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ABSTRACT

Twitter has become one of the most popular Location-Based Social Networks (LBSNs) that bridges
physical and virtual worlds. Tweets, 140-character-long messages, are aimed to give answer to the
What’s happening? question. Occurrences and events in the real life (such as political protests, music
concerts, natural disasters or terrorist acts) are usually reported through geo-located tweets by users on
site. Uncovering event-related tweets from the rest is a challenging problem that necessarily requires
exploiting different tweet features. With that in mind, we propose Tweet-SCAN, a novel event discov-
ery technique based on the popular density-based clustering algorithm called DBSCAN. Tweet-SCAN
takes into account four main features from a tweet, namely content, time, location and user to group
together event-related tweets. The proposed technique models textual content through a probabilistic
topic model called Hierarchical Dirichlet Process and introduces Jensen-Shannon distance for the task
of neighborhood identification in the textual dimension. As a matter of fact, we show Tweet-SCAN
performance in two real data sets of geo-located tweets posted during Barcelona local festivities in
2014 and 2015, for which some of the events were identified by domain experts beforehand. Through
these tagged data sets, we are able to assess Tweet-SCAN capabilities to discover events, justify using
a textual component and highlight the effects of several parameters.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Twitter! is one of the most popular Social Networks and mi-
croblogging sites offering location-based services to identify
the geographical location of social content, e.g. tweets. A
tweet is a 140-character-long status message that responds to
the question What’s happening? This update message is asso-
ciated with a user, a posting time and might contain some sort of
geographical localization, among other metadata. In fact, Wei-
demann (2013) showed that one-in-five tweets is geo-located
or its location can be inferred from user metadata. Given that
about 500 millions tweets are generated per day?, understand-
ing some of the physical world behaviors from geo-located
tweets seems now feasible.
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There are numerous research papers supporting the use of
Twitter in a broad range of fields from politics —Borge-
Holthoefer et al. (2011) studied the dynamics of the Spanish
political movement called 15M, epidemics —Kim et al. (2013)
proposed to improve forecasting of human influenza infection,
to seismology —Sakaki et al. (2010) presented a detection and
monitoring system to track earthquakes. As a matter of fact,
we can view Twitter as a rich source of data generated by mil-
lions of distributed users acting as sensors that report what is
happening right now worldwide.

An event happening in a specific location (such as a demon-
stration, a music concert, an accident or a street fight) will
be likely reported on Twitter by means of geo-located tweets
posted by users close to the event location. Nonetheless, these
events are usually masked by tweets which do not contribute to
any particular pattern and which can be considered noise for the
event detection task. Therefore, the problem of event discovery
in Location-based Social Networks (LBSNs), and specifically
in Twitter, consists in uncovering and determining these events
while excluding the undesired observations (Zheng, 2012).



In fact, we propose to frame the event discovery problem
within a clustering type of problem in which clusters are dense
groups of tweets posted by different users that talk about an
event happening nearby their location. Tweets not related to
the events are unwanted and we aim to group them together
into a noise cluster. In a nutshell, the event discovery problem
described here can be seen as an unsupervised machine learn-
ing problem which aims to group together similar event-related
tweets.

DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) proposed by Ester et al. (1996), is a density-based
clustering algorithm in which clusters are arbitrary shaped re-
gions with higher density of spatial points. The algorithm de-
fines three types of points depending whether they belong to
a dense, a sparse or an intermediate region: core points, noise
points and border points, respectively. GDBSCAN (General-
ized DBSCAN) proposed by Sander et al. (1998), generalizes
DBSCAN to use spatially extended objects instead of simply
spatial points and more advanced predicates beyond euclidean
proximity. This algorithm is a convenient framework to define a
technique capable of uncovering clusters of event-related tweets
from the rest.

Therefore, we present Tweet-SCAN, a novel event discovery
technique which adapts the DBSCAN algorithm —or particu-
larize GDBSCAN— to cope with Twitter objects, considering
its spatial, temporal, textual and user dimensions. Tweet-SCAN
considers spatially extended objects from DBSCAN and it im-
plements independent neighborhood identification in each sep-
arate dimension to group close neighbors into a dense cluster
which is finally associated to an event.

The textual part of a tweet is modeled through a probabilistic
topic model (Blei, 2012), named Hierarchical Dirichlet Process
(HDP) (Teh et al., 2006), which can be seen as the nonparamet-
ric extension of Latent Dirichlet Allocation (LDA) (Blei et al.,
2003). This nonparametric topic model represents the textual
dimension of each tweet as a Categorical probability distribu-
tion over topics. To assess similarity of tweet messages, we pro-
pose to use Jensen-Shannon distance (Endres and Schindelin,
2003), a proper and natural metric for probability distributions
which outperforms other measures in terms of semantic similar-
ity (Ljubesi¢ et al., 2008) and categorization accuracy (Li et al.,
2011)3.

The algorithm capabilities to uncover events are assessed in
a real data set composed of geo-located tweets from Barcelona
during its local festivities in September of 2014 and 2015,
called “La Merce”. This data set has been crawled through
the Twitter Streaming API via a distributed system called Her-
mes (Cea et al., 2014). It has been shown that the Twitter
Streaming API returns all geo-located tweets within the bound-
ing box, instead of a sample (Morstatter et al., 2013). Fur-
thermore, some tweets have been manually tagged and several
events have been assigned to them based on our expert knowl-
edge about the festivities. This tagging process allows to quan-
titatively evaluate the algorithm and to interpret the algorithm
parameters.

