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Abstract

Derivative securities, when used correctly, allow investors to increase their expected prof-
its and minimize their exposure to risk. Options offer leverage and insurance for risk-averse
investors while they can be used as ways of speculation for the more risky investors. When
an option is issued, we face the problem of determining the price of a product at the same
time we must make sure to eliminate arbitrage opportunities.

In this thesis, we introduce a robust, accurate, and highly efficient financial option valua-
tion technique, the so-called SWIFT method (Shannon wavelets inverse Fourier technique),
based on Shannon wavelets. SWIFT comes with control over approximation errors made by
means of sharp quantitative error bounds.

This method is adapted to the pricing of European options and Discrete Lookback op-
tions. Numerical experiments show exponential convergence and confirm the robustness,
efficiency and versatility of the method.

Keywords: Option pricing, European options, Lookback options, Shannon wavelets,
sinus cardinal function, Fourier transform inversion,
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Chapter 1

Introduction

Financial innovation has been the force driving global finance to greater economic efficiency
since the late nineteenth century. Among all the innovations, derivative securities, such as
options, have caused some of the most dramatic changes in the financial world.

An option, put in simple terms, is a contract between two parties, giving one of the parties
the right but not the obligation to purchase or to sell an underlying asset in the future. For
instance, given a share of a company traded at 20 euros today, A and B agree that in one
year from now, B will have the option to purchase the share for 24 euros in exchange of a
fee. B pays the fee to A today and will exercise his right on expiration date only if the share
price is selling at a higher value than 24. This type of option is called a European call option
and constitutes one of the most actively traded options in the derivative market.

The existence of options traces back thousands of years, in the Phoenicians and Ancient
Greek civilizations. The first reputed option buyer was the ancient Greek mathematician
and philosopher Thales of Miletus. On a certain occasion, he predicted that the season’s
olive harvest would be larger than usual, and during the off-season, he rented in advance
olive presses at a low price since demand was short during the winter. When spring came
and the olive harvest was larger than expected, he rented the presses out at a much higher
price, obtaining a profit. Nowadays, options have become extremely popular financial in-
struments among investors since they are understood as a really attractive and convenient
way of investing money. Options are then usually included in portfolios as ways of both
hedging and speculation.

The main challenge concerning the options market is how to price them fairly to avoid
arbitrage opportunities. Actually, the valuation of options constitutes an extremely active
area of research today. Regarding the initial example, several questions naturally arise: what
is the optimal tax that A should charge B today for the option he is selling? Would both A
and B be in concordance with this value? Which approach should be taken to fix this price?

Unquestionably, the most well-known valuation model in option pricing is the celebrated
Black-Scholes Model formulated in 1973 by Myron Scholes and Fischer Black in [3]. The
model is based on the assumption that the dynamics of the underlying asset price is driven



CHAPTER 1. INTRODUCTION 2

by a Geometric Brownian motion (an Itô Process) and provides an analytic solution for
European options which makes this model highly popular.

It turns out more convenient, however, to introduce more complex and realistic processes
such as the Heston Model or the Variance Gamma Process (see [15] and [6] respectively)
which best fit the dynamics of market prices and provides more reliable results. Although
most of these relevant models do not allow a closed formula for the option value, they all
have a feature in common: the fair price of the option is determined by the distinguished
Feynman-Kac Theorem. This theorem essentially says that the option value v(x, t) at time
t can be found as a discounted expectation of the option at maturity t = T as follows:

v (x, t) = e−r(T−t)EQ (v (x, T ) |x) = e−r(T−t)
∫
R
v (y, T ) f (y|x) dy.

Here, v (y, T ) denotes the so-called pay-off function and depends on the kind of option under
consideration. For its part, f (y|x) is the probability density function governing the stochastic
asset price dynamics in the risk neutral world and is not available in most cases. Instead,
we do have its Fourier transform (or Characteristic function).

A strain of literature exploding the knowledge of the characteristic function and dealing
with highly efficient pricing of these contracts already exists. Methods based on quadrature
and the fast Fourier transform (FFT) (see [17], [16] and [10]) and methods based on Fourier
cosine expansions (see [7] and [28]) are among the most outstanding examples.

In this thesis, we particularly introduce a robust, accurate and highly efficient finan-
cial option valuation technique, the SWIFT method (Shannon wavelets inverse Fourier tech-
nique). This method relies on the extraordinary approximation features of Shannon Wavelets
to accurately invert the Fourier transform of the density function and determine an approx-
imation of a European option price with exponential convergence.

New types of options arise as investors try to create their preferred risk return profile for
their portfolios. A special case of options called exotic options has gain popularity and offers
more attractive features than European options. Returning to the above example, assume
that the share price rises up to 40 euros in the first half of the year. In the second half of the
year, however, the company loses competitiveness and the share price falls bellow 10 euros.
The European call option is then worthless at expiration, becoming more convenient for B
to take into account the price of the option throughout all its lifetime.

Lookback Options settle this problem by allowing the holder, at expiration, to look back
at how the price of the underlying asset has performed and maximize their profits by taking
advantage of the biggest price differential between the strike price and the price of the
underlying asset. For option traders, this is obviously a major benefit since the chances
of a contract expiring worthless are much lower. These advantageous features have made
Lookback Options become increasingly popular in the last few years, specially in insurance
contracts and structured notes as a way of hedging risk.

The development of the theory of pricing Discrete Lookback Options has been slower and
relies basically on numerical methods. The efficient pricing of Discrete Lookback Options
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is therefore one of the greatest challenges in computational finance. Initially, these pricing
methods were based around binomial methods (see [2] and [11]), partial differential equations
(see [23] and [24]) and numerical integration (see [1] and [31]). However, these methods just
focused on the Brownian motion model and were not easily extended to other models of
asset returns. The next major breakthrough in the pricing of discrete lookback options was
made by [18] who used the Spitzer identity to derive a recursive formula for the valuation
of the characteristic function of the discretely monitored maximum asset price. This was
an important result that [25] and [4] extended to a range of stochastic models. Finally,
[9] derived in 2014 an highly efficient method which uses B-spline approximation theory to
provide an accurate closed-form approximation to a Fourier transform representation of the
discrete lookback option price.

This thesis researches for a robust, accurate, and highly efficient numerical technique
for the valuation of Discrete Lookback Options by adapting the SWIFT method derived for
European Options to this kind of derivatives. It also aims to develop a versatile strategy
adaptable to a wide range of asset processes and able to price the option at any monitoring
point during the lifetime of the derivative contract.

1.1 Structure of the thesis

We start out in Chapter 2 introducing basic definitions and theorems in stochastic calculus
and financial mathematics as well as setting some of the mathematical framework and nota-
tions. We also give a short overview in the Black-Scholes theory to provide the reader with
the required background to fully understand the objectives pursued and the future analysis
carried out in this thesis. Chapter 3 derives a robust, accurate and highly efficient finan-
cial option valuation technique for European options, the so-called SWIFT method which
explores the potential of approximation of Shannon wavelets and benefits from them to pro-
vide accurate and efficient results. In Chapter 4, we research and propose an efficient and
versatile methodology for pricing Discrete Lookback options by adapting the SWIFT method
presented in Chapter 3 and we check the accuracy and efficiency of this novel technique by
comparing it with the results obtained by [9]. Finally, Chapter 5 gives a brief summary of
the main conclusions drawn from the thesis, the contributions of our research and the future
work to be made in order to improve our methodology.
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Chapter 2

The Black-Scholes Theory of
Derivative Pricing

Based on works previously developed by market researchers and practitioners, such as Louis
Bachelier, Sheen Kassouf and Ed Thorp among others, it was in the early 1970s when
Fischer Black, Myron Scholes and Robert Merton make a major breakthrough in the pricing
of stock options. This involved the development of what has become known as the Black-
Scholes model. The model has had a huge influence on the way that traders price and
hedge options. It has also been pivotal to the growth and success of financial engineering
in the 1980s and 1990s. One can understand the repercussion that this formula cased by
recalling that Myron Scholes and Robert Merton were awarded the 1997 Nobel Memorial
Prize in Economic Sciences for their work entitled ”The Pricing of Options and Corporate
Liabilities” (see [3]) published in 1973. Sadly, Fischer Black died in 1995; otherwise he also
would undoubtedly have been on of the recipients of this prize.

This chapter aims then to give a short overview in the Black-Scholes theory to provide
the reader with the required background to understand the objectives pursued and the
future analysis carried out in this thesis. Particularly, we give basic definitions and theorems
in stochastic calculus and financial mathematics, and we define some of the mathematical
framework and notations that will be used. Also some financial interpretations of these
mathematical concepts are given. For a more elaborate insight into these and other concepts
the reader is referred to the book of Hull [12].

2.1 Mathematical framework

The purpose of this thesis is to derive an efficient and robust numerical method to construct
the value of a financial derivative. To its computation, it becomes essential to know how the
underlying asset behaves. Let us denote the asset price at time t as St and define its return

Return =
Stock tomorrow − Stock today

Stock today
=

St+4t − St
St

.



CHAPTER 2. THE BLACK-SCHOLES THEORY OF DERIVATIVE PRICING 5

To illustrate a typical stock behaviour, we consider in Figure 2.1 the daily closing prices
and returns of the stock of currency exchange Euro Dollar. We note that the asset price looks
very unpredictable and the daily returns seem to be driven by a white noise as it becomes
more ostensible in its histogram and Normal Q-Q plot. Therefore, we model them as a noise
and a probability space consisting on states that occur randomly should be defined.

We then set throughout the thesis the probability space (Ω,F ,P), where Ω is the sample
space containing all possible outcomes ω, F is the set of events where each event is in turn
a set containing one or more outcomes, and P is the probability measure P : F −→ [0, 1]
corresponding to the assignment of probabilities to the events. To fix ideas, suppose Ω =
C ([0,+∞), R) is the space of continuous trajectories that a stock may take, F is the σ-
algebra containing all sets of the form {w ∈ Ω : |w(s)| < R, s ≤ t} and P is the probability
distribution of a zero-mean Gaussian with variance t. On the probability space (Ω,F ,P),
we will model the underlying asset dynamics by a stochastic process. Before, we should
introduce several concepts such that the notion of Brownian motion and stochastic process.

Figure 2.1: Daily closing prices of the stock Euro Dollar from 04/01/1999 until 11/05/2017,
4829 trading days. trading days.

2.1.1 The standard Brownian motion

The standard Brownian motion, also known as standard Wienner Process, plays a central role
in the mathematical theory of finance since it constitutes a fundamental component in the
construction of stochastic differential equations and represent a crucial engine for modeling
the randomness in the financial market. Before introducing it, we define a stochastic process
as a collection of random variables {Xt}t≥0 = {Xt (ω) : t ≥ 0, ω ∈ Ω} given in (Ω,F ,P).



CHAPTER 2. THE BLACK-SCHOLES THEORY OF DERIVATIVE PRICING 6

Definition 2.1 (Brownian motion). The real-valued stochastic process {Wt}t≥0 defined in
the probability space (Ω,F ,P) is called a Brownian motion if the following properties hold:

1. Wt has continuous trajectories starting at 0 (W0 = 0).

2. Wt has independent increments: for any 0 < t1 < · · · < tn the random variables Wt1,
Wt2 − Wt1,..., Wtn − Wtn−1 are independent.

3. For any 0 ≤ s < t, the increment Wt − Ws is normally distributed with zero mean
and variance t− s. In particular, Wt ∼ N (0, t).

The independence of increments makes the Brownian motion an ideal candidate to define
a complete family of independent infinitesimal increments dWt which will serve as a model of
the random fluctuations of the stock price and its volatility. The main drawback is that the
trajectories are not of bounded variation. Another important shortcoming is that although a
Brownian motion is continuous everywhere, it is differentiable nowhere, that is, the derivative
does not exist. Actually, one shows that it has fractal geometry.

2.1.2 Stochastic Differential Equations

We introduced the Brownian motion as a mean of modeling asset prices and volatility paths.
However, a standard Brownian Motion has a non-zero probability of being negative. This
is clearly not a property shared by real-world assets which cannot be less than zero. Hence,
although it is convenient to retain the stochastic nature of a Brownian motion, adjustments
need to be done, emerging the concept of Stochastic Differential Equation (SDE). First,
one should note that some of the rules of ordinary calculus do not work as expected in the
stochastic world. We need to modify them in order to take into account both the random
behaviour of Brownian Motion and its non-differentiable nature.

