
libPRISM: An Intelligent Adaptation of Prefetch and SMT Levels

Cristobal Ortega
1,2
, Miquel Moreto

1,2
, Marc Casas

2
, Ramon Bertran

3

Alper Buyuktosunoglu
3
, Alexandre E. Eichenberger

3
and Pradip Bose

3

1
Universitat Politecnica de Catalunya (UPC)

2
Barcelona Supercomputing Center (BSC-CNS)

3
IBM T.J. Watson Research Center

ABSTRACT
Current microprocessors include several knobs to modify the hard-

ware behavior in order to improve performance under di�erent

workload demands. An impractical and time consuming o�ine pro-

�ling is needed to evaluate the design space to �nd the optimal

knob con�guration. Di�erent knobs are typically con�gured in a

decoupled manner to avoid the time-consuming o�ine pro�ling

process. �is can o�en lead to underperforming con�gurations and

sometimes to con�icting decisions that jeopardize system power-

performance e�ciency. �us, a dynamic management of the dif-

ferent hardware knobs is necessary to �nd the knob con�guration

that maximizes system power-performance e�ciency without the

burden of o�ine pro�ling.

In this paper, we propose libPRISM, an infrastructure that enables

the transparent management of multiple hardware knobs in order

to adapt the system to the evolving demands of hardware resources

in di�erent workloads. We use libPRISM to implement a policy that

maximizes system performance without degrading energy e�ciency

by dynamically managing the SMT level and prefetcher hardware

knobs of an IBM POWER8 system. We evaluate our solution using

24 applications from 3 di�erent parallel benchmarks suites without

the need of o�ine pro�ling or workload modi�cation. Overall, the

solution increases performance up to 220% (15.4% on average) and

reduces dynamic power consumption up to 13% (2.0% on average)

when compared to the static default knob con�guration.

CCS CONCEPTS
•Computing methodologies → Parallel programming lan-
guages; •Computer systems organization→Multicore archi-
tectures; •So�ware and its engineering → Parallel program-
ming languages; So�ware libraries and repositories;

1 INTRODUCTION
Multicore architecture is the main trend in processors development

nowadays. Every new generation of processors is increasing the

number of cores and the number of threads that can run within the

same core (i.e. Simultaneous Multithreading or SMT). As a result,

processor shared resources experience contention, which might

lead to performance degradation. Processors have several hardware

knobs to prevent performance degradation by adapting its behavior

to workloads demands, such as the SMT, DVFS levels, the decode

priorities or the data prefetcher se�ings. �ese knobs allow the user

to tune the hardware to adapt it to workload demands.

Multiple policies have been proposed to derive suitable con�g-

urations for the hardware knobs, but these policies have always

treated them independently of each other [3, 5, 25, 42, 43]. �is inde-

pendent actuation can lead to con�icting decisions that jeopardize

system power-performance e�ciency [39]. For example, a higher

SMT level allows to increase the overall system throughput, but it

reduces the e�ective bandwidth and last level cache size per thread.

As a result, coordinating these decisions with other knobs that also

contend for the memory bandwidth, such as the data prefetcher or

0.2 0.4 0.6 0.8 1.0

Dynamic Power consumption
(normalized to the max value)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
p

e
e
d

u
p

Aggressive

Medium

Default

Off

SMT8 (default)

SMT4

SMT2

ST

Figure 1: Application behavior of the NPB suite under di�er-
ent hardware knob con�gurations. �e Y axis shows speedup
with respect to the default hardware con�guration. �e X
axis shows power consumption normalized to themaximum
value observed. SMT level is represented by color and the
shape corresponds to the data prefetcher con�guration.

DVFS, is required to optimize the overall system power-performance

e�ciency.

To illustrate the need for a coordinated adaptive system, Figure 1

shows the performance and the average power consumption of the

NAS Parallel Benchmarks (NPB) [26] suite with di�erent knob con-

�gurations: four SMT levels and four levels of aggressiveness for

the data prefetcher
1
. Performance is normalized to the default con-

�guration (SMT8 level and default prefetcher se�ing) and power is

normalized to the maximum observed value. �e highest SMT level

is not always the optimal con�guration due to increased last-level

cache misses and contention in the execution units. An aggressive

con�guration for the prefetcher does not imply a be�er performance

either, but it usually ends in more power consumption. In some

cases, running in a low SMT level provides a modest 5% perfor-

mance improvement, while disabling the prefetcher and running

in the highest SMT level provides signi�cant performance bene�ts

(up to 40%) and reduces power consumption. Also, Figure 1 shows

that di�erent knob con�gurations yield a wide range of speedup

and power consumption tradeo�s across applications. Furthermore,

applications can have di�erent intra resources demands, increasing

even more the variety of best performing con�gurations.

An extensive and exhaustive o�ine pro�ling is required to dis-

cover the best hardware con�guration per application. However,

given the number of possible hardware con�gurations, performing

an exhaustive pro�ling of each of them for each application and

input data size is a time consuming process. In addition, since ap-

plication optimal hardware con�guration changes during di�erent

application execution phases, exploring all the hardware con�gu-

ration for each application phase becomes unfeasible in a practical

amount of time. �us, we believe that using an adaptive online co-

ordinated management of related hardware knobs is a more robust

1
Sections 4 and 5 describe the experimental setup in detail.

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina
© ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in: Ortega, C., Moreto, M., Casas, M., Bertran, R., Buyuktosunoglu, A., Eichenberger, A., Bose, P. libPRISM: an intelligent adaptation of prefetch and SMT levels. A: International Conference on Supercomputing. "ICS'17: proceedings of the International Conference on Supercomputing". Chicago, Illinois: Association for Computing Machinery (ACM), 2017, p. 28:1-28:10. DOI 10.1145/3079079.3079101

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

and less costly approach to performance tuning than exhaustive

o�ine pro�ling.

In this paper, we propose libPRISM
2
, an interposition library for

shared memory parallel programming models that transparently

adapts the di�erent hardware knobs available in the architecture.

During execution time, libPRISM discovers the best hardware con�g-

uration for di�erent �ne-grained regions of the application without

user intervention and without modifying the original source code

of the application.

Overall, the main contributions of this paper are:

• We present a detailed power/performance characterization of a

wide set of parallel benchmark suites (NPB [26], SPEC OMP [33],

CORAL [9]) on an IBM POWER8 platform. �e results show

that best performing SMT level and data prefetcher con�gura-

tion di�er between applications and between application phases,

leading to di�erences in performance and power up to 113% and

12% respectively.

• We introduce libPRISM, a library to dynamically manage hard-

ware resources in a transparent way to the user for OpenMP

parallel applications without the need to recompile applications

or runtimes. libPRISM can be used in di�erent runtimes, with

di�erent hardware knobs and it can be easily extended.

• We describe an implementation of an adaptive policy to manage

SMT and prefetcher hardware knobs in a coordinated fashion

using libPRISM infrastructure. We demonstrate speedups of up

to 220% in execution time (15.4% on average) and up to 13%

reduction in power consumption (2.0% on average), without any

signi�cant slowdown across the suites when compared to the

static default knob con�guration.

�is paper is organized as follows: Section 2 provides the required

background for this work, while Section 3 introduces libPRISM and

our adaptive policy. Section 4 describes the experimental setup

and Section 5 shows the evaluation of our framework. Next, Sec-

tion 6 discusses the related work and, �nally Section 7 presents the

conclusions of this paper.

