, Miguel Angel Luengo-Oroz,
Maŕıa Póstigo-Camps, Daniel Cuadrado-Sánchez, ”Counting Malaria Parasites with a two-
stage EM based algorithm using crowdsourced data”, Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, July 2017.

10



CHAPTER 1. INTRODUCTION

One of the most valuable parts of the present work is the application of the algorithms to real
data, whose implementation in a system could save time and money when detecting this disease if
high accuracy rates are achieved. In addition to doing a system that unifies these two stages, the
most innovative part of this work is the on-line implementation of the detection stage.

The project main goals are:

1. To develop clustering techniques in order to identify possible or potential parasites. These
clustering techniques are based on EM algorithms and will be tested with either synthetic and
real data.

2. To make use of Bayesian techniques to decide if each cluster is a parasite or not. As well as
for the clustering, in here EM based algorithms will be developed and tested with both real
and synthetic data.

3. To evaluate the quality of the algorithms based on parameters such as the specificity and the
precision. The higher these values are, the better the algorithm performs.

4. To develop an on-line implementation of the detection stage in order to emulate a real system
that receives data constantly.

Apart from the objectives of the work, another important part is to accomplish some requirements
and specifications. As always, a system should achieve small error rates for having good results and
be useful, and this is not going to be an exception, so the error probabilities measured during the
work should be low. Besides that probabilities, other metrics such as false positives, true positives,
false negatives and true negatives are going to be measured, allowing us to calculate the sensitivity
and precision of the system, which are two of the most used metrics in medicine. Not only the rates
are important, but also the fast performance, which will be determinant in the on-line processing in
order to have decisions instantaneously or at least in a short period of time. All the software will be
developed in Matlab due to that its easy interface and similarities with other languages that have
been studied during my degree at UPC.

The rest of this work is organized as follows. The clustering will be studied in Chapter 2, where
different EM-based algorithms to group data are developed. Once these algorithms have been
presented, a section of results will show the performance under different scenarios with both real
and synthetic data. Chapter 3 is dedicated to the detection stage. As mentioned, in here, EM-based
algorithms are developed and tested too, but only with synthetic data. The two stage algorithm
is presented in Chapter 4, implementing both stages jointly and showing the performance of the
complete system with real data. Chapter 5 is focused on the on-line algorithm, the most innovative
part of the work, based on EM and a section of results with both synthetic and real data is included
in here too. Finally Chapter 6 contains the budget and Chapter 7 concludes the work.

11



Chapter 2

Clustering Stage

As it is known, in machine learning there are two procedures whose aim is to study the data,
for example group samples in clusters that have similar features and many other applications. The
first procedure is the well known Supervised learning, which uses labeled data. The other is the
Unsupervised learning, that consists on processing a collection of samples without knowing their
category. This section is focused on the second procedure (which includes clustering techniques)
because as said in the Introduction chapter, the main purpose of the work is to implement an on-
line processing of the data obtained via crowdsourcing in order to make a system capable to detect
correctly the parasites given a blood sample. This is possible thanks to a first stage that groups the
gamers’ tags into different clusters, which are the potential parasites, that will be processed later in
the second stage to make a decision in each of them. This section covers all the topics related with
the clustering techniques used during this work. These algorithms, in particular two of them, are
based on the well known EM, and it has been also tested the clustering via K-Means which is a very
common and used method, but it is not going to be explained in here. In order to see which kind of
signals have to be processed by the system, the following figure (2.1) shows a real image containing
Malaria parasites (left) and the corresponding tags delivered by worldwide gamers with the ground
truth (right). In this work, the ground truth will refer to the malaria parasites’ position in the
images. This chapter is organized as follows. Firstly, the two EM based algorithms are developed.
Once the mathematical framework is presented, the algorithms, in addition to K-Means, are tested
with both synthetic and real data. The synthetic data is generated artificially and the real one is
provided by the MalariaSpot team.

Figure 2.1: Real blood sample (a) and the same sample with 21 worldwide gamers’ tags and its
ground truth in (b).

12



CHAPTER 2. CLUSTERING STAGE

2.1 Outliers Expectation Maximization

This section presents the first clustering algorithm, based on the well known EM algorithm. For
the rest of the work this algorithm will be referred as Outliers EM (OEM). As said before, the main
goal of this stage is to cluster the tags provided by gamers or annotators, that in our real problem
these clusters can be considered as potential parasites. The data provided by the annotators is
modeled as a mixture of Gaussian components in addition to a random variable (rv) that captures
possible outliers. This algorithm will provide soft assignments of data to clusters, estimate the
reliability parameters of the gamers and also determine the number of Gaussian components in the
model.

Consider a set of R gamers indexed by r ∈ {1, ...R}, that provide tags/clicks/instances of a
D × 1 ∈ RD×1 vector, that in this case D = 2 due that the work is oriented to images. Each of the
instances is modeled by the vector xr, that has the following expression:

xr = ar

M∑
m=1

δ(zr −m)wm + (1− ar)u (2.1)

where δ(·) denotes the Kronecker delta function, wm ∼ N(µm ,Σm) is the mth D-dimensional
Gaussian rv and u is a D-dimensional uniformly distributed rv with independent entries and also
with known probability density function (pdf) denoted by gU (·) with support [Umind ,Umaxd ] for d ∈
{1...D}. Variables {ar,i;∀r, i} ∈ {0, 1} are independent Bernoulli rv with probability pr = Pr{ar,i =
1} for r = 1...R. Finally variables {zr,i;∀r} ∈ {1, ...,M} are independent rv with probability
Pr{zr,i = m} = πm. We can asume that all rv variables in (2.1) are independent among them.
The purposed model is a mixture of M Gaussians in addition to a uniformly distributed rv with
prior probabilities that depends on each gamer. It is easy to see that when ar = 1 the instance
provided by annotator r corresponds to one of the M Gaussians. On the other hand, when ar = 0,
the instance of the gamer is uniformly distributed and, hence, an outlier. Moreover, pr is a measure
of the annotators’ reliability, so when the lower pr is, the higher the probability that annotator r
provides an outlier.

Suppose that each annotator r provides Nr ∈ N instances given by {xr,i ∈ RD×1; i = 1, .., Nr},
which are independent identically distributed (iid) realizations of xr in (2.1). Let X = {xr,i; r =
1, ..., R and i = 1, ..., Nr} collect the instances of all annotators. For convenience, two more sets are
defined: A = {ar,i;∀r, ∀i} and Z = {zr,i;∀r, ∀i}. Under the previous assumptions, the likelihood
function of the observed data is:

f(X ;θ) =

R∏
r=1

Nr∏
i=1

(
pr

M∑
m=1

πmN (xr,i;µm,Σm) + (1− pr)gU (xr,i)
)

(2.2)

where θ represents the set of all unknown parameters, which are:

θ = [µ1, ...,µM , vec(Σ), ..., vec(Σ), π1, ..., πM , p1, ..., pR,M ]

In addition to clustering data, the main objective is to locate the centroids of the clusters, its
covariance matrices and the probability of occurrence of each clusters. Moreover, the explained
algorithm will provide the annotator’s reliability which may be used in the detection stage and also
the number of Gaussian components in the mixture.

As a closed-form maximization of (2.2) is not possible, we resort to a numerical solution based
on the EM algorithm that estimates the parameters of a Gaussian mixture density in addition
to a uniformly distribution and the number of Gaussian components. As it will be seen later,
this approach that takes into account possible outliers makes the algorithm more robust achieving
better rates in terms of sensitivity and precision. The proposed EM algorithm iterates using both
observations X and a posteriori probabilities of the latent variables, in this case the sets A and

13



CHAPTER 2. CLUSTERING STAGE

Z. Once the initialization of the parameters is done, taking into account that the initial estimated
number of clusters M̂0 >> M , the algorithm alternates between both steps, expectation (E) and
maximization (M), iterating till convergence as explained in Algorithm 1.

Algorithm 1 Outliers EM

1: Initialize the unknown parameter vector θ̂0

2: Repeat
3: E-Step: given an estimate θ̂k, compute the conditional expectation:

Q(θ; θ̂k) = EA,Z{log f(X ,A,Z;θ)|θ̂k,X} (2.3)

4: M-Step: obtain the estimate for the next iteration as:

θ̂k+1 = arg max
θ

Q(θ; θ̂k)

5: Until Convergence: |Q(θ; θ̂k)−Q(θ; θ̂k+1)| < ε

The E-step calculates the value of the a posterior probabilities of the latent variables. Then,
making use of the Bayes theorem, the final updates of these variables are:

âkr,i = E{ar,i|θ̂k,X} = Pr{ar,i = 1|θ̂k,X} =
p̂kr
∑M̂k

m=1 π̂
k
mN (xr,i; µ̂

k
m, Σ̂

k
m)

p̂kr
∑M̂k

m=1 π̂
k
mN (xr,i; µ̂km, Σ̂

k
m) + (1− p̂kr )gU (xr,i)

(2.4)

ẑkr,i,m = Pr{zr,i = m|θ̂k,X} =
π̂kmN (xr,i; µ̂

k
m, Σ̂

k
m)∑M̂k

m=1 π̂
k
mN (xr,i; µ̂km, Σ̂

k
m)

(2.5)

for r = 1...R, m = 1...M̂k and i = 1...Nr. Once the values of the latent variables are calculated,
in order to compute the parameter estimates, (2.3) must be developed, and after that the partial
derivatives with respect to the parameters must be done, which yields to the following expressions:

Q(θ; θ̂k) =

R∑
r=1

Nr∑
i=1

âkr,i

M̂k∑
m=1

ẑkr,i,m log
(
prπmN (xr,i|µm,Σm)

)
+

R∑
r=1

Nr∑
i=1

(1− âkr,i) log((1− pr)gU (xr,i))

∂Q(θ; θ̂k)

∂pr
= 0 =⇒ p̂r

k+1 =
1

Nr

Nr∑
i=1

âkr,i (2.6)

∂Q(θ; θ̂k)

∂µm
= 0 =⇒ µ̂k+1

m =

∑R
r=1

∑Nr

i=1 â
k
r,iẑ

k
r,i,mxr,i∑R

r=1

∑Nr

i=1 â
k
r,iẑ

k
r,i,m

(2.7)

∂Q(θ; θ̂k)

∂Σm
= 0 =⇒ Σ̂k+1

m =

∑R
r=1

∑Nr

i=1 â
k
r,iẑ

k
r,i,m(xr,i − µ̂km)(xr,i − µ̂km)T∑R

r=1

∑Nr

i=1 â
k
r,iẑ

k
r,i,m

(2.8)

14



CHAPTER 2. CLUSTERING STAGE

To compute the M-step for the other two parameters, πm and M̂k, some extra conditions are
added when deriving:

π̂k+1
m = arg max

πm

Q(θ; θ̂k) + log f(π1, ..., πM̂k) s.t. πm ≥ 0;

M̂k∑
m=1

πm = 1 (2.9)

where a negative Dirichlet-type prior is assumed: f(π1, ..., πM̂k) ∝ exp

{
− L

2

∑M̂k

m=1 log πm

}
being

L = D(D + 3)/2 the number of parameters per Gaussian component. The negative Dirichlet prior
pushes πm to be equal either to 0 or to 1, and with the constraint, this prior promotes sparsity in the
distribution mixture. Hence, the probability of the mth Gaussian component is computed solving
the constrained optimization problem and becomes:

π̂k+1
m =

max{0,
(∑R

r=1

∑Nr

i=1 â
k
r,iẑ

k
r,i,m

)
− L

2 }∑M̂k

m=1 max{0,
(∑R

r=1

∑Nr

i=1 â
k
r,iẑ

k
r,i,m

)
− L

2 }
(2.10)

The main advantage of (2.10) is that clusters with a reduced number of assigned instances will
be eventually annihilated, what means πm = 0 (because of that, it is recommended to initialize
M̂0 >> M), and after that there is an implicit realignment of the non-zero components in the
mixture. In the end, the estimated number of Gaussian components will be the ones such that their
probability is different to zero. Additionally, at each iteration the algorithm calculates the value
of a cost function that penalizes mixtures with a high number of parameters. The function is the
following one:

L(X , θ̂k, M̂k) = −Q(θ; θ̂k) +
LM̂k

2
log

( R∑
r=1

Nr∑
i=1

âkr,i

)

Overall, this criterion is used to terminate the EM iterations once convergence is achieved via
L(X ,θk, M̂k), and it is also used to calculate the final parameter estimates as the ones that minimize
the previous function. Then:

kmin = arg min
k
L(X , θ̂k, M̂k)

and the final parameter estimates after the clustering are θ̂ = θ̂kmin . Following some literature hints,
after L(X ,θk, M̂k) converges, the least probable component of the Gaussian mixture is annihilated
and the algorithm is run until convergence again. This step is iterated until the number of estimated
clusters is equal to one (or to a minimum number of Gaussians). After that, the final parameter
estimates are computed as θ̂ = θ̂kmin . The following image, 2.2, illustrates the evolution of the
previous function with respect to the number of iterations, k in this case. The phenomenon that
was explained before can be seen here, when a Gaussian is removed the value of the function increases
and then starts decreasing until it reaches the convergence. In this case, the final parameter estimates
were the ones at k = 1057, when the function has the absolute minimum.

Figure 2.2: Evolution of the function L(X ,θk, M̂k) in a single realization.

15



CHAPTER 2. CLUSTERING STAGE

2.2 Counter-wise Expectation Maximization

This section presents the Counter-wise EM (CEM), which is a particular case of OEM but esti-
mates the same parameters except the reliability of the gamers, which are:

θ = [µ1, ...,µM , vec(Σ), ..., vec(Σ), π1, ..., πM ,M ]

The main difference between both algorithms is that in here outliers are not taken into account,
so the final model is the addition of Gaussian components. This implies that there are less variables,
such as the ones that define the uniform distribution, the variable ar,i denoting if a tag belongs to
a Gaussian or not and finally pr = Pr{ar,i = 1} = 1 because ar,i = 1 ∀r, i. So particularizing the
model, it yields to the following equations:

xr =

M∑
m=1

δ(zr −m)wm (2.11)

and the likelihood function ends being:

f(X ;θ) =

R∏
r=1

Nr∏
i=1

( M∑
m=1

πmN (xr,i;µm,Σm)
)

(2.12)

As previously done, because of (2.12) cannot be maximized in a closed form, it is needed to make
use of the EM algorithm. The proposed EM algorithm iterates using both observations and latent
variables, in this case only the set Z. Once the initialization of the parameters is done, taking into
account that the initial estimated number of clusters M̂0 >> M , the algorithm alternates between
both steps, expectation (E) and maximization (M) iterating till convergence as in the previous one.

Algorithm 2 Counter-wise EM

1: Initialize the unknown parameter vector θ̂0

2: Repeat
3: E-Step: given an estimate θ̂k, compute the conditional expectation:

Q(θ; θ̂k) = EZ{log f(X ,Z;θ)|θ̂k,X} (2.13)

4: M-Step: obtain the estimate for the next iteration as:

θ̂k+1 = arg max
θ

Q(θ; θ̂k)

5: Until Convergence: |Q(θ; θ̂k)−Q(θ; θ̂k+1)| < ε

The E-step calculates the value of the a posteriori probabilities of the hidden variables. Then,
making use of the Bayes theorem, the final updates of these variables are:

ẑkr,i,m = Pr{zr,i = m|θ̂k,X} =
π̂kmN (xr,i; µ̂

k
m, Σ̂

k
m)∑M̂k

m=1 π̂
k
mN (xr,i; µ̂km, Σ̂

k
m)

(2.14)

Once the a posteriori probabilities have been calculated, in order to compute the parameter
estimates, (2.13) must be developed, which yields to the following expression:

Q(θ; θ̂k) =

R∑
r=1

Nr∑
i=1

M̂k∑
m=1

ẑkr,i,m log
(
πmN (xr,i|µm,Σm)

)

16



CHAPTER 2. CLUSTERING STAGE

Similar to the OEM, by computing the partial derivatives, the parameter estimates are:

∂Q(θ; θ̂k)

∂µm
= 0 =⇒ µ̂k+1

m =

∑R
r=1

∑Nr

i=1 ẑ
k
r,i,mxr,i∑R

r=1

∑Nr

i=1 ẑ
k
r,i,m

(2.15)

∂Q(θ; θ̂k)

∂Σm
= 0 =⇒ Σ̂k+1

m =

∑R
r=1

∑Nr

i=1 ẑ
k
r,i,m(xr,i − µ̂km)(xr,i − µ̂km)T∑R
r=1

∑Nr

i=1 ẑ
k
r,i,m

(2.16)

In order to compute the M-step for πm and M̂ , the same criterion is used as for OEM. Adding
the Dirichlet-type prior to the function in (2.13), we obtain the same as in (2.9) without the term
refereed to the uniform distribution. Hence, the probability of the mth Gaussian component is
computed solving the constrained optimization problem and becomes:

πk+1
m =

max{0,
(∑R

r=1

∑Nr

i=1 ẑ
k
r,i,m

)
− L

2 }∑M̂k

m=1 max{0,
(∑R

r=1

∑Nr

i=1 ẑ
k
r,i,m

)
− L

2 }
(2.17)

Finally, the way to compute the number of clusters, M̂ , is similar as in the previous section, but
in here the function is different. Taking into account the function that minimizes [9], which is a very
cited publication, in order to compute this parameter it is used the Bayesian Information Criterion,
that has the following expression:

F(X ,θk, M̂k) = − log f(X|θ̂k) +
L

2

∑
m:πm>0

(
log

Cπm
12

)
+
M̂k

2
log

C

12
+
M̂kL+Mk

2

where C is the total number of clicks and M̂k is the number of Gaussian components in that time
instant, k.

2.3 Results

In order to see the performance of the presented algorithms for the Clustering stage, some numeri-
cal tests have been made and the well-known clustering algorithm K-Means has been also tested just
to compare with the EM-based methods. Two kind of tests have been performed. First of all with
synthetic data, and then with real data provided by MalariaSpot. For both simulations, there have
been considered a number of gamers of R = 20 and R = 50 providing two-dimensional instances
(D = 2).

For the synthetic simulations the dimensions of the rectangular (in this case quadratic) are:
Umin1 = Umin2 = 0 and Umax1 = Umax2 = 1000. Nr ∈ [13, 17] and the number of Gaussian com-
ponents present in the mixture is M = 15 with equal probability. The number of realizations for
both synthetic and real data was N = 1000.