Definition 2.2 (Stochastic integral). The stochastic integral of a process {f (Xt)}t≥0 with
respect the Brownian motion {Wt}t≥0 is defined as the stochastic process {Yt}t≥0 obtained by
taking the limit in the L2 (Ω) mean-square sense of

Yt :=

∫ t

0

f(Xs)dWs = lim
N→∞

N∑
k=1

f(Xtk−1
)
(
Wtk −Wtk−1

)
,

where tk = kt
N

for k = 1, . . . , N . In differential form, this equation reads

dYt = f(Xt)dWt.

Definition 2.3 (Stochastic differential equation). Let {Xt}t≥0 be a stochastic process and
{Wt}t≥0 a Brownian motion defined in a probability space (Ω,F ,P). A stochastic differential
equation (SDE) is an expression of the form

dXt = µ (t,Xt) dt + σ (t,Xt) dWt, (2.1)
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which should be understood in integral form as

Xt = X0 +

∫ t

0

µ (s,Xs) ds +

∫ t

0

σ (s,Xs) dWs. (2.2)

The function µ is called the drift and corresponds to the deterministic part of the SDE, while
the function σ is called the volatility coefficient and constitutes the random component. They
should satisfy almost surely

P

[∫ t

0

|µ (s,Xs)| ds < ∞, ∀t ≥ 0

]
= 1,

P

[∫ t

0

σ (s,Xs)
2 ds < ∞, ∀t ≥ 0

]
= 1.

Theorem 2.1 (Existence and uniqueness). Consider the stochastic differential equation
(2.1). Assume that µ and σ satisfy the following growth condition

|µ(t, x)| + |σ(t, x)| ≤ C1 (1 + |x|) , t ∈ [0, T ], x ∈ R,

for some constant C1. Then the global existence of solution is guaranteed. Additionally, if
the following Lipshitz condition holds

|µ(t, x)− µ(t, y)| + |σ(t, x)− σ(t, y)| ≤ C2 |x− y| , t ∈ [0, T ], x, y ∈ R,

for some constant C2, then the SDE has a unique continuous solution X(t) given by (2.2).

2.1.3 Itô’s Formula

Itô’s Formula is an essential tool to determine the derivative of a time-dependent function
of a stochastic process g(t,Xt) as well as being very useful for solving SDEs. The formula
performs the role of the chain rule in a stochastic setting, analogous to the chain rule in
ordinary differential calculus.

Theorem 2.2 (Itô’s Formula). Let {Xt}t≥0 be a stochastic process driven by a SDE of the
form (2.1) and let g (x, t) ∈ C2 (R2). Then g (t,Xt) is a new stochastic process and its
differential is given by the so-called Itô’s Formula

dg (Xt, t) =

(
∂g

∂t
(Xt, t) + µ (Xt, t)

∂g

∂x
(Xt, t) +

1

2
σ2 (Xt, t)

∂2g

∂x2
(Xt, t)

)
dt

+ σ (Xt, t)
∂g

∂x
(Xt, t) dWt,

(2.3)

where it has been used that it holds (dWt)
2 = dt and dt2 = dt · dWt = 0.
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2.2 The Black-Scholes Model

This section gives a brief insight in the foundations of the celebrated Black-Scholes model and
how it is applied for the valuation of European call and put options on a non-dividend-paying
stock. The model of prices will be first derived and motivated making clear the assumptions
and simplifications of the market. Efficient market hypothesis are particularly assumed. It
basically says that current price fully reflects past history and responds immediately to any
new information. Because of these assumptions, asset price is said to satisfy Markov prop-
erties which essential means that the probability distribution of the price at any particular
future time is not dependent on the path followed by the price in the past.

Second, we introduce the concept of financial derivative contract and focus in European
put and call options to derive the distinguished Black-Scholes Formulas that provides a
closed-form expression to price these financial derivatives. Additionally, we make use of
this model to introduce and illustrate several elemental concepts in derivative pricing such
that the risk-neutral measure, hedging and self-financing strategies and the connection of
mathematical finance with partial differential equations (PDEs).

2.2.1 The market and stock price model

The Black-Scholes model assumes a market constituted by two underlying assets. One is a
risk-less asset (cash, bond) which appreciates at the constant risk-less rate of return r and
whose price Bt at time t satisfies the ordinary differential equation,

dBt

dt
= rBt. (2.4)

The price St of the other asset, the risky stock or underlying asset, corresponds to a contin-
uous stochastic process. After an infinitesimal amount of time dt, the asset price changes
by dSt, to St + dSt. Rather than measure the absolute change dSt, we evaluate the return
on the asset dSt/St which is assumed to be constituted by two components that lead to the
following stochastic differential equation (SDE),

dSt
St

= µdt + σdWt. (2.5)

This SDE is known as geometric Brownian motion (GBM) and is the most popular stochastic
processfor generating prices. The first component is predictible and deterministic. The
parameter µ is called the drift rate and measures the average rate of growth of the stock
price. The second term determines centered random fluctuations which are independent of
the past up to time t. {Wt}t≥0 is a standard Brownian motion, and σ > 0 is the volatility of
the stock. The model supposes µ and σ to be constants, giving rise to the unique solution
of the SDE (2.5) with initial condition S0,

St = S0 exp

(
νWt +

(
µ− ν2

2

)
t

)
, (2.6)
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where this formula is derived using Itô’s Formula (2.3). We then deduce that the stock price

St is a log-normally distributed random variable with mean S0e
µt and variance S2

0e
2µt
(
eσ

2 − 1
)

.

Further assumptions on the market need to be made, including the possibility of buying
and selling any fraction of stock as well as borrowing and lending any amount of cash
at risk-less rate. The market is also assumed to be efficient (market movements cannot
be predicted), arbitrage-free (there is no way to make a risk-less profit) and frictionless
(transactions without fees or costs).

Figure 2.2: S&P index prices from March 03, 2007 to March 03, 2017 (left). Simulation of
index prices using GBM dynamics with µ = 0.005 and σ = 0.1 (right).

2.2.2 Derivative Contracts

We shall consider that there is a derivative security also trading in this market. A derivative
security, also called contingent claim, can be seen as a insurance and hedging contract on the
financial market in order to remove and avoid potential downside risk. A derivative derives
its value from some underlying asset, hence the name derivative. Today derivatives can
be derived by among different number of underlying assets: stocks, indexes, interest rates,
commodities, electricity and so on. As one can see derivatives can be applied to almost any
type of asset. There is a great variety of derivative contracts treated in the market. Actually,
the market for derivatives is much bigger than the market of underlying assets and stocks
themselves. We mainly focus here in forward and option contracts.

A Forward Contract is a type of derivative security in which the holder of the contract
gives the obligation to buy/sell the underlying asset at some prescribed date T , known as
expiration or maturity date, and a predetermined price or strike price K. The payer’s position
on a underlying asset St has the following value at maturity T , known as pay-off function,

F (ST , T ) := ST −K.
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Figure 2.3: Pay-off function of a European call option and a European put option (left).
Moneyness of call and put options (right).

An Option Contract is essentially the same as a forward contract, but instead to be
forced to buy/sell the underlying asset at a specified date in the future, the option provides
the holder with the choice to do it. The holder is thereby not forced to do something, and is
only left with a positive outcome. In order to compensate this obvious advantage that the
holder acquires, he must pay a premium on the date of writing the contract. The objective
of option pricing is precisely to give a fair value to this premium. More generally, we are
interested in the valuation of the option at any time t in the lifetime of the option [0, T ].

There are many different sorts of rules for how and when the option can be exercised.
The simplest kind of option is the European option which can only be exercised on one
specified expiration date T . In contrast, an American option can be exercised in any day
during the option lifetime [0, T ]. The options mentioned above are generally called vanilla
options to express the fact that they are standardized and less interesting than exotic options.

We now focus on European call options and European put options since, as has already
been mentioned, closed-form formulas will be derived later under the Black-Scholes model.
A European call option consists on a contract which provides its holder with the option
of purchasing the underlying asset at expiration date T for a predetermined strike price K.
A European put option is defined in the analogue opposite way, where the holder of the
option has the choice of selling the underlying asset with the same conditions. Their pay-off
functions are given respectively by,

C(ST , T ) = (ST −K, 0)+ = max (ST −K, 0) , (2.7)
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P (ST , T ) = (K − ST , 0)+ = max (K − ST , 0) . (2.8)

An important concept concerning option derivatives is that of moneyness. Moneyness of
an option at time t is defined as the quotient of the strike and the stock price K/St and
turns out to be an useful quantity that indicates whether the option is worth exercising or
not. Three terms are used to define the moneyness of an option.

Definition 2.4 (ITM, OTM and ATM option). Let us consider an option at a given time
t. We say that the option is in-the-money (ITM) if it would produce a cash inflow for the
holder by exercising it at that time. In contrast, an out-of-the money (OTM) option would
not produce any benefit if it were exercised at time t. Finally, we say that the option is
at-the-money (ATM) is its value equals the strike price at time t.

The moneyness categories listed in the following table will be used throughout this thesis:

MONEYNESS CALL PUT
<0.94 deep ITM deep OTM

0.94 - 0.97 ITM OTM
0.97 - 1.03 ATM ATM
1.03 - 1.06 OTM ITM
>1.06 deep OTM deep ITM

Table 2.1: Moneyness of call and put options.

2.2.3 Connection with partial differential equations

The Black-Scholes analysis of a European-style derivative leads to a replicating strategy in
the underlying stock and bond whose terminal payoff equals the payoff of the derivative at
maturity. Thus, selling the derivative and holding this dynamically adjusted portfolio covers
an investor against all risk of eventual loss. The essential step in this methodology is the
construction of a replicating strategy and arguing, based on no arbitrage, that its value at
time t is the fair price of the derivative. This argument will also allow us to derive the
celebrated Black-Scholes partial differential equation.

Definition 2.5 (Self-financing replicating portfolio). Consider a market consisting on a risk-
less asset with price ert and K risky assets with share prices S1

t , S
2
t , . . . , S

K
t . A portfolio is

a vector whose entries are individual stochastic processes

φt =
(
φ0
t , φ

1
t , . . . , φ

K
t

)
,

where φit denotes the number of shares of asset i held at time t. The value of this portfolio
at time t is given by the following linear combination

Πt = φ0
t e
rt + φ1

tS
1
t + . . . + φKt S

K
t .
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We say that the portfolio is self-financing if the variations of its value are only due to the
variations of the underlying asset market, that is, it does not require an extra inversion
during the trading period except for the initial capital,

dΠt = rφ0
t e
rtdt + φ1

tdS
1
t + . . . + φKt dS

K
t . (2.9)

Additionally, the portfolio is said to replicate a derivative with payoff V (ST , T ) at maturity
time T if its value coincides with the payoff of the derivative, that is,

V (ST , T ) = φ0
T e

rT + φ1
TS

1
T + . . . + φKT S

K
T .

Let us denote the pricing function for a European-style contract by V (S, t). Our next
goal is to construct a self-financing portfolio that replicates the derivative at maturity T and
which consists on φt units of risk-less bond and 4t shares of stock. The replicating property
and the impossibility of arbitrage opportunities yields that the value of the portfolio and the
price of the derivative at time t coincide

φte
rt + 4tSt = V (St, t) for any 0 ≤ t ≤ T. (2.10)

Differentiating and using the self-financing condition (2.9) on the left-hand side and Itô’s
formula (2.3) on the right-hand side, one gets(

rφte
rt + µ4tSt

)
dt + σ4tStdWt =

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t

)
dt + σSt

∂V

∂S
dWt,

where all the partial derivatives of V are evaluated at (St, t). Equating the coefficients of
the dWt term and using (2.10), we determine the self-financing replicating strategy

4t =
∂V

∂S
(St, t) , φt =

(
V (St, t)−

∂V

∂S
(St, t)St

)
e−rt.

