
Scaling a Convolutional Neural Network for
classification of Adjective Noun Pairs with

TensorFlow on GPU Clusters

Vı́ctor Campos∗, Francesc Sastre∗, Maurici Yagües∗, Jordi Torres∗† and Xavier Giró-i-Nieto†
∗Barcelona Supercomputing Center - Centro Nacional de Supercomputación (BSC)
{victor.campos, jordi.torres, francesc.sastre, maurici.yagues, jordi.torres}@bsc.es

†Universitat Politècnica de Catalunya, UPC Barcelona Tech
xavier.giro@upc.edu

Abstract—Deep neural networks have gained popularity in
recent years, obtaining outstanding results in a wide range of
applications such as computer vision in both academia and
multiple industry areas. The progress made in recent years cannot
be understood without taking into account the technological
advancements seen in key domains such as High Performance
Computing, more specifically in the Graphic Processing Unit
(GPU) domain. These kind of deep neural networks need massive
amounts of data to effectively train the millions of parameters
they contain, and this training can take up to days or weeks
depending on the computer hardware we are using. In this
work, we present how the training of a deep neural network
can be parallelized on a distributed GPU cluster. The effect of
distributing the training process is addressed from two different
points of view. First, the scalability of the task and its performance
in the distributed setting are analyzed. Second, the impact of
distributed training methods on the training times and final
accuracy of the models is studied. We used TensorFlow on top of
the GPU cluster of servers with 2 K80 GPU cards, at Barcelona
Supercomputing Center (BSC). The results show an improvement
for both focused areas. On one hand, the experiments show
promising results in order to train a neural network faster.
The training time is decreased from 106 hours to 16 hours
in our experiments. On the other hand we can observe how
increasing the numbers of GPUs in one node rises the throughput,
images per second, in a near-linear way. Moreover an additional
distributed speedup of 10.3 is achieved with 16 nodes taking as
baseline the speedup of one node.

Keywords—Distributed Computing; Parallel Systems; Deep
Learning; Convolutional Neural Networks; Computer Vision;
Graphic Processing Unit; TensorFlow

I. OVERVIEW OF THE PROBLEM

Methods based on deep neural networks have established
the state-of-the-art in computer vision tasks [16], [24], [10].

Although the development of these algorithms spans over
many decades [17], their potential has been unlocked by
the increased computational power of specific accelerators,
e.g. Graphical Processing Units (GPUs), and the creation of
large-scale datasets [9], [14]. Even with the use of specific
hardware devices, training these algorithms is so computation-
ally intensive that can take days, or even weeks, to converge
on a single machine.

Distributed and parallel computing has emerged as an
efficient solution for tackling growing deep learning chal-

lenges. These platforms allow the scalability of machine
learning tasks, enabling some properties that could not be
achieved with single-machine processing. However, scaling up
the computation to a distributed system is also a more difficult
task than working on a single machine. Depending on the
efficiency of the algorithm, communication between nodes can
be a bottleneck, and the system has to be robust in order to
overcome possible failures.

For this work we use a special application of Convolutional
Neural Networks (CNN) called Affective Computing [22] that
has recently garnered much research attention. Machines that
are able to understand and convey subjectivity and affect would
lead to a better human-computer interaction that is key in some
fields such as robotics or medicine. Despite the success in some
constrained environments such as emotional understanding
of facial expressions [19], automated affect understanding in
unconstrained domains remains an open challenge which is
still far from other tasks where machines are approaching or
have even surpassed human performance. In this work, we
will focus on the detection of Adjective Noun Pairs (ANPs)
using a large-scale image dataset collected from Flickr [13].
These mid-level representations, which are a rising approach
for overcoming the affective gap between low level image
features and high level affect semantics, can then be used to
train accurate models for visual sentiment analysis or visual
emotion prediction.

As a framework we used TensorFlow [2]. TensorFlow sup-
ports large-scale training and inference in multiple platforms
and architectures, and aims to be a flexible framework for both
experimenting and running in production environments. This
is achieved by using dataflow programming models (Spark,
MapReduce, COMPSs) which provide a number of useful
abstractions that insulate from low level details of distributed
processing. Then, communication between subcomputations is
explicit and makes it easy to partition and run independent
sub-graphs on multiple distributed devices.