30ther measures, such as cosine similarity, can be also applied here.
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The rest of the paper is organized as follows: First, we
present the digested background for this study in Section 2.
Next, Tweet-SCAN technique is described in detail in Sec-
tion 3. Section 4 contains a descriptive analysis of both data sets
from “La Merce” festivities. Then, we assess Tweet-SCAN dis-
covering capabilities by studying different parameter settings,
see Section 5. To conclude, we present the main conclusions
for this work and identify future challenges in Section 6.

2. Background

There is a broad literature on event discovery in Location-
based Social Networks which can be further classified based
on the features used by the algorithm. Following the well struc-
tured background study presented by Yuan et al. (2013) with re-
gards to geographical topic modeling, we attempt to classify the
event discovery literature in a very similar manner. As stated
above, we group the existing proposals in this area of research
based on the combination of features used: time, content, loca-
tion and user.

o Time: Simply using time dimension to detect social events
from LBSNs has shown encouraging results when ex-
ploiting diversity on multiple social networks. For exam-
ple, Garcia-Gasulla et al. (2014) presented a model for the
normal behavior of a city in order to then detect abnor-
mal situations associated to real world events. They ap-
plied this model to a data set composed of aggregated ob-
servations from Twitter, Instagram and Foursquare. They
have also considered Barcelona city as the test bed for their
evaluation probably due to the high penetration of Social
Networks and the vast number of events in the city.

o Time, content: Weng and Lee (2011) presented an
algorithm to perform event detection in Twitter which
tackles the problem by applying wavelet analysis on the
frequency-based raw signals of words (content). Despite
being defined in the frequency domain, this algorithm can
be still included into this group since frequency is simply
a transformation of time domain. An algorithm that was
directly defined in the content-time domain was presented
by Fung et al. (2005) in which they attempt to identify
bursty words that explains real-life events in traditional
media, instead of Twitter.

e Time, location: When searching for a specific event,
existing proposals have relied on prior classification of
tweets and then applying spatio-temporal techniques to de-
tect and track the event from the set of classified tweets.
For example, Sakaki et al. (2010) proposed an Earthquake
detection system which detects and tracks an earthquake
by applying Kalman filtering to Tweets semantically re-
lated to the phenomena. This approach requires to know
the event beforehand in order to perform supervised clas-
sification of tweets and then uncover the event-related
tweets from the rest.



o Time, content, location: Chen and Roy (2009) presented
an event detection system from Flickr data* which exploits
temporal, spatial and content information from photos. In-
stead of the image, they benefit from the photo annota-
tions or fags. Authors employed here wavelet transform to
suppress noisy observations and uncover events similarly
to (Weng and Lee, 2011). A different approach within this
group was presented by Mclnerney and Blei (2014), where
they proposed a hierarchical probabilistic model to model
newsworthy events from Twitter which accounts for all
three dimensions. This probabilistic model assumes Gaus-
sian shaped events within the spatial and temporal dimen-
sions, which also limits the expressivity in real case sce-
narios. They also relied on a separate data set (New York
times) for training the model and they performed transfer
learning to detect the newsworthy tweets.

e Time, content, location, user: To our best knowledge,
there is not yet any unsupervised event discovery algo-
rithm or technique that considers all four dimensions.
However, Yuan et al. (2013) presented a probabilistic
model to discover geographical topics which it is not in-
tended for event detection as they stated in the article.
Hence, our proposed algorithm is a first attempt to con-
sider all four features for the task of event discovery.

In the field of geographical topic modeling, Zhang et al.
(2013) conducted a study of DBSCAN to consider the textual
dimension. In their work, authors examined different setups to
configure DBSCAN with LDA for discovering meaningful ge-
ographical topics. Although this work used similar state-of-the-
art clustering and topic model techniques to Tweet-SCAN, we
seek to detect abnormalities (e.g. events) in the data rather than
finding a model that best explains geo-located data in terms of
topics.

3. Tweet-SCAN technique

Tweet-SCAN is an event discovery technique for geo-located
tweets which is based on the DBSCAN clustering algorithm
presented by Sander et al. (1998). In the following section, we
describe Tweet-SCAN by first introducing the main elements
of DBSCAN (Ester et al., 1996) and then generalize them into
GDBSCAN to make clustering of tweets possible. The proper
definitions of GDBSCAN predicates will enable that the result-
ing Tweet-SCAN clusters matches real world events. There-
fore, we define proper Tweet-SCAN predicates and present a
text model for tweets.