Finally, equating the dt term, using the expressions of φt and 4t , and rearranging terms,
one gets the so-called Black-Scholes partial differential equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (2.11)

2.2.4 The Arbitrage Free Price

In this section, we provide another general approach that gives us an expression to price
a derivative contract and which will be a key result to derive the SWIFT method in both
Chapter 3 and 4. This result is the so-called Risk Neutral Valuation Formula or Feynman-
Kac Formula and states that any asset risky and non-risky will all have the same expected
return as the risk-free rate of interest r. This essentially means that in a risk neutral world,
where it does not exist arbitrage opportunity, all assets will have the same expected return.
Next, we proceed to formulate the mentioned Feynman-Kac Theorem.
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Theorem 2.3 (Feymann-Kac Theorem). Let us consider a derivative contract whose pay-off
function is denoted by V (St, t). The arbitrage free price Π(t, V ) at time t of this contingent
claim is given by

Π(t, V ) = e−r(T−t)EQ (V (St, T ) |Ft) = e−r(T−t)
∫
R
V (y, T ) f (y|Ft) dy,

where Q denotes the risk-neutral probability measure and Ft is the filtration which contains
all the information about the underlying asset price St until time t. We have also introduced
the conditional probability density function for the asset prices f (y|Ft).

The Feymann-Kac Formula essentially says that the option value at time t can be com-
puted as a discounted expectation of the pay-off function under the risk-neutral probability
measure Q. One also deduces from the integral expression of the Feymann-Kac Formula that
the value of a derivative contract can be uniquely determined if the pay-off function and the
probability density function are available. Precisely, we will explode this last expression in
the following chapters to price options by approximating the probability density function of
the process. Finally, it is worth noting that the Feymann-Kac Formula solves a PDE similar
to (2.11), thus both approaches to price options are closely connected.

2.2.5 The Black-Scholes Formula

The Black-Scholes PDE (2.11) together with terminal and boundary conditions allow to
price any derivative security depending on the current stock value St and on t. Particularly,
it gives a closed formula for plain vanilla options. Let us consider the simplest financial
derivative, a European call option. The payoff of the option determines the final condition

C(ST , T ) = (ST −K, 0)+ = max (ST −K, 0) . (2.12)

Our asset-price boundary conditions must be applied at S = 0 and as S → ∞. We can see
from (2.5) that if S is ever zero then dS is also zero and S can never change. Additionally,
if S = 0 at expiry the payoff is zero. Thus on S = 0 the call option is worthless

C(0, t) = 0. (2.13)

Increasing the asset price makes the call option more likely to be exercised and the magnitude
of the strike becomes less and less important. Actually, it is immediate to deduce that the
value of the option becomes that of the asset in the limit, that is,

C(St, t) ∼ St as St → ∞. (2.14)

After performing several changes of variables, the Black-Scholes PDE (2.11) and the condi-
tions (2.12), (2.13) and (2.14) become the one-dimensional Heat equation problem on the
real line which gives rise to the acclaimed Black-Scholes Formula for the price of a European
call option. This expression could also have been derived with the Feymann-Kac Formula.
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Theorem 2.4 (The Black-Scholes Formula). The value of an European call option at time
t with strike K and expiration date T given by the Black-Scholes model is

CBS (St, t) = StN (d+) − Ke−r(T−t)N (d−) , (2.15)

where N (·) is the cumulative distribution function of a standardised normal random variable
given by

N (x) =
1√
2π

∫ x

−∞
e−

1
2
y2

dy,

and

d± =
log (St/K) +

(
r ± 1

2
ν2
)

(T − t)
ν
√
T − t

.

We will denote CBS by CBS (t, S;K,T ; ν) to emphasize the dependence on the parameters
K, T and ν. Only the volatility ν, the standard deviation of the returns scaled by the square
root of the time increment, needs to be estimated from data.

2.3 Limitations of Black-Scholes Model

Once the Black-Scholes Model has been introduced and analyzed, several natural questions
about its validity arise: How well do Black-Scholes option prices fit market prices? Are the
probability distributions of asset prices really lognormal? Does the price market volatility
remain constant? In this section we answer these questions and we see that this model is
not that accurate in capturing the features in the stock markets in reality. There are several
major drawbacks of the Black-Scholes model, mainly because the idealized assumptions do
rarely hold in the real world. First, the volatility smile is simply a violation of the constant
volatility assumption. Secondly, the assumption of a lognormal distribution of stock prices
is under critique. Combined factors of extreme events, fat tails, high peak and volatility
clustering make the assumption of non-lognormal distribution more appropriate.

2.3.1 Implied volatility and the Smile Curve

One of the attractive features of the Black-Scholes model is that the parameters in the model
other than the volatility σ (the expiration time T , the strike K, the risk-free interest rate
r and the current stock price S0) are unequivocally observable in the market and can be
considered as inputs of the model. All other things being equal, an option’s theoretical value
is a monotonic increasing function of implied volatility:

∂CBS
∂σ

(t, S) =
Se−

d2+
2

√
T − t√

2π
> 0. (2.16)

This property allows us to define uniquely the concept of implied volatility which turns out
to be a useful quantity to test the model and reveal its limitations in practice.
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Definition 2.6 (Implied Volatility). Given an observed European call option price Cobs for
a contract with strike K and expiration date T , the implied volatility IBS is defined to be the
value of the volatility parameter that must go into Black-Scholes formula (2.15) to match
this price:

CBS (t, S;K,T ; IBS) = Cobs. (2.17)

At first glance, implied volatility seems a convenient tool to tweak the input volatility
parameter to make the Black-Scholes formula work. If the Black-Scholes model held, meaning
that observed options prices equaled the Black-Scholes prices CBS (t, S;K,T ;σ) = Cobs, then
IBS = σ. That is, the implied volatility for the stock would be the same constant for all
strikes K and maturities T . In practice, the volatility surface (the 3D graph of implied
volatility against strike and expiration) is not flat as one would expect. In particular, the
most quoted phenomenon testifying to the limitations of the model is the so-called smile
effect: the implied volatilities are not constant across the range of options prices but vary with
strike price. This phenomenon is illustrated in Figure 2.4 for the equity index S&P 500. The
Standard & Poor’s 500, often abbreviated as the S&P 500, is an American stock market index
based on the market capitalizations of 500 large companies having common stock listed on the
NYSE or NASDAQ. Figure 2.4 particularly shows a higher implied volatility in out-of-the-
money options than at-the-money and in-the-money options.This phenomenon is commonly
found in equity markets and risky assets where derivatives such as index options are traded.
Actually, implied volatility is closely affected by the supply and demand relationship. A
plausible explanation for the volatility smile of Figure 2.4 is that in-the-money options are

Figure 2.4: S&P 500 implied volatility curve as a function of strike K from SP 500 index
options on February 24, 2017. The current index value is S0 = 2367.34 and options have
over 50 trading days to maturity.
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more desired by investors and consequently lower strikes are heavily traded. Because
increased demand bids the prices of such options up and option prices are a monotonic
increasing functions of IBS, the implied volatility seems to be higher. Another possible
explanation for the smile paradigm is that options with strike prices increasingly farther
from the current spot price of the underlying asset account for extreme market moves. Such
events are characterized by extreme volatility and increase the price of an option.

2.3.2 Shortcomings of lognormal distribution

We assume in subsection 2.2.1 that underlying asset prices dSt/St are log-normally dis-
tributed random variables. In order to test this assumption, it is convenient to consider the
daily stock log-returns log(St/St−1). This quantity turns out to be a normal distribution with
mean r− σ2

2
and variance σ2. Unfortunately, the properties of the Gaussian distribution fails

to capture the probability of extreme events in the real market. A normal distribution states
that, given enough observations, all values in the sample will be distributed equally above
and below the mean. About 99.7% of all variations falls within three standard deviations of
the mean and therefore there is only a 0.3% chance of an extreme event occurring.

However, history would suggest financial markets don’t always act this way and rather,
they exhibit fatter tails and higher peak than traditionally predicted. This fact is illustrated
in Figure 2.5 where one can notice that S&P 500 index log-returns distribution is highly
peaked and fat-tailed relative to the normal distribution. Additionally, the Q-Q plot in
Figure 2.6 shows just how extreme the tails of the empirical distribution are relative to the
normal distribution. This plot would be a straight line if the empirical distribution were
normal. Fat tails returns are usually consequence of traumatic ”real-world” events including
an oil shock, a large corporate bankruptcy or an abrupt change in a political situation. They
also have some behavioral origins investor such as excessive optimism or pessimism.
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Figure 2.5: S&P 500 log-return his-
togram compared with the normal distri-
bution.

Figure 2.6: Normal Q-Q Plot showing
that S&P 500 index has heavy tails.
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Chapter 3

The Shannon Wavelet Inverse Fourier
Technique for pricing European
Options

The pricing of European options in computational finance is governed by the numerical so-
lution of partial differential or partial integro-differential equations. However, option pricing
is often done by the discounted expected payoff approach, which is nothing but a Green’s
function integral formulation for the PDEs mentioned. The connection between the solution
of the option pricing PDEs and the discounted expected payoff lies in the Feynman-Kac
theorem. It states that the corresponding solution v(x, t) at time t can also be found as
a discounted expectation of the option value at final time t = T , the acclaimed pay-off
function, as follows:

v (x, t) = e−r(T−t)EQ (v (x, T ) |x) = e−r(T−t)
∫
R
v (y, T ) f (y|x) dy.

In many cases in option pricing, we do not have the Green’s function f (y|x) (also known as
the conditional probability density function for the asset prices) available, but we do have
its Fourier transform, that is, its characteristic function. A strain of literature exploiting
this fact to develop highly efficient pricing numerical methods already exists.

In this chapter, we present a robust, accurate and highly efficient financial option valu-
ation technique, the so-called SWIFT method (Shannon wavelet inverse Fourier technique).
This is a numerical wavelets method based on the usage of the Shannon wavelets to accu-
rately invert the Fourier transform of the density function f (y|x).

The chapter will be organized as follows. In sections 3.1 and 3.2, we provide a brief
summary of multiresolution analysis and Shannon wavelets. This theory will be launched
in section 3.3 to develop the SWIFT method: first we consider an expansion of the density
function f (y|x) in terms of the Shannon scaling functions and provide two efficient alterna-
tives to compute the density coefficients, one relying on the Vieta’s formula and the other
one based on Parseval’s identity. Finally, in section 3.4 we apply the method for several Eu-
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ropean options and derive the expression of its pay-off coefficients. In section 3.5 numerical
examples are given for different asset-price dynamics.

3.1 Multiresolution analysis and wavelets

In the derivation of the SWIFT method in section 3.3, we will assume that the density
probability function belongs to the Lebesgue space L2(R) of square integrable functions,

L2(R) =

{
f :

∫
R
|f(x)|2 dx < ∞

}
.

Our aim is to construct a general structure for wavelets in this space which will allow us to
decompose the density function f as the sum of a wavelets orthonormal basis and truncate
it to an accurate level of resolution. We shall start with the introduction of the concept of
multiresolution analysis.

Definition 3.1 (Multiresolution analysis). A multiresolution analysis of the space of square
integrable functions L2(R) consists on a family of closed nested subspaces

{0} ⊂ · · · ⊂ V−n ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · · ⊂ L2 (R) ,

satisfying the following completeness and self-similarity properties:

1. Completeness: the union of these nested subspaces fill the whole space and they are not
too rebundant, that is, their intersection contains only the zero element,

∪
j∈Z
Vj = L2 (R) , ∩

j∈Z
Vj = {0} .

2. Self-similarity in time: each subspace Vj is invariant under shifts by multiples of 2j,

f (x) ∈ Vj ⇐⇒ f
(
x−m · 2j

)
∈ Vj, for all m ∈ Z.

3. Self-similarity in scale: all subspaces are time-scaled versions of each other, that is,

f (x) ∈ Vj ⇐⇒ f
(
2l−jx

)
∈ Vl, for all l, j ∈ Z.