2 BACKGROUND
�is section provides the required background about the SMT and

data prefetch knobs targeted in this work. �e runtime systems for

shared memory programming models that we leverage to manage

these knobs are also described.

2.1 Simultaneous Multithreading
SMT increases the number of executing threads within the same

core, which can be very useful to hide memory latency and exploit

more instruction level parallelism (ILP). In a processor with SMT

capabilities, the processor fetches instructions from di�erent threads

and puts them on a shared instruction queue. �en, in the execution

stage, all threads share the hardware resources of the core where

they run, e�ectively increasing the overall resource utilization and

the system throughput. However, individual thread performance

may degrade due the contention on the shared hardware resources.

Multi-programmed workloads can signi�cantly bene�t from SMT

capabilities, since the di�erent threads stress di�erent functional

units or have di�erent memory pa�erns. �erefore, the usage of the

hardware resources is higher [15, 18, 32, 36]. In contrast, parallel ap-

plications that follow a traditional fork-join parallelization scheme,

execute the very same code on the di�erent threads. Consequently,

all threads are competing for the same hardware resources, leading

2
libPRISM source code is available at: h�ps://github.com/criort/libPRISM

to a higher contention on shared hardware resources, which some-

times degrades overall system performance. Consequently, a higher

SMT level can even degrade overall performance [10, 21].

2.2 Hardware Data Prefetching
Hardware data prefetching reduces memory latency by bringing

data to the processor’s cache before it is needed. �is reduces stalls

due to memory accesses. Almost all current processors include

a hardware data prefetch engine as it is a powerful technique to

reduce memory latency, which is one of the main bo�lenecks for

performance.

Applications with predictable (e.g. regular) memory access pat-

terns and spatial locality signi�cantly bene�t from data prefetching.

Other workloads with unpredictable (e.g. random) memory pa�erns

do not bene�t at all from the prefetcher, and it can even degrade

performance. Useless prefetches waste memory bandwidth (increase

in power consumption) and pollute the cache hierarchy (decrease

in performance).

�e data prefetching algorithm is usually hardcoded in the pro-

cessor design and it is not possible to modify it. Vendors o�en

add instructions to let the programmer or the compiler do so�ware

prefetching; this adds a step in the optimization process of a code.

Some processors allow the user to con�gure the data prefetcher

to match the workload characteristics by selecting the number of

lines to bring ahead of time, prefetch data on load and/or store in-

structions, etc. A correctly con�gured data prefetcher can speed

up the execution time, save memory bandwidth and reduce power

consumption [24, 25].

In this work, we propose an automatic management of the data

prefetcher transparent to the user while coordinating it with the SMT

knob. �is needs to be done in a coordinated fashion because the

number of threads impacts the data prefetcher and data prefetcher

con�guration can determine the optimal number of threads to be

used. �is will be seen in detail in Section 5.

2.3 Runtime Systems and Shared Memory
Programming Models

With the increasing number of cores, orchestrating the parallel

execution of an application is becoming more di�cult. �e usage of

a runtime system to manage this complexity is a common practice to

exploit the parallelism of multi-core systems. Runtimes are used as

an abstract layer in the so�ware stack to parallelize codes. Usually,

they need compiler support to translate from keywords to real code

that will be executed: the programmer just needs to use a speci�c

keyword or directive to spawn all the desired threads, share the data

among them, or synchronize them. �is method reduces the burden

of developing parallel applications and drives the design of future

architectures [4, 16, 30, 38].

Speci�cally, Open Multi-Processing (OpenMP) [34] is a program-

ming model for shared memory systems. It has become the de-facto
programming model for such systems and it is supported by all the

major vendors. OpenMP is based on directives annotated by the

developer to a sequential source code. �en, these directives are

translated to parallel code at compile time. Directives delimit a part

of the source code that is executed in parallel. We refer to this code

executed in parallel as parallel region. Depending on the speci�c

runtime implementation, at the beginning of a parallel region, the

runtime creates or activates the requested number of threads and

executes the parallel code. At the end of the parallel region, the

runtime destroys the created threads or deactivates them.

2

 Hardware

Time

Application

Runtime library

libPRISM

 call parallel
 region start

Identify region (PC)
& compute policy Parallel region

execution using knob
setting according to

custom defined policy

 parallel
 region start

Set hardware
knobs Set up and

 start sensors

 parallel
 region stop

 Stop and
 read sensors

 Record region
profile

 parallel
 region end

(intercept runtime calls and manage
hardware knobs and sensors)

Figure 2: libPRISM execution stack and work �ow.

We take advantage of these runtimes in order to automatically

manage hardware knobs for several reasons: applications have dif-

ferent phases already annotated, which provides intra-application

granularity. �is can be exploited to adapt the hardware per phase

instead of per application. �ose phases usually behave regularly

over time and we can learn from their previous executions. Finally,

it is possible to use library interposition with the runtime to capture

and recon�gure the hardware at the beginning and at the end of

each phase of the application.

In the next section, we introduce libPRISM, which leverages these

properties to adapt the hardware knobs in runtime systems for

programming models based on shared memory systems.

3 LIBPRISM
libPRISM is an interposition library that recon�gures the available

hardware knobs at execution time. Its decisions are based on the

custom de�ned policies that are implemented. Policies can leverage

the information from the di�erent sensors available, such as per-

formance counters, temperature, power, etc., to drive the di�erent

knobs present in the system. Each time the application enters a

parallel region, libPRISM asks to the policy the required knob con-

�gurations and the sensors to be tracked during the execution of the

parallel region. �en, libPRISM sets the di�erent hardware sensors

and knobs accordingly. If there are multiple parallel regions, they

will be executed with their respective knob con�guration according

to the implemented policy.

To achieve this goal without recompiling the application or the

runtime system, libPRISM is located on top of the runtime system,

as shown in Figure 2. When a parallel region starts, the application

calls our library instead of the runtime system. �en, libPRISM

takes care of communicating con�guration changes to the runtime

system and to the underlying hardware. �e so�ware stack shown

in Figure 2 allows libPRISM to: (1) communicate changes to the

runtime system; (2) gather data from the runtime and the hardware;

and (3) avoid the need to recompile the application or the runtime

itself. In this scenario, the application executes as usual without

being aware that libPRISM is dynamically adapting the hardware

resources based on a custom de�ned policy.

libPRISM uses a library interposition mechanism to intercept calls

from the application to the runtime. Figure 2 gives an overview of

the work �ow of libPRISM. When the application calls the runtime

to start or �nish a parallel region, libPRISM intercepts these calls

and executes the policy speci�c code before calling the runtime

system. libPRISM records information about the parallel region that

is going to be executed and recon�gures the knobs based on the

implemented policy. �en, libPRISM calls the runtime system with

the selected parameters as if it was the application. As a result, the

application executes with the selected best found performing knob

con�guration without requiring any modi�cation.

Our goal is to implement a policy using libPRISM infrastructure

to tune SMT and hardware prefetcher knobs in order to exploit the

optimization opportunities to maximize performance and, if possi-

ble, reduce the power consumption. libPRISM tracks and pro�les at

execution time every parallel region of the application. At compile

time, parallel regions are transformed into functions that are called

by the application. Parallel regions can be identi�ed by their next

program counter (PC) in the program stack of the intercepted run-

time function calls. libPRISM identi�es a parallel region using this

PC, as shown in Figure 2. libPRISM passes that information to the

policy, which keeps track of the number of times a parallel region

is executed. For every parallel region that is executed, the policy

records a performance pro�le under di�erent knob con�gurations.