The first two figures show the tags, ground truth and the cluster centroids found by the three
algorithms of one realization with synthetic data. The unique difference between both realizations
is that for the first one the number of gamers was R = 20 whereas for the second one R = 50. The
simulation parameters have been selected taken into account that the best algorithm will perform
with real data, and so the simulations with non-real data should approximate the real problem.

17



CHAPTER 2. CLUSTERING STAGE

(a) (b)

Figure 2.3: Image (a) contains the tags given by 20 gamers and the position of the ground truth.
Image (b) shows the cluster centroids found by the algorithms using the tags of (a). The data was
generated synthetically.

(a) (b)

Figure 2.4: Image (a) contains the tags given by 50 gamers and the position of the ground truth.
Image (b) shows the cluster centroids found by the algorithms using the tags of (a). The data was
generated synthetically.

It is easy to see that the algorithm that finds more potential parasites is K-Means. This is
because the number of clusters is twice the average number of clicks per gamer, and K-Means is an
algorithm that does not eliminate components in the mixture, what causes a decrease in the precision.
Despite that, if the number of initial centroids, M , is considerably higher than the number of real
components, K-Means locates the true parasites. For both realizations, CEM performs well but does
not discriminates as well as OEM. For example, CEM has problems when two components are near
and there are not many tags, locating one centroid between both, which implies a degeneration of
the sensitivity, while OEM does not present this problem. Apart from that, OEM also estimates the
number of Gaussian components in the mixture correctly, while CEM presents some errors decreasing
the precision, caused by keeping Gaussians that are not in the mixture in reality.

18



CHAPTER 2. CLUSTERING STAGE

Table 2.1 includes the results in terms of Sensitivity (S = TP
Np

where TP denotes True positives

and Np the number of parasites) and Precision (P = TP
M̂

where M̂ represents the number of clusters

found by the algorithm). As it can be seen, for both configurations (20 and 50 gamers) the algorithm
that achieves best performance is the OEM due to that the values of S and P are higher (1 is the
perfection). This stage is crucial to achieve a large sensitivity in order not to miss true parasites in
the second stage.

Clustering S P S P
Stage 20 gamers 20 gamers 50 gamers 50 gamers

K-Means 0.9789 0.4589 0.9518 0.4759
CEM 0.9502 0.8455 0.9455 0.6211
OEM 0.9975 0.9990 0.9921 0.9995

Table 2.1: Clustering Performance; Sensibility and Precision with synthetic data for 20 and 50
gamers.

Once we have results with synthetic data, the same procedure has been done with real data. For
this stage, results of two images are exposed. For each image there will be five figures, the first one
showing how is the real image, the second one the same but with the tags and the ground truth for
both 20 and 50 gamers and finally the last one will contain the centroids found by OEM and the
ground truth too for 20 and 50 gamers.

Image 1:

Figure 2.5: Real blood sample containing Malaria parasites

19



CHAPTER 2. CLUSTERING STAGE

(a) (b)

Figure 2.6: In (a) tags and ground truth of a realization with 20 gamers is shown. In (b) the
centroids found by CEM with the ground truth.

(a) (b)

Figure 2.7: In (a) tags and ground truth of a realization with 50 gamers is shown. In (b) the
centroids found by CEM with the ground truth.

It is easy to see that for this image the algorithm performs well in terms of S because it finds all
the parasites. However, the precision decreases when the number of gamers increases because there
are lots of false positives for R = 50. This is due to that this image contains lots of artifacts and
the gamers prefer to click them, no matter if they are real parasites or not, and so, the higher the
number of gamers is, the higher the number of clusters is found. The results in terms of sensitivity
and precision for this image are summarized in the following table:

Table 2.2: Clustering Sensitivity&Precision

Clustering S P S P
Stage 20 gamers 20 gamers 50 gamers 50 gamers

K-Means 0.6933 0.2608 0.7025 0.2607
CEM 0.6525 0.3087 0.8108 0.1860
OEM 0.9350 0.4265 0.9992 0.2782

20



CHAPTER 2. CLUSTERING STAGE

Image 2:

Figure 2.8: Real blood sample containing Malaria parasites

(a) (b)

Figure 2.9: In (a) tags and ground truth of a realization with 20 gamers is shown. In (b) the
centroids found by CEM with the ground truth too.

21



CHAPTER 2. CLUSTERING STAGE

(a) (b)

Figure 2.10: In (a) tags and ground truth of a realization with 50 gamers is shown. In (b) the
centroids found by CEM with the ground truth too.

For the second image, we have the same problems as for the first one, but in a lower scale because
this image is considered easier to tag due to its color, there are less artifacts and this causes that
the gamers’ clicks have less variance with respect to the first image. The following table summarizes
the performance of the three algorithms for this image:

Table 2.3: Clustering Sensitivity and Precision

Clustering S P S P
Stage 20 gamers 20 gamers 50 gamers 50 gamers

K-Means 0.9900 0.4243 0.9855 0.4211
EMC 0.9391 0.8539 0.9586 0.4935
OEM 0.9989 0.9084 1 0.5150

As it can be see in both tables, 2.2 and 2.3, after 1000 realizations, the best algorithm in terms
of sensitivity and precision is the OEM. It allows to detect the parasites (high S rate) and also has
the best precision due to the elimination of Gaussian components in the mixture, which causes a
decrease in the FP rate, increasing the precision. For the rest of the work, the chosen algorithm for
the clustering stage will be OEM. It is important that in this stage the algorithm performs well, in
order to achieve high rates in the detection step, which is conditioned for the clustering.

22



Chapter 3

Detection Stage

The second stage of the system is the Detection step. In here, supposing that several gamers access
to the crowdsourcing system and that the clustering has been done, a decision on each of the potential
parasites has to be made. There are different ways to compute such decisions, by Majority Voting
(MV) for example, but the one that minimizes the error probability is the Maximum a Posteriori
(MAP). However, the MAP decision requires the sensitivity and specificity of the annotators, which
are unknown parameters for the system and that is why these parameters need to be estimated
via EM algorithm. The main problem of this algorithm is that the parameter estimates contain
some error with respect to the real ones, so there is an increase in the error probability. A more
detailed explanation of the MAP error is given in [4], but in here the work is focused on the EM
algorithms. First of all it is going to be developed the EM in a classical way, which in the literature is
called Batch EM, and its performance is going to be compared with respect to the MAP. Moreover,
another two EM algorithms have been developed taking into account that in the end what we need
is a simple algorithm capable to be implemented in an on-line system whose error probability should
be acceptable and also having a low computational cost in comparison with the Batch-EM, which
is the benchmarking algorithm, that recalculates all the values from the scratch each time instant,
without taking advantage from the values calculated previously.

3.1 Batch EM

The first algorithm that has been developed is the classical or batch EM. It estimates the reliability
parameters of the gamers (sensitivity and specificity), the prior probabilities and also the unobserved
true labels from the gamers’ decisions in each cluster, which are the final decisions in each parasite
whether it is a positive or a negative. In this case, the observations are given by the vector ym ∈
ZR×12 m = 1...M where R is the number of gamers and M the number of clusters/potential parasites.
Each vector ym is modeled as a mixture of two R-dimensional Bernoulli distributions, the positive
with prior probability µ and the negative with prior probability 1 − µ, associated to the random
variable ω, Pr{ω = 1} = µ. Each one of the R gamers has two parameters, ρrk = Pr{yrm = k|ωm =
k}, for k ∈ {0, 1}, r = 1, . . . , R. In the end, the algorithm will provide an estimate of the parameter
vector: θ = [µ,ρ1,ρ0]T , where ρk ∈ RR×1 for k = 0, 1. Then the likelihood function of the observed
data, Y, considering M clusters, can be written as:

f(Y;θ) =

M∏
m=1

(
µf(ym|ωm = 1;ρ1) + (1− µ)f(ym|ωm = 0;ρ0)

)
(3.1)

The following expressions are the probability density functions of a multivariate Bernoulli distri-
bution, i.e., for k ∈ {0, 1} and m = 1, ...,M . Considering independence between gamers, which is a

23



CHAPTER 3. DETECTION STAGE

common and realistic condition assumed in crowdsourcing, the expressions are :

f(ym|ωm = 1;ρ1) =

R∏
r=1

(ρr1)y
r
m(1− ρr1)(1−y

r
m)

f(ym|ωm = 0;ρ0) =

R∏
r=1

(ρr0)(1−y
r
m)(1− ρr0)y

r
m

Since a closed-form maximization of f(Y;θ) is not possible, we resort to the EM algorithm. For
this, we associate a latent variable vm = {0, 1} to each vector ym so that if vm = 1 means that the
mth cluster is a parasite, and vm = 0 otherwise. The complete likelihood function is given by

f(Y,V;θ) = f(Y|V;θ)f(V;θ) =

M∏
m=1

(µf(ym|ωm = 1;ρ1))vm((1− µ)f(ym|ωm = 0;ρ0))(1−vm) (3.2)

where V = {v1, ..., vM} and the parameter vector θ are estimated by executing two steps at each
iteration k upon convergence, as it is summarized in Algorithm 3:

Algorithm 3 EM Algorithm

1: Initialize µ̂0, ρ̂1,0 and ρ̂0,0
2: Repeat
3: E-Step: given an estimate θ̂k, compute the conditional expectation:

Q(θ; θ̂k) = EV{log f(Y,V;θ)|θ̂k,Y} =
∑
V
f(V|Y,θ) log f(Y,V;θ) (3.3)