The conditions of definition 3.1 ensure the existence of a function φ ∈ V0 such that the
model space V0 is generated by its integer shifts. This function φ is known as the scaling
function or father wavelet since the family of functions {φj,k}k∈Z defined as

φj,k (x) = 2j/2φ
(
2jx− k

)
, (3.1)

generates an orthonormal basis for each one of the remaining multiresolution subspaces Vj.
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With the aim of constructing wavelets given the multiresolution analysis {Vj}j∈Z, we
introduce a new family of subspaces {Wj}j∈Z defined in such a way that Vj ⊕Wj = Vj+1.
In other words, Wj is the space of functions in Vj+1 but not in Vj. This family of subspaces
gives rise to an orthogonal decomposition of the space of square integrable functions

⊕
∑
j∈Z

Wj = L2 (R) .

In the same way that happened with the subspaces {Vj}j∈Z, one can show that there exists
a function ψ ∈ W0, called the mother wavelet such that the family {ψj,k}k∈Z defined by

ψj,k (x) = 2j/2ψ
(
2jx− k

)
, (3.2)

forms an orthonormal basis for each Wj and {ψj,k}j,k∈Z is a wavelet basis of L2 (R). As a
consequence, a projection map on the subspace Vm can be defined.

Proposition 3.1 (Projection map). Let Pm : L2 (R) −→ Vm be the projection map of
L2 (R) onto the multiresolution subspace Vm. Then, any f ∈ L2 (R) can be expanded as

Pmf(x) =
m−1∑
j=−∞

∞∑
k=−∞

dj,kψj,k(x)

=
∞∑

k=−∞

cm,kφm,k(x),

(3.3)

where dj,k =
∫
R f(x)ψj,k(x)dx are the wavelet coefficients and cm,k =

∫
R f(x)φm,k(x)dx are

the scaling coefficients.

Note that the first equality in (3.3) is a truncated wavelet series obtained from the
projection of f onto Vm = ⊕

∑m−1
j=−∞Wj, hence, considering higher values of m, the accuracy

of the truncated series improves. The second equality is just an equivalent sum in terms of
the basis functions {φm,k}k∈Z of Vm.

3.2 Shannon Wavelets

For our future analysis in this thesis, we shall focus in a specific wavelet family, the so-called
Shannon wavelet family. The starting point for its definition is the cardinal sine function or
sinc function which constitute the Shannon scaling or father function

φ (x) = sinc (x) =
sin (πx)

πx
.

Its dilated and translated instances forms the Shannon scaling functions,

φm,k (x) = 2m/2φ (2mx− k) = 2m/2
sin (π (2mx− k))

π (2mx− k)
, m, k ∈ Z. (3.4)



CHAPTER 3. THE SHANNON WAVELET INVERSE FOURIER TECHNIQUE FOR
PRICING EUROPEAN OPTIONS 21

It holds that the functions {φm,k}k∈Z forms an orthonormal basis of its spanned subspace
Vm. Thus, the sequence {Vm}m∈Z gives a multiresolution analysis and the theory introduced
in section 3.1 applies. Particularly, an orthogonal decomposition of the space L2(R) in
subspaces {Wm}m∈Z and a wavelet basis {ψm,k}m,k∈Z can be defined. The wavelet functions
in Wm are given in this case by

ψm,k (x) = 2m/2
sin (π (2mx− k − 1/2))− sin (2π (2mx− k − 1/2))

π (2mx− k − 1/2)
, k ∈ Z. (3.5)

Since only the characteristic function is known in most cases, it turns out convenient
to work in the frequency domain. Consequently, the Fourier transform of the scaling and
wavelet functions should be considered

φ̂m,k (w) =
e−i

k
2m

w

2m/2
rect

( w

2m+1π

)
, (3.6)

ψ̂m,k (w) = −e
−i k+1/2

2m
w

2m/2

(
rect

(
w

2mπ
− 3

2

)
+ rect

(
− w

2mπ
− 3

2

))
, (3.7)

where rect denotes the rectangle function which is defined as following

rect (x) =


1 if |x| < 1/2

1/2 if |x| = 1/2

0 if |x| > 1/2

.

Figure 3.1 shows the Shannon scaling function, the Shannon mother wavelet and their
Fourier transforms. Since the expressions (3.4) and (3.6) are simpler, our analysis will be
mainly focused on the Shannon scaling functions φm,k rather than the wavelet functions ψm,k.

3.3 The SWIFT method

In this section, the SWIFT method is presented. As has already been mentioned, this
numerical technique relies on the Shannon wavelets introduced in last section to accurately
invert the characteristic function of the the asset price.

To this end, we consider an expansion of the density function f in terms of the Shannon
scaling fuctions at a fixed approximation level m and recover the coefficients from their
Fourier transforms. We provide two different alternatives to compute the coefficients. The
first one expands the cardinal sinus function into a combination of cosines by making use
of the celebrated Vieta’s formula. The second one is based on the application of Parseval’s
identity which avoids the truncation of the infinite domain of integration due to the compact
support of the Fourier transform of the Shannon basis functions.

Although both approaches are very similar in terms of efficiency, we will select the first
one since a bound to estimate the trucantion error can be found.
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Figure 3.1: The thick red line shows the Shannon father function φ(x) (left) and its Fourier
transform φ̂(x) (right). The dashed blue line display the Shannon mother function ψ(x)
(left) and its Fourier transform ψ̂(x) (right)

.

3.3.1 Approximation of the density function

Let f denote the probability density function of certain continuous random variable X. Our
aim in this chapter is to derive an approximation of f by making use of the Shannon scaling
functions (3.4) at a fixed approximation level m. Assume f belongs to L2(R). Following the
wavelet theory, f can be represented by

f(x) =
∑
j,k∈Z

dj,kψj,k(x), (3.8)

where {ψm,k}m,k∈Z is assumed to be the Shannon wavelet family (3.5). The first step is to
truncate this infinite sum into a finite sum at a level of resolution m. To do this, we consider
Pmf , being Pm the projection map defined in proposition 3.1. We obtain

f(x) ≈ Pmf(x) =
∑
j<m

∑
k∈Z

dj,kψj,k(x) =
∞∑

k=−∞

cm,kφm,k(x). (3.9)

The expression of the error of this approximation can be determined by subtracting the rep-
resentation of f (3.8) from its truncation Pmf and using the orthonormality of the Shannon
wavelet family in L2(R),

‖f − Pmf‖2
2 =

∑
j≥m

∑
k∈Z

|dj,k|2 . (3.10)

Note that taking the limit m → ∞, it follows that Pmf converges to f in L2(R). Actually,
the truncation error (3.10) is closely related with the Fourier transform of f . In effect, recall
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that dj,k = 〈f, ψj,k〉 . By Parseval’s identity and expression (3.6),

〈f, ψj,k〉 =
1

2π

〈
f̂ , ψ̂j,k

〉
= −2−j/2

2π

(∫ 2j+1π

2jπ

f̂ (w) e
iw(k+1/2)

2j dw +

∫ −2jπ

−2+1π

f̂ (w) e
iw(k+1/2)

2j dw

)
.

From this expression we deduce the following bound for the wavelet coefficients dj,k

|dj,k| ≤ 2j/2−1

(
max

w∈[2jπ,2j+1π]

∣∣∣f̂ (w)
∣∣∣+ max

w∈[−2j+1π,−2jπ]

∣∣∣f̂ (w)
∣∣∣) . (3.11)

Therefore, the truncation error in (3.10) is highly dependent on the rate of decay of the
Fourier transform. The approximation Pmf still involves, however, the sum of infinite terms.
It turns out convenient to truncate this infinite sum (3.9). The following lemma will allow
us to choose a proper approximation.

Lemma 3.1. Assume that the density function f decays to zero at plus and minus infinity.
Then, f

(
h

2m

)
≈ 2

m
2 cm,h, h ∈ Z, and the scaling coefficients cm,k satisfy

lim
k→±∞

cm,k = 0. (3.12)

Proof. From the expression of the scaling functions (3.4), one deduces that φm,k
(
h

2m

)
=

2
m
2 δk,h, being δk,h the Kronecker delta. Thus, if we evaluate the second equality of the

approximation of in f (3.9), this gives us

f

(
h

2m

)
≈ Pmf

(
h

2m

)
= 2

m
2 ·
∑
k∈Z

cm,kδk,h = 2
m
2 cm.h. (3.13)

Since the density function is assumed to decay to zero at plus and minus infinite, the same
will hold for the scaling coefficients cm,k.

Lemma 1 ensures that, for certain accurately chosen values k1 and k2, the infinite sum in
(3.9) is well-approximated by a finite summation without loss of considerable density mass,

f(x) ≈ Pmf(x) ≈ fm(x) :=

k2∑
k=k1

cm,kφm,k (x) . (3.14)

Proceeding as before, an expression for the error of truncating the infinite series (3.9)
can be achieved. In effect, subtracting Pmf and its approximation fm, and recalling that
{φm,k}k∈Z constitutes an orthonormal basis of the subspace Vm one gets,

‖Pmf − fm‖2
2 =

∑
k<k1 or k>k2

|cm,k|2 . (3.15)
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Thus, the error of this second truncation will depend on the size of scaling coefficients cm,k,
which in turn depend on the decay rate of f as we have seen in Lemma 3.1.

At this stage, it is worth pointing out a remarkable feature of Shannon scaling functions
regarding the area underneath the density function f .

Remark 3.1. An approximation of the area under the curve of the density function f can be
computed while the coefficients are being calculated. We just need to apply a trapezoidal rule
using as grid points

{
k1

2m
, k1+1

2m
, . . . , k2−1

2m
, k2

2m

}
. As shown in expression (3.13) in Lemma 3.1,

the value of f evaluated at h/2m is directly obtained from the computation of the coefficient
cm,h. The resultant approximation of the area will be given by the following expression

A =
1

2m/2

(
cm,k1

2
+

∑
k1<k<k2

cm,k +
cm,k2

2

)
≈ 1. (3.16)

The following proposition summarizes the most important results obtained in this section.

Proposition 3.2 (Approximation of the density function and error). Let f be a probability
density function belonging to L2 (R). For certain accurately values m, k1 and k2, the den-
sity function f is well-approximated by the following linear combination of Shannon scaling
functions

f (x) ≈ fm (x) =

k2∑
k=k1

cm,kφm,k. (3.17)

Additionally, the L2 error made by this truncation can be splitted in two terms

‖f − fm‖2
2 =

∑
j>m

∑
k∈Z

|dj,k|2 +
∑

k<k1 or k>k2

|cm,k|2 . (3.18)

The first term depends on the rate of decay of the Fourier transform of f and can be reduced
by increasing the value of m. The second term depends on the decay of the function f and
can be reduced by enlarging the width of the interval [k1, k2].

3.3.2 Coefficients computation

In last section, we showed that the density probability function can be accurately approxi-
mated by the finite sum of Shannon scaling functions (3.17). The coefficients of this linear
combination involve the computation of the following integrals

cm,k = 〈f, φm.k〉 =

∫
R
f (x) φ̄m,k (x) dx = 2m/2

∫
R
f (x)φ (2mx− k) dx. (3.19)

The main problem of this expression is that the density probability function f is unknown
in most cases, becoming impossible the direct computation of coefficients cm,k. Instead, one

disposes of the Fourier transform f̂ . Thus, our next goal in this section is to present an
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alternative to settle this problem. To this end, an approximation of the density coefficients
cm,k based on the classical Vieta’s formula is derived. The expression obtained will depend

on the characteristic function f̂ and allow us to provide an estimate for its error.

Vieta’s Fomula (see [8]) gives rise to a representation of the cardinal sinus, sinc(t), as
the following infinite product of cosine functions

sinc (t) =
∞∏
j=1

cos

(
πt

2j

)
. (3.20)

If we truncate this expression by taking a finite product with J factors and make use of
the cosine product-to-sum identity (see [27]), one gets the following finite approximation for
the cardinal sine function,

sinc (t) ≈ sinc∗ (t) =
J∏
j=1

cos

(
πt

2j

)
=

1

2J−1

2J−1∑
j=1

cos

(
2j − 1

2J
πt

)
. (3.21)

An approximation for the coefficient cm,k is consequently obtained replacing φ in (3.19)
by its estimated expression (3.21),

cm,k ≈ c∗m,k :=
2m/2

2J−1

2J−1∑
j=1

∫
R
f (x) cos

(
2j − 1

2J
π (2mx− k)

)
dx. (3.22)

It turns out convenient, however, to rewrite approximation (3.22) in terms of the char-
acteristic function f̂ in order to sort out the problem with the unknown probability density

function. This can be done by noticing that the real part of f̂
(

(2j−1)π2m

2J

)
eikπ

2j−1

2J coincides

with the integral in expression (3.22). We end up with:

cm,k ≈ c∗m,k =
2m/2

2J−1

2J−1∑
j=1

<
[
f̂

(
(2j − 1) π2m

2J

)
eikπ

2j−1

2J

]
. (3.23)

Thus, we will approximate the density coefficients cm,k using expression (3.23). Nevertheless,
several questions still arise since we should decide how to determine the truncation factor J
to get an accurate estimation. The following lemma gives us an estimate of the error when
approximating the sinus cardinal function. As we will observe, the convergence in a fixed
interval is exponential.