3.1. Events as density-connected sets

DBSCAN (Ester et al., 1996) was proposed to uncover clus-
ters with arbitrary shapes whose points configure a dense or
packed group. This means that for each point in a cluster its
neighborhood at a € distance must contain at least a minimum
number of points, MinPts. Formally, this implies the definition
of two predicates:

4http://www.ﬂickr.corn/

1. NPred(0,0") = N(0,0") =|o—0'| < e.
2. MinWeight(o) = {0’ € D | lo — 0| < €}| = MinPts.

The fulfillment of both predicates allows to define the no-
tion of a point p being directly density-reachable from another
point g, see (left) figure 1, where € is given by the circle radius
and MinPts is set to 2. In this scenario, ¢ is a core point be-
cause it satisfies both predicates and p is a border point since it
breaks the second predicate. The notion of being direct reach-
able is extended to density-reachable points when p and g are
far apart, but there is a chain of points in which each pair of con-
secutive points are directly density-reachable, as it is the case
in (middle) figure 1. Finally, it might happen that p and g are
not density-reachable, but there is a point o from which they
are both density-reachable, that is when p and g are said to be
density-connected, for example in (right) figure 1. Note that
both points, p and g, are here border points, while o is a core
point.

Fig. 1: Directly density-reachable (left), density-reachable (middle)
and density-connected (right) points.

Consequently, a cluster in DBSCAN is defined to be a set
of density-connected points that contains all possible density-
reachable points. Furthermore, noise points can now be defined
as those points which do not belong to any cluster since they
are not density-connected to any.

GDBSCAN (Sander et al., 1998) generalizes DBSCAN by
redefining the above-mentioned predicates to cope with spa-
tially extended objects. For example, the neighborhood of a set
of polygons is defined by the intersect predicate instead of a dis-
tance function. It is also the case for a set of points with finan-
cial income attributes within a region whose MinWeight pred-
icate is a weighted sum of incomes instead of mere point car-
dinality, so that clusters become regions with similar income.
Therefore, both predicates can be generalized as follows:

1. NPred(o,0’) is binary, reflexive and symmetric.
2. MinWeight(o) = wCard({o’ € D | NPred(o,0")}) >
MinCard , where wCard is a function that 22 — R20

These new predicates enable to extend the concept of
density-connected points to objects and thus generalize density-
based clustering to spatially extended objects. Particularly, this
extension allows us to formulate the event discovery problem
for tweets in the framework of GDBSCAN, which we call
Tweet-SCAN. Tweet-SCAN specifies proper neighborhood and
MinWeight predicates in order to associate density-connected
sets of tweets to real world events. The following subsections
deal with these specifications by defining the neighborhood and
MinWeight predicates as well as explaining how the textual
content from a tweet is modeled.



3.2. Tweet-SCAN neighborhood predicate

Most of the event-related tweets are generated throughout the
course of an event within the area where it takes place. Al-
though, it can happen that some users might be tweeting about
an event remotely or even long after it has finished, these tweets
cannot be considered part of it. Consequently, we need to find
density-connected sets of tweets close in space and time, as well
as similar in meaning. We also note that closeness in space is
not comparable to time, nor to meaning.

Because of this, Tweet-SCAN is defined to use separate
positive-valued €, €, €3 parameters for space, time and text,
respectively. Moreover, specific metrics will be chosen for each
dimension given that each feature contains different type of
data. The neighborhood predicate for a point o in Tweet-SCAN
can be expressed as follows,

NPred(0,0") = oy — o}l < €, lop — 05| < &, los — 05| < & (€))

where |0;,—0]| are distance functions defined for each dimension,
namely space, time and text. The predicate symmetry and re-
flexivity are guaranteed as long as |o; — 0}| are proper distances.
Particularly, we propose to use the Euclidean distance for the
spatial and temporal dimensions given that latitude and longi-
tude coordinates as well as timestamps are real-valued features
and the straight line distance seems a reasonable approximation
in this scenario’. The metric for the textual component will be
defined later once we present the text model for Tweet-SCAN.

If we scale each metric in the above predicate with its corre-
sponding ¢ parameter, the predicate then must satisfy that the
maximum scaled component is less or equal than 1. Each com-
ponent being the distance for each separate dimension. Writing
this down in term of the co-norm metric leads to the following
expression,

loy = 0/1| oy — 0'2| los — 0'3|

NPred(o,0") =

<1 (2)

)

s s

€1 € €

which is equivalent to DBSCAN predicate expressed in terms
of the metric scaled by € parameter,

o—-0

Nc(o,0") = <1 3)

Therefore, Tweet-SCAN can be seen as a particular case of DB-
SCAN which considers the co-norm of the scaled components
as a metric function for the neighborhood predicate. This result
enables to determine ¢ parameters through similar heuristics
defined for DBSCAN, as we will show in Section 5.2.

3.3. Tweet-SCAN MinWeight predicate

Tweet-SCAN seeks to group closely related tweets gener-
ated by a diverse set of users instead of a reduced set of them.
User diversity is imposed to avoid that a single user continu-
ously posting tweets from nearby locations could generate an
event in Tweet-SCAN. Forcing a certain level of user diversity
within a cluster can be achieved through two conditions in the
MinWeight predicate that must be satisfied at the same time,

MinWeight(0) = |Nyprea(0)l 2 MinPts, UDiv(Nyprea(0)) Z 1 (4)

SPath distance could be more appropriate in the spatial dimension, but it
would add more computational cost.
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where Nypr.q(0) is the set of neighboring tweets of o such that
{o’ € D | NPred(o,0")} w.rt. the previously defined Tweet-
SCAN neighborhood predicate. The first condition from the
MinWeight predicate establishes that neighboring tweets must
have a minimum cardinality MinPts as in DBSCAN. While in
the second condition, the user diversity UDiv() ratio, which
is defined as the proportion of unique users within the set
Nnpred(0), must be higher than a given level u of user diversity.

