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ABSTRACT 
 
The pressure-temperature phase diagram of morniflumate (niflumic acid β-
morpholinoethyl ester) has been obtained by high-pressure thermal analysis. In 
addition, calorimetric melting data (TI→L = 348.1 ±0.4 K and ∆HI→L = 89 ±2 J g-1) and the 
specific volumes of the solid and the liquid state have been obtained under normal 
pressure. Comparison of the measured high-pressure melting data with the equilibrium 
curve obtained through the Clapeyron equation indicates that the initial slopes are the 
same (dP/dT = 2.96 ±0.06 MPa K-1) at the melting point under normal pressure. The fact 
that the Clapeyron equation can be used to construct topological phase diagrams may be 
of interest for the food and pharmaceutical industries. 
 
Keywords: high-pressure, pressure-temperature phase diagram, Clapeyron, topological 
phase diagram, specific volume, density 
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1 INTRODUCTION 
 

Unary pressure-temperature phase diagrams are used in physical chemistry for 
more than a hundred years and were a popular subject of research at the end of the 
nineteenth century and the beginning of the twentieth century as can be judged by the 
contributions from Tammann, Hulett, Bakhuis-Roozeboom, and Bridgman [1-4]. In the 
meantime, high-pressure research has moved on to ultra-high pressures, even if high-
pressure research of molecular substances is important for the understanding of their 
solid-state behavior. Crystalline polymorphism is an issue in the pharmaceutical and 
food industry and depends on the thermodynamics of the system. High-pressure 
measurements can give access to thermodynamic quantities, such as transition 
temperature, transition enthalpy, and volume change in the system through the 
Clapeyron equation: 
 

         (1) 

 
with ∆s the specific entropy change associated with the phase transition, ∆v the specific 
volume change, ∆h the specific enthalpy change and T the equilibrium temperature (as 
T·∆s = ∆h is valid at equilibrium). On the one hand, such measurements make it possible 
to verify enthalpy and specific volume values obtained by calorimetry and X-ray 
diffraction under ambient pressure conditions, and on the other hand, the Clapeyron 
equation can be used to calculate the high-pressure behavior of the system [5, 6]. This is 
in particular interesting for the pharmaceutical industry, when they need to decide to 
what extent polymorphism may cause problems in the preformulation stage of a drug. 
However, little is known about the extent the dP/dT slope obtained through the 
Clapeyron equation can be extrapolated to higher pressure, because few phase diagrams 
on molecular compounds and active pharmaceutical compounds (APIs) exist. Thus from 
a practical standpoint, high-pressure phase diagram research reinforces an easy access 
to the thermodynamic behavior of small molecular compounds, which is directly 
applicable in industry and from a more academic standpoint, high-pressure data 
provides inside in general thermodynamic properties such as the specific volume 
(equation of state) and the entropy of molecular systems under pressure. More 
experimental data will definitely support the theoretical inroads made to describe the 
solid and liquid state of molecular substances. 

The anti-inflammatory API morniflumate is the β-morpholinoethyl ester of 
niflumic acid. According to patent EP0349902A2, it “was described for the first time by C. 
Hoffmann in French Patent n° 7963M filed on october 1968” [7]. Esterification of niflumic 
acid with the β-morpholinoethyl moiety was intended to improve drug tolerability and 
to reduce injuries of the gastrointestinal mucosa. Solid-state studies indicated that the 
compound crystallizes in a triclinic structure, which was solved by Toffoli et al in 1988 
[8]. The molecular structure based on the crystal structure has been provided in Figure 
1. The thermodynamic properties such as the melting temperature, heat of fusion and 
the specific heat have been investigated by Pinvidic et al. in 1989 [9]. In this paper, the 
pressure-temperature (P-T) phase diagram of morniflumate is presented and used to 
investigate the difference between the experimental slope and the slope as determined 
by the Clapeyron equation. In addition, the required thermodynamic data, such as the 
melting temperature, the melting enthalpy, and the specific volume of the solid and the 
liquid will be discussed. 
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2 EXPERIMENTAL 
 
2.1 Sample 
Morniflumate (Figure 1) of medicinal grade, manufactured by Archimica SAS, France, 
obtained from UPSA laboratories was used as provided after verification by X-ray and 
DSC. The certificate of analysis from Archimica SAS indicated a purity higher than 99% 
with a content in free niflumic acid of 0.1% (m/m).  
 