Lemma 3.2. Let us define the absolute error of the sinc approximation in (3.21) by EV (t) :=
sinc (t)− sinc∗ (t) and take c ∈ R+. Then for t ∈ [−c, c] and J ≥ log2 (πc) holds:

|EV (t)| ≤ (πc)2

22(J+1) − (πc)2 .
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Proof. Evaluating expression (3.20) at the point t/2J gives

sinc

(
t

2J

)
=

∞∏
j=1

cos

(
πt

2j+J

)
=

∞∏
j=J+1

cos

(
πt

2j

)
,

deducing that sinc (t) = sinc
(
t

2J

)
sinc∗ (t). Therefore, the absolute error can be written as

|EV (t)| =

∣∣∣∣sinc

(
t

2J

)
− 1

∣∣∣∣ |sinc∗ (t)| ≤
∣∣∣∣sinc

(
t

2J

)
− 1

∣∣∣∣ . (3.24)

If we take into account the Taylor series of the sinus cardinal function (see, for instance, [8])

sinc

(
t

2J

)
=
∑
n≥0

(−1)n π2n 1

(2n+ 1)! · 22Jn
|t|2n ,

and using it in (3.24) leads to the following bound for the error

|EV (t)| ≤
∑
n≥1

π2n 1

(2n+ 1)! · 22Jn
|t|2n .

Recalling that |t| ≤ c and noticing that 1
(2n+1)!

≤ 1
22n for all n ≥ 1, we obtain a geometric

series which converges when J ≥ log2 (πc) and, in this case, we have

|EV (t)| ≤
∑
n≥1

( πc

2J+1

)2n

=
(πc)2

22(J+1) − (πc)2 .

Theorem 3.1 (Approximation of the density coefficients and error estimate). Let f(x) be
the probability density function and F (x) the distribution function of a random variable X.
Define H(x) := F (−x) + 1 − F (x) and consider a constant a > 0 such that H(a) < ε for
ε > 0. Define Mm,k := max (|2ma− k| , |2ma+ k|) and take J ≥ log2 (πMm,k). Then, the
density coefficients cm,k are well-approximated by the following expression:

cm,k ≈ c∗m,k =
2m/2

2J−1

2J−1∑
j=1

<
[
f̂

(
(2j − 1) π2m

2J

)
eikπ

2j−1

2J

]
. (3.25)

Additionally, an error estimate for this approximation is given by

∣∣cm,k − c∗m,k∣∣ ≤ 2m/2

(
2ε +

√
2a ‖f‖2

(πMm.k)
2

22(J+1) − (πMm.k)
2

)
. (3.26)



CHAPTER 3. THE SHANNON WAVELET INVERSE FOURIER TECHNIQUE FOR
PRICING EUROPEAN OPTIONS 27

Proof. The expression for the approximation of the density coefficients has already been
deduced in (3.23). We just need to prove the error estimate (3.26). We begin observing that
from (3.19) and (3.22) we find∣∣cm,k − c∗m,k∣∣ = 2m/2

∣∣∣∣∫
R
f(x) (sinc (2mx− k)− sinc∗ (2mx− k)) dx

∣∣∣∣
≤ 2m/2

[∫
R\[−a,a]

f(x) |sinc (2mx− k)− sinc∗ (2mx− k)| dx

+

∫ a

−a
f(x) |sinc (2mx− k)− sinc∗ (2mx− k)| dx

]
.

(3.27)

Let us start examining the first integral in (3.27). As F (x) is a the distribution function,
for all ε > 0 should exist a positive constant a > 0 satisfying H(a) < ε. Bearing in mind that
|sinc (2mx− k)− sinc∗ (2mx− k)| ≤ 2 for all x ∈ R, one concludes that the first integral is
bounded by 2ε. For the second integral in (3.27), we apply the Cauchy-Schwarz inequality∫ a

−a
f(x) |sinc (2mx− k)− sinc∗ (2mx− k)| dx

≤ ‖f‖2

(∫ a

−a
|sinc (2mx− k)− sinc∗ (2mx− k)| dx

) 1
2

.

We observe that if −a ≤ x ≤ a, then −2ma − k ≤ 2mx − k ≤ 2ma − k. Therefore,
2mx− k ∈ [−Mm,k,Mm,k] and Lemma 3.2 applies to deduce (3.26) and conclude the proof.

Remark 3.2. The most computationally involved part in (3.25) is the evaluation of f̂ at
the grid points. Thus, it may seem appropriate at first glance to take the smaller possible
value of J for each k, that is, J = dlog2 (πMm,k)e, where dxe denotes the smallest integer
value greater or equal than x. It is more convenient, conversely, to fix a constant J for each
k, defined here by  := dlog2 (πMm)e, where Mm := maxk1<k<k2 Mm,k. In this way, we can

reduce the number of evaluations of f̂ to only one at each grid point by using the Fast Fourier
Transform (FFT) algorithm. We should rewrite expression (3.25) as follows:

c∗m,k =
2m/2

2−1

2−1∑
j=1

<
[
f̂

(
(2j − 1) π2m

2

)
eikπ

2j−1
2

]

=
2m/2

2−1
<

[
e−

ikπ
2

2−1∑
j=1

f̂

(
(2j − 1)π2m

2

)
e
ikπj

2−1

]

=
2m/2

2−1
<

[
e−

ikπ
2

2−1−1∑
j=0

f̂

(
(2j + 1) π2m

2

)
e
ikπ(j+1)

2−1

]

=
2m/2

2−1
<

[
e
ikπ
2

2−1−1∑
j=0

f̂

(
(2j + 1) π2m

2

)
e
ik2πj

2

]
.

(3.28)
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The last step is to assume that f̂
(

(2j+1)π2m

2

)
= 0 from 2−1 to 2−1, so that the last equality

(3.28) is equivalent to

c∗m,k =
2m/2

2−1
<

[
e
ikπ
2

2−1∑
j=0

f̂

(
(2j + 1) π2m

2

)
e
ik2πj

2

]
. (3.29)

This expression (3.29) allows to apply the FFT algorithm to compute the density coefficients.
The computational complexity is reduced from O (2−1 · (k2 − k1 + 1)) when we use (3.25) to
O (log (2) ·  · 2+1) by using the FFT algorithm.

Remark 3.3. The compactness of the support of the Fourier transform of the scaling func-
tions φ̂m,k leads to an alternative technique to compute the density coefficients based on
Parseval’s identity. First of all, note that〈

f̂ , φ̂m.k

〉
=

1

2m/2

∫
R
f̂ (w) e

ikw
2m rect

( w

2m+1π

)
dw

=
1

2m/2

∫ 2mπ

−2mπ

f̂ (w) e
ikw
2m dw

= 2π2m/2
∫ 1

2

− 1
2

f̂
(
2m+1πt

)
ei2πktdt,

(3.30)

where the change of variables t := w
2m+1π

has been performed in the last equality. Finally,
using Parseval’s identity together with expression (3.30) and recalling that the density coef-
ficients are real-valued, we obtain

cm,k = 〈f, φm.k〉 =
1

2π

〈
f̂ , φ̂m.k

〉
= 2m/2

∫ 1
2

− 1
2

<
(
f̂
(
2m+1πt

)
ei2πkt

)
dt. (3.31)

Therefore, an approximation of the coefficients can be obtained by computing, for instance,
a trapezoidal rule in (3.31). As before, this computation can be speed up by using the FFT
transform.

3.4 Option pricing problems

In the following subsections we will derive expressions for the computation of the pay-off
coefficients for different European options. This will constitute the last step of the SWIFT
method and will allow us to give an accurate estimate of the derivative value as we will see
with further detail in the section of numerical results.

In order to apply the Wavelet Theory and approximation expressions derived in previous
sections, we will employ the celebrated Feynman-Kac formula, where the option value at
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time t is computed as a discounted expectation of the pay-off function under the risk-neutral
probability measure Q:

v(x, t) = e−r(T−t)EQ (v(y, T )|x) = e−r(T−t)
∫
R
v (y, T ) f (y|x) dy, (3.32)

where v denotes the option value, T is the maturity or expiration, t is the initial date, EQ
is the expectation operator under the risk-neutral measure Q, x and y are state variables
at time t and T respectively, f(y|x) is the probability density of y given x, and r is the
deterministic risk-neutral risk.

In most cases, we only hold the characteristic function of the log-asset price as the Fourier
transform of f . It turns out convenient then to represent the option values as functions of
the scaled log-asset prices and denote these prices by

x = ln (St/K) and y = ln (ST/K) ,

being St the underlying asset price at time t and K the strike price.
The strategy to follow to determine the price of the option is to approximate the density

function f in terms of the Shannon scaling functions as stated in Proposition 3.2, that is,

f (y|x) ≈ fm (y|x) =

k2∑
k=k1

cm,k (x)φm,k (y) , (3.33)

where cm,k are the density coefficients which will be computed by applying the FFT in (3.29).

3.4.1 Cash-or-nothing options pricing

Cash-or-nothing options belong to the class of binary options in which the payoff is either
some fixed monetary amount or nothing at all. We particularly consider a cash-or-nothing
call option which pays some fixed amount of cash if the option expires in-the-money while
it pays nothing otherwise. The pay-off function v(y, T ) in scaled log-asset space reads then

v (y, T ) =

{
1 if y > 0,

0 otherwise.

If we replace the density f by its approximation fm (3.33) in the valuation formula (3.32),
we obtain an expression for the pay-off coefficients

v (x, t) = e−r(T−t)
∫ ∞

0

f (y|x) dy

≈ v1 (x, t) = e−r(T−t)
∫ ∞

0

fm (y|x) dy = e−r(T−t)
k2∑

k=k1

cm,k (x)Vm,k,
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where we have defined the pay-off coefficients as Vm,k =
∫∞

0
φm,k (y) dy. Notice, however,

that this integral cannot be analytically computed. Next lemma states an alternative expres-
sion for these pay-off coefficients which will be the basis to derive an accurate approximation
in Proposition 3.3.

Lemma 3.3. The coefficients Vm,k for a cash-or-nothing call option can be computed as

Vm,k =
1

2m/2

(
sgn (k) · Si (|k|) +

1

2

)
, (3.34)

where sgn is the sign function and Si is the sine integral function defined respectively as

sgn (x) :=


1 if x > 0

0 if x = 0

−1 if x < 0

, Si (x) :=

∫ x

0

sinc (t) dt.

Proof. Bearing in mind the definition of the scaling functions φm,k and performing the change
of variables t = 2mx− k, the coefficient Vm,k reads

Vm,k =

∫ ∞
0

sinc (2my − k) dy =
1

2m/2

∫ ∞
−k

sinc (t) dt

=
1

2m/2

(∫ 0

−k
sinc (t) dt +

∫ ∞
0

sinc (t) dt

)
.

The fact that
∫∞

0
sinc (t) dt = 1

2
concludes the proof.

Proposition 3.3 (Approximation of cash-or-nothing pay-off coefficients and error esti-
mate). Let Vm,k be the pay-off coefficients for a cash-or-nothing call option. If we take
J ≥ log2 (π |k|), this coefficients can be accurately approximated by

Vm,k ≈ V ∗m,k :=
1

2m/2

(
sgn (k) · Si∗ (|k|) +

1

2

)
, (3.35)

where Si∗ (x) is an approximation of the sinc integral given by

Si∗ (x) :=
2

π

2J−1∑
j=1

1

2j − 1
sin

(
2j − 1

2J
πx

)
. (3.36)

Additionally, the absolute error made by this approximation can be bounded by

∣∣Vm,k − V ∗m,k∣∣ ≤ 1

2m/2
· sgn (k) π2k3

22(J+1) − (πk)2 . (3.37)
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Proof. Let us first derive the sinc integral approximation. We just need to substitute the
approximation of the sinc function (3.21) in Si(x),

Si (x) ≈ Si∗ (x) =
2J−1∑
j=1

1

2J−1

∫ x

0

cos

(
2j − 1

2J
πy

)
dy

=
2

π

2J−1∑
j=1

1

2j − 1
sin

(
2j − 1

2J
πx

)
.