4: M-Step: obtain the estimate for the next iteration as:

θ̂k+1 = arg max
θ

Q(θ; θ̂k)

5: Until Convergence:
∑
|θ̂k − θ̂k+1| < E

The E-Step calculates the a posteriori conditional probability v̂m,k = E{vm|ym; θ̂k} =

Pr{vm = 1|ym; θ̂k}.

v̂m,k =
µ̂kf(ym|ωm = 1; ρ̂1,k)

µ̂kf(ym|ωm = 1; ρ̂1,k) + (1− µ̂k)f(ym|ωm = 0; ρ̂0,k)
(3.4)

Once {v̂m,k,∀m} are calculated, the M-Step maximizes (3.3) where the complete log-likelihood
function can be developed as in (3.5) :

Q(θ; θ̂k) = EV{logf(Y,V;θ)} =
∑
V
f(V|Y,θ) log f(Y,V;θ) =

M∑
m=1

v̂m log

(
µ

R∏
r=1

(ρr1)y
r
m(1− ρr1)(1−y

r
m)

)
+ (1− v̂m) log

(
(1− µ)

R∏
r=1

(ρr0)(1−y
r
m)(1− ρr0)y

r
m

)
=

M∑
m=1

v̂m

(
logµ+

R∑
r=1

yrm log ρr1 + (1− yrm) log(1− ρr1)

)
+

+

M∑
m=1

(1− v̂m)

(
log(1− µ) +

R∑
r=1

(1− yrm) log(ρr0) + yrm log(1− ρr0)

)
(3.5)

24



CHAPTER 3. DETECTION STAGE

Once the gradient with respect to the parameters has been done, it yields to the following param-
eter estimates:

∂Q(θ; θ̂k)

∂µ
= 0 =⇒ µ̂k+1 =

1

M

M∑
m=1

v̂m,k (3.6)

∂Q(θ; θ̂k)

∂ρr1
= 0 =⇒ ρ̂r1,k+1 =

∑M
m=1 v̂m,ky

r
m∑M

m=1 v̂m,k
; (3.7)

∂Q(θ; θ̂k)

∂ρr0
= 0 =⇒ ρ̂r0,k+1 =

∑M
m=1(1− v̂m,k)(1− yrm)∑M

m=1(1− v̂m,k)
(3.8)

This algorithm is compared with respect to the MAP, the benchmark method because of its
knowledge of all the parameters, and so, the one that achieves the lowest error probability. Moreover,
the MV rule has been computed to see the difference between EM and MV too. In order to make
these simulations, in this work, the sensitivity and specificity of the gamers are generated following
a Beta Distribution, via the mean of the gamers parameters’. The simulation parameters are the
following ones: Number of realizations N = 1000, E{ρ1} = 0.75, E{ρ0} = 0.75, µ = 0.5, number of
gamers R = 11, number of clusters M = 20. Figure 3.1 shows the Receiver Operating Characteristic
(ROC) which represents in one axis the False Negative (FNr) rate and in the other axis the False
Positive (FPr) rate, corresponding to both error probabilities, Pr{e|vm = 1} and Pr{e|vm = 0}
that are calculated following the next expressions:

Pr{e|vm = 1} = FNr =
∑

ym∈R0

R∏
r=1

(ρr1)y
r
m(1− ρr1)(1−y

r
m)

Pr{e|vm = 0} = FPr =
∑

ym∈R1

R∏
r=1

(ρr0)(1−y
r
m)(1− ρr0)y

r
m

Figure 3.1: FN rate as a function of the FP obtained with synthetic data for MAP, EM and MV as
decision systems.

25



CHAPTER 3. DETECTION STAGE

Due to that EM provides an estimate of the parameters, there is an increase in the error proba-
bilities with respect to the MAP, which has te exact value of the parameters and so provides more
reliable decisions. Despite that, as our system will not have those values, the decision algorithm
that has been chosen for the detection stage is the EM. Apart from achieving good results in terms
of error probability, it is a very common and used algorithm when estimating parameters.

3.2 Recursive EM

The second algorithm that has been developed is the Recursive EM. The difference with respect
to the Batch EM is that in each time instant, the gamers provide new binary decisions to the same
clusters, ym(t) ∈ ZR×12 . All vectors ym(t) are modeled as a mixture of two R-dimensional Bernoulli
distributions as well as in the previous algorithm, R representing the number of gamers. Each time
instant, gamers give new decisions to the M clusters, so we can define a binary matrix Y (t) ∈ ZM×R2 .
Y (t) = [y1(t), ...,yM (t)]T where yi(t) = [y1i (t), ..., yRi (t)]T . In the end, the algorithm will provide an
estimate of the parameter vector: θ = [µ,ρ1,ρ0]T previously defined. Then the likelihood function
of the observed data, Y(t) considering M clusters, can be written as:

f(Y(t);θ) =

M∏
m=1

(
µ

t∏
l=1

f(ym(l)|ωm = 1;ρ1) + (1− µ)

t∏
l=1

f(ym(l)|ωm = 0;ρ0)
)

(3.9)

As in the previous algorithm, (3.9) cannot be maximized in a closed-form, and so that we resort to
the EM algorithm. Once the latent variables that allow this maximization are added, the complete
likelihood function ends being:

f(Y(t),V;θ) = f(Y(t)|V;θ)f(V;θ) =

M∏
m=1

(µ

t∏
l=1

f(ym(l)|ωm = 1;ρ1))vm((1− µ)

t∏
l=1

f(ym(l)|ωm = 0;ρ0))(1−vm)
(3.10)

As it can be seen in Algorithm 4, the structure is the same as in Algorithm 3 but with just one
iteration, whereas for the Batch the algorithm was run until convergence. This makes the Recursive
EM a simple algorithm with lower computational cost in comparison with the Batch EM.

Algorithm 4 Recursive EM

1: Initialize µ̂, ρ̂1 and ρ̂0
2: E-Step: given an estimate θ̂(t), compute the conditional expectation:

Q(θ; θ̂(t)) = EV{log f(Y(t),V;θ)|θ̂(t),Y(t)} =
∑
V
f(V|Y(t),θ) log f(Y(t),V;θ) (3.11)

3: M-Step: obtain the estimate for the next iteration as:

θ̂(t+ 1) = arg max
θ

Q(θ; θ̂(t))

The E-Step calculates the a posteriori conditional probability v̂m(t) = E{vm(t)|ym(t); θ̂(t)} =
Pr{vm(t) = 1|ym(t); θ̂(t)}.

v̂m(t) =
µ̂(t)

∏t
l=1 f(ym(l)|ωm = 1; ρ̂1(t))

µ̂(t)
∏t
l=1 f(ym(l)|ωm = 1; ρ̂1(t)) + (1− µ̂(t))

∏t
l=1 f(ym(l)|ωm = 0; ρ̂0(t))

(3.12)

26



CHAPTER 3. DETECTION STAGE

Once {v̂m(t),∀m} are calculated, the M-Step maximizes (3.11). By developing the log likelihood
function the following expression is obtained:

Q(θ; θ̂(t)) = EV{log f(Y(t),V(t);θ)} =
∑
V
f(V|Y(t),θ) log f(Y(t),V;θ) =

M∑
m=1

v̂m(t) log

(
µ

t∏
l=1

R∏
r=1

(ρr1)y
r
m(l)(1− ρr1)(1−y

r
m(l))

)
+ (1− v̂m(t)) log

(
(1− µ)

t∏
l=1

R∏
r=1

(ρr0)(1−y
r
m(l))(1− ρr0)y

r
m(l)

)
=

M∑
m=1

v̂m(t)

(
logµ+

t∑
l=1

R∑
r=1

yrm(l) log ρr1 + (1− yrm(l))log(1− ρr1)

)
+

+

M∑
m=1

(1− v̂m(t))

(
log(1− µ) +

t∑
l=1

R∑
r=1

(1− yrm(l)) log(ρr0) + yrm(l) log(1− ρr0)

)
(3.13)

Again, computing the derivatives of Q(θ; θ̂(t)) allows to calculate the final parameter estimates:

∂Q(θ; θ̂(t))

∂µ
= 0 =⇒ µ̂(t+ 1) =

1

M

M∑
m=1

v̂m(t) (3.14)

∂Q(θ; θ̂(t))

∂ρr1
= 0 =⇒ ρ̂r1(t+ 1) =

∑M
m=1 v̂m(t)

∑t
l=1 y

r
m(l)

t
∑M
m=1 v̂m(t)

; (3.15)

∂Q(θ; θ̂(t))

∂ρr0
= 0 =⇒ ρ̂r0(t+ 1) =

∑M
m=1(1− v̂m(t))

∑t
l=1(1− yrm(l))

t
∑M
m=1(1− v̂m(t))

(3.16)

3.3 Incremental Newton

The third algorithm that has been developed is the Incremental Newton, also purposed in [8]. The
main difference between the Recursive EM and the Incremental Newton is in the M-Step, where the
parameters are estimated by a Newton update. So, the algorithm performs the E-Step as in (3.12)
and estimates the parameters as it follows:

θ̂(t+ 1) = θ̂(t) + λI(θ̂(t))−1EV{∇θ̂logf(Y(t),V;θ)|Y(t)} (3.17)

where λ is a diminishing step size, ∇θ̂logf(Y(t),V;θ)|Y(t) denotes the gradient with respect to