The combined predicate from equation (4) can be expressed
as one single condition,

Nipre UDiv(Nypye
MinWeight(0) = min | NP d(0)|’ V(Nyprea(0)) > 1
MinPts u

(&)

where MinWeight(o) is now the minimum of two proportions
which has to be greater or equal than 1. We note that the
MinWeight(o) predicate resembles the GDBSCAN one from
Section 3.1 where wCard() function corresponds to the mini-
mum of both quotients and MinCard is equal 1.

Note that if we set the user diversity level, y, to 0 in equa-
tion (5), the MinWeight predicate simplifies to |[Nypreqa(0)| >
MinPts and this expression matches to the classical DBSCAN
predicate. Under these conditions, we can use the same heuris-
tics defined for DBSCAN to setup the MinPts parameter as we
will show in Section 5.2. Regarding y, we propose to set em-
pirically its proper value in Section 5.5 so that it maximizes the
detection accuracy.

3.4. Tweet-SCAN text model

The text message in a tweet is a 140-character-long field in
which users type freely their thoughts, experiences or conver-
sations. The fact that users tweet in different languages, ar-
gots and styles dramatically increases the size of the vocabulary,
making the use of simple Bag of Words (BoW) models (Salton
et al., 1975) not viable. Therefore, we propose to use prob-
abilistic topic models, which are common dimensionality re-
duction tools in text corpora (Blei, 2012). In this approach, a
tweet message is encoded into a K-dimensional vector which
corresponds to the Categorical probability distribution over the
K topics. K is often much smaller than the vocabulary size
and the resulting topics are represented by semantically similar
words.

Nonparametric Bayesian models like Hierarchical Dirichlet
Process (HDP) (Teh et al., 2006) can automatically infer the
number of topics K, overcoming the limitation of their paramet-
ric counterparts like Latent Dirichlet Allocation (LDA) (Blei
et al., 2003). The HDP topic model basically consists of two
nested Dirichlet Process: G,, with base distribution H and con-
centration parameter y, and G;, with base distribution G, and
concentration parameter @,. Although the number of topics
is automatically inferred, the hyperparameters y and @, might
strongly influence the number of components. Because of this,
vague informative gamma priors such as, y ~ Gamma(l,0.1)
and @, ~ Gamma(l,1) are usually considered (Escobar and
West, 1995; Teh et al., 2006).

The straightforward use of HDP models on raw tweets does
not provide meaningful topic distributions (Hong and Davi-
son, 2010) due to the lack of word co-occurrence in short texts
like tweets. Because of this, we propose the scheme from
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Fig. 2: Text model scheme. Stages are highlighted in bold in the text.

figure 2 which aims to alleviate these shortcomings. First,
raw tweets, modeled as Bag of Words, are pre-processed and
cleaned through classical data cleaning techniques from Natu-
ral Language Processing (NLP): lowering case, removing num-
bers and special characters, and stripping white-spaces. Then,
processed tweets are aggregated to build longer training doc-
uments from a group of concatenated tweets. These aggre-
gated documents are used to train the HDP model. Finally,
the trained HDP model is employed to predict the topic distri-
butions per each single tweet in order to obtain the Categorical
probability distributions over the K topics that summarize each
tweet message.

In the aggregation stage from figure 2, we consider two dif-
ferent strategies, although we will only use the first unless we
say the contrary.

e By hashtags: it consists in creating a new training docu-
ment per hashtag, which will concatenate all tweets that
contains it. Therefore, there will be as many training doc-
uments as hashtags. One drawback of this aggregation ap-
proach is that tweets which do not have hashtags are ag-
gregated together, although they might refer to completely
different themes.

e By top keywords: it consist in first identifying a set of top
keywords through the TF-IDF statistic (Salton and Buck-
ley, 1988), and then aggregating tweets containing each of
these top keywords. Thus, there will be as many training
documents as top keywords and few tweets will be unas-
signed as long as we choose a reasonable number of top
keywords.

Finally, we propose to use the Jensen-Shannon (JS) distance
for the textual component in Tweet-SCAN neighborhood pred-
icate. JS is a proper distance metric for probability distribu-
tions (Endres and Schindelin, 2003). It is defined as,

1 1
JS(p,q) = \/EDKL(pllm) + EDKL(qllm) (6)
where p, ¢ and m are probability distributions and Dk (p|m) is
the Kullback-Leibler divergence between probability distribu-
tion p and m written as,

_ . p@) _1
Dy (pllm) = Zp(t)logz iy M0 )
where m is the average of both distributions.

In Tweet-SCAN, p and g from equation (6) are two Categori-

cal probability distributions over topics which are associated to
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two tweet messages. Given that Jensen-Shannon distance is de-
fined through base 2 logarithms, JS distance will output a real
value within the [0, 1]. Documents with the similar topic distri-
bution will have a Jensen-Shannon distance close to 0 and those
topic distributions which are very far apart, distance will tend
to 1.