We will approximate the pay-off coefficients by replacing Si(x) by its approximation
Si∗ (x) in expression (3.34) obtaining (3.35).

To derive the error estimate, we start noticing that∣∣Vm,k − V ∗m,k∣∣ =
1

2m/2
· |sgn (k)| · |Si (|k|)− Si∗ (|k|)| .

If k = 0, it holds that Vm,k = V ∗m,k. Otherwise, |sgn (k)| = 1 and therefore

∣∣Vm,k − V ∗m,k∣∣ =
1

2m/2
· |Si (|k|)− Si∗ (|k|)| ≤

∫ |k|
0

|sinc (t)− sinc∗ (t)| dt.

If we take J ≥ log2 (π |k|), Lemma 3.2 applies and leads to expression (3.37):∫ |k|
0

|sinc (t)− sinc∗ (t)| dt ≤
∫ |k|

0

(π |k|)2

22(J+1) − (π |k|)2dt =
π2 |k|3

22(J+1) − (πk)2 .

Remark 3.4. The evaluation of function Si∗(x) turns out to be the most computationally
involved part in equation (3.35). Several approaches may be taken in order to obtain an
efficient computation. The first one is based on the observation that any of the values of
Si∗ (|k|) depend on neither the parameters of the option pricing problem nor the scale of
approximation m. Thus, we can calculate and store them at a high accuracy level beforehand
using expression (3.36) and use them later. The second strategy is analogue to the one used
for the density coefficients computation in Remark 3.2. First, we fix a constant J-value,
defined here by ̄ :=

⌈
log2

(
πM̄

)⌉
, where M̄ := max (|k1| , |k2|). Then, we rewrite expression

(3.36) to apply an FFT algorithm to evaluate the sine integral function Si∗(x) at integer
values |k|,

Si∗ (|k|) =
2

π

2̄−1∑
j=1

1

2j − 1
sin

(
2j − 1

2̄
πx

)
=

2

π

2̄−1−1∑
j=0

1

2j + 1
sin

(
2j + 1

2̄
πx

)

=
2

π
=

[
2̄−1−1∑
j=0

1

2j + 1
ei
j+1/2

2̄−1 πx

]
=

2

π
=

[
e
iπx
2̄

2̄−1−1∑
j=0

1

2j + 1
ei

j

2̄−1 πx

]
.
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Finally, we replace these values in formula (3.35) to obtain the pay-off coefficients. Note
that the computational complexity of this second strategy is O (log (2) (̄− 1) 2̄−1), while the
complexity of a direct computation using formula (3.36) would be O (2̄−1 (k2 − k1 + 1)).

3.4.2 European options pricing

European options were introduced in section 2.2.2. Their pay-off prices in the asset space
are given by expressions (2.12) and (2.8) and depend on the value taken by the underlying
asset up to the expiration date T . As previously argued, it is more convenient to work in
the log-asset space. Consequently, we perform a change of variables to obtain the pay-off
function v (y, T ) in log-asset space,

v (y, T ) = [α ·K (ey − 1)]+ with α =

{
1 for a call,

−1 for a put.

We again approximate the density function f in terms of the Shannon scaling functions
by fm and truncate the infinite integration range to a finite domain Im :=

[
k1

2m
, k2

2m

]
, where

k1 and k2 are determined in the approximation of f . The valuation formula (3.32) gives

v(x, t) ≈ e−r(T−t)
∫
Im
v (y, T ) fm (y|x) dy = e−r(T−t)

k2∑
k=k1

cm,k (x) · V α
m,k,

where the pay-off coefficients are given now by the following integral

V α
m,k :=

∫
Im
v (y, T )φm,k (y) dy =

∫
Im

[α ·K (ey − 1)]+ φm,k (y) dy. (3.38)

Similarly to the cash-or-nothing pay-off coefficients, the integral in (3.38) does not allow
a analytical expression and an approximation needs to be made. Next proposition gives an
expression to efficiently compute V α

m,k together with an error estimate.

Proposition 3.4 (Approximation of European call/put pay-off coefficients and error esti-
mate). Let us define k̄1 := max (k1, 0) and k̄2 := min (k2, 0). Then, an approximation of the
pay-off coefficients for a European call and put option are computed respectively as

V 1
m,k ≈ V 1,∗

m,k :=

{
K2m/2

2J−1

∑2J−1

j=1

[
I1

(
k̄1

2m
, k2

2m

)
− I2

(
k̄1

2m
, k2

2m

)]
if k2 > 0,

0 if k2 ≤ 0,
(3.39)

V −1
m,k ≈ V −1,∗

m,k :=

{
−K2m/2

2J−1

∑2J−1

j=1

[
I1

(
k1

2m
, k̄2

2m

)
− I2

(
k1

2m
, k̄2

2m

)]
if k1 < 0,

0 if k1 ≥ 0,
(3.40)
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where, taking Cj := (2j − 1) /2J · π for each j, I1 and I2 are defined respectively as follows

I1 (a, b) :=
Cj2

m

1 + (Cj2m)2

[
eb sin (Cj (2mb− k))− ea sin (Cj (2ma− k))

+
1

Cj2m
(
eb cos (Cj (2mb− k))− ea cos (Cj (2ma− k))

)]
,

I2(a, b) :=
1

Cj2m
(sin (Cj (2mb− k))− sin (Cj (2ma− k))) .

Additionally, if we consider J ≥ log2 (πNk), we find the following estimation of the error

∣∣V α
m,k − V

α,∗
m,k

∣∣ ≤ K

2m/2
·D · (πNk)

2

22(J+1) − (πNk)
2 , (3.41)

Nk := max
(∣∣k̄1 − k

∣∣ , |k2 − k|
)
, D :=

∣∣k2 − k̄1

∣∣ · max
y∈

[
k̄1
2m

,
k2
2m

] |ey − 1| if α = +1,

Nk := max
(
|k1 − k| ,

∣∣k̄2 − k
∣∣) , D :=

∣∣k̄2 − k1

∣∣ · max
y∈

[
k1
2m

,
k̄2
2m

] |ey − 1| if α = −1.

Proof. We start proving expressions (3.39) and (3.40). By definition of the pay-off coefficients
(3.38) and bearing in mind the expression of φm,k, we have

V α
m,k =

{
K2m/2

∫
Im∩[0,+∞)

(ey − 1) sinc (2my − k) dy if α = 1,

−K2m/2
∫
Im∩(−∞,0]

(ey − 1) sinc (2my − k) dy if α = −1.

Let us focus in the case α = 1, the other case is analogous. If we replace the approximation
of the sinc function (3.21), we obtain the following approximation for V 1

m,k,

V 1,∗
m,k := K · 2m/2 · 1

2J−1

2J−1∑
j=1

∫
Im∩[0,+∞)

(ey − 1) cos (Cj(2
my − k)) dy

= K · 2m/2 · 1

2J−1

2J−1∑
j=1

(∫ k2
2m

k̄1
2m

ey cos (Cj(2
my − k)) dy −

∫ k2
2m

k̄1
2m

cos (Cj(2
my − k)) dy

)

= K · 2m/2 · 1

2J−1

2J−1∑
j=1

[
I1

(
k̄1

2m
,
k2

2m

)
− I2

(
k̄1

2m
,
k2

2m

)]
,

where last equality is obtained by a simple computation of the integrals involved in second
equality. Notice that we have assumed k2 ≥ 0; otherwise, Im ∩ [0,+∞) = ∅ and V 1,∗

m,k = 0.
To derive the error estimate, we assume again that α = 1, since the case α = −1 goes

analogously. Taking into account that the approximation V 1,∗
m,k was constructed by replacing
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the sinc function by its approximation,

∣∣V 1
m,k − V

1,∗
m,k

∣∣ ≤ K · 2m/2 ·
∫ k2

2m

k̄1
2m

|ey − 1| |sinc (2my − k)− sinc∗ (2my − k)| dy

≤ K

2m/2
· max
y∈

[
k1
2m

,
k̄2
2m

] |ey − 1| ·
∫ k2−k

k̄1−k
|sinc (t)− sinc∗ (t)| dy,

where the change of variables t = 2my − k has been performed in last inequality. If we take
J ≥ log2 (πNk), Lemma 3.2 applies and concludes the proof.

Remark 3.5. Similarly to the case of cash-or-nothing options, the pay-off coefficients V α,∗
m,k

can be computed beforehand with high accuracy for later use by means of the estimates (3.39)
and (3.40) in order to save some CPU time. Another remarkable strategy, which will be used
in the numerical examples section, is to fix a constant J for each coefficient defined here
by ̄ := dlog2 (πN)e, where N := maxk1<k<k2 Nk, and apply an FFT algorithm. For this
purpose, we should rearrange formula (3.39) and (3.40). We start noticing that if we expand
the sine and cosine terms in integrals I1 and I2, we obtain

I1 (a, b) = Aj ·
[
eb · sin (Cj2

mb) · cos (Cjk)− eb · cos (Cj2
mb) · sin (Cjk)

· − ea · sin (Cj2
ma) · cos (Cjk) + ea · cos (Cj2

ma) · sin (Cjk)

+Bj ·
(
eb · cos (Cj2

mb) · cos (Cjk) + eb · sin (Cj2
mb) · sin (Cjk)

− ea · cos (Cj2
ma) · cos (Cjk)− ea · sin (Cj2

ma) · sin (Cjk)

)]
= Aj ·

[(
eb · sin (Cj2

mb)− ea · sin (Cj2
ma) +Bj · eb · cos (Cj2

mb)

−Bj · ea · cos (Cj2
ma)

)
· cos (Cjk)

+

(
− eb · cos (Cj2

mb) + ea · cos (Cj2
ma) +Bj · eb · sin (Cj2

mb)

−Bj · ea · sin (Cj2
ma)

)
· sin (Cjk)

]
,

I2 (a, b) = Bj ·
[(

sin (Cj2
mb)− sin (Cj2

ma)

)
· cos (Cjk)

+

(
cos (Cj2

ma)− cos (Cj2
mb)

)
· sin (Cjk)

]
,
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where we have defined Aj :=
Cj2

m

1+(Cj2m)2 and Bj := 1
Cj2m

. Recall as well that Cj := 2j−1
2̄
π.

Finally, let us introduce the following expressions for each j in order to simplify the notation
and obtain a more compact expression

Ij11 = eb · sin
(
Cj2

mb
)
− ea · sin

(
Cj2

ma
)

+Bj · eb · cos
(
Cj2

mb
)
−Bj · ea · cos

(
Cj2

ma
)
,

Ij21 = sin
(
Cj2

mb
)
− sin

(
Cj2

ma
)
,

Ij12 = −eb · cos
(
Cj2

mb
)

+ ea · cos
(
Cj2

ma
)

+Bj · eb · sin
(
Cj2

mb
)
−Bj · ea · sin

(
Cj2

ma
)
,

Ij22 = cos
(
Cj2

ma
)
− cos

(
Cj2

mb
)
.

Last step is to efficiently calculate the sum presented in the pay-off coefficients in (3.39) and
(3.40) to obtain Formula (3.42) (below). This expression allows us to apply an FFT algorithm
straightforwardly. In this case, however, we have to apply an FFT algorithm two times, once
for the terms with cosines and once for the terms with sines. The computational complexity
is reduced from O (2̄−1 (k2 − k1 + 1)), when the pay-off coefficients are directly computed by
formulas (3.39) and (3.40), to O (log (2) (̄− 1) 2̄) when we apply an FFT strategy to speed
up the computation of V α,∗

m,k.