�e policy builds this performance pro�le for each parallel region

using di�erent performance counters (executed instructions and

cycles) and the execution time of the region.

Note that, in several programming models, there exists the possi-

bility to use a master thread that creates work for the other worker
threads. �is is the case when using the task abstraction available

in OpenMP. �is behavior is usually not exposed to the user, and it

is handled internally in the runtime system. To support this type of

parallelism in libPRISM, we use the master thread to measure sys-

tem performance a�er it creates all the tasks to be executed by the

worker threads without requiring any modi�cation in the runtime.

3.1 Adaptive Algorithm
�eMAXPERF policy explores di�erent knob con�gurations in order

to identify the best con�guration per parallel region at execution

time. �e policy manages two hardware knobs that are targeted in

this work: the SMT level and the data prefetcher, but it can work for

N hardware knobs. It is optimized to handle parallel applications

that use common runtimes such as OpenMP.

�e policy implements a greedy search through the di�erent

hardware con�gurations in order to identify the best found per-

forming con�guration. �e use of a greedy algorithm instead of an

exhaustive one helps to reduce the overhead cost of exploring all

the possible con�gurations of the hardware knobs.

MAXPERF policy adopts a hierarchical search algorithm. It ex-

plores di�erent con�gurations for a particular hardware knob at a

time. MAXPERF tunes �rst the hardware resources that have more

impact on the �nal performance of the application. We base our

heuristic on a single factor search over a multi-factor search to re-

duce the exploration space, therefore, reducing the overhead cost

3

1 // Call to parallel_region_begin intercepted
2 function parallel_region_begin_wrapper {
3 if execution_time[PC] > threshold:
4 executions[PC] + 1
5 if executions[PC] == repetitions:
6 previousPerformance = currentPerformance
7 currentPerformance = avgPerformance ()
8

9 module_HW_knob ()
10

11 // Return control to runtime
12 parallel_region_begin_real ()
13 }
14

15 /* Hardware knob module */
16 function module_HW_knob () {
17 if previousPerformance > currentPerformance:
18 best_configuration = current_configuration
19 bestPerformance = currentPerformance
20 next_knob ()
21 if performance_current_knob >>

performance_previous_knobs
22 reset_previous_knobs ()
23 else:
24 lower_aggressivity_current_knob ()
25 set_current_knob_configuration ()
26 }

Listing 1: MAXPERF policy exploration phase
algorithm.

of exploring. Our heuristic allows converging faster to a hardware

knob con�guration while taking into account inter-knobs e�ects.

In this work, our heuristic achieves a competitive performing

hardware knob con�gurationwith respect to the best static hardware

knob con�guration found for each application when tuning the SMT

level and the prefetcher aggressiveness knobs.

For instance, we have measured that the best performing SMT

level can lead to a performance boost larger than 10% (with respect

to the default SMT level), while the best performing data prefetcher

se�ing boosts performance around 5% (with respect to the default

data prefetcher). As a result, the MAXPERF policy �rst explores

the di�erent SMT con�gurations from SMT8 to single thread (ST)

to �nd a competitive performing SMT se�ing. �en it explores the

di�erent prefetcher con�gurations from the most aggressive to the

least aggressive one. Starting with the hardware knobs con�gured

to the most aggressive con�guration allows the policy to maximize

performance, reducing the possibility of degrading performance.

�e policy implements an exploration phase followed by a steady

state phase. In the steady phase, it is possible to do a correction

phase if needed. �is is a good approach in order to minimize

overhead by leveraging repetitive behavior of the parallel regions

of the applications and to correct hardware knobs con�guration in

case the behavior changes over time.

�e pseudo-code of the exploration phase is shown in Listing 1.

A parallel region is identi�ed by the PC of the intercepted function

call. If the duration of the parallel region is too short (i.e. below a

threshold), libPRISM stops the exploration phase as the cost of recon-

�guring the available hardware knobs would neglect the potential

performance bene�ts of an optimized hardware con�guration (Line

3 in the Listing 1). �is threshold has to take into account the time

spent in changing the speci�c hardware knobs.

In the exploration phase, the �rst time a parallel region is ex-

ecuted, libPRISM sets the available hardware knobs to the most

aggressive con�guration and measures its performance. �is is done

to spend the minimum amount of time in a knob con�guration that

degrades performance, which is usually the least aggressive knob

con�guration. �is measurement is repeated a number of repetitions

1 performance = readPerformance ()
2

3 if performance != bestPerformance:
4 increase_repetitions ()
5 reset_exploration ()
6 else:
7 set_best_HW_knob_configuration ()
8 execute_parallel_region ()

Listing 2: MAXPERF policy steady-state phase
algorithm.

in order to avoid measurement noise due to new knob con�guration.

For instance, the �rst parallel region execution a�er changing the

SMT level might su�er from increased number of cache misses (cold

cache e�ects).

Next time the same parallel region is executed, libPRISM lowers

the aggressiveness level of the knob and measures performance

again. If lowering the aggressiveness of the knob leads to a slow-

down in performance, the exploration phase for this knob stops and

the previous con�guration is selected as the best found performing

con�guration (Lines from 17 to 19 in Listing 1). �en, the policy

continues the exploration phase with the next knob to con�gure

(Lines 20 in Listing 1).

�e maximum number of iterations for the exploration phase

without taking into account re-explorations is: 2 × Number of SMT
levels + Data prefetch aggressiveness con�gurations. In our experi-

ments, we observe that the maximum number of iterations is never

reached. Our observations prove that less than 10 iterations (6.1 iter-

ations on average) are enough to tune non-variable parallel regions

with our algorithm. �is is typically a low number of iterations with

respect to the total number of iterations.

A�er the exploration phase, the policy identi�es a competitive

performing knob con�guration for a particular parallel region and

reaches a steady-state phase. �e pseudo-code of this phase is shown

in Listing 2. Every time the parallel region is executed, the knobs

are set to the identi�ed best found performing knob con�guration.

In order to identify phase changes in the application, the execution

time of the parallel region is compared against the average execution

time found during the exploration phase. If the last execution time

signi�cantly di�ers from the average execution time, the exploration

phase starts again but with increased number of repetitions in order

to minimize continuous recon�guration overheads and take into

account di�erent control �ow paths in the execution of the parallel

region (Line 4 in Listing 2). In our experiments, we select a threshold

of 5.0% to start again the exploration phase.

3.2 Case Study: SMT level and Data Prefetcher
To illustrate the detailed behavior of the MAXPERF policy, we de-

scribe a case study in which we use libPRISM and the MAXPERF

policy to select the best SMT level and hardware data prefetcher for

the CG application from the NPB suite. In the exploration phase,

libPRISM explores SMT8, SMT4, SMT2 and ST for the SMT level;

for the data prefetcher it explores aggressive, medium, default ag-

gressive and disabled prefetcher con�gurations. �e policy starts

the exploration with the most aggressive con�guration, SMT8 level

and an aggressive data prefetcher.