The massive number of convolutions and matrix multipli-
cations in neural networks has led to GPU implementations
with CUDA [21] and efficient, task specific primitives using
cuDNN [8]. Early deep learning frameworks such as Caffe
[11] or Theano [4] provided fast and easy access to such
primitives, but were initially designed for single machine
operation, without support for distributed environments. Efforts

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 
DOI 10.1109/CCGRID.2017.110

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87659218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


towards distributing the former frameworks with traditional
HPC tools such as Spark or MPI resulted in projects such
as SparkNet [20] or Theano-MPI [18]. Native support for
distributed settings is included in more recent frameworks
such as TensorFlow [2], MXNet [7] or CNTK [27]. However,
scaling the training algorithms from a single machine environ-
ment to a distributed setting poses two main challenges. From
the computing performance standpoint, optimizing the use of
resources is the main goal, whereas from the learning side, the
final accuracy should not suffer a drop when compared to its
single machine counterpart.

In this work, we explore how the training of CNNs for ANP
classification can be accelerated through distribution in a GPU
cluster. Two main approaches are proposed in the literature
[15] to train CNNs on a multi-GPU environment, either in a
single machine or in a distributed setting: model parallelism
and data parallelism. Model parallelism splits layers in the
CNN among different GPUs, i.e. each GPU operates over the
same batch of input data, but applying different operations on
them, and is mostly used for operations with a large number
of parameters that may not fit in the GPU’s memory. On the
other hand, data parallelism consists in placing a replica of
the model on each GPU, which then operates on a different
batch of data. Model replicas share parameters, so that this
method is equivalent to having a larger batch size. Given the
topology of modern CNN architectures and current hardware
characteristics, we will consider multi-GPU data parallelism
for both single machine and distributed settings.

Our contributions are three-fold: (1) we study the trade-off
between final classification accuracy and speedup and analyze
the results both from the learning and HPC standpoints, (2)
distribute the training in a way that makes the most of the clus-
ter resources, leveraging intra-node and inter-node parallelism,
and (3) propose a modification of the distributed configuration,
in order to reduce the resources being used while training.

II. PROBLEM BEING SOLVED: ADJECTIVE NOUN PAIRS

A. Dataset

We use a specific application of CNN called Adjective
Noun Pairs (ANPs). These are powerful mid-level represen-
tations [5] that can be used for affect related tasks such as
visual sentiment analysis or emotion recognition. A large-scale
ANP ontology for 12 different languages, namely Multilingual
Visual Sentiment Ontology (MVSO), was collected by Jou et
al. [13] following a model derived from psychology studies,
Plutchick’s Wheel of Emotions [23]. The noun component in
an ANP can be understood to ground the visual appearance of
the entity, whereas the adjective polarizes the content towards
a positive or negative sentiment, or emotion [13]. These
properties try to bridge the affective gap between low level
image features and high level affective semantics, which goes
far beyond recognizing the main object in an image. Whereas
a traditional object classification algorithm may recognize a
baby in an image, a finer-grained classification such as happy
baby or crying baby is usually needed to fully understand
the affective content conveyed in the image. Capturing the
sophisticated differences between ANPs poses a challenging
task that requires from high capacity models and large-scale
annotated datasets.

In our experiments we consider a subset of the English par-
tition of MVSO, the tag-restricted subset, which contains over
1.2M samples covering 1,200 different ANPs. Since images
in MVSO were downloaded from Flickr and automatically
annotated using their metadata, such annotations have to be
considered as weak labels, i.e. some labels may not match the
real content of the images. The tag-pool subset contains those
samples for which the annotation was obtained from the tags in
Flickr instead of other metadata, so that annotations are more
likely to match the real ground truth.

B. CNN architecture

Since the first successful application of CNNs to large-scale
visual recognition, the design of improved architectures for
improved classification performance has focused on increasing
the depth, i.e. the number of layers, while keeping or even
reducing the number of trainable parameters. This trend can
be seen when comparing the 8 layers in AlexNet [16], the
first CNN-based method to win the Image Large Scale Visual
Recognition Challenge (ILSVRC), with the dozens, or even
hundreds, of layers in Residual Nets (ResNets) [10]. Despite
the huge increase in the overall depth, a ResNet with 50
layers has roughly half the parameters in AlexNet. However,
the impact of an increased depth is more notorious in the
memory footprint of deeper architectures, which store more
intermediate results coming from the output of each single
layer, thus benefiting from multi-GPU setups that allow the
use of larger batch sizes.