4. “La Merce” data sets

In order to evaluate Tweet-SCAN, we have collected data
through the Twitter streaming API® via Hermes (Cea et al.,
2014). In particular, we have established a long standing con-
nection to Twitter public stream which filters all tweets geo-
located within the bounding box of Barcelona city’. This long
standing connection was established during the local festivities
of “La Merce”, that took place during few days in September
2014 and 20158,

2500
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woofl |||
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a. Location dimension b. Time dimension
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Fig. 3: Tweets dimensions from “La Merce” 2014.

“La Merce” festivities bring with several social, cultural and
political events that happen in different locations within a con-
siderably short period of time. This scenario is a suitable test
bed for evaluating the accuracy of Tweet-SCAN on discovering
these physical events from tweets. Moreover, the abundance
of events during these days causes that some of them overlap
in time and space, making text more relevant to distinguish
them. However, these events are apparently not distinguishable
by analyzing tweet dimensions separately as shown in figure 3,
where event patterns are not visible. Figure 3a shows the spa-
tial distribution of tweets within the borders of Barcelona city,
where different tweet density levels can be appreciated in the
map. Figure 3b represents the time series of tweets from the

6http://dev.twittt:r.com/streaming/overview

"Barcelona has 1,602,386 citizens in the 101.4 km? sized municipality ac-
cording to Idescat

8Dataset published in https://github.com/jcapde87/Twitter-DS



19th to the 25th of September and daily cycles are recogniz-
able. Figure 3c is a wordcloud in which more frequent words
are drawn with larger font size, such as “Barcelona”. The multi-
lingualism at Twitter is also reflected at this wordcloud although
this work does not considered translating between different lan-
guages. Last, figure 3d is a histogram of the number of tweets
per user, which shows that most of the users tweet very few
times, while there are a few, although non-negligible number
of users, who tweet very often. All four dimensions play a key
role in Tweet-SCAN to uncover events.

Table 1: “La Merce” local festivities data sets

H Tweets  Tagged tweets  Tagged events
“La Merce” 2014 || 43.572 511 14
“La Merce” 2015 12.159 476 15

As shown in Table 1, we have also manually tagged several
tweets with the corresponding events as per the agenda in “La
Merce” website’ and our own expert knowledge as citizens.
With this tagged subset of tweets, we will experimentally evalu-
ate the goodness of Tweet-SCAN. We also note that the number
of tweets collected in 2015 is much less than in 2014. This is
because Twitter released new smart-phone apps in April 2015
for Android and IOS that enable to attach a location to a tweet
(such as a city or place of interest) apart from the precise coor-
dinates'”. Since tweets generated during “La Merce” 2014 data
set did not contain this functionality, we only consider tweets
whose location is specified through precise coordinates for “La
Merce” 2015 data set (12.159 tweets).

5. Tweet-SCAN assessment

In this section, we assess Tweet-SCAN for the task of event
discovery in “La Merce”. Particularly, we aim to find evidence
that proves the benefits of considering the textual component.
We also seek to give insights on the role of each parameter, as
well as to provide a scheme for determining them.

As a result, we first introduce some clustering measures to
evaluate Tweet-SCAN performance against the tagged data set.
Then, we present a heuristic to determine its spatio-temporal
parameters (€1, &) following intrinsic measures. With these pa-
rameters fixed, we analyze the textual component and the role
of user diversity level through extrinsic clustering evaluation.
Finally, we also assess its clustering performance when jointly
varying the spatio-temporal and textual parameters.

5.1. Clustering extrinsic measures

Clustering evaluation metrics can be applied here since event
discovery was defined to look for groups of tweets which are
close in time, space and textual meaning. To evaluate cluster-
ing results against a tagged data set or gold standard is known
as extrinsic cluster evaluation, in contrast to intrinsic evalua-
tion, which is based on the closeness/farness of objects from

9http://lameva.barce]ona.cat/merce/en/
10https://support.twitter.corn/articles/78525
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the same/different clusters. Among extrinsic measures, we find
out that purity, inverse purity and, specially, the combined F-
measure have been extensively used for event discovery (Yang
et al., 1998).

Purity and inverse purity are weighted averages of maximum
precision and recall across clusters and labeled events, respec-
tively. Because of that, both measures achieve trivial maxi-
mums when each object is set to a different cluster or when
all tweets are grouped into a unique cluster. Van Rijsbergen
(1974) combined both measures through the harmonic mean
into the Van Rijsbergen’s F-measure to mitigate the undesired
trivial solutions from purity and inverse purity.

The F-measure score is defined as,

| L | Rec(Cj, L;) - Prec(Cj, L;)
Z N "% Rec(C, L) + Prec(C;, L)

(3

where L; is the set of tweets labeled as event i and C; is the set
of tweets clustered as j and N is the total number of tweets. Re-
call and precision are defined over these sets as the proportions

C:NL; CiNL;
Rec(Cj, L) = St and Prec(Cj, L) = S5

5.2. Determining spatio-temporal parameters

Ester et al. (1996) proposed a rather simple but effective
heuristic approach to determine DBSCAN parameters. How-
ever, Sander et al. (1998) argued that setting GDBSCAN pa-
rameters is extremely application dependent and the same
heuristic could not necessarily apply there. As we have shown,
Tweet-SCAN predicates matches those from DBSCAN under
certain conditions and hence, the heuristic can be reused here.