Figure 3 shows how the exploration phase is performed on the

longest parallel region of CG benchmark. �is �gure shows the

selected SMT level and prefetcher con�guration in a particular it-

eration of the parallel region, as well as the execution time of the

parallel region under this con�guration. In the �rst three iterations,

the policy lowers the SMT level from SMT8 to SMT2 until there is a

4

Performance
degradation

SMT level

Prefetcher

8 4 2 4 4 4 4 8 4 8

Aggr. Aggr. Aggr. Med. Def. OFF OFF OFF OFF OFF

Steady phase,
keep same
configuration

Reset
SMT

Performance
degradation

22
20
18
16
14
12

0 1 2 3 4 5 6 7 8 9 10 .. 100

Execution
time (s)

Figure 3: Adaptive algorithm in libPRISM to select a com-
petitive performing con�guration for SMT level and data
prefetcher for the CG application. Details on the hardware
knob con�guration are explained in Section 4. Repetitions is
set to 1 (algorithm shown in Listing 1).

slowdown in execution time. �erefore SMT4 level is chosen as the

best SMT level. �en, in the next four iterations, the policy lowers

the prefetcher aggressiveness to the point where it totally disables

the prefetcher.

When an important change in performance during the prefetcher

tuning happens, the MAXPERF policy starts again to re-explore the

SMT level. Since disabling the prefetcher provides a 20% perfor-

mance improvement, the policy triggers again the exploration phase

for the SMT level with the prefetcher disabled. �is is shown in

Lines 21 and 22 from Listing 1, which correspond to the correction

phase. In Figure 3, this is shown in iterations 5 and 6. At the end

of iteration 5, the policy knows which prefetcher con�guration is

competitive in terms of performance for the SMT4 level. In iteration

6, a�er se�ing the hardware knobs, the policy realizes it needs to

restart the exploration for the SMT knob, which takes place in the

iteration 7. In this exploration phase, the policy just lowers the SMT

level to 4, which o�ers worse performance than SMT8 level. As a

result, this parallel region will be recon�gured every time to SMT8

level and disabled prefetcher con�guration, which leads to a 38.3%

performance improvement with respect to the default con�guration.

�e policy does not detect any phase change during the rest of the

execution in CG for this particular parallel region.

4 EXPERIMENTAL SETUP
We evaluate the solution on a POWER8 based system (8247.42L

model) [31]. �e system has an IBM POWER8 processor that runs at

3.15GHz with 512GB of DDR3 CDIMM memory running at 1.6GHz.

�e POWER8 processor in this system is packaged as a dual-chip

module where each chip has 6 cores. Each core has 64KB L1 data and

32KB L1 instruction caches, a 512KB L2 cache and a 8MB L3 cache.

�e system runs Ubuntu 14.10 operating system with the kernel

version 3.16. We compile all the benchmarks with GCC version 4.9.3,

which fully supports OpenMP 4.0.

4.1 Simultaneous Multithreading
�e POWER8 processor has a maximum SMT level of 8: each core

can run simultaneously up to eight threads. It also supports run-

ning 1, 2 and 4 threads (ST, SMT2 and SMT4 levels). �e operating

system (OS) sees a physical core as a group of 8 virtual cores. When

the machine boots, it automatically sets the SMT level to 8. If no

application is running, the SMT level is adjusted automatically by

the hypervisor based on the utilization of the system. For example,

when the system is in SMT8 level, the OS exposes 8 virtual cores

per each physical core. When just one of those virtual cores is used,

the system sets the SMT level to ST level automatically, making all

the core hardware resources available to the application.

To set the correct SMT level, we need to specify the number

of threads running in a physical core. �is can be done manually

by se�ing the desired number of threads of the application and

pinning threads to physical cores accordingly. Also, it can be done by

disabling the virtual cores through speci�c online registers exposed
by the OS. In OpenMP, the required number of threads can be de�ned

through an environment variable or directly from the application

code with speci�c calls to the runtime. By default, the parallel

applications evaluated use all the threads available in SMT8 level.

4.2 Data Prefetcher
�e data prefetcher can be controlled at the core level by a special

purpose register called Data Streams Control Register (DSCR) [20],

which is exposed by the OS.�eDSCR has 12 di�erent �elds, o�ering

a total of 2
25

possible con�gurations. �e most relevant �elds are

the following ones:

• LDS: Enables data prefetching for load instructions.

• SNSE: Enables data prefetching for load and store instructions

that have a stride bigger than a cache block.

• URG: Number of cache blocks that will be prefetched, from 1

cache block up to 7 cache blocks.

When the machine boots, it automatically sets the prefetcher

to the default con�guration: LDS activated, URG set to 4, and all

the other options disabled. libPRISM considers this default con-

�guration, as well as three more prefetcher con�gurations. When

disabling the data prefetcher, we disable all its available options.

�e medium con�guration has URG set 7, LDS activated and all the

other options disabled. �e aggressive con�guration has URG set to

4, LDS and SNSE activated, and all the other options disabled.

4.3 Benchmarks
To evaluate the e�ectiveness of the policy implemented in libPRISM,

we use awide set of benchmarks from three di�erent suites: NPB [26]

with the class D inputs, SPEC OMP 2012 [33] with the reference

input, and a subset of the CORAL [9] benchmarks with the recom-

mended input size.

�e NPB suite is composed of 5 kernels and 3 pseudo-applications,

which are derived from computational �uid dynamics (CFD). �e

SPEC OMP 2012 suite contains 14 applications from CFD to image

modeling. �ey are focused on compute intensive performance. All

SPEC OMP benchmarks are evaluated except imagick and smithwa,
as these two benchmarks did not pass SPEC’s validation tools in

our environment. �e CORAL suite tests di�erent parts of the

systems, from CPU to network performance. It includes applica-

tions from scalable science benchmarks, data-centric benchmarks

or kernels. We selected four of the most relevant benchmarks in

the suite: Lulesh, HACC, graph500 and AMG. All the benchmarks are

parallelized with OpenMP and wri�en in C, C++ or Fortran.

Benchmarks are executed on 6 cores and pinned to them to avoid

thread migration. We pin the di�erent threads with the environment

variable OMP PLACES. Benchmarks can run with 6, 12, 24 and 48

threads for ST, SMT2, SMT4 and SMT8 levels, respectively, and they

are executed in isolation until completion.

4.4 Metrics
In Section 5, we report speed up in execution time, power consump-

tion and energy-delay product (EDP) for all the benchmarks. We

measure wall time for the entire application. When running with

libPRISM infrastructure, it also reads the timebase register from the

POWER8 processor for �ne-grained analysis of parallel regions. To

5

BT CG EP FT IS LU M
G SP

ap
pl
u3

31

bo
ts
al
gn

bo
ts
sp

ar

bt
33

1

bw
av

es

fm
a3

d
ilb

dc

kd
tr
ee m

d

m
gr

id
33

1
na

b

sw
im

Lu
le
sh

H
AC

C

gr
ap

h5
00

AM
G

M
EA

N
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

S
p
e
e
d
u
p

1.49
1.62 2.13 1.571.71 2.22

1.68

NPB SPEC OMP 2012 CORAL

ST + DEFAULT pref. SMT8 + DEFAULT pref. BSA MAXPERF

Figure 4: Performance results with respect to default con�guration (SMT8 and default prefetcher). Best Static per Application
(BSA): best SMT level and prefetch aggressiveness con�guration for all the execution; found a�er an o�line pro�ling. libPRISM
is running with the MAXPERF policy that selects the hardware knob con�guration per parallel region at execution time.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.