θ evaluated at θ̂(t) and I(θ̂(t)) represents the Fisher Information Matrix, defined by I(θ) =

−EV,Y
{
∂2logf(Y(t),V;θ)

∂θ∂θT

}
. Rewriting it in a matrix form:

I(θ) = −EV,Y


∂2logf(Y(t),V;θ)

∂µ2

∂2logf(Y(t),V;θ)
∂µ∂ρT

1

∂2logf(Y(t),V;θ)
∂µ∂ρT

0
∂2logf(Y(t),V;θ)

∂ρ1∂µ
∂2logf(Y(t),V;θ)

∂ρ1∂ρT
1

∂2logf(Y(t),V;θ)
∂ρ1∂ρT

0
∂2logf(Y(t),V;θ)

∂ρ0∂µ
∂2logf(Y(t),V;θ)

∂ρ0∂ρT
1

∂2logf(Y(t),V;θ)
∂ρ0∂ρT

0



27



CHAPTER 3. DETECTION STAGE

If the log-likelihood has the same expression that (3.13), it is easy to see that the Fisher matrix
ends being diagonal because the first partial derivatives with respect to the parameters do not
depend on other parameters. All the developments needed to calculate this matrix have been added
in Appendix B. The final expression for I(θ̂) is:

I(θ̂) =



tRM
µ̂(1−µ̂) 0 ... ... ... ... 0

0 tµM
ρ̂11(1−ρ̂11)

... ... ... ... 0

... ... ... ... ... ... ...

0 ... ... tµM
ρ̂11(1−ρ̂R1 )

... ... 0

0 ... ... ... t(1−µ)M
ρ̂10(1−ρ̂10)

... 0

... ... ... ... ... ... ...

0 ... ... ... ... 0 t(1−µ)M
ρ̂R0 (1−ρ̂R0 )



Once EV{∇θ̂logf(Y(t),V;θ)|Y(t)} has been calculated, whose expressions are in Appendix B, the
final estimates of the parameters are:

µ̂(t+ 1) = µ̂(t) + λ
1

M

M∑
m=1

(
v̂m(t)− µ̂(t)

)
(3.18)

ρ̂r1(t+ 1) = ρ̂r1(t) + λ
1

tµM

M∑
m=1

v̂m(t)

t∑
l=1

(
yrm(l)− ρ̂r1(t)

)
(3.19)

ρ̂r0(t+ 1) = ρ̂r0(t) + λ
1

t(1− µ̂(t))M

M∑
m=1

(1− v̂m(t))

t∑
l=1

(
1− yrm(l)− ρ̂r0(t)

)
(3.20)

3.4 Results

In order to evaluate the performance of the algorithms some numerical tests, with synthetic data,
have been done. As said before, they are compared with respect to the Batch EM in different
scenarios, and in all of them the number of realizations is N = 1000. To analyze the results,
true/false positives/negatives (denoted by TP, TN, FP and FN) after the detection have been
counted in order to compute sensitivity (S) and precision (P). Moreover, the mean squared error
(MSE) of the parameters has been calculated too. The plotted errors are:

1. MSE of ρ1= 1
N

∑N
n=1

1
R

∑R
r=1(ρr1,n − ρ̂r1,n)2

2. MSE of ρ0 = 1
N

∑N
n=1

1
R

∑R
r=1(ρr0,n − ρ̂r0,n)2

3. MSE of µ = 1
N

∑N
n=1(µ− µ̂)2

4. S = TP
Np where Np denotes the number of true parasites.

5. P = TP
M where M represents the number of clusters.

28



CHAPTER 3. DETECTION STAGE

• First scenario: in here, the number of gamers is R = 15, the number of clusters is M = 10,
E{ρ1} = 0.8, E{ρ0} = 0.6 and µ = 0.5, representing equiprobability in each one of the clusters,
assumption made for all the scenarios.

Figure 3.2: The three sub-figures on top, show the evolution of the MSE of the parameters measured
un dB over time increases. Under them, sensitivity and precision are plotted.

As it shows the previous figure, both Batch and Recursive EM converge to the same values
of MSE approximately when the system has received enough data, for example at t = 30.
However, the Incremental Newton does not achieve these values because has a slower speed
convergence. Looking at the sensitivity and precision, this phenomenon does not appear and
the three algorithms provide good rates at early times with little differences.

• Second scenario: for the second simulation, the number of gamers is R = 7, the number of
clusters M = 15 and E{ρ1} = 0.9, E{ρ0} = 0.5.

Figure 3.3: The first three sub-figures show the evolution of the MSE of the parameters measured
un dB during time. Then the sensitivity and precision are plotted.

29



CHAPTER 3. DETECTION STAGE

The main difference with respect to the first scenario, is that when the number of gamers
is lower, the system has less parameters to estimate and so the MSE is lower. Despite that,
as the number of clusters has increased but there are few gamers, in comparison with the
previous simulation, the precision rate takes more time to converge. However, the sensitivity
has a similar behavior because the increase of E{ρ1} compensates the increase of Np, and the
gamers, despite there are more parasites, provide reliable decisions conditioned to one.

• Third scenario: the parameters of the last simulation are the following ones. The number of
gamers R = 11, number of clusters M = 11, E{ρ1} = 0.7, E{ρ0} = 0.7.

Figure 3.4: The first three sub-figures show the evolution of the MSE of the parameters measured
un dB during time. Then the sensitivity and precision are plotted.

Finally, the last scenario is a completely symmetric one. This simulation allows to discard the
Incremental Newton for this stage, because it confirms that always has the slowest speed convergence.
As it can be seen in the figures, the best situation in terms of MSE happens when there are more
clusters than gamers. This is just because the system receives a lot of data and the number of
parameters to be estimated is lower than when it occurs the opposite, when the system has lots of
gamers but not enough data, what causes an increase of the error.

If we focus on the sensitivity and precision, it is easy to see that all of them have converged
approximately at t = 5, but before that time instant the best case is when the system has more
gamers than clusters. Despite the fact that there is more error in the estimates, due to that the
number of gamers is high, it helps to make more correct decisions in each one of the clusters. This is
an important conclusion, because when testing the complete system (clustering and detection) with
real data, it is better to have more gamers than potential parasites/clusters.

30



Chapter 4

Two-stage algorithm

As it has been explained in previous sections, the aim of the work is to implement both steps,
clustering and detection, in the same system and in an on-line way, but first this combination has
been developed off-line. This chapter has unified both stages to make the two step algorithm and
it has been tested with real data. First of all R gamers deliver their tags, generating the set of all
the clicks X , and then they are processed in the clustering stage via OEM which will provide the
position of the centroids or potential parasites. Then, using the Classical/Batch EM the system
estimates the unknown parameters and also makes a decision on each of the centroids.

Between both stages, there is an intermediate step. After clustering, low reliable tags, for example
the ones whose probability is below a value, are discarded from the set. This means that {xr,i;∀r, i}
such that âr,i < 0.5 are not taken into account, where âr,i are calculated as in (2.4) . Then, the
decision vectors on each cluster ym are generated in the following way: yrm = 1 if there exists a tag
xr,i ∈ X satisfying:

π̂mN (xr,i; µ̂m, Σ̂m) > π̂nN (xr,i; µ̂n, Σ̂n);∀n 6= m n,m = 1...M

π̂mN (xr,i; µ̂m, Σ̂m) > π̂nN (xr,j ; µ̂n, Σ̂n);∀j 6= i i, j = 1...R

Otherwise, yrm = 0. This means that the click xr,i is associated to the mth Gaussian if the
maximum a posteriori probability of that click is the highest among the set of Xr, which is the set
of clicks of the r-gamer and also it is the highest with respect to the mth Gaussian component,
∀m ∈ {1, ...M̂}. As it has been explained in the Detection Stage chapter, ym can be seen as a subset
of R binary labels given by the gamers to the mth parasite, belonging to the set Y = {y1, ...,yM̂}.
Then these are the vectors that are used in the EM detection algorithm.

In order to test the system, in this work there have been used three real images of blood containing
Malaria parasites. The first two images are the ones presented in the Clustering chapter (I1 is figure
2.5 and I2 figure 2.8) and then in here it has been added a new one (I3) in order to have more results
with real data. To analyze the results, TP, TN, FP and FN have been counted over a number of
realizations N = 1000 with a number of gamers R = 21 and R = 51. In each of the trials, after
applying the OEM algorithm at the clustering stage, the Classical/Batch EM has been checked and
compared with respect to the well known majority voting (MV) rule in terms of sensitivity and
precision, defined in previous chapters. There is a strong relation between these parameters in both
stages, i.e. at the detection stage the precision is improved at the expense of worsen the sensitivity
obtained at the clustering stage.

Before showing the results, it is convenient to see the new image. It has 17 parasites and the
following figures show the image, its ground truth and the tags delivered by 21 and 51 annotators.

31



CHAPTER 4. TWO-STAGE ALGORITHM

(a) (b)

Figure 4.1: In (a) the real blood sample containing the parasites and in (b) the same but with the
ground truth.

(a) (b)

Figure 4.2: In (a) tags and ground truth of a realization with 21 gamers is shown and in (b) the
same but with 51 annotators.

Once the three images have been shown, the results obtained are summarized in Table 4.1.