The heuristic for DBSCAN is based on the following proce-
dure. First, we define the distance of the (MinPts-1)-th nearest
neighbor object from p as dysinpis—1(p). Note that within the
neighborhood of p at distance dpprs—1(p), there are at least
MinPts objects. By computing dyi,pis—1(p) for each object in
the data set and ordering them in descending order, we obtain
a graph of sorted distances. From this graph, we can visu-
ally locate the point that determines the first “valley”, whose
dyinpes—1(p) corresponds to the proper € parameter for a given
MinPts. All objects p” with shorter dy;,prs—1(p’) distances than
€ will be grouped into clusters, while those with larger dis-
tances, into noise.

We have previously shown that Tweet-SCAN neighborhood
predicate is equivalent to DBSCAN predicate. Moreover, we
have similarly highlighted that Tweet-SCAN MinWeight pred-
icate matches DBSCAN for a null user diversity level. Con-
sequently, the heuristic proposed for setting parameters in DB-
SCAN applies also here when 1 = 0.

The dysinpis—1(p) distance from tweet p for the spatio-
temporal dimensions can be rewritten in terms of the co-norm
as follows,

Ip1 = pil Ip2 = Pl
€] ’ €

_|lpr = pil.&/€ - 1p2 — p)

dpinpis—1(p) = '

)

(C)]

where p’ is the (MinPts-1)-th nearest neighbor object from p
and €, can be factorized to obtain a matching expression with
DBSCAN in which € plays now the role of e. Through this



formula, we can now compute the dy;,pis—1(p) for each tweet
in order to get € parameter for different € /e, values. Note
that this distance could be also extended to consider the textual
component.

We now compute the dpinpis—1(p) for each tweet in “La
Merce” 2015 for different € /e, values ranging from 0.01(m/s)
to 1(m/s), which seems a reasonable proportion range for events
happening in Barcelona city. We also impose MinPts = 10,
which means that there will be at least 10 tweets per event. This
value makes sense for the type of events in “La Merce” data
set. Moreover, the change in the dy,p—1(p) distance curves
for Tweet-SCAN should be within short distance range, in con-
trast to DBSCAN, given that event discovery looks for rarely
patterns in the data and thus, noise predominates over clusters.
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Fig. 4: Sorted dpinprs—1(p) distances in “La Merce” 2015

Figure 4a plots the ordered dyi,pis—1(p) distance for each
tweet in “La Merce” 2015 and for different values of € /e.
We visually locate the change in curvature in the short dis-
tance range around the 8000th point for all setups of € /e;.
From figure 4b, we can also visually identify the smallest
€1/ value for which the dyinpis—1(p) distance slightly varies
as €;/e = 0.07. With this € /e, proportion, we can determine
€ ~ 250m from the corresponding dyy;,pis—1(p) distance in fig-
ure 4a and €, ~ 3600s from the €’s proportion out of figure 4b.

5.3. Understanding textual component

Next, we aim to find out which textual parameter e; opti-
mizes the F-measure for a fix set of parameters ¢, = 250m,
& = 3600s, MinPts = 10 determined as per the above heuris-
tic. To do that, we plot the F-measure score as a function of &;
for “La Merce” 2014 and 2015, and identify the e; that maxi-
mizes F-measure.

From figure 5, it is clear that F-measure achieves a global
maximum when e is within the range 0.8-0.9 for both data
sets. Given that the maximum is achieved for &5 < 1, the tex-
tual component clearly improves clustering performance. If the
maximum would have been achieved at €3 = 1, this would mean
that the optimal Tweet-SCAN setup disregards the textual com-
ponent. Besides, Tweet-SCAN performs slightly better in “La
Merce” 2015 than in 2014, what can be explained from the pro-
portion of tagged tweets in “La Merce” 2015 is greater than in
2014.

Table 2 shows F-measures per each tagged event in “La
Merce” 2014 and 2015. We observe that “fireworks” event has

e Merce 2014 4 Merce 2015

F-measure
o
»
S
»
1

0.0 02 04 0.6 08 10

Fig. 5: F-measure as a function of €3 for e = 250m, &, = 3600s,
MinPts = 10, u = 0.5.

Table 2: F-measure per event for €; = 250m, e, = 3600s, €3 = 0.8
MinPts = 10, u = 0.5

Event “La Merce” 2014 “La Merce” 2015
Food market - day 1 0.41 0.93
Food market - day 2 0.27 0.94
Wine tasting - day 1 0.14 0.21
Wine tasting - day 2 0.33 0.34
Human towers - day 1 0.88 0.54
Human towers - day 2 - 0.74
Giants and Bigheads 0.34
Firerun - 0.62
Fireworks 0.98 0.94
Projections 0.57
MACBA concerts 0.45
Fabrica Damm concerts 0.97 -
Maria Cristina concerts 0.59 0.78
Bogatell concerts 0.96 0.84
OBC Sagrada Familia concert - 0.85
CaixaForum conference 0.63 -
Atypl conference 0.40 -
Drupal conference - 0.88
Referendum demonstration 0.94 -
Political meeting - 0.27
Barga football game 0.99

been successfully identified both years, whilst “wine tasting”
has been poorly classified. The situation is that “fireworks”
occurred during the closure of the festivities and happened in
isolation of events. On the contrary, “wine tasting” took place
near the “food market” event (Passeig Lluis Companys and Parc
de la Ciutadella, respectively) during the same hours (all day
events). Since both events were close in space and time, Tweet-
SCAN has to use the textual component to distinguish among
events.
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a. Tagged Events