SM
T

Pr
ef

.0.0

0.2

0.4

0.6

0.8

1.0

P
a
ra

ll
e
l
re

g
io

n
s

e
x
e
cu

ti
o
n

 t
im

e
 b

re
a
k
d

o
w

n

B
T

C
G EP FT IS LU M
G SP

A
pp

lu
3

3
1

B
ot

sa
lg

n

B
ot

ss
pa

r

B
t3

3
1

B
w

av
es

Fm
a3

d

Ilb
dc

K
dt

re
e

M
D

M
gr

id
3

3
1

N
ab

Sw
im

Lu
le

sh

H
A

C
C

gr
ap

h5
0

0

A
M

G

NPB SPEC OMP CORAL MEAN

SMT8

SMT4

SMT2

ST

Aggressive

Medium

Default

Off

Figure 5: Percentage of time spent on each knob con�guration when running with libPRISM and MAXPERF policy.

analyze the execution of the di�erent benchmarks, multiple perfor-

mance counters are collected using perf [11].
We use AMESTER (Automated Measurement of Systems for En-

ergy and Temperature Reporting) [19] to measure the power con-

sumption of the processor and memory chips. �e tool remotely

collects power, thermal and performance metrics from the system

using the Flexible Service Processor (FSP). �e FSP allows reading

of di�erent sensors from the system without using any of the pro-

cessing cycles of the system. �erefore, it has no impact on the

performance of the running benchmarks. In Section 5, we report

the average power consumption for the total execution and energy-

delay product (EDP). Power consumption results do not include the

idle power of the system to put more emphasis on active power con-

sumption savings. When reporting EDP, we report energy (taking

idle power of the system into account) multiplied by execution time.

5 EVALUATION
In this section we evaluate the execution time, power consumption

and EDP of libPRISM and the MAXPERF policy.

5.1 Performance
We compare the policy against di�erent static prede�ned con�gura-

tions. Figure 4 shows the execution time speedups for the following

con�gurations:

• ST + DEFAULT prefetcher: Single thread (ST) and default data

prefetcher.

• SMT8 + DEFAULT prefetcher: Default con�guration when the

machine boots (SMT8 level and default data prefetcher), used as

the baseline to normalize speedups.

• Best static per application (BSA): Best hardware con�guration

found for each application a�er an exhaustive o�ine pro�ling.

• MAXPERF: Dynamically sets the hardware knobs con�guration

for every parallel region in the application based on the MAX-

PERF policy, which seeks the maximum performance in terms of

execution time. �is policy uses the libPRISM infrastructure.

Figure 4 shows that the default hardware con�guration is already

the best performing con�guration for 10 out of 24 evaluated bench-

marks. For the remaining 14 benchmarks, half of them can reach

performance improvements above 10%, illustrating the need for

an adaptive system that manages shared hardware resources. On

average, BSA reaches a 14.9% performance improvement over the

default con�guration. �e policy MAXPERF slightly increases this

performance improvement (15.4%) and achieves competitive results

for all benchmarks without any signi�cant slowdown across the

benchmarks and without requiring any o�ine pro�ling.

Figure 5 shows the breakdown of the selected hardware con�gura-

tions during the execution with libPRISM and the MAXPERF policy.

A �rst observation from this �gure is that only 4 benchmarks run

90% of the time with the default con�guration. A second observation

is that 8 benchmarks have parallel regions with di�erent hardware

requirements. libPRISM and the MAXPERF policy e�ectively detect

this situation and select the appropriate hardware con�guration per

parallel region.

In the case of the NPB suite, there are several benchmarks that

achieve the best performance with the default hardware con�gura-

tion: EP, IS and MG. Even in those cases, libPRISM does not show

any signi�cant slowdown. �en, we have di�erent behaviors among

the others. BT executes be�er with SMT4 level and needs to have

the prefetcher turned on. CG gets the maximum speedup with SMT8

level and the prefetcher disabled. If the prefetcher is enabled, CG
achieves be�er performance with the SMT4 level, as explained in

Section 3.2. In FT, the MAXPERF policy gets a speedup of 1.71x

by selecting SMT2 and SMT4 levels in di�erent parallel regions,

and keeping the prefetcher in the default con�guration, as shown

in Figure 5. LU and SP get a 8.0% and 5.5% speedup respectively

6

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

D
E
F
A

U
LT

lib
P
R

IS
M

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
z
e
d

 p
o
w

e
r

c
o
n

s
u

m
p

ti
o
n

B
T

C
G E
P

F
T IS LU M
G S
P

a
p
p
lu

3
3

1

b
o
ts

a
lg

n

b
o
ts

sp
a
r

b
t3

3
1

b
w

a
v
e
s

fm
a
3

d

ilb
d
c

k
d
tr

e
e

m
d

m
g
ri

d
3

3
1

n
a
b

sw
im

Lu
le

sh

H
A

C
C

g
ra

p
h
5

0
0

A
M

G

NPB SPEC OMP CORAL MEAN

PROCESSOR MEMORY

Figure 6: Power consumption when applications are executed with the default hardware knob con�guration and when using
libPRISM and the MAXPERF policy. Values are normalized to the default hardware knob con�guration.

B
T

C
G E
P

F
T IS LU M
G S
P

a
p
p
lu

3
3

1

B
o
ts

a
lg

n

b
o
ts

sp
a
r

b
t3

3
1

b
w

a
v
e
s

fm
a
3

d

ilb
d
c

k
d
tr

e
e

m
d

m
g
ri

d
3

3
1

n
a
b

sw
im

Lu
le

sh

H
A

C
C

g
ra

p
h
5

0
0

A
M

G

0.0
0.2
0.4
0.6
0.8
1.0

N
o
rm

a
li
z
e
d

 E
D

P

NPB SPEC OMP CORAL MEAN

Figure 7: Energy-Delay Product (EDP) when applications are executed with libPRISM with the MAXPERF policy. Values are
normalized to the EDP when executed with the default hardware knob con�guration. EDP is computed as energy multiplied
by execution time.

lowering only the SMT level. LU uses SMT4 the most, and SP needs

to use SMT4 56.3% of the time and SMT2 the remaining of the time.

However, there is no performance di�erence between BSA and the

MAXPERF policy as the performance in SMT4 and SMT2 levels is

very similar. MAXPERF always chooses the least aggressive con�gu-

ration possible if multiple con�gurations have similar performance.

�is reduces the power consumption as Section 5.2 shows.

From the evaluated benchmarks in the SPEC OMP 2012 suite, 8

of them run faster with the default con�guration. In the case of

bostalgn and botsspar, they get a 7.1% and 25.6% performance im-

provement, respectively, by lowering the SMT level to SMT4. Ilbdc
also needs a SMT4 level and the prefetcher enabled to get a 12.6% im-

provement. Finally, mgrid331 achieves up to a 2.2x speedup. Some

parallel regions of this benchmark su�er signi�cant performance

slowdowns in the default con�guration. MAXPERF combines SMT4

and SMT8 levels for di�erent parallel regions to achieve its max-

imum speedup, as shown in Figure 5. In some benchmarks such

as applu331, bt331, fma3d or md, MAXPERF policy decides to turn

o� the data prefetcher. However, no performance improvement

in performance is achieved as the memory component for those

benchmarks is very low.

In the case of the CORAL benchmarks, results are also workload

dependent. Lulesh achieves a 1.7x speedup with the MAXPERF

policy, with mostly a combination of SMT2 and SMT4 levels (32.9%

and 40.7% of the time is spent in these con�gurations), while the

prefetcher needs to be enabled but its aggressiveness does not mat-

ter. In HACC, a SMT8 level is enough to get the best performance,

but MAXPERF disables the data prefetcher without impacting per-

formance. In the case of graph500, the policy disables the data

prefetcher in some parallel regions to boost performance by 5.9%.