We adopt the ResNet50 CNN [10] on our experiments, an
architecture with 50 layers that maps a 224 × 224 × 3 input
image to a 1,200-dimensional vector representing a probability
distribution over the ANP classes in the dataset. Overall, the
model contains over 25 × 106 single-precision floating-point
parameters involved in over 4× 109 floating-point operations
that are tuned during training. It is important to notice that
the more computationally demanding a CNN is, the larger
the gains of a distributed training due to the amount of time
spent doing parallel computations with respect to the added
communication overhead.

Cross-entropy between the output of the CNN and the
ground truth, i.e. the real class distribution, is used as loss
function together with an L2 regularization term with a weight
decay rate of 10−4. The parameters in the model are tuned
to minimize the former cost objective using batch gradient
descent.

III. IMPLEMENTED NEURAL NETWORK ARCHITECTURE

A. Distributed Neural Network training

The process of training CNNs with batch gradient descent
can be decomposed in two main steps: forward and backwards
passes through the net. The forward pass computes the outputs
for a batch of data, and an error with respect to the desired
result is then calculated. Such error, or cost, is then differ-
entiated with respect to every parameter in the CNN during
the so called backwards pass. Finally, the resulting gradients
are used to update the weights in the net. These steps are
iteratively repeated until convergence, i.e. until a local minima
in the error function is reached.



In this implementation we use the data parallelism
paradigm, in which we define two kind of nodes. First, the
worker nodes each has a replica of the model, operating on
separate batches of data. Second, the parameter server (PS)
nodes store and update the model parameters [1]. In essence,
the worker will receive the model parameters, compute it on
a batch of data, and send back the gradients to the PS where
the model will be updated in order to improve it [6].

B. TensorFlow strategies

TensorFlow enables multiple strategies for aggregating the
results in multinode settings when working with data paral-
lelism:

Synchronous mode: In this case, the PS waits until all
worker nodes have computed the gradients with respect to their
data batches. Once the gradients are received by the PS, they
are applied to the current weights and the updated model is
sent back to all the worker nodes. This method is as fast as
the slowest node, as no updates are performed until all worker
nodes finish the computation, and may suffer from unbalanced
network speeds when the cluster is shared with other users.
However, faster convergence is achieved as more accurate
gradient estimations are obtained. Authors in [6] present an
alternative strategy for alleviating the slowest worker update
problem by using backup workers.

Asynchronous mode: every time the PS receives the
gradients from a worker, the model parameters are updated.
Despite delivering an enhanced throughput, compared to its
synchronous counterpart, every worker may be operating on a
slightly different version of the model, thus providing poorer
gradient estimations. As a result, more iterations are required
until convergence due to the stale gradient updates. Increasing
the number of workers, may result in a throughput bottleneck
by the communication with the PS, in which case more PS
need to be added.

Mixed mode: mixed mode appears as a trade-off be-
tween adequate batch size and throughput by performing
asynchronous updates on the model parameters, but using
synchronously averaged gradients coming from subgroups of
workers. Larger learning rates can be used thanks to the
increased batch size, leading to a faster convergence, while
reaching throughput rates close to those in the asynchronous
mode.

C. Implemented Architecture: Mixed asynchronous mode

As seen in the previous case, having multiple GPUs on
the same server implies some constraints when building our
distributed models. The mixed asynchronous mode is more
suited for our architecture, as we can use synchronous mode
between GPUs on the same node, and asynchronously update
the model between servers. In other words, we are using
synchronous replicas intra-node and asynchronous replicas
inter-node. However, deploying the model and gathering the
statistics in each GPU is more complex than the previous
mode, because device placement needs to be done at the code
level manually which adds complexity to the overall process.

In the cluster definition each worker will have 4 available
GPUs, so we will only have a worker for each node. Figure 1

CUDA_VISIBLE_DEVICES="" python script.py \
--ps_hosts=nvb1-ib0:2220 \
--worker_hosts=nvb1-ib0:2221 \
--job_name=ps --task_index=0 & \

CUDA_VISIBLE_DEVICES="0,1,2,3" python script.py \
--ps_hosts=nvb1-ib0:2220 \
--worker_hosts=nvb1-ib0:2221 \
--job_name=worker --task_index=0

Fig. 1: Distributed call for PS and worker

1 for i in num gpus do
2 with tf.device(’/job:worker/gpu:%d’ % i) do
3 clone images, clone labels ← get batch(input data)
4 predictions = model(clone images)
5 clone loss = loss(predictions, clone labels)
6 end
7 end
8 grad op ← create optimizer
9 grads and vars, clone losses ← create empty lists

10 for i in num gpus do
11 with tf.device(’/job:worker/gpu:%d’ % i) do
12 clone loss = get loss for clone i
13 scaled clone loss = clone loss / num gpus
14 clone grad = compute gradients wrt trainable variables
15 append clone grad to grads and vars
16 append scaled clone loss to clone losses
17 end
18 end
19 total loss = sum clone losses
20 total gradients = sum grads and vars
21 update the model with total gradients

Algorithm 1: Clone allocation and gradient computation

shows how the call will look like, for allocating a single PS
and a single worker in a unique node.