2̄−1∑
j=1

[
I1 (a, b)− I2 (a, b)

]
=

=
2̄−1∑
j=1

[
Aj ·

(
Ij11 cos (Cjk) + Ij12 sin (Cjk)

)
−Bj ·

(
Ij21 cos (Cjk) + Ij22 sin (Cjk)

)]

=
2̄−1∑
j=1

[(
AjI

j
11 −BjI

j
21

)
· cos (Cjk) +

(
AjI

j
12 −BjI

j
22

)
· sin (Cjk)

]

=
2̄−1−1∑
j=0

[(
Aj+1I

j+1
11 −Bj+1I

j+1
21

)
· cos

(
j + 1/2

2̄−1
πk

)
+

(
Aj+1I

j+1
12 −Bj+1I

j+1
22

)
· sin

(
j + 1/2

2̄−1
πk

)]
= <

(
e
iπk

2j̄ ·
2̄−1−1∑
j=0

[
Aj+1I

j+1
11 −Bj+1I

j+1
21

]
· e

ijπk

2j̄−1

)

+ =

(
e
iπk

2j̄ ·
2̄−1−1∑
j=0

[
Aj+1I

j+1
11 −Bj+1I

j+1
21

]
· e

ijπk

2j̄−1

)
.

(3.42)
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3.5 Numerical results

In this section, we carry out several numerical experiments to evaluate the accuracy and ro-
bustness of the SWIFT method. Particularly, we put our attention to price a cash-or-nothing
option and a European call option under geometric Brownian motion (GBM) dynamics and
check the accuracy of the method comparing with the exact price given by the Black-Scholes
formulae presented in (2.15). We also consider CGMY and Heston dynamics as the associated
process for the underlying asset in order to show the versatility of this pricing technique.

Recall that the first step of the method is to approximate the density function by a linear
combination of Shannon scaling functions at a certain level of resolution m and limit values
k1 and k2 in the summation should be fixed. Although we have seen that the error of the
approximation to the density function at scale m depends on the rate of decay of its Fourier
transform and the error of the truncation in the interval [k1, k2] decrease by enlarging its
width, we have not given a criterion to determine them.

3.5.1 Scale of approximation m

We saw in section 3.3 that the error of the approximation at a scale m depends on the Fourier
transform of the density function and is given by expression (3.11). As in most cases the
characteristic function of the process is available in analytic form, we will choose properly
the size of the parameter m by studying its decay properties.

To illustrate the dependency of the parameter m with respect the decay of the character-
istic function, we price a cash-or-nothing option considering three dynamics with a different
rate of decay and compare it with the scale m. The density functions and the modulus of the
characteristic functions of all the dynamics have been numerically computed and represented
in Figure 3.2. The results obtained are shown in Table 3.5.1.

Figure 3.2: Density function (left) and modulus of the characteristic function (right). The
dotted red line corresponds to GBM dynamics, the thick blue line to the CGMY dynamics
with Y = 0.1 and the dashed green line to the CGMY dynamics with Y = 1.5.
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We first consider GBM dynamics with parameters S0 = K = 100, r = 0.2, σ = 0.4 and
T = 1, with reference value 0.505903084024195 computed by means of the Black-Scholes
formula. We see that the rate of decay of the characteristic function is quite fast and we just
need a scale of m = 4 to obtain an error of order 10−13. Second, we take CGMY dynamics
with parameters S0 = K = 100, r = 0.2, σ = 0.4, T = 1, C = 1, G = M = 5 and Y = 0.1,
with reference value 0.610849386594073 computed by means of Monte Carlo algorithm with
a high number of simulations. Now, the rate of decay of the characteristic function is very
slow and consequently we need a big scale (m = 13) and CPU time (0.51s) to get an error
of order 10−13. Finally, we work again with CGMY dynamics with the same parameters as
before but taking Y = 1.5 instead of Y = 0.1. Now, the reference value is 0.260352810962048
computed again by Monte Carlo method and the rate of decay of the characteristic function
becomes the fastest of the three dynamics. This translates into needing a really small scale
(m = 1) and CPU time (0.007s) to achieve the same order of the error.

DYNAMICS DECAY OF THE FT SCALE ERROR CPU TIME (s)
GBM middle m=4 5.2625 · 10−14 0.013

CGMY (Y=0.1) slow m=13 1.7441 · 10−13 0.51
CGMY (Y=1.5) fast m=1 1.0180 · 10−13 0.007

Table 3.1: Scale, error and CPU time of the three dynamics considered to price the cash-or-
nothing option.

3.5.2 Limit values k1 and k2 in the summation

Once the scale of the approximation m has been fixed, the limit values k1 and k2 of the
summation should be determined. We present two different approaches to fix them.

The first one has the nice property that does not need to rely on an a priori truncation
of the entire real line onto a finite interval. In effect, departing from k = 0, we increase and
decrease this value obtaining k1 and k2. We also compute the area underneath the curve
with expression (3.16) on the fly. We stop when the area is close to 1 below some prescribed
tolerance. Therefore, this strategy allows us to control the density computation regardless
of features like skewness or heavy tails. However, the main drawback of this methodology is
that involve extra CPU time since it does not allow the use of an FFT algorithm.

The second approach settles this problem by fixing an initial interval. Although this a
priori truncation could be arbitrary chosen, a truncation rule based on the cumulants of
ln (St/K) (whenever their computation is possible) is more appropriated since they often
provide reliable intervals for the approximation. The cumulants, cn, are defined by the
cumulant-generating function, g(t) = log

(
E
(
et·X
))

, for some random variable X. The nth
cumulant is then given by the nth derivative, at zero, of g(t). We propose the following a
priori integral of integration [a, b]:

[a, b] :=

[
x0 + c1 − L

√
c2 +

√
c4, x0 + c1 + L

√
c2 +

√
c4

]
, with L = 10, (3.43)
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where xt = ln(St/K). Expression (3.43) has been confirmed as being accurate for a variety
of asset processes and options with different maturities. This interval can be adjusted, if
necessary, using the first strategy explained before. The remarkable feature of this method-
ology is that an unique -value may be fixed and an FFT algorithm can be applied using
Remark 3.2. Proceeding this way, the characteristic function is evaluated only once at a fixed
grid of points. In order to save even more CPU time, the pay-off coefficients are calculated
analogously fixing an unique ̄-value and employing an FFT algorithm as detailed in Remark
3.4 for cash-or-nothing options and Remark 3.5 for European options.

3.5.3 Pricing of European options with the SWIFT method.

In this subsection, we carry out some numerical experiments concerning the pricing of Euro-
pean options with the SWIFT method. Specifically, we aim to show the accuracy, efficiency
and robustness of the method. Before we proceed to consider the specifics of these experi-
ments, however, we provide a recap of the main steps of algorithm studied in this chapter
as well as giving a detailed idea of the numerical implementation. Note that we have imple-
mented the method with the FFT algorithm in order to make it more efficient.

Numerical Implementation of the SWIFT method
Assume we have a European option whose underlying asset price follows a certain dynam-
ics and its characteristic function is analytically available. The following steps provide
the price of the option:

1. Fix the scale of approximation m by studying the rate of decay of the characteristic
function of the process (provided in the appendix).

2. Fix an integration domain [a, b] using expression (3.43) and the cumulants of the
log-asset process (provided in the appendix) and determine the limit values k1 :=
d2m · ae and k2 := b2m · bc.

3. Fix a -value with  := dlog2 (πMm)e where Mm := maxk1<k<k2 Mm,k and Mm,k :=
max (|2ma− k| , |2ma+ k|) and use Remark 3.2 to apply the FFT algorithm to com-
pute the density coefficients c∗m,k for k = k1, . . . , k2.

4. Fix a j̄-value and compute the pay-off coefficients V ∗m,k for k = k1, . . . , k2 using a
FFT algorithm with Remark 3.4 for cash-or-nothing options and Remark 3.5 for
European options.

5. Determine the price V ∗T of the option using the Feynman-Kac formula, that is,
V ∗T := e−r(T−t)

∑k2

k=k1
c∗m,k (x) · V ∗m,k.

Table 3.2: Numerical Implementation of the SWIFT method for European options.
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We start our analysis of the SWIFT method by showing its high efficiency. To this
end, we price a European call option with GBM dynamics, assuming that the parameters
take the values: S0 = 100, K = 110, r = 0.1, σ = 0.25 and T = 0.1. The reference
value is 0.589616134845691 and has been computed by means of the Black-Scholes formula
for European call options given in (2.15). The results are presented in Table 3.5.3. One
observes exponential convergence in terms of the scale of the approximation m (see also
Figure 3.3). We almost get engineering accuracy with a scale of m = 4 and using 25 terms
in the approximation of the density and machine accuracy with m = 5 and using 50 terms.
Note as well that we almost get machine accuracy in 0.011 seconds which gives an idea of the
efficiency of the method. It is worth to remark that the CPU time can be further reduced if
we precompute beforehand the values of the pay-off coefficients V ∗m,k.

SCALE STRIKE k1 k2  ̄ Error CPU TIME (seconds)
m=2 110 -3 2 5 4 1.92058 0.006
m=3 110 -7 5 6 6 4.5142 · 10−2 0.008
m=4 110 -14 11 7 7 5.0206 · 10−4 0.009
m=5 110 -28 22 8 8 1.4544 · 10−14 0.011
m=6 110 -56 45 9 9 6.2172 · 10−15 0.014

Table 3.3: Absolute errors corresponding to the valuation of a European call option under
the GBM dynamics by means of the SWIFT method.

Figure 3.3: Convergence of the valuation of
a European call option with strikes 110, 100
and 90.

Figure 3.4: Characteristic function for
the GBM (red), CGMY (green) and Heston
(blue).

In our last example we consider the pricing of a European call and put option with the
three dynamics considered: GBM, CGMY and Heston. We have chosen S0 = 100, K = 110
and T = 1. The parameters for GBM are now r = 0.1 and σ = 0.25, for CGMY are r = 0.1,
σ = 0.25, C = 1, G = M = 5 and Y = 1.5, and for Heston are r = 0.1, λ = 1.5768,
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ν = 0.5751, ū = 0.0398, u0 = 0.0175 and ρ = −0.5711. The results are available in Table
3.5.3. The reference values have been computed by means of the Black-Scholes formulas
(2.15) for GBM and with the Monte Carlo method for CGMY and Heston dynamics.

We observe that for the GBM and CGMY we need small scales (m = 3 and m = 1
respectively) to achieve very accurate results, while for Heston dynamics we need higher
scales (m = 5 and m = 7). This fact is explained by the rate of decay of the characteristic
functions as it can be observed in Figure 3.4. Despite this, the SWIFT method shows
robustness, being capable of highly accurately pricing European options at very low scales
of approximation (at most m = 7).

Finally, Table 3.5.3 also shows the versatility of the method. The SWIFT method is
easily adaptable to different dynamics. We just need to have the analytic expression of the
characteristic function of the process.

MODEL SCALE OPTION REFERENCE PRICE ERROR CPU(s)
GBM m=3 CALL 10.160052368787559 1.93778 · 10−08 0.009
GBM m=3 PUT 9.692168352744277 7.27583 · 10−10 0.009

CGMY m=1 CALL 47.282869019686792 2.96796 · 10−08 0.008
CGMY m=1 PUT 46.814985002833353 3.97903 · 10−13 0.009

HESTON m=5 CALL 7.238354638623483 5.42086 · 10−05 0.015
HESTON m=7 PUT 6.635136912147874 3.20111 · 10−05 0.021

Table 3.4: Absolute errors, scales and CPU times (in seconds) corresponding to the valuation
of a European call and put option with initial price S0 = 100 and strike K = 110 using GBM,
CGMY and Heston dynamics for the underlying asset.
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Chapter 4

Discrete Lookback Option Pricing
using the SWIFT method

Lookback options are exotic contracts that offer the holder the advantage of being able to
exercise at an optimal point. Essentially, at expiration the holder can look back (hence the
name) at how the price of the underlying asset has performed and maximize their profits
by taking advantage of the biggest price differential between the strike price and the price
of the underlying asset. For options traders this is obviously a major benefit, as lookback
options can be used to solve one of the biggest problems they face: market timing. This
is basically choosing when to enter a position and when to exit it, with the aim obviously
being to time entry and exit to make the largest possible returns.