In AMG, the best con�guration is SMT4 level and the most aggressive

prefetcher. However, MAXPERF does not achieve the performance

of BSA because this benchmark is composed by many small parallel

regions (less than 1ms) where MAXPERF decides to maintain the

default con�guration to avoid recon�guration overheads.

5.2 Energy E�ciency
Next, we discuss the energy e�ciency results obtained with

libPRISM using the MAXPERF policy. Figure 6 shows the power

consumption of the processor and the memory components when

running in the default con�guration and when using libPRISM with

the MAXPERF policy. Power results are normalized to the default

con�guration. �e processor power represents 82.9% of the power

in both con�gurations. In the MAXPERF policy, the memory power

is reduced from 16.5% to 13.9%. However, di�erent benchmark suites

show very di�erent power pro�les: NPB and CORAL benchmarks

have a high memory power consumption, while SPEC OMP 2012

spends 95.1% of the power on the processor.

To enhance the analysis of the energy e�ciency of libPRISM

and the MAXPERF policy, Figure 7 shows the energy-delay product

(EDP) when using libPRISM and MAXPERF normalized to the de-

fault con�guration. �is �gure considers the entire system power

consumption, including the idle power consumption. �e combina-

tion of be�er performance results (as shown in Figure 4) and reduced

power consumption (as shown in Figure 6) explain the signi�cant

7

reduction in EDP (15.9% on average), being above 19.8% for seven

of the evaluated benchmarks.

In the case of the NPB suite, the memory power ranges from

15.7% to 47.3% of the total power consumption. In the case of EP,
IS, and MG, MAXPERF does not reduce the power consumption

and the EDP. In the case of BT, LU and SP, se�ing a less aggressive
con�guration implies a reduction in the power consumption. BT
reduces processor and memory power consumption by 3.4% and

6.9%, respectively, and EDP is reduced by 19.8%. LU reduces memory

power consumption by 1.5% and EDP by 14.8%. SP reduces processor
and memory power consumption by 5.3% and 2.6%, respectively, and

EDP by 12.3%. Finally, in the case of CG and FT, MAXPERF slightly

increases the power consumption as these benchmarks exhibit a

much higher performance with libPRISM and the MAXPERF policy.

CG increases processor and memory power consumption by 7.6%

and 8.6%, respectively, but EDP is reduced by 43.8% thanks to the

reduced execution time. FT increases processor power consumption

by 9.4% and reduces memory by 5.1%, while EDP is reduced by 65.4%.

�e SPEC OMP 2012 suite is mostly CPU-intensive, as can be seen

by the power distribution in Figure 6. Although MAXPERF disables

the data prefetcher in multiple cases (see Figure 5), the overall power

consumption is not signi�cantly reduced. MAXPERF is able to

speedup execution and lower the power consumption and the EDP

of di�erent benchmarks. Botsalgn and botsspar reduce the SMT

level to SMT4, which reduces processor power consumption by 5.6%

and 9.0%, respectively, and EDP by 13.8% and 38.4%, respectively. A

similar situation happens in mgrid331, with a 13.1% reduction in

processor power and 80.2% in EDP. SPEC OMP 2012 suite shows that

when no performance optimization opportunities exist with respect

to the default knob con�guration, libPRISM with the MAXPERF

policy does not introduce noticeable overheads.

Finally, in the case of the CORAL benchmarks, we see di�erent

behaviors on the power consumption. Power consumption of the

processor ranges from 73.1% to 98.6% and the memory component

goes from 1.4% to 26.9%. libPRISM and the MAXPERF policy im-

prove the energy e�ciency and the overall performance. In Lulesh,
libPRISM with MAXPERF policy reduces processor and memory

power consumption by 5.5% and 6.8%, respectively. EDP is reduced

by 65.4%. HACC runs faster with the default con�guration, and even if
MAXPERF disables the data prefetcher, there is no performance and

power di�erence as this benchmark has very lowmemory utilization.

graph500 shows a reduction of memory power consumption of 7.1%

a�er disabling the prefetcher, while EDP is reduced by 12.7%. AMG
runs be�er with a lower SMT level, but as described in the previous

section, short parallel regions prevent libPRISM from recon�gur-

ing the hardware and no di�erences in execution time are seen.

Nevertheless, power consumption and EDP are slightly reduced.

5.3 Individual Performance Analysis
In this section, we provide a detailed performance analysis of three

interesting benchmarks: CG, FT and Lulesh. For this purpose we
read the required performance monitoring counters (PMC) to ob-

tain the CPI breakdown [20]. We focus on these PMCs: GRP CMPL,
completed instructions; GCT NOSLOT CYC, cycles when there are

no instructions from threads; CMPLU STALL VSU, cycles stalled by

the vector-and-scalar unit; CMPLU STALL DMISS L2L3, completion

stall by a data cache miss which is resolved in L2 or L3 caches; CM-
PLU STALL DMISS L3MISS, completion stall due to a cache miss the

L3; CMPLU STALL THRD, a thread could not complete an instruc-

tion because the completion port was being used by another thread;

CMPLU STALL DCACHE MISS, cycles stalled by data cache misses

in the L1 cache; �ese PMCs are the most signi�cant ones for the

SMT8
Pref. DEFAULT

SMT8
Pref. OFF

SMT4
Pref. DEFAULT

SMT4
Pref. OFF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
P

I
b

re
a
k
d

o
w

n

OTHER_STALL

GRP_CMPL

GCT_NOSLOT_CYC

CMPLU_STALL_VSU

CMPLU_STALL_DMISS_L2L3

CMPLU_STALL_DMISS_L3MISS

Figure 8: CPI breakdown of CG benchmark. Turning o� the
prefetcher reduces the L3misses, which are themain contrib-
utors to the CPI breakdown.

1 !$omp parallel default(shared) private(j,k,cgit ,suml
,alpha ,beta)

2 ...
3 !$omp do
4 do j=1,lastrow -firstrow +1
5 suml = 0.d0
6 do k=rowstr(j),rowstr(j+1) -1
7 suml = suml + a(k)*p(colidx(k))
8 enddo
9 q(j) = suml
10 enddo
11 !$omp end do
12 ...

Listing 3: Relevant parallel region of CG.

applications shown. �e rest of PMCs from the CPI breakdown are

represented as OTHER STALL.
CG has several parallel regions, but one of them covers more than

96% of the total execution time. Figure 8 shows the CPI breakdown

for this parallel region when using SMT8 or SMT4 and the prefetcher

set to default or disabled. libPRISM chooses SMT8 level and disables

the prefetcher, as shown in Figure 5. In the default con�guration,

the main reason for stalled cycles is data cache misses as re�ected

by STALL DMISS L2L3 and STALL DMISS L3MISS CPI breakdown
components in Figure 8. When changing from SMT8 to SMT4 with

the prefetcher enabled (third bar in Figure 8), we see these two PMCs

decrease by 3.2% and 3.6%. When the prefetcher is turned o�, there

is a reduction of 12.1% in SMT8 level and of 11.8% in SMT4 level.

Overall, the main performance bo�leneck in CG is the large number

of cache misses, which are reduced when disabling the prefetcher

or lowering the SMT level.

Using libPRISM we can relate the executed parallel region with

the source code, which is shown in Listing 3. �is code iterates

through a vector and accumulates its values with a non-regular

access pa�ern (p(colidx(k))). For this type of access pa�erns, not
only the data prefetcher is unable to bring useful data to the cache

but it also degrades the performance of the benchmark by polluting

the cache and reduced e�ective memory bandwidth.