This worker will have all 4 GPUs available, and the model
will be responsible for placing the clones in the corresponding
GPU. The function for enforcing device placement constraints
in TensorFlow is tf.device(), and we can specify a loop
to place the model to all available GPUs. This process will be
again replicated to multiple nodes using the
tf.train.replica_device_setter, and the total
number of GPUs used will be the same. The key difference
in this method is the way gradients are aggregated among all
the clones in the node, which will make the iteration with a
bigger effective size batch.

The pseudocode in Algorithm 1 aims to provide a general
understanding of the main part of the mixed asynchronous
procedure that places and computes the model in the 4 GPUs
available, collects the losses and gradients in each one and
reports it back to the PS.

IV. EXPERIMENTAL SETUP

A. Platform

We evaluate our experiments in the GPU cluster Minotauro.
This is a heterogeneous cluster with 2 configurations, although
TensorFlow installation only works on servers installed with
NVIDIA K80, and not on the older servers with NVIDIA
M2090. Therefore the cluster configuration we use has 39 bullx
R421-E4 servers, each server with [3]:



• 2 Intel Xeon E5-2630 v3 (Haswell) 8-core processors
(at 2.4 GHz, 20MB L3 cache)

• 2 K80 NVIDIA GPU Cards

• 128 GB of Main memory, distributed in 8 DIMMs of
16 GB - DDR4 @ 2133 MHz - ECC SDRAM

• Peak Performance: 250.94 TFlops

• 1 PCIe 3.0 x8 8GT/s, Mellanox ConnectXR - 3FDR
56 Gbit

• 4 Gigabit Ethernet ports

B. Software Middleware

The operating system is RedHat Linux 6.7. The CNN archi-
tectures and their training are implemented with TensorFlow1

version 0.11.0 RC0 , running on CUDA 7.5 and using cuDNN
5.1.3 primitives for improved performance. Since the train-
ing process needs to be submitted through Slurm Workload
Manager, task distribution and communication between nodes
is achieved with Greasy2. Unlike other publications, where
each worker is defined as a single GPU [6], [12], we use all
available GPUs in each node to define a single worker. Given
the dual nature of the NVIDIA K80 cards, four model replicas
are placed in each node.

As discussed before, the mixed approach is selected for
the setup. This setup offers two main advantages: (1) all
GPUs in each node are used, which minimizes communication
overhead, as only a single collection of gradients needs to be
exchanged through the network for each set of four model
replicas, and (2) each worker has larger effective batch size,
providing better gradient estimations and allowing the use of
larger learning rates for faster convergence.

The loss function is minimized using RMSProp [25] per-
parameter adaptive learning rate as optimization method with
a learning rate of 0.1, decay of 0.9 and ε = 1.0. To prevent
overfitting, data augmentation consisting in random crops
and/or horizontal flips is asynchronously performed on CPU
while previous batches are processed by the GPUs. The CNN
weights are initialized using a model pre-trained on ILSVRC
[9], practice that has been proven beneficial even when training
on large-scale datasets [26].

C. Resource efficiency

Available publications on distributed training with Tensor-
Flow [1], [6] tend to use different server configurations for
worker and PS tasks. Given the PS only stores and updates
the model and there is no need for GPU computations, only
CPU servers are used for this task. On the other hand, most of
the worker job involves matrix computations, for which servers
equipped with GPUs are used. Our configuration imposes some
constraints, as we only have GPU equipped nodes, which
means that placing PS and workers in different nodes will
result in under-utilization of GPU resources. We decided to
study the impact of placing the PS in the same nodes as the
workers, and restricting the resource usage in each task. We
used odd values of PS, because variables are sharded using a

1https://www.tensorflow.org/
2https://github.com/jonarbo/GREASY

round-robin strategy. Since the weights of the layers take much
of the model size, and layer weights and bias are initialized
consecutively, we want to have them as much distributed as
possible, hence the use of an odd value.