Fig. 6: “Wine tasting” and “food market” events in “La Merce” 2014

To show that, figure 6 and 7 plot the geo-located tweets in
the surrounding area of both events during “La Merce” 2014
and 2015. Both figures on the left show the tagged tweets asso-
ciated with these events, where green dots belong to the “wine
tasting” exposition and oranges, to the “food market”. Figures
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Fig. 7: “Wine tasting” and “food market” events in “La Mercg” 2015

on the middle plot the result of Tweet-SCAN without textual
component €3 = 1. It does not only merge both events into the
same, but other tweets in the surrounding area are clustered all
together. Figures on the right show the results of Tweet-SCAN
for a & = 0.8, which discovers both events in “La Merce”
2014 and one in “La Merce” 2015 despite mismatching sev-
eral tweets and events. Note that grey dots represent tweets
clustered as noise.
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Fig. 8: Aggregation by hashtag in “La Merce” 2015

Figure 8 shows Tweet-SCAN results for a e3 = 0.8 (left) and
the probability density function of inter- and intra- Jensen Shan-
non distances among the textual message of tweets in the “wine
tasting” exposition and “food market” (right) in “La Merce”
2015. Inter-class distances are among tweets from the same
class, while intra-class distances, among tweets from differ-
ent classes. Therefore, we look for minimum inter-class dis-
tances and maximum intra-class. Given that we simply consider
the textual component, J-S distances plotted in figure 8b are
bounded in the interval [0,1]. The probability density functions
of these inter- and intra- distances show that tweets from both
tagged classes overlap and the mean of intra-class distances is
far from 0. As a result, we can state that text model performs
poorly in discriminating these events.

In figure 9, we perform the same analysis by considering the
HDP text model that aggregates by top keyword instead. As it
can be seen from the left figure 9, we are now capable to cor-
rectly distinguish tweets related to the wine tasting event thanks
to the fact that the probability distribution functions of inter-
and intra- Jensen Shannon distance are less overlapped. This
result encourages to aggregate by top keywords instead and to
explore more robust tweet models with richer textual represen-
tation.

JS distance

b. Inter- intra- cluster distances

a. 3 = 0.8

Fig. 9: Aggregation by top keyword in “La Merce” 2015

5.4. Discovering untagged events

The unsupervised Tweet-SCAN algorithm does not only dis-
cover tagged events, but it also identifies untagged events. Ta-
ble 3 shows tweets grouped within an unknown event that took
place during several hours in “La Merce” 2014. From the text
column, we can associate these tweets with “F.C. Barcelona”
and we can also locate the event in the surroundings of “Camp
Nou” stadium from their coordinates.

Moreover, we observe that it consists of several sub-events: a
football game played by “Barca B vs. Llagostera”, a “handball
game” and “visits to Camp Nou stadium”. Although all of them
are in one way or another related to F.C. Barcelona, one might
wish to obtain each sub-event by setting more restrictive Tweet-
SCAN parameters. However, all three sub-events happen in the
surrounding area of the stadium during similar hours. Here is
where a more fine-grained text model for the textual component
might make the difference to identify them.

From this event, we also note that “visits to Camp Nou sta-
dium” are not strictly a sub-event, since they tend to happen
quite often in time. To avoid identifying this type of clusters as
events but as landmarks, Tweet-SCAN should consider inter-
day/week patterns, which is out of the scope for this study.

5.5. Analyzing user diversity level

The role of user diversity level, u, is two-fold. On the one
hand, to guarantee that an event is created by a broad range of
Twitter users; on the other hand, to filter out Twitter bots or
accounts that does not reflect the spirit behind user as a sensor
to report what’s is happening nearby.

In what follows, we examine the effect of different user diver-
sity levels u to the clustering results in terms of F-measure. To
do that, we fix all parameters (¢; = 250m, &, = 3600s, 3 = 0.8,
MinPts = 10) except u and we plot F-measure as function of
the user diversity level. Lower user diversity level causes that
few users could generate an event in Tweet-SCAN, while higher
values will entail that events are generated by many different
users. Since different u values influences the number of discov-
ered clusters by Tweet-SCAN, we will also add the number of
events into the figure.