2.2 Differential Scanning Calorimetry (DSC) 
Temperature (onset) and heat of fusion were obtained with two Q100 thermal analyzers 
from TA Instruments at different sites with various heating rates. The analyzers were 
calibrated by using the melting point of indium (Tfus = 429.75 K and ∆fusH = 3.267 kJ mol-

1). Specimens were weighed using a microbalance sensitive to 0.01 mg and for the 
second DSC sensitive to 0.001 mg and sealed in aluminum pans. 
 
2.3 High-resolution X-ray powder diffraction 
Two series of XRPD measurements using the Debye–Scherrer geometry and 
transmission mode were performed with a vertically mounted INEL cylindrical position-
sensitive detector (CPS-120). Monochromatic Cu-Kα1 (λ = 0.154056 nm) radiation was 
selected by means of an asymmetrically focusing incident-beam curved quartz 
monochromator. Measurements as a function of temperature were performed using a 
liquid nitrogen 700 series Cryostream Cooler from Oxford Cryosystems. Cubic phase 
Na2Ca3Al2F4 was used for external calibration. PEAKOC application from DIFFRACTINEL 
software was used for the calibration as well as for the peak position determinations 
after pseudo-Voigt fittings and lattice parameters were refined by way of the least-
squares option of the FullProf suite [10, 11]. 
Specimens were introduced in a Lindemann capillary (0.5-mm diameter) and allowed to 
rotate perpendicularly to the X-ray beam during the experiments to improve the 
averaging of the crystallite orientations. Before each isothermal data acquisition the 
specimen was allowed to equilibrate for about 10 min, and each acquisition time was no 
less than 1 h. The heating rate in-between data collection was 1.33 K min-1. Patterns 
were recorded on heating in the temperature range from 100 K up to the melting point. 
 
2.4 Densitometry of the melt as a function of temperature 
Liquid density as a function of temperature was measured with a DMA-5000 Density 
Meter from Anton-Paar. The specimen was introduced in the molten state in the 
apparatus equilibrated at a temperature above the temperature of fusion. Data were 
obtained at isothermal steps while slowly cooling in the temperature range from 363 to 
323 K. Dry air and bi-distilled water were used as calibration standards in the 
temperature range. The temperature was controlled at ± 1 mK. 
 
2.5 High-pressure differential thermal analysis (HP-DTA) 
HP-DTA measurements have been carried out at 2 K min-1 using a home-made high-
pressure differential thermal analyzer similar to Würflinger’s apparatus and operating 
in the 298 – 473 K and 0 – 250 MPa ranges [12]. To determine the melting temperature 
as a function of pressure and to ascertain that in-pan volumes were free from residual 
air, specimens were mixed with an inert perfluorinated liquid (Galden®, from Bioblock 
Scientifics, Illkirch, France) as a pressure-transmitting medium, and the mixtures were 
sealed into cylindrical tin pans. To check that the perfluorinated liquid was chemically 
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inactive, and should thus have no influence on the melting temperature of morniflumate, 
preliminary DSC measurements were carried out with a Galden®-morniflumate mixture 
on a Q100 analyzer of TA instruments without applied pressure. 
 
3 RESULTS 
 
3.1 Calorimetric data 

DSC measurements have been carried out with thirteen different samples using 
heating rates of 0.5, 2, 5, and 10 K min-1. The results of the individual measurements 
have been compiled in Table S1 in the Supplementary Materials. It has led to a 
temperature of fusion, TI→L, of 348.1 K ±0.4 K (standard uncertainty u) obtained from 
the onset of the melting peak and it has yielded the mean value of 89.4 J g-1 ±1.6 J g-1 (u) 
for the melting enthalpy, ∆HI→L, a little larger than the value of 87.25 J g-1 found 
previously [9]. Neither the melting point nor the melting enthalpy appear to depend on 
the heating rate of the DSC. On reheating the melt, a glass transition was observed in 
agreement with previous findings [9] at Tg = 249.4 K ±0.5 K (u) (midpoint) and no 
further recrystallization is observed. In Figure 2, the melting peak and the glass 
transition for the heating rate of 2 K min-1 has been provided. 
 