Remembering the clustering results of I1, the sensitivity for both scenarios in terms of number of
gamers, was near 1 meaning that the clustering performed well. On the contrary, the precision did
not achieve 0.5, and that is why OEM found more potential parasites than the real ones. During
the rest of the work, sensitivity will play a more important roll because high S means that both
steps perform well, and the precision is more conditioned to the clustering because of the number of
FP that OEM finds. Low S rates after the detection can be produced because there are not enough
clicks in a cluster or because the algorithm does not rely on the gamers, due to that they tag lots of
points in the image and in the end it provides a low estimate of the reliability parameters.

32



CHAPTER 4. TWO-STAGE ALGORITHM

Table 4.1: Detection Sensitivity & Precision. Images I1 , I2 and I3

Detection S P S P S P
Stage 21 gamers 21 gamers 35 gamers 35 gamers 51 gamers 51 gamers

MV I1 0.6483 0.8195 0.6350 0.8460 0.5724 0.8645
EM I1 0.7208 0.7772 0.7742 0.7441 0.8253 0.8017

MV I2 0.9733 0.9829 0.9386 0.9582 0.9421 0.9679
EM I2 0.9386 0.9992 0.9043 0.9787 0.9429 0.9729

MV I3 0.9512 0.9878 0.8941 0.9163 0.7818 0.8491
EM I3 0.8852 0.9974 0.7941 0.9569 0.7547 0.8676

For I2, the clustering performed well, obtaining high values of S and P . It can be seen in the
previous table that the complete system provides similar results when using MV or EM in the
detection step. EM performs better when it has a considerable number of gamers, whereas MV for
this image when having 21 gamers has a greater S rate. Despite that, the values are similar and
high, which means that the whole system has a good performance in images like I2. So, the main
difference between the two images is that when the clustering performs very well, i.e. for I2, EM
and MV provide similar results. However, if the first step is not very good, i.e. I1, EM outperforms
MV.

Finally, I3 is similar to I2 in terms of color and other image features, meaning that the results
do not differ too much from the ones obtained for I2. High S and P values are achieved for both
configurations, what implies that both EM and MV could be used for this kind of images.

33



Chapter 5

On-line

5.1 Recursive EM

The algorithm that has been developed in order to be implemented in an on-line way is the
Recursive EM. The other that was presented in previous sections, the Incremental Newton, has
been discarded due to its performance, because apart from its slow convergence, the Recursive EM
achieves better results in terms of MSE and other metrics such as Sensitivity or Precision. As in the
previous section, it is going to be compared with respect to the Batch EM, that uses all the data
available at each iteration and also converges to a maximum.

This algorithm will make a decision {0, 1} on each of the M clusters as the previous ones made.
In each time instant, t, the system has a binary matrix, Y (t), with the decisions that a set of gamers
has delivered to each one of the clusters. When a new annotator arrives at the system (t+1), his/her
decisions are added at this matrix, so its size is increasing over time. This algorithm will start with
a minimum number of gamers Rmin and will end having Rmax gamers, so for t = 1 the size of the
matrix will be M×Rmin and for t = 1+(Rmax−Rmin) its size will be M×Rmax. Each gamer delivers
a decision vector yr(t) ∈ ZM×12 and the model of the vectors ym(t) ∈ ZR×12 ,R ∈ [Rmin, Rmax] is
the same as for the previous algorithms, a mixture of two R-dimensional Bernoulli distributions. In
the end, the algorithm will provide an estimate of the parameter vector: θ = [µ,ρ1,ρ0]T , whose
parameters mean the same as in previous sections but with the difference that over time the size of
θ is increasing. For example, for t = 1, θ = [µ, ρ11, ...ρ

Rmin
1 , ρ10, ..., ρ

Rmin
0 ] but for t = 1 + (Rmax −

Rmin) θ = [µ, ρ11, ...ρ
Rmin
1 , ..., ρRmax

1 , ρ10, ...ρ
Rmin
0 , ..., ρRmax

0 ]. In the end, the likelihood function of the
observed data, Y(t) considering M clusters, can be written as:

f(Y(t);θ) =

M∏
m=1

(
µ

t∏
l=1

f(ym(l)|ω = 1;ρ1) + (1− µ)

t∏
l=1

f(ym(l)|ω = 0;ρ0)
)

=

M∏
m=1

(
µ

t∏
l=1

R∏
r=1

(ρr1)y
r
m(1− ρr1)(1−y

r
m) + (1− µ)

t∏
l=1

R∏
r=1

(ρr0)(1−y
r
m)(1− ρr0)y

r
m

)
(5.1)

When a new gamer arrives at the system and deliver its decision vector, so the temporal variable
increases in one unit, the new likelihood function yields to the following expression:

f(Y(t+ 1);θ) =

M∏
m=1

(
µ

t+1∏
l=1

f(ym(l)|ω = 1;ρ1) + (1− µ)

t+1∏
l=1

f(ym(l)|ω = 0;ρ0)
)

=

M∏
m=1

(
µ

t+1∏
l=1

R+1∏
r=1

(ρr1)y
r
m(l)(1− ρr1)(1−y

r
m(l)) + (1− µ)

t+1∏
l=1

R+1∏
r=1

(ρr0)(1−y
r
m(l))(1− ρr0)y

r
m(l)

)
(5.2)

34



CHAPTER 5. ON-LINE

As well as for the other EM algorithms, in order to maximize 5.2 it is needed to add latent
variables, vm = {0, 1}, with the same meaning as in the previous chapters. The complete likelihood
function has the same expression as 3.10, and when a new gamer arrives at the system the new
likelihood function ends being:

f(Y(t+ 1),V;θ) = f(Y(t+ 1)|V;θ)f(V;θ) =

M∏
m=1

(
µ

t+1∏
l=1

f(ym(l)|ω = 1;ρ1)

)vm(
(1− µ)

t+1∏
l=1

f(ym(l)|ω = 0;ρ0)

)(1−vm)

=

M∏
m=1

(
µ

t+1∏
l=1

R+1∏
r=1

(ρr1)y
r
m(l)(1− ρr1)(1−y

r
m(l))

)vm(
(1− µ)

t+1∏
l=1

R+1∏
r=1

(ρr0)(1−y
r
m(l))(1− ρr0)y

r
m(l)

)(1−vm)

The final algorithm is summed in Algorithm 5:

Algorithm 5 On-line Recursive EM

1: Given a number of initial gamers Rmin initialize µ̂, ρ̂1 and ρ̂0
2: for t = 1 to t = 1 + (Rmax-Rmin) Do
3: if t > 1 then
4: Initialize ρRmin+t−1

1 = f(v(t− 1)) and ρRmin+t−1
0 = f(v(t− 1))

5: End if
6: E-Step: given an estimate θ̂(t), compute the conditional expectation:

Q(θ; θ̂(t)) = EV{log f(Y(t),V;θ)|θ̂(t),Y(t)} =
∑
V
f(V|Y(t),θ) log f(Y(t),V;θ)

7: M-Step: obtain the estimate for the next iteration as:

θ̂(t+ 1) = arg max
θ

Q(θ; θ̂(t))

8: End for

It must be said that previous estimates of v̂m(t) are used when a new annotator delivers to the
system its decision vector yr(t) ∈ ZM×12 in order to compute its reliability parameters, so implicitly
there is a reuse of the parameter vector calculated at t in order to compute the new parameter vector
at t+ 1 and the values of the latent variables.

As the conditional expectation is the same as for the Recursive EM, the values for v̂m(t) and the
parameter estimates follow the same expressions, which are:

v̂m(t) =
µ̂(t)

∏t
l=1 f(ym(l)|ω = 1; ρ̂1(t))

µ̂(t)
∏t
l=1 f(ym(l)|ω = 1; ρ̂1(t)) + (1− µ̂(t))

∏t
l=1 f(ym(l)|ω = 0; ρ̂0(t))

(5.3)

∂Q(θ; θ̂(t))

∂µ
= 0 =⇒ µ̂(t+ 1) =

1

M

M∑
m=1

v̂m(t) (5.4)

∂Q(θ; θ̂(t))

∂ρr1
= 0 =⇒ ρ̂r1(t+ 1) =

∑M
m=1 v̂m(t)

∑t
l=1 y

r
m(l)

t
∑M
m=1 v̂m(t)

; (5.5)

∂Q(θ; θ̂(t))

∂ρr0
= 0 =⇒ ρ̂r0(t+ 1) =

∑M
m=1(1− v̂m(t))

∑t
l=1(1− yrm(l))

t
∑M
m=1(1− v̂m(t))

(5.6)

35



CHAPTER 5. ON-LINE

5.2 Results

In order to evaluate the performance of the algorithm, some tests with synthetic and real data
have been done. First of all, the ones with synthetic data are presented and explained. As well as
for the Detection Stage section, the more relevant aspects of the algorithms are the MSE and both
Sensitivity and Precision, that have been computed in the same way as in that section. Different
scenarios have been proposed and in all of them the number of realizations has been N = 1000 and
the Recursive EM has been compared with respect to the Batch EM. For all the synthetic tests, the
initial number of gamers is Rmin = 10 and the final is Rmax = 50.

• First scenario: in here it is supposed a number of clusters M = 15, E{ρ1} = 0.9, E{ρ0} =
0.7 and finally µ = 0.5 representing equiprobability in each one of the clusters, which is an
assumption that has been done for all the simulations.

Figure 5.1: MSE of the parameter estimates and both Sensitivity and Precision rates as a function
of time for M = 15. As it can be seen both algorithms converge fast but always the Batch EM has
better results.