Fig. 2: Throughput comparison between different distributed
setups

Figure 2 shows different configurations of worker and PS
setups with their respective throughput. With these results, it
seems that the cluster configuration can cope with workers and
PS in the same node, as throughputs are quite similar when
placing PS inside or outside the worker nodes. However, a
more important task is to correctly tune the amount of PS
needed so as to not have a network or server bottleneck. In
addition, when placing PS with workers, we place them on
workers that need not to run auxiliary tasks of the training,
such as checkpoint saving or summary writing, in order to not
overload the CPU.

V. RESULTS AND DISCUSSION

A. GPU parallelism

Tensorflow enables us to assign different tasks to the
available resources of a node (CPU and GPUs). In order to
make use of all available resources in a node, we put a network
clone in each GPU. The NVDIA K80, as discused before, can
work as two GPUs and has enough memory to hold two clones.
With these, we could do data parallelism using batches of 32
images per clone (128 images per node).

In Figure 3a, we can observe how increasing the number of
GPUs rises the throughput, increasing the images per second
processed, in a near-linear way. This parallelism inside a node
is made entirely synchronous, in each training iteration the
CPU waits for all GPUs and merges the obtained gradients to
start a new iteration. We will use this method inside each node
in order to reduce the network usage.

B. Speedup (throughput)

In this case, we are doing the mixed-asynchronous ap-
proach. The gradients of each GPU are combined at the node,
and are later sent to the parameter server.



(a) Parallelism speedup inside a node using different number of
GPUs.

(b) Distribution speedup using several nodes, with 4 GPUs, with
the optimal configuration. The baseline is one node with 4 GPUs.

Fig. 3: Throughput speedup in a node and with different setups.

Setup Throughput Speedup Efficiency
1 Node (No distribution) 124.18 img/sec - -

2 Nodes (2 Workers + 1 PS) 195.60 img/sec 1.58 0.79
4 Nodes (4 Workers + 3 PS) 383.09 img/sec 3.09 0.77
8 Nodes (8 Workers + 7 PS) 809.10 img/sec 6.52 0.82

16 Nodes (16 Workers + 7 PS) 1278.53 img/sec 10.30 0.64

TABLE I: Speedup comparing a single node between different
distributed configurations and their speedup-resources relation.

For example, with eight nodes, we dispose of 32 GPUs. In a
pure asynchronous strategy, the training process would need to
send 32 model gradients through the network to the parameters
servers, and then retrieve the updated model that can have
around 400 MB. The whole process could need 12 GB for
each iteration, which might cause overhead in the network
and penalize the overall throughput. In the mixed approach,
we try to reduce the network overhead reducing by four the
data transfer doing only one sending of data per node.

Table I shows a brief detail about the throughput and the
speedup among different setups. It is important to note the
decrease in efficiency as the number of nodes grows, that is
also related in diminishing return at training times. In Figure
3b there is a throughput comparison between all the tested
configurations. We discern an improvement, although it is
not linear, because there are a higher amount of resources to
process and send through the network.

C. Speedup (from the learning standpoint)

At the top of Figure 4 we can see the evolution of the
training accuracy, and notice how multi-node configuration can
reach similar accuracy values much faster than using a single-
node setup. However, the performance gains are reduced as
more nodes are added to the computation, due to the use of
more resources and the higher amount of stale gradients.

Bottom part of Figure 4 shows how the test accuracy
evolves and converges. In Table II we can see the amount of
time different configurations spent arriving at the maximum
accuracy. It is important to highlight the improvement in
training time among the multiple configurations, although with
diminishing returns.

Test accuracy results are not as good as the single node
configuration, but given that we have not optimized hyperpa-
rameters for distributed training, and we focused on scalability
with multiple nodes, a further analysis should be made (pres-
ence of stale gradients, hyperparameter tuning, etc.) in order
to understand these results.

Workers (GPUs) Test Accuracy Time (h) Improvement
1 Node (4) 0.228 106.43 1.00
2 Nodes (8) 0.217 62.78 1.69

4 Nodes (16) 0.202 37.99 2.80
8 Nodes (32) 0.217 22.50 4.73
16 Nodes (64) 0.185 16.49 6.45

TABLE II: Reached accuracy, spent time and improvement
range among the optimal setups.

VI. CONCLUSION

Distributed training strategies for deep learning architec-
tures will become more important as the size of datasets in-
creases. Therefore, it is important to identify the most efficient
ways to perform distributed training, in order to maximize
the throughput of the system, while minimizing the accuracy
decrease.

We have used the mixed-asynchronous mode because it
is more network efficient than the fully asynchronous mode,
and we showed that the speedup inside a worker scales up
better than when scaling to multiple nodes due to the effect of
network overhead.