3.2 Specific volume as a function of temperature 
 
3.2.1 Crystalline morniflumate 

Two different samples of morniflumate have been measured with X-ray powder 
diffraction and the lattice parameters as a function of temperature have been calculated. 
They can be found in the Supplementary Materials Table S2. The resulting unit cell 
volumes and specific volumes of morniflumate as a function of the temperature have 
been compiled in Table 1. The specific volumes of the crystalline solid, which have been 
plotted in Figure 3 were fitted to a quadratic function  (vs /cm3g-1, T /K, ±u): 
 
vs (T) = 0.6778 (±0.0011) + 5.8 (±1.0) × 10-5 T + 1.7 (±0.2) × 10-7 T2 (r2 = 0.999) (2) 
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Table 1. Morniflumate unit cell volume (Vcell), which contains two molecules (Z = 
2), and specific volume (vs) as a function of temperature (T) measured in an open 
system under air with a pressure of 0.1 MPa.a 

T /K Vcell /10-3 nm3 vs /cm3 g-1 
First series 

100.0 900.4 0.68570 
150.0 907.6 0.69118 
200.0 915.01 0.69682 
320.0 938.2 0.71445 
330.0 939.6 0.71558 
335.0 941.6 0.71705 
340.0 942.4 0.71766 

Second series 
125.0 902.4 0.68720 
175.0 910.01 0.69301 
225.0 918.60 0.69955 
250.0 923.82 0.70353 
273.0 927.45 0.70630 
298.2 934.34 0.71154 
315.0 936.85 0.71346 
325.0 938.50 0.71471 
332.0 940.94 0.71657 
337.0 941.6 0.71711 
342.0 943.34 0.71840 
347.0 944.39 0.71920 

aStandard uncertainties are u(T) = 0.2 K, ur(P) = 0.05, u(Vcell) = 0.55 ×10-3 nm3 and u(vs) 
= 0.0004 cm3g-1.  
 
3.2.2 Liquid morniflumate 

The density of molten morniflumate was measured with decreasing temperature 
every five kelvins from 363 K to 323 K. Results have been compiled in Table S3 in the 
Supplementary Materials and a linear fit to the temperature dependent specific volume 
(vliq/cm3g-1, T /K, ±u) has led to: 

 
vliq(T) = 0.6045 (±0.0005) + 0.000579 (±0.000014) × T  (r2 = 0.9999)  (3) 
 
The specific volume of the liquid has been plotted in Figure 3 together with the data for 
the crystalline state. 
 
3.3 High-pressure differential thermal analysis 

The melting temperatures observed in seven runs at different pressures ranging 
from 0 to 250 MPa have been compiled in Table 2. The resulting pressure-temperature 
melting curve based on the “raw” unrounded data, using T as the running variable and 
giving P as a function of T, is best described by a straight line (with P in MPa and T in K, 
±u): 
 
P = –1201 (±40) + 3.44 (±0.11) T     (R2 = 0.994)  (4) 
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Table 2. Pressures (P) and onset temperatures (T) of the melting peaks obtained 
by high-pressure differential thermal analysis.a 

P /MPa T /K 
0.1 348.1 
32 358.5 
58 366.9 
79 374.5 

115 382.7 
140 390.7 
155 396.0 
201 403.7 
244 421.5 

aStandard uncertainties are u(T) = 0.4 K and ur(P) = 0.05 for P = 0.1 MPa and u(T) = 1.5 K 
and u(P) = 1 MPa for P > 0.1 MPa.  
 