Figure 10 plots the F-measure and number of clusters as a
function of u for both data sets. It is clear from the figures that
F-measure starts decreasing after a level of u around 0.6. Sim-
ilarly, the number of discovered clusters decreases but much



Table 3: 10 tweets from an untagged event during “La Merce” 2014 for ¢, = 250m, e, = 3600s, €3 = 0.8, MinPts = 10, u = 0.5

timestamp coordinates text
2014-09-20 15:11:56  2.123949 : 41.378228 @valds_jaycar a tope!! Vindras?
2014-09-20 15:57:19  2.121559 : 41.379579 Camp Nou http://t.co/ZjImGpOsuS
2014-09-20 17:48:04  2.118119: 41.379819

2014-09-20 17:49:57
2014-09-20 18:49:03

2.118119 : 41.379819
2.120434 : 41.38028

2014-09-20 18:58:02  2.117992: 41.379657

2014-09-20 19:32:31 2.120434 : 41.380264

2014-09-20 20:49:50  2.121351 : 41.380448

2014-09-20 21:01:55  2.121351 : 41.380448

2014-09-20 21:05:50  2.121351 : 41.380448

‘- + |events| ® o F-measurex
0.7: 250 081 4
b4+ o —o—o—o__
080 \

0.70 . ./0\‘,\\\ 20 \\ 40

\ 100

04 06 08 1.0

a. “La Merce” 2014 b. “La Merce” 2015

Fig. 10: F-measure for different y values.

faster and sooner than F-measure. We observe that a user diver-
sity level of 50% (u = 0.5) gives high figures of F-measure and
reasonable number of events (=50 events for “La Merce” 2014
and ~30 events for “La Merce” 2015). Given that the size of
“La Merce” 2015 data set is four times smaller, make sense to
obtain less number of events for the same u level.

5.6. Analyzing spatio-temporal components

The aim of this section is to understand the impact of dif-
ferent neighborhood sizes through the spatio-temporal and tex-
tual parameters. Thus, we assess Tweet-SCAN in terms of F-
measure scores when varying €, € and €;. Figure 11 shows
four possible €], e configurations as function of e; for both
data sets.

A Tweet-SCAN setup with shorter distances in time and
space (e; = 250m, ¢, = 1800s) than values obtained in Sec-
tion 5.2, optimizes F-measure for 3 = 1. This means that
Tweet-SCAN disregards the textual component and it can be
explained by the fact that these € e;-neighborhoods are too re-
strictive for the tagged events.

For the spatio-temporal values determined in Section 5.2
(€1 = 250m, e, = 3600s), we have seen that the optimum value
for € is achieved within the range 0.8-0.9 in both data sets.
Now, we can also see that this spatio-temporal configuration
performs much better than others.

If we increase the spatial component to € = 500m, but we
keep the temporal short €, = 1800s, F-measure score is lower
in both data sets, but the optimum value for €; is attained within
0.8-0.9 in “La Merce” 2014, and €3 = 1 in “La Merce” 2015. In
fact, the curves for “La Merce” 2015 are very similar to those
given by € = 250m, ; = 1800s.

Barca B-Llagostera (@ Mini Estadi in Barcelona, CT) https://t.co/cOfuwJnCon
La Masia en vena (@ Mini Estadi for Barcelona B vs Llagostera in Barcelona, CT w/ @ _muzki_) https://t.co/hoM 1Pap45m

@BMGranollers gran resultat noies!

Llarga vida a la Masia!!! Visca el Bara des del Mini!! http://t.co/GSFCS8tryH
Com apreta en Baena! #handbol http://t.co/etyKdVxBRV
araeslhora fcbarcelona_es #campnou @ Camp Nou (FC Barcelona) http://t.co/c33qmi2Mx2
#barcelona #fcb #mesqueunclub #campnou @ Camp Nou (FC Barcelona) http://t.co/nIk2kQ8WDF
Tak for autografen 3jesper @ Camp Nou (FC Barcelona) http://t.co/AJeStildAc

Last, we increase both dimensions to €; = 500m and to &, =
3600s. Although the optimum F-measure score for this setup is
lower than the best performing configuration (€ = 250m, ; =
3600s), we observe that the textual component becomes more
relevant. This is due to the fact that large € e;-neighborhoods
need textual discrimination to identify meaningful events.

6. Conclusions and future work

To our best knowledge, Tweet-SCAN provides a first step in
using spatial, temporal, textual and user features for the purpose
of uncovering real world events unsupervisedly from Location-
based Social Networks like Twitter. The formulation of Tweet-
SCAN within the framework of DBSCAN enables to under-
stand events as density-connected set of tweets, as well as to
use similar heuristics for determining some of the parameters.

The results of Tweet-SCAN points out to the benefits of us-
ing text, when uncovering events from geo-located tweets, spe-
cially for large spatial and temporal neighborhoods. We have
also shown that more fine-grained text models could help to
discriminate overlapping events in space and time, as we have
seen for the “wine tasting” and “food market” events. More-
over, we have seen that imposing a user diversity condition does
not worsen discovery performance, but it avoids clusters of non-

event tweets posted by a very limited set of users.

Finally, we have observed that some clusters discovered by
Tweet-SCAN were not exactly physical events, but popular
places, a.k.a. landmarks, that usually have a huge attendance,
e.g. “visits to Camp Nou stadium”. To avoid this type of events,
we should incorporate inter-day/week patterns to Tweet-SCAN,
which will be part of future work. Not least, tuning up Tweet-
SCAN parameters optimally for event detection tasks will re-
quire a cross-validation approach which maximizes F-measure
in a training data set in such a way it then generalizes well in an
independent test or validation data set.
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