In here, gamers provide good decisions conditioned to one and also conditioned to zero, so
that is why both S and P achieve good results, but always Batch EM is over the Recursive.
Focusing on the MSE’s obtained, they converge to a value once the system has approximately
25 gamers. There is little difference between both algorithms and the computational cost for
Batch is higher than for EM, and this is caused because the Recursive is capable to compensate
the lower computational cost by using parameters calculated in previous time instants whereas
Batch starts from the scratch every time. There is a problem when using Recursive EM,
because it is subject to previous parameter estimates, and if the error is high, it is difficult
to reduce it over time. This phenomenon will be appreciated in the third scenario, where the
gamers are not as good as in here.

36



CHAPTER 5. ON-LINE

• Second scenario: for the second simulation the number of clusters is M = 10, E{ρ1} = 0.9
and E{ρ0} = 0.7.

Figure 5.2: MSE of the parameter estimates and both Sensitivity and Precision rates as a function
of time for M = 10.

The difference with respect to the first scenario is that the number of clusters has been
reduced and this causes a separation between both algorithms. The system has less data, and
so the Recursive has more difficulties to estimate the parameters well, while for Batch this is
not a problem by its initialization from the scratch each time instant.

• Third scenario: for the last simulation the number of clusters is M = 15, E{ρ1} = 0.8 and
E{ρ0} = 0.6.

Figure 5.3: MSE of the parameter estimates and both Sensitivity and Precision rates as a function
of time for M = 15 but decreasing the reliability parameters.

For the last simulation, the parameters of the gamers are worse than in the first scenario. This is
the reason why in here, the performance of the algorithms is not as good as in the first simulation,
but also the difference is higher in terms of MSE and the rates. Recursive EM is always much worse,
and this is an important conclusion, that when the reliability of the gamers decreases, Batch EM
outperforms Recursive EM with a considerable difference.

37



CHAPTER 5. ON-LINE

Finally, the on-line implementation of the Detection stage has been tested with real data. In
here, the three images presented in previous chapters have been used. First of all, the clustering
has been done and after that these on-line algorithms have been executed. Despite that for the
synthetic simulations the algorithms have been run up to Rmax = 50, in here Rmax = 25 because
of a matter of time in order to make a number of realizations of N = 500. Moreover, as the system
does not know the gamers’ parameters it makes no sense to calculate the MSE, so in this part only
the sensitivity and precision rates are presented. The results for the first image are:

Figure 5.4: Sensitivity (left) and precision (right) for I1 from Rmin = 10 to Rmax = 25.

As seen in the previous image, Batch EM has a better performance for both rates despite the fact
that the difference is no greater than 0.05. Table 4.1 shows the results of the two-stage algorithm,
and comparing it with the on-line implementation of the Recursive EM, the second one achieves
similar results but without the necessity of having to start from the scratch, which is an advantage
due to that it can save time and computational cost. This little difference is caused because in here
the number of gamers for the clustering is R = 25 whereas in the table is R = 21. By repeating the
process but with the second image showed in previous chapters, the results are:

Figure 5.5: Sensitivity (left) and precision (right) for I2 from Rmin = 10 to Rmax = 25.

As Figure 5.5 shows, for this image the difference between both algorithms is approximately 0.01,
which proves that Recursive EM can provide very similar results as Batch EM, what implies that
in an on-line system in each iteration it is not needed to calculate again all the variables, so there
will be an implicit reuse of the estimates made in previous time instants. Apart from that, the
achieved rates are high, with a S > 0.9 and a P > 0.95. This is caused because this image has
some differences with respect to I1, which makes that in here is not as difficult as for I1 to detect
parasites. These differences are mainly the color and that the number of artifacts that make doubt
gamers is lower.

38



CHAPTER 5. ON-LINE

Finally, the results obtained for I3 are showed in the following figure:

Figure 5.6: Sensitivity (left) and precision (right) for I3 from Rmin = 10 to Rmax = 25.

For the last image, the performance for both rates is similar to I2. The main difference is that
Recursive EM outperforms Batch EM in the sensitivity, but in general terms their results are similar
because the images have little differences in terms of color, shape and other characteristics.

The main conclusion obtained from this chapter, is not only that the algorithms achieve good
rates, but also that Recursive EM tends to provide similar results as Batch EM, and in some cases,
better ones, which proves that this algorithm can be implemented in an on-line system with lower
computational cost and in a short period of time in comparison with Batch EM.

39



Chapter 6

Budget

In this chapter the total cost of the studies performed in this work as well as the implementation
of the software, taking into account the licenses, the servers and the wages is estimated.

As said in the introduction, the work has been performed using Matlab. At least, it is needed
one license in order to perform all the simulations. Each Matlab license has a validity of one year,
so it is needed to renovate it each year. Apart from the software, there is another important aspect
to take into account, which are the servers. All the simulations, due to its high computational cost
because of the elevated number of realizations, have been done in a typical server. The following
table summarizes its main features and prize of the server used in this work:

Table 6.1: Server features

Architecture Operating System Number of CPUs Speed of CPUs RAM Approximated price
64 bits Linux 10 10 30 60 e

Finally, the last part to be taken into account for the budget are the wages. The study and
implementation of the algorithms has been developed by a junior engineer during half a year and
in part-time. The work started February 6th and ended on June 25th, which involves 20 weeks at
a part-time dedication (4 hours per day approximately). The typical wage for a junior engineer is
about 17 e/h, so the total price for the worked hours is:

17 e/h · 4h/day · 5 days/week · 20 weeks = 6800 e

Apart from the junior engineer’s wage, the coordinators’ one must be taken into account too. This
work has been directed by two co-directors and during the 20 weeks there has been a dedication of
4 hours per week. The typical wage for a licensed teacher at the UPC is about 42 e/h, so the total
price for the worked hour is:

42 e/h · 4h/week · 20 weeks · 2 co-directors = 6720 e

By summing each one of the concepts of the work, it is obtained that the total cost of the project
is about 13580 e.

40



Chapter 7

Conclusions

This final chapter concludes the work by exposing the main conclusions obtained during this pe-
riod. Chapter 2 explained some clustering methods for crowdsourced data based on EM algorithms.
In all the cases the algorithm that achieved better results was OEM, due to that this algorithm apart
from modeling the mixture as the addition of Gaussians, it takes into account possible outliers, what
makes the algorithm more robust.

Chapter 3 exposed different EM-based algorithms for the detection stage, which were Batch,
Recursive and Incremental Newton. Of course Batch was included to compare the performance
of the other two presented algorithms. This chapter helped us to discard Incremental Newton
for the detection stage because it has a slower speed convergence and provides worse results than
Recursive EM. Moreover, depending on the scenario, we could see that Recursive EM has a similar
performance than Batch. For example, when the number of clusters is greater than the number
of gamers, Recursive performs quite well because the system has a lot of data and the number of
parameters to be estimated is not too large. So this chapter also helped to decide which algorithm
was going to be tested for the on-line system, which is the Recursive.

Then, in Chapter 4, the complete off-line system was presented. This chapter provides the results
in terms of sensitivity and precision for three real images and so the main conclusion that can be
obtained from this chapter is that for images similar to I2 or I3, there is little difference between using
MV or EM for the detection stage, but when the image has similar conditions to I1, EM outperforms
MV. Apart from that, we could see the importance of having a good clustering algorithm because if
it does not find all the real parasites, degrades the rates of the detection stage.

Finally, Chapter 5 implements the on-line in the detection stage. For synthetic data, we could see
that there are scenarios in which Recursive EM achieves similar results as Batch EM, for example
as shown in figure 5.1 where the system has good gamers. On the contrary, if the gamers do not
provide reliable decisions, the difference between Recursive and Batch is higher as seen in figure 5.3.
When using real data, as expected, Batch EM outperformed Recursive EM in the majority of cases,
but the difference is not large, what makes possible to implement this algorithm in a real on-line
system.

Some future lines could be to implement the clustering stage in an on-line way too. Moreover, other
decision algorithms can be tested but Recursive EM performs quite well and has a low computational
cost. Apart from that, more tests with real data can be done in order to have a complete on-line
system that provides good results for different kind of images in terms of color, shape of the parasites
and other image aspects.