From the throughput standpoint, Figure 3b shows a near-
linear increase and a resource usage near to 80%. There is a
degradation in the 16 node experiment, and it may be due to
external factors like network overhead.

We managed to decrease the training times from 106 hours
to 16 hours (more than 6 times less), albeit with some accuracy
loss. There are different results depending on the number of



Fig. 4: Top: Train accuracy evolution in different distributed
configurations. Bottom: Test accuracy evolution until conver-
gence in different distributed configurations.

nodes, and this solution is adaptable to clusters of different
sizes and configurations, number of nodes or GPUs per node.

When we looked for the best configuration for each num-
ber of workers, we found that the best throughput-resources
relation was: 2 workers and 1 PS in 2 nodes, 4 workers and 3
PS in 4 nodes, 8 workers and 7 PS in 8 nodes and 16 workers
and 7 PS in 16 nodes.

ACKNOWLEDGEMENTS

This work is partially supported by the Spanish Ministry
of Economy and Competitivity under contract TIN2012-34557,
by the BSC-CNS Severo Ochoa program (SEV-2011-00067),
by the SGR programmes (2014-SGR-1051 and 2014-SGR-
1421 ) of the Catalan Government and by the framework of the
project BigGraph TEC2013-43935-R, funded by the Spanish
Ministerio de Economia y Competitividad and the European
Regional Development Fund (ERDF). We also would like to
thank the technical support team at the Barcelona Supercom-
puting center (BSC) especially to Carlos Tripiana.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A system for large-scale
machine learning. ArXiv e-prints, May 2016.

[2] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. Tensorflow: Large-scale machine learning on heteroge-
neous systems. 2015.

[3] Barcelona Supercomputing Center (BSC). Minotauro user’s guide,
2017.

[4] James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lam-
blin, Razvan Pascanu, Olivier Delalleau, Guillaume Desjardins, David
Warde-Farley, Ian Goodfellow, Arnaud Bergeron, et al. Theano: Deep
learning on gpus with python. In NIPS Workshops, 2011.

[5] Damian Borth, Rongrong Ji, Tao Chen, Thomas Breuel, and Shih-
Fu Chang. Large-scale visual sentiment ontology and detectors using
adjective noun pairs. In ACM MM, 2013.

[6] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal
Jozefowicz. Revisiting Distributed Synchronous SGD. ICLR 2017
conference submission, 2016.

[7] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet:
A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[8] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
ImageNet: A large-scale hierarchical image database. In CVPR, 2009.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016.

[11] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. In ACM MM,
2014.

[12] Peter H Jin, Qiaochu Yuan, Forrest Iandola, and Kurt Keutzer. How
to scale distributed deep learning? arXiv preprint arXiv:1611.04581,
2016.

[13] Brendan Jou, Tao Chen, Nikolaos Pappas, Miriam Redi, Mercan Top-
kara, and Shih-Fu Chang. Visual affect around the world: A large-scale
multilingual visual sentiment ontology. In ACM MM, 2015.

[14] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,
Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification with
convolutional neural networks. In CVPR, 2014.

[15] Alex Krizhevsky. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997, 2014.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet
classification with deep convolutional neural networks. In NIPS, 2012.

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11), 1998.

[18] He Ma, Fei Mao, and Graham W Taylor. Theano-mpi: a theano-based
distributed training framework. arXiv preprint arXiv:1605.08325, 2016.

[19] Daniel McDuff, Rana El Kaliouby, Jeffrey F Cohn, and Rosalind W
Picard. Predicting ad liking and purchase intent: Large-scale analysis
of facial responses to ads. IEEE Transactions on Affective Computing,
6(3), 2015.

[20] Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I Jor-
dan. Sparknet: Training deep networks in spark. arXiv preprint
arXiv:1511.06051, 2015.

[21] CUDA Nvidia. Compute unified device architecture programming
guide. 2007.

[22] Rosalind W. Picard. Affective Computing, volume 252. MIT Press
Cambridge, 1997.

[23] Robert Plutchik. Emotion: A Psychoevolutionary Synthesis. Harper &
Row, 1980.

[24] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In CVPR, 2015.

[25] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA:
Neural Networks for Machine Learning, 4, 2012.

[26] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How
transferable are features in deep neural networks? In NIPS, 2014.

[27] Dong Yu and Xuedong Huang. Microsoft Computational Network
Toolkit (CNTK). 2015. A Tutorial Given at NIPS 2015 Workshops.