4 DISCUSSION 
 
4.1 The thermal expansion of the solid and the liquid 

The thermal expansion of the volume of solid morniflumate is best fitted by the 
quadratic expression eq. 2. However, to compare its expansion with other molecular 
solids, it is more convenient to determine the thermal expansion coefficient αV,s, which is 
defined by the linear equation vs(T) = v0 (1+αV,s T). Fitting the data in Table 1 to the 
latter equation, leads to 2.09 (±0.04) ×10–4 K–1 for αV,s (with v0 = 0.6695(±0.0008) cm3g-

1) in the temperature range of 100 to 347 K. This is very close to the value of 2.21 ×10-4 
K-1 previously reported by the present authors for solid molecular active ingredients, 
which had also been reported by Gavezzotti for solid organic compounds [13-15]. 
Clearly, morniflumate has a very predictable average thermal expansion in the solid 
state. 
 Molten morniflumate has a thermal expansion described by the linear equation 3. 
Using the same approach to obtain the thermal expansion coefficient of the liquid phase 
αV,liq, 9.58(±0.24) ×10–4 is found, which is somewhat smaller than 1.20(±0.25) ×10–3 K–1 
found previously for similar compounds, but it is still within the standard deviation of 
the observed distribution for the thermal expansion of liquids of active pharmaceutical 
compounds [14, 15]. 
 
4.2 Isobaric thermal expansion tensor for the solid 

The anisotropy of the intermolecular interactions can be investigated with the 
isobaric thermal expansion tensor, which is a measure of how the interactions change 
with temperature [16]. It is the symmetrical second-rank tensor, with nonzero 
eigenvalues on the diagonal α1, α2, and α3 [17-23]. A small value for a tensor eigenvalue 
is commonly referred to as a “hard” direction indicating a small deformation and a large 
value as a “soft” direction indicating a large deformation. For triclinic systems, the 
eigenvectors are completely independent of the crystal axes a, b, and c and contrary to 
them, the eigenvectors constitute an orthogonal system. 

With the thermal expansion data provided in the Supplementary Materials (Table 
S2), the isobaric thermal expansion tensor has been calculated. The full results can be 
found in Table S4 of the Supplementary Materials and a graphic representation of the 
tensor at 255 K can be found in Figure 4. The eigenvalues increase with the temperature, 
but are under all circumstances positive. At 300 K, the soft direction of the crystal is 
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characterized by α1 with a value of 1.53 ×10-4 and the hardest direction by α3 with a 
value of 0.21 ×10-4. The intermediate α2 has a value of 0.54 ×10-4. The aspherism 
coefficient (symbol A in Table S4 in the supplementary materials) indicative for the 
measure of anisotropy in the thermal expansion is in the order of 0.4 (see also the 
graphical representation of the tensor in Figure 4), but it tends to become smaller with 
increasing temperature, indicating that the expansion becomes more isotropic (A = 0 
representing fully isotropic expansion). The eigenvalues of the tensor are comparable to 
those of other small organic compounds with therapeutic activity, like L-tyrosine methyl 
ester, L-tyrosine ethyl ester, and tienoxolol for example [21, 24, 25]. 

Due to a lack of classical hydrogen bond donors—the only N-H present in the 
structure is involved in an intramolecular hydrogen bond—the crystal is susceptible to 
thermal expansion in all directions and in particular the expansion of the hard direction 
is relatively large in comparison with the examples mentioned just above. On the other 
hand, it is clear that the soft direction, α1, is marked by layers of morniflumate molecules 
that share few close contacts (This has been illustrated in the Supplementary Materials 
in Figure S1). It may be one of the main causes of the relatively low melting point of 
morniflumate. The other directions contain some of the weaker types of hydrogen bonds 
between hydrogens of the aromatic rings as donor and the double bonded oxygen of the 
ester as acceptor. 
 
4.3 The volume change on melting 
 On melting, the directional short-range interactions present in the crystalline 
materials cease to exist and are replaced by more random interactions in the liquid 
state. Even if the molecules remain close, the random positioning of the molecules in the 
liquid is in general accompanied by an increase of volume on melting (except for a few 
special cases such as water). In the case of small organic molecules (100 – 500 g mol-1) 
to which morniflumate belongs together with many other pharmaceuticals, the volume 
increase on melting tends to be on average about 10% ± 3% [14, 15], slightly smaller 
than the 12% based on 21 compounds reported previously by Goodman et al. [26]. 
 Taking the specific volume dependence of the crystalline solid with the 
temperature (eq. 2) and the temperature of melting of 348.1(±0.4) K, the specific volume 
of the crystal at the melting temperature can be calculated to be 0.71923(±0.00042) 
cm3g-1. The temperature dependence for the liquid (eq. 3) leads to a specific volume at 
the melting point of 0.80615(±0.00007) cm3g-1. Thus, the change in specific volume on 
melting equals 0.08692(±0.00049) cm3g-1 and the ratio vliq/vs is 1.121(±0.001). The 
latter ratio is in very good agreement with the volume changes on melting mentioned 
above. 
 