41



Bibliography

[1] Bishop, C. M., Pattern recognition in Machine Learning Third ed. Springer Science, 2007

[2] Richard O. Duda, Peter E. Hart, David G. Stork, Pattern classification Second ed.
Wiley-Interscience, 2006

[3] Raykar, V. C. and Yu, S. and Zhao, L. H. and Valadez, G. H. and Florin, C.
and Bogoni, L. and Moy, L., Learning from crowds Journal of Machine Learning Research,
Vol.11, p.69 (2015)

[4] Cabrera-Bean, M. and Diaz-Vilor, C. and Vidal, J. , Impact of noisy annotators’
reliability in a crowdsourcing system performance European Signal Processing Conference (EU-
SIPCO), (2016)

[5] Cabrera Bean, M. , Pagès Zamora, A. , Diaz Vilor, C. , Postigo Camps, M. ,
Cuadrado Sanchez, D. , Luengo Oroz, M. , Counting Malaria Parasites with a two-
stage EM based algorithm using crowsourced data Annual International Conference of the IEEE
Engineering in Medicine and Biology Society , (2017)

[6] Pagès-Zamora, A, Giannakis, G, López-Valcarce, R, Gimenez-Febrer, P , Robust
clustering of data collected via crowdsourcing IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), (2017)

[7] Gimenez-Febrer, P, Pagès-Zamora, A, López-Valcarce, R , Online EM-based dis-
tributed estimation in sensor networks with faulty nodes European Signal Processing Conference
(EUSIPCO), (2016)

[8] Cappe, O. and Moulines, E., Online EM Algorithm for Latent Data Models Journal of
Machine Learning Research, Vol.11, p.69 (2015)

[9] Figueiredo, Mario A. T. and Jain, Anil K., Unsupervised learning of finite mixture models
IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.24, p.381–396 (2012)

[10] M. A. Luengo-Oroz, A. Arranz, and J. Frean., Crowdsourcing Malaria Parasite Quan-
tification: An Online Game for Analyzing Images of Infected Thick Blood Smears In: J Med
Internet Res 14.6 (2012), e167

[11] www.malariaspot.org/es/

[12] S. Mavandadi, S. Dimitrov, S. Feng, F. Yu, U. Sikora, O. Yaglidere, S. Pad-
manabhan, K. Nielsen, A. Oz can., Distributed Medical Image Analysis and Diagno-
sis through Crow d-Sourced Games: A Malaria Case Study 2012 PLoS ONE 7(5): e37245.
doi:10.1371/journal.pone.0037245

[13] S. Mavandadi, S. Feng, F. Yu, S. Dimitrov, R. Yu, A. Ozcan., BioGames: A Platform
for Crowd-Sourced Biomedical Image Analysis and Telediagnosis

Games Health Journal 2012 October; 1(5): 373–376. doi: 10.1089/g4h.2012.0054, PMCID:
PMC3665415

[14] http://biogames.ee.ucla.edu/

42

www.malariaspot.org/es/
http://biogames.ee.ucla.edu/


Appendices

43



Appendix A

Work Plan

A.1 Work Packages, Tasks and Milestones

The different work packages are:

1. WP1: Project Plan: organization of the work at the beginning of the project. Its main objec-
tive is to plan the start and end dates for the different tasks. The starting date was 18/02/2017
and the end date 06/03/2017.

2. WP2: Project Goals: define the main goals and objectives of the project. The planned start
date was 20/02/2017 and the en date 01/03/2017.

3. WP3: Specifications: define the speficications that the project must satisfy, such as good results
in terms of error probability, fast performance and so on. The start date was the same as for
the WP2.

4. WP4: Theoretical development: theoretical developments of the formulas and algorithms that
will be used during the project, such as EM, Maximum Likelihood estimators and so on. The
starting date was 05/02/2017 and the end date was 15/04/2017.

5. WP5: Simulation and Testing: simulate the performance of the system. At the first stage, the
clustering, with algorithms such as EM,K-Means and at the second one, the decision stage,
with the EM-based algorithms. Its start and end dates are: 31/03/2017 and 12/06/2017.

6. WP6: Write up of the project: write the work and the results obtained during the project. This
work package started at the very beginning, on the 01/03/2017 and ended on June, concretely
at the 25/06/2017.

A.2 Gantt Diagram

This section contains the Gantt diagram of the project.

44



APPENDIX A. WORK PLAN

Figure A.1: Gantt diagram of the project

45



Appendix B

Incremental Newton

This Appendix is dedicated to the developments needed to obtain the expressions of the parameter
estimates for the Incremental Newton algorithm. First of all it is going to be calculated the Fisher
Information matrix, I(θ̂), whose expression is the following one:

I(θ) = −EV,Y


∂2logf(Y(t),V;θ)

∂µ2

∂2logf(Y(t),V;θ)
∂µ∂ρT

1

∂2logf(Y(t),V;θ)
∂µ∂ρT

0
∂2logf(Y(t),V;θ)

∂ρ1∂µ
∂2logf(Y(t),V;θ)

∂ρ1∂ρT
1

∂2logf(Y(t),V;θ)
∂ρ1∂ρT

0
∂2logf(Y(t),V;θ)

∂ρ0∂µ
∂2logf(Y(t),V;θ)

∂ρ0∂ρT
1

∂2logf(Y(t),V;θ)
∂ρ0∂ρT

0


If the log-likelihood function has the following formula:

log f(Y(t),V;θ) =

M∑
m=1

vm(t) log

(
µ

t∏
l=1

R∏
r=1

(ρr1)y
r
m(l)(1− ρr1)(1−y

r
m(l))

)
+

(1− vm(t)) log

(
(1− µ)

t∏
l=1

R∏
r=1

(ρr0)(1−y
r
m(l))(1− ρr0)y

r
m(l)

)
=

M∑
m=1

vm(t)

(
logµ+

t∑
l=1

R∑
r=1

yrm(l) log ρr1 + (1− yrm(l)) log(1− ρr1)

)
+

+

M∑
m=1

(1− vm(t))

(
log(1− µ) +

t∑
l=1

R∑
r=1

(1− yrm(l)) log(ρr0) + ym(l)r log(1− ρr0)

)
(B.1)

we do not need to calculate the cross derivatives because the first partial derivatives do not depend
on other parameters. So it is just needed to make the second partial derivatives and, after that, do
the expected value with respect to V and Y.

The expressions for the parameter µ are:

∂log f(Y(t),V;θ)

∂µ
=

M∑
m=1

(
vm(t)tR

µ
+
−(1− vm(t))tR

1− µ

)

∂2log f(Y(t),V;θ)

∂µ2
=

M∑
m=1

(
−vm(t)tR

µ2
+
−(1− vm(t))tR

(1− µ)2

)

−EV,Y{
∂2log f(Y(t),V;θ)

∂µ2
} =

M∑
m=1

(
tR

µ2
µ+

tR

(1− µ)2
(1− µ)

)
=

tRM

µ(1− µ)

46



APPENDIX B. INCREMENTAL NEWTON

Doing the same as for µ, the expressions that allow to calculate ρ̂r1 and ρ̂r0 are:

∂log f(Y(t),V;θ)

∂ρr1
=

M∑
m=1

vm(t)

t∑
l=1

(
yrm(l)

ρr1
− 1− yrm(l)

1− ρr1

)

∂2log f(Y(t),V;θ)

∂ρr21
=

M∑
m=1

vm(t)

t∑
l=1

(
−yrm(l)

ρr21
− 1− yrm(l)

(1− ρr1)2

)

−EV,Y{
∂2log f(Y(t),V;θ)

∂ρr21
} =

M∑
m=1

µ

t∑
l=1

(
ρr1
ρr21

+
(1− ρr1)

(1− ρr1)2

)
=

tµM

ρr1(1− ρr1)

∂log f(Y(t),V;θ)

∂ρr0
=

M∑
m=1

(1− vm(t))

t∑
l=1

(
1− yrm(l)

ρr0
− yrm(l)

1− ρr0

)

∂2log f(Y(t),V;θ)

∂ρr20
=

M∑
m=1

(1− vm(t))

t∑
l=1

(
−(1− yrm(l))

ρr21
− yrm(l)

(1− ρr0)2

)

−EV,Y{
∂2log f(Y(t),V;θ)

∂ρr20
} =

M∑
m=1

(1− µ)

t∑
l=1

(
ρr0
ρr20

+
(1− ρr0)

(1− ρr0)2

)
=
t(1− µ)M

ρr0(1− ρr0)

By filling the matrix with these expressions, its formula is:

I(θ̂) =



tRM
µ̂(1−µ̂) 0 ... ... ... ... 0

0 tµM
ρ̂11(1−ρ̂11)

... ... ... ... 0

... ... ... ... ... ... ...

0 ... ... tµM
ρ̂11(1−ρ̂R1 )

... ... 0

0 ... ... ... t(1−µ)M
ρ̂10(1−ρ̂10)

... 0

... ... ... ... ... ... ...

0 ... ... ... ... 0 t(1−µ)M
ρ̂R0 (1−ρ̂R0 )


There is another term needed to calculate the Newton update, which is EV{∇θ̂logf(Y(t),V;θ)|Y(t)}.

By using the logarithms needed for the Fisher matrix, we can calculate this expression for each pa-
rameter:

EV{∇µ̂(t)logf(Y(t),V;θ)|Y(t)} =
tR

µ̂(t)(1− µ̂(t))

M∑
m=1

v̂m(t)− µ̂(t)

EV{∇ρ̂r1(t)logf(Y(t),V;θ)|Y(t)} =

M∑
m=1

v̂m(t)

t∑
l=1

yrm(l)− ρ̂r1(t)

ρ̂r1(t)(1− ρ̂r1(t))

EV{∇ρ̂r0(t)logf(Y(t),V;θ)|Y(t)} =

M∑
m=1

(1− v̂m(t))

t∑
l=1

1− yrm(l)− ρ̂r0(t)

ρ̂r0(t)(1− ρ̂r0(t))

The final expression of the estimates is in the corresponding section.

47


	Introduction
	Clustering Stage
	Outliers Expectation Maximization
	Counter-wise Expectation Maximization
	Results

	Detection Stage
	Batch EM
	Recursive EM
	Incremental Newton
	Results

	Two-stage algorithm
	On-line
	Recursive EM
	Results

	Budget
	Conclusions
	Appendices
	Work Plan
	Work Packages, Tasks and Milestones
	Gantt Diagram

	Incremental Newton