Because of the way lookback options work, the issue of market timing becomes less
important as profits are effectively guaranteed to be maximized. Also, the chances of a
contract of this type expiring worthless are much lower than other types of options. For
these reasons lookbacks are generally more expensive, so the advantages do come at a cost.
These attractive features have also made lookback options become increasingly popular in
the last few years, specially in insurance contracts or structured notes.

Similarly to European options, lookbacks can be either calls or puts, so it is possible to
speculate on either the price of the underlying security going up in value or going down.
They are also known as hindsight options, as they actually give the holder the benefit of
hindsight when determining when to exercise.

One can also distinguish between two kind of lookback options: continuously and dis-
cretely traded. While the theory for pricing continuously monitored lookback options is well
developed and a variety of methods exist under popular continuous-time asset price models,
the development of the theory of pricing discrete lookback options has been slower and relies
largely on numerical methods. The aim of this chapter is precisely to propose a efficient and
versatile methodology for pricing discrete lookback options by adapting the SWIFT method
presented in Chapter 3 for a wide range of dynamics that have the characteristic function
available and allows to evaluate it.
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The chapter will be organized as follows. In Section 4.1 we introduce the notation and
describe the framework contemplated for pricing lookback options. We also derive the val-
uation formulas by using the Feynman-Kac pricing theorem. Next sections replicate the
steps of the SWIFT method that we saw in Chapter 3 and settle several difficulties which
come out. In this way, Section 4.2 provides a recursive formula to compute the characteristic
function of the asset log-return maximum together with an efficient recurrence to speed up
its computation. We also see that the evaluation of the characteristic function requires the
calculation of some coefficients in each step of the recursion. This computation will turn
out to be the key point to implement the method efficiently. Then, several approaches are
investigated in Section 4.3 using Haar and Shannon wavelets. Finally, in Section 4.4 we de-
rive the expression of the pay-off coefficients and in Section 4.5 we perform several numerical
experiments to check the efficiency, robustness and versatility of the methodology.

4.1 Discrete Lookback Options

In this section, we introduce the notation and describe the framework that has been con-
sidered for pricing discrete lookback options. First, we define the risk-neutral measure Q in
such a way that the log-return process Lt := ln (St/S0) at time t ≥ 0 forms a semimartingale
process. As a direct consequence, the risk-neutral dynamics of the asset price turns out to be
driven by an exponential semimartingale process given by St = S0e

Lt which, in turn, leads
to independent increments of the log-return process. Further details about semimartingale
processes can be found in [13]. For brevity, we refer to discretely monitored lookback options
simply as lookback options throughout the rest of this thesis.

As has already been explained, lookback options provide a payoff at maturity that de-
pends on the extremum of the stock price over the lifetime of the contract. We assume that
the lookback life period is [T0, T ] and the asset price is observed at q+ 1 evenly spaced mon-
itoring times tj = T 0 + j (T − T0) /q, for j = 0, . . . , q. Since we are interested in pricing the
option not only at time T0 but at any time t ∈ [T0, T ], we take j∗ such that tj∗ ≤ t < tj∗+1.
Then, we define the maximum value of the asset price realized from T0 to t over the discrete
monitoring times tj, j = 0, . . . , j∗, and the observed future maximum log-return process over
the monitoring times tj∗+1, . . . , tj∗+k, for k = 1, . . . , q − j∗, respectively by

M := max
j=0,...,j∗

Sj, Xk := max
j=1,...,k

Lj∗+j. (4.1)

To simplify the notation, we denote by m the number of future monitoring time points, that
is, m := q− j∗. There exist several different types of lookback options which will be treated
in this thesis. The lookback options with fixed strike and with floating strike.

1) Lookback options with fixed strike: as the name introduces it, these options
define its strike at purchase. However, contrary to European options, they are not exercised
at the expiration market price. The payoff is the maximum difference between the optimal
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underlying asset price and the strike. In the case of a call, the option holder can look back
over the life of the option and choose to exercise at the point when the underlying asset
was priced at its highest over the life of the option. In the case of a put, the option can be
exercised at the asset’s lowest price. Their pay-off function is given, respectively, by

LCfix :=

(
max
i=0,...,q

Si − K

)
+

, LPfix :=

(
K − min

i=0,...,q
Si

)
+

. (4.2)

2) Lookback options with floating strike: these options do not fix the strike price
beforehand but is determined by the optimal value of the underlying asset’s price during
the option life. The payoff is now the maximum difference between the market asset’s price
at expiration and the floating strike. For a call, the strike price is fixed at the lowest price
reached during the life of the option. For a put, it is fixed at the highest price. Their pay-off
function is given, respectively, by

LCfloat :=

(
ST − min

i=0,...,q
Si

)
+

, LPfloat :=

(
max
i=0,...,q

Si − ST

)
+

. (4.3)

Throughout the rest of the thesis, we focus in fixed-strike lookback call options and float-
ing lookback put options without loss of generality since the pricing theory for fixed-strike
lookback put options and floating lookback call options is similar and require minor modifi-
cation of the results presented in this thesis. Additionally, as has already been mentioned, it
is also important to be able to price the derivative at current time t ∈ [T0, T ]. The following
proposition gives expressions to value lookback options at any time t.

Proposition 4.1 (Valuation of Lookback Options). The prices at current time t ∈ [T0, T ] of
a fixed-strike lookback call option, LCfix (t, T ), and a floating lookback put option, LPfloat (t, T ),
that expire at future time T > 0 and were signed at time T0 in the past are given by

LCfix (t, T ) =


S0e

−r(T−t)EQ

[(
eXm − K

S0

)
+

]
if M < K,

S0e
−r(T−t)EQ

[(
eXm − M

S0

)
+

]
+ (M −K) e−r(T−t) if M ≥ K,

(4.4)

LPfloat (t, T ) =

S0e
−r(T−t)EQ

[
eXm

]
− S0 if M ≤ S0,

S0e
−r(T−t)

{
EQ
[
eXm

]
+ EQ

[(
M
S0
− eXm

)
+

]}
− S0 if M > S0.

(4.5)

respectively, where M is the maximum value of the asset price realized from T0 to t defined
in (4.1) and r is the risk-free rate of interest.

Proof. We only prove the formula for a fixed-strike lookback call option (4.4), the proof for
a floating lookback put option (4.5) goes analogously and is omitted.
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The value of a fixed lookback call option at time t is given by the Feynman-Kac formula
which says that the option value at time t is computed as a discounted expectation of the
pay-off function under the risk-neutral probability measure Q

LCfix (t, T ) = e−r(T−t)EQ

[(
max
i=0,...,q

Si − K

)
+

|Ft
]
, (4.6)

where Ft contains all the information up to time t. We distinguish between two cases: first
assume that M < K, i.e., the observed asset prices do not exceed the strike price. Then,(

max
i=0,...,q

Si − K

)
+

|Ft =

(
max

i=j∗+1,...,q
Si − K

)
+

= S0

(
max

i=j∗+1,...,q

(
Si
S0

)
− K

S0

)
+

= S0

(
max

i=j∗+1,...,q
eLi − K

S0

)
+

= S0

(
eXm − K

S0

)
+

.

Substituting this expression in (4.6), we obtain the first expression in (4.4). In the case that
the maximum of the observed asset prices exceeds the strike price, M ≥ K, one gets(

max
i=0,...,q

Si − K

)
+

|Ft =

(
max

i=j∗+1,...,q
(M,Si) − K

)
+

= max

(
M −K, max

i=j∗+1,...,q
Si − K

)
= (M −K) +

(
max

i=j∗+1,...,q
Si − M

)
+

= (M −K) + S0

(
eXm − M

S0

)
+

.

Introducing this expression in (4.6), one gets the second expression in (4.4).

Two useful and remarkable simplifications to (4.4) and (4.5) occur in the case M ≥ K.
The first one gives a relation between the price of the fixed lookback call option and the
floating lookback put option and allows us to value one of them when we hold the price of
the other. The second one provides a simplified formula for the price of a fixed lookback call
option. These expressions are given in the following lemma.

Lemma 4.1 (Put-call parity and closed-form price for Fixed Lookback Calls). It holds:

1. If M ≥ K, then LCfix (t, T ) = LPfloat (t, T ) + S0 −Ke−r(T−t)

2. If M ≥ K and M ≤ S0, then LCfix (t, T ) = S0e
−r(T−t) (φXm (−i)−K/S0), where we

have denoted φXm (z) = EQ
(
eizXm

)
as the characteristic function of Xm.

4.2 The Characteristic Function of the Asset

Log-return Maximum Xm

In Chapter 3, we derived the SWIFT method for European options and noticed that it was
necessary to have in hands the characteristic function of the log-asset process. We also saw
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that its analytic expression was available for all the dynamics treated (GBM, CGMY and
Heston) and its evaluation was efficient.

For the lookback option pricing, we need the characteristic function of the asset log-return
maximum Xm defined in (4.1). In this case, however, we do not hold an analytic expression.
Instead, we will derive a recursive formula which will allow us to evaluate the characteristic
function in any point. To this end, we start defining the increments of the log-return process

Yi := Li − Li−1 = ln

(
Si
S0

)
− ln

(
Si−1

S0

)
= ln

(
Si
Si−1

)
, (4.7)

for i = 1 . . . q. Recall that we are assuming that the dynamics of the asset price are driven
by an exponential semimartingale process. As a result, the increments Yi turn out to be
independent and identically distributed. We will exploit this fact to express Xm as the
maximal partial sums of a collection of random variables. Then, we will make use of the
celebrated Spitzer’s Formula, which gives the joint distribution of partial sums and maximal
partial sums of a collection of random variables, to finally derive the desired recursion that
will allow us to evaluate the characteristic function of Xm.

4.2.1 A recursive formula for the characteristic function of Xm

Theorem 4.1 (Spitzer’s Formula). Let Y1, Y2,... be independent and identically distributed
random variables. Define the partial sums Gn := Y1 + Y2 + . . .+ Yn and the maximal partial
sums Rn := max (0, G1, . . . , Gn) for n ∈ Z+. Then,

∞∑
n=0

ψn (α, β) tn = exp

[
∞∑
n=1

tn

n
(an(α) + bn(β)− 1)

]
, (4.8)

where we have introduced the following auxiliar functions

ψn(α, β) = E (exp [i(αRn + β(Rn −Gn)]) ,

an(α) = E
(
exp

[
iαG+

n

])
,

bn(β) = E
(
exp

[
iβG−n

])
,

(4.9)

being G+
n = max (0, Gn) the positive part and G−n = max (0,−Gn) the negative part of Gn.

Proof. The original proof can be found in [29] and is based on a combinatorial argument.

Spitzer’s Formula is a remarkable result since it embraces a wide range of important
applications in many fields. In particular, we make use of this theorem to compute the
characteristic function of maximal partial sums of random variables which will serve us in
turn to derive a recursive formula for the characteristic function of the asset log-return
maximum Xm. We provide the results obtained in the following two propositions.
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Proposition 4.2 (Characteristic function of maximal partial sums). Consider the random
variables {Yi}i∈Z+, Gn and Rn defined in Theorem 4.1. Then, the characteristic function of
the maximal partial sums Rn is given by the following recursive formula:

ΦR0 (z) = 1, ΦRm (z) =
1

m

m−1∑
k=0

ΦRk (z) am−k (−z) , for m = 1, 2, . . . . (4.10)

Proof. If we take α = −z and β = 0 in Theorem 4.1, one gets that ψn(−z, 0) = ΦRn(z) and
formula (4.8) becomes for this particular case

∞∑
n=0

ΦRn (z) tn = exp

[
∞∑
n=1

an(−z)
tn

n

]
. (4.11)

Writing f(t) :=
∑∞

n=0 ΦRn (z) tn and g(t) := exp
[∑∞

n=1 an(−z) t
n

n

]
, it follows from (4.11)

that f ′(s) = f(s)g′(s). Leibniz’s formula now yields

f (n+1) (s) =
n∑
j=0

(
n
j

)
f (j) (s) g(n+1−j) (s) , n ∈ N.

If we take s = 0 and expand the combinatorial number, we obtain

f (n+1) (0)

(n+ 1)!
=

1

n+ 1

n∑
j=0

f (j) (0)

j!

g(n+1−j) (