4.4 The volume difference at the glass transition 
 The glass transition temperature was found at 249.4 K. At this temperature the 
undercooled liquid becomes a “solid” kinetically restrained liquid. By extrapolation of 
eq. 3, the specific volume of the liquid at the glass transition can be estimated and was 
found to be 0.7490(±0.0004) cm3 g-1. The crystalline solid at that temperature (eq. 2) 
has a specific volume of 0.7032(±0.0004) cm3 g-1. The glass is less dense than the 
crystalline phase and the difference in specific volume is 0.0458(±0.0008) cm3g-1. The 
ratio of the specific volume of the solid over that of the liquid is 1.065(±0.001), 
disregarding the 1, the decimal values of this ratio are approximately half in comparison 
with the ratio at the melting point. 
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The specific volume of the glassy state as a function of the temperature generally 
levels off strongly and starts to contract like the solid state. If the contraction as 
observed in the liquid state were to continue, the liquid (or glass) would at a given 
temperature have the same density as the crystalline phase. This is called the Kauzmann 
paradox, as it would be impossible that a disordered liquid can have the same specific 
volume as the ordered crystalline solid [27]. The temperature at which this seemingly 
occurs is called the Kauzmann temperature, which for this system would be 148 K (see 
Figure 3). If a glass transition is lacking, the Kauzmann temperature can be considered 
the extreme minimum temperature, where a liquid phase could exist. Obviously, any 
experimental glass transition will occur above the Kauzmann temperature. 
 
4.5 The slope of the solid-liquid equilibrium in the pressure-temperature diagram 
 The slope of a two-phase equilibrium in a pressure-temperature phase diagram is 
given by the Clapeyron equation (eq. 1). Using the values obtained by calorimetric 
measurement, one finds that the entropy change, ∆s, equals 89.43/348.1 = 
0.2569(±0.0047) J g-1 K-1. The slope of the melting equilibrium with the volume change 
calculated above leads to dP/dT = 0.2569/0.08692 = 2.96(±0.07) MPa K-1. 

The dP/dT slope calculated with the Clapeyron equation (eq. 1), is rather low in 
comparison with the experimental value obtained by the high pressure differential 
thermal analysis, which has led to 3.44(±0.11) MPa K-1 (eq. 4) The reason for this 
difference is most likely related to the curvature of the melting equilibrium, as in most 
cases the volume of the liquid will change more readily with increasing pressure than 
the solid. Therefore, the volume change on which the slope of the equilibrium depends 
as can be seen in the Clapeyron equation (eq. 1) will change to a certain extent with 
pressure. It may be possible to investigate this using a quadratic function to fit the 
experimental data in Table 2: 

 
P = –892(±695) + 1.8(±3.6) T + 2.1(±4.7) ×10–3 T2  (R2 = 0.994)  (5) 
 

It can immediately be seen that the quadratic function does not capture the 
curvature of the slope, as its correlation coefficient and that of eq. 4, the linear function, 
are the same and thus the quadratic function does not improve the fit. Furthermore, the 
errors over the fitting parameters are larger than their values and they can therefore not 
be considered statistically sound, even if the overall fit is acceptable. Evaluating the 
slope at 348.1 K nonetheless, leads to a value of 3.29 MPa/K, thus slightly smaller than 
that found by the linear equation, however the statistical error is larger than its value 
and thus it is not possible to compare the slope obtained from eq. 5 with the value 
obtained by the Clapeyron equation. 