In the case of FT, MAXPERF selects the default prefetcher and

reduces the SMT level to SMT4 and SMT2. Figure 9 shows the CPI

breakdown and the instructions per cycle (IPC) for a parallel region

of the FT benchmark when executed in di�erent SMT levels with

the default prefetcher con�guration. �e IPC is maximized when

we execute the parallel region in SMT2 level. Stalls in SMT8 and

SMT4 levels are mainly due to cache misses, which are reduced by

8

SMT8 SMT4 SMT2 ST
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
P

I
b

re
a
k
d

o
w

n

OTHER_STALL

GRP_CMPL

GCT_NOSLOT_CYC

CMPLU_STALL_THRD

CMPLU_STALL_DCACHE_MISS

CMPLU_STALL_VSU

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
s
tr

u
c
ti

o
n

s
 p

e
r

C
y
c
le

IPC

Figure 9: CPI breakdown of the FT benchmark for di�erent
SMT con�gurations with the default prefetcher setting. Re-
ducing the SMT level reduces the number of cachemisses and
increases performance until other CPI components become
the main performance bottleneck (e.g. CMPLU STALL VSU
and GRP CMPL in ST con�guration).

lowering the SMT level. Once running in SMT2, the prefetcher can

hide the memory latency of cache misses and the main bo�leneck

becomes the number of available execution units: a large percentage

of stalled cycles in the vector-scalar unit (CMPLU STALL VSU CPI

component). Lowering the SMT level to ST exacerbates this problem

(less ILP) and reduces the total throughput.

Finally, we analyze the Lulesh benchmark. �is benchmark has

17 short regions, which are not recon�gured by libPRISM (their

duration is below the speci�ed threshold) and 7 long parallel regions,

which are executed 2500 times and have an execution time between

2 and 4 milliseconds. As shown in Figure 5, MAXPERF selects all

possible SMT levels for these parallel regions, achieving speedups

from 1.03x to 2.42x. MAXPERF also selects all possible prefetcher

con�gurations for di�erent parallel regions, with speedups ranging

from 1.01x to 1.04x. In Lulesh, the parallel regions access nodes from
a list in a non-regular pa�ern. As a result, running with less threads

does a be�er usage of the memory bandwidth and the last level cache.

In 2 of the relevant parallel regions, SMT4 level is the best SMT level

because threads are not only loading from memory but also doing

intensive CPU operations with the loaded data. In contrast, SMT2

level provides be�er performance for those parallel regions where

threads are memory intensive and perform few operation with the

loaded data.

5.4 Discussion
In this sectionwe discuss potential applicability of libPRISM together

with its limitations.

In order to de�ne a good policy, basic knowledge of the architec-

ture is needed and some experimental process is required to identify

the order in which di�erent hardware knobs are explored. A�er this

basic pro�ling, the exploration does not hurt overall performance.

�is can be done by running a small training set of benchmarks.

Although we only demonstrated the usage of libPRISM for coor-

dinating the management of SMT and prefetcher knobs for OpenMP

applications on a POWER8-based system, the infrastructure can be

leveraged for other purposes. For instance, other shared memory

programming models that mark parallel regions can be supported

by libPRISM using the same library interposition mechanism. Also,

other hardware knobs and sensors can be used by the policies im-

plemented within libPRISM. �is is enabled by the generic, modular,

extensible and architecture-agnostic design of libPRISM.

�e library interposition mechanism, reading the sensors and

the con�guration of hardware knobs can add overheads to the exe-

cution of the application. We measured this overhead by running

the benchmarks with and without libPRISM infrastructure. In this

experiment, libPRISM only tracks and pro�les the di�erent parallel

regions without recon�guring the hardware knobs. �e measured

overhead in terms of execution time is always below 2.3% (1.0% on

average), mainly because of monitoring small parallel regions. A�er

selecting an appropriate threshold to control which parallel regions

are explored, the exploration overhead is e�ectively reduced to less

than 1.0%, which makes the energy overhead negligible as well.

6 RELATEDWORK
As far as we know, this is the �rst work to combine SMT with data

prefetching knobs to see the interaction between each other and

achieve a jointly-optimized con�guration of these hardware knobs.

6.1 Simultaneous Multi-threading
Previous work on SMT is focused to achieve fairness [1–3, 6, 7, 37].

Other authors predict IPC when running in a SMT processor and

schedule serial applications on virtual cores in order to boost the

overall performance of the system [17, 18, 32, 36]. �ese works focus

on multi-programmed workloads. �is is in contrast to this work,

which targets parallel workloads.

�ere is work on dynamically choosing the best SMT level for par-

allel workloads. Zhang et al. [42, 43] and Heirman et al. [21] propose

a dynamic algorithm inside the OMP runtime in order to choose

the best number of threads. Jia et al. [23] uses machine learning to

boost performance by se�ing the correct SMT level. Besides not

con�guring multiple hardware knobs, our work di�ers from these

previous works in 2 aspects: (1) their solutions are implemented

inside the runtime, limiting the possibilities of usage of the work

and (2) their search space is small compared to ours.

6.2 Data Prefetching
�ere are previous works that propose hardware modi�cations of

the prefetcher implementations in order to improve performance

on multicore chips [12–14, 40, 41, 44]. Our proposal bene�ts from

already implemented data prefetchers, therefore there is no extra

cost and it can be used in current existing hardware to improve per-

formance.

In terms of so�ware, most of the previous work has been devel-

oped for serial applications or multi-programmed workloads [22,

27, 29]. Using similar workloads, Jimenez et al. detects phases of

applications at runtime and changes the data prefetch con�guration

according to the overall demands of the applications running on

the system [24, 25]. �ese phases are not explicitly de�ned in the

workloads, therefore, the algorithm constantly iterates through the

di�erent data prefetch con�gurations.

In this work, we use the already annotated parallel regions as

phases. Phases are re-explored only when their behavior change,

reducing exploration time and minimizing possible slowdowns due

to low performing hardware knob con�gurations. Also, we take

into account possible inter-e�ects between the SMT level and the

data prefetcher knobs. In addition, in [24, 25], the operating system

needs to be modi�ed. Our solution works without any modi�cation

on the so�ware stack.

9

Also, Chilimbi et al. make use of so�ware prefetching to speedup

applications at execution time [8]. Wang et al. uses information at

compile time to correctly set the data prefetcher aggressiveness [40].

In contrast, in this work we focus on parallel workloads that are

common in high performance computing.

Few research has been done when referring to parallel workloads.

Li et al. applied machine learning to automatically recon�gure

the data prefetcher for di�erent workloads [28]. Prat et al. added

intelligence to a task-based runtime to automatically manage the

aggressiveness of the data prefetcher for parallel workloads [35].

�ese works lack the control of the number of threads working in

the same task. �erefore, the possible interaction with the SMT level

and the data prefetcher is also missing.

7 CONCLUSIONS
Because of the potential resource contentions among threads in the

memory subsystem, current processors o�er the user a wide range

of con�gurable knobs such as the SMT level or the data prefetcher

aggressiveness. Unfortunately, �nding the optimal se�ings of these

knobs is di�cult because of the large search space, the strong in-

teractions between di�erent architectural knobs and the di�erent

hardware demands of application phases.

In this work we introduce libPRISM, an infrastructure for parallel

applications to dynamically adapt the architectural knobs based on a

custom policy. On top of libPRISM we develop the MAXPERF policy,

which manages the SMT level and the data prefetcher aggressiveness

with the goal of increasing performance.

We evaluate our solution for a wide set of OpenMP benchmarks

running on a POWER8 system. Results show a boost in performance

of up to 220% (15.4% on average), a dynamic power consumption

reduction of up to 13% and an energy-delay product reduction of up

to 80% when compared to the default static system con�guration.

ACKNOWLEDGMENTS
�is work has been supported by the RoMoL ERC Advanced Grant

(GA 321253), by the European HiPEAC Network of Excellence, by

the Spanish Ministry of Science and Innovation (contracts TIN2015-

65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and

2014-SGR-1272) and by IBM/BSC Deep Learning Center initiative.

�is research was developed in part with funding from the Defense

Advanced Research Projects Agency (DARPA). �e views, opinions

and/or �ndings expressed are those of the author and should not

be interpreted as representing the o�cial views or policies of the

Department of Defense or the U.S. Government.

M. Moreto has been partially supported by the Ministry of Econ-

omy and Competitiveness under Juan de la Cierva postdoctoral

fellowship number JCI-2012-15047. M. Casas is supported by the

Secretary for Universities and Research of the Ministry of Economy

and Knowledge of the Government of Catalonia and the Cofund

programme of the Marie Curie Actions of the 7th R&D Framework

Programme of the European Union (Contract 2013 BP B 00243).

REFERENCES
[1] Boneti, C., et al. Balancing HPC applications through smart allocation of

resources in MT processors. IPDPS’08.

[2] Boneti, C., et al. A Dynamic Scheduler for Balancing HPC Applications. SC’08.

[3] Boneti, C., et al. So�ware-Controlled Priority Characterization of POWER5

Processor. ISCA’08.

[4] Casas, M., et al. Runtime-Aware Architectures. Euro-Par’15.

[5] Cazorla, F., et al. Dynamically controlled resource allocation in SMT processors.

MICRO’04.

[6] Cazorla, F., et al. Improving Memory Latency Aware Fetch Policies for SMT

Processors. ISHPC’03.

[7] Cazorla, F., et al. Predictable Performance in SMT Processors: Synergy Between

the OS and SMTs. TC’06.

[8] Chilimbi, T., et al. Dynamic Hot Data Stream Prefetching for General-purpose

Programs. PLDI’02.

[9] CORAL Benchmarks. h�ps://asc.llnl.gov/coral-benchmarks/.

[10] Creech, T., et al. E�cient Multiprogramming for Multicores with SCAF. MI-

CRO’13.

[11] de Melo, A. C. �e new linux perf tools. 2010.

[12] Ebrahimi, E., et al. Coordinated Control of Multiple Prefetchers in Multi-core

Systems. MICRO’42.

[13] Ebrahimi, E., et al. Prefetch-aware Shared Resource Management for Multi-core

Systems. ISCA’11.

[14] Ebrahimi, E., et al. Techniques for bandwidth-e�cient prefetching of linked

data structures in hybrid prefetching systems. HPCA’09.

[15] Everman, S., et al. A Memory-Level Parallelism Aware Fetch Policy for SMT

Processors. HPCA’07.

[16] Fatahalian, K., et al. Sequoia: Programming the Memory Hierarchy. SC’06.

[17] Feliu, J., et al. Addressing Fairness in SMT Multicores with a Progress-Aware

Scheduler. IPDPS’16.

[18] Feliu, J., et al. Symbiotic job scheduling on the IBM POWER8. HPCA’15.

[19] Floyd, M., et al. Adaptive energy-management features of the IBM POWER7

chip. 2015.

[20] Hall, B., et al. Performance Optimization and Tuning Techniques for IBM Power

Systems Processors Including IBM POWER8. 2015.

[21] Heirman, W., et al. Automatic SMT �reading for OpenMP Applications on the

Intel Xeon Phi Co-processor. ROSS’14.

[22] Hur, I., et al. Memory Prefetching Using Adaptive Stream Detection. MICRO’06.

[23] Jia, Z., et al. Auto-tuning Spark Big Data Workloads on POWER8: Prediction-

Based Dynamic SMT�reading. PACT’16.

[24] Jimenez, V., et al. Increasing multicore system e�ciency through intelligent

bandwidth shi�ing. HPCA’15.

[25] Jiménez, V., et al. Making Data Prefetch Smarter: Adaptive Prefetching on

POWER7. PACT’12.

[26] Jin, H., et al. �e OpenMP implementation of NAS parallel benchmarks and its

performance. 1999.

[27] Khan, M., et al. A case for resource e�cient prefetching in multicores. ISPASS’14.

[28] Li, M., et al. PATer: A Hardware Prefetching Automatic Tuner on IBM POWER8

Processor. CAL’16.

[29] Luk, C., et al. Ispike: a post-link optimizer for the Intel reg; Itanium reg;

architecture. CGO’04.

[30] Manivannan, M., et al. Runtime-Guided Cache Coherence Optimizations in

Multi-core Architectures. IPDPS’14.

[31] Mericas, A., et al. IBM POWER8 performance features and evaluation. IBM
Journal of Research and Development (2015).

[32] Moseley, T., et al. Methods for modeling resource contention on simultaneous

multithreading processors. ICCD’05.

[33] Müller, M., et al. OpenMP in a Heterogeneous World: 8th International Work-

shop on OpenMP. IWOMP’12.

[34] OpenMP Architecture Review Board. OpenMP Application Program Interface

Version 4.5.

[35] Prat, D., et al. Adaptive and application dependent runtime guided hardware

prefetcher recon�guration on the IBM POWER7. CoRR’15.

[36] Snavely, A., et al. Symbiotic Jobs cheduling for a Simultaneous Multithreaded

Processor. ASPLOS IX.

[37] Tembey, P., et al. SMT Switch: So�ware Mechanisms for Power Shi�ing. CAL’13.

[38] Valero, M., et al. Runtime-Aware Architectures: A First Approach. International
Journal on Supercomputing Frontiers and Innovations 1, 1 (June 2014), 29–44.

[39] Vega, A., et al. Crank It Up or Dial It Down: Coordinated Multiprocessor

Frequency and Folding Control. MICRO’13.

[40] Wang, Z., et al. Guided Region Prefetching: A Cooperative Hardware/So�ware

Approach. ISCA’03.

[41] Wu, C., et al. PACMan: Prefetch-aware Cache Management for High Perfor-

mance Caching. MICRO’11.

[42] Zhang, Y., et al. An Adaptive OpenMP Loop Scheduler for Hyperthreaded SMPs.

PDCS’04.

[43] Zhang, Y., et al. Runtime Empirical Selection of Loop Schedulers on Hyper-

threaded SMPs. IPDPS’05.

[44] Zhuang, X., et al. Reducing Cache Pollution via Dynamic Data Prefetch Filtering.

TC’07.

10

	Abstract
	1 Introduction
	2 Background
	2.1 Simultaneous Multithreading
	2.2 Hardware Data Prefetching
	2.3 Runtime Systems and Shared Memory Programming Models

	3 libPRISM
	3.1 Adaptive Algorithm
	3.2 Case Study: SMT level and Data Prefetcher

	4 Experimental Setup
	4.1 Simultaneous Multithreading
	4.2 Data Prefetcher
	4.3 Benchmarks
	4.4 Metrics

	5 Evaluation
	5.1 Performance
	5.2 Energy Efficiency
	5.3 Individual Performance Analysis
	5.4 Discussion

	6 Related Work
	6.1 Simultaneous Multi-threading
	6.2 Data Prefetching

	7 Conclusions
	References