This problem is most likely due to the scatter over the measurement points, 
which make it difficult for the quadratic equation to capture the proper curvature. An 
alternative is to investigate the change of the slope by fitting a limited number of points 
to a straight line, starting at zero pressure and one by one adding a melting temperature 
obtained at a higher pressure. The resulting slopes can be found in Table 3. 
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Table 3. The evolution of the equilibrium slope with standard uncertainty u and 
its correlation coefficient R2 based on a linear equation as a function of the 
number of data points used 

Number of data 
points 

Slope (±u) R2 

2 3.05(-)a 1a 
3 3.09(±0.03) 0.99992 
4 3.01(±0.05) 0.9994 
5 3.25(±0.15) 0.994 
6 3.30(±0.11) 0.996 
9 3.44(±0.11) 0.994 

Clapeyron (eq. 4) 2.96(±0.06) - 
a no error with only two data points 
 
 It is clear from table 3 that using only a few points to determine the slope of the 
equilibrium, the value is much closer to the one determined by the Clapeyron equation. 
As the error over the values determined with only a few points is most likely 
underestimated, ±0.11 MPa/K can be used as a global error, because this seems to be 
approximately de limiting error when all P-T data points are used. In that case, the 
slopes calculated with 2, 3, or 4 data points are within error equal to the value obtained 
by the Clapeyron equation (for example 3.01 ± 0.11 and 2.96 ± 0.7 MPa/K). So even 
though due to possible scatter over the experimental data points the curvature of the 
melting equilibrium cannot not be fitted well with a quadratic function, the foregoing 
analysis seems to point to a slight curvature. Further evidence that the Clapeyron 
equation describes the initial slope at 0 MPa well can be found in Figure 5, where the 
measured data points are plotted together with those obtained through the Clapeyron 
equation. The points obtained by the Clapeyron equation virtually overlap with the first 
four high-pressure data points. 
 
5 CONCLUDING REMARKS 
 
 The specific volume data obtained for morniflumate confirms the statistics found 
for the specific volume data of other small molecular compounds. The expansion 
coefficients in the solid and in the liquid are both close to the statistical averages. In 
addition, the ratio of the volume change on melting of morniflumate is found to be very 
close to the average range of 10 to 12 % in volume increase. 
 It is also clear from the experimental pressure-temperature melting curve that 
the Clapeyron equation using only the melting enthalpy and temperature obtained by 
DSC and the specific volumes obtained by X-ray and density measurements provides a 
good estimate of the initial slope of the melting equilibrium (see Figure 5). It is however 
important to be able to fit the curvature of the experimental pressure-temperature 
curve correctly and that may in certain cases not be easy as has been demonstrated by 
the case of morniflumate. Nonetheless, this paper shows that the Clapeyron equation 
can be reliably used to construct topological pressure-temperature phase diagrams 
without the immediate need of measuring systems under pressure. This may be an 
advantage for the food and drug industries. 
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Figure 

 
 
Figure 1. Molecular structure of morniflumate [8] C19H20F3N3O3, Mw = 395.38 g mol-1, 
black spheres are carbon atoms and light grey spheres are hydrogen atoms, oxygen, 
nitrogen and fluor atoms have been labeled in the figure. 
 
 

 
Figure 2. The melting peak and after cooling and reheating the glass transition of 
morniflumate as obtained by differential scanning calorimetry at a heating rate of 2 K 
min-1. 
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Figure 3. Temperature dependence of the specific volume of crystalline (filled circles: 
first sample, open circles: second sample) and molten morniflumate (filled squares). The 
dashed lines through the symbols represent the respective fits, eqs. 2 and 3. The light 
grey dashed line parallel to the specific volume of the crystalline phase represents the 
hypothetical specific volume of the glass phase starting at the glass transition 
temperature Tg ≈ 248 K. Tk is the Kauzmann temperature at which the vliq of the 
metastable liquid paradoxically becomes the same as that of the crystalline solid. 
 

 
 
Figure 4. Illustration of the isobaric thermal expansion tensor at 255 K 
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Figure 5. Melting curve of crystalline morniflumate as a function of temperature (T) and 
pressure (P). Open circles: experimental HP-DTA values, solid circles: melting data 
calculated with the Clapeyron equation at the same temperatures as the experimental 
data (eq. 1). The dotted line is a straight equilibrium line based on the Clapeyron 
equation. The increasing deviation of the measured data from the straight extrapolation 
based on the Clapeyron equation is clear, but cannot be easily captured by a second 
order equation (see text). 
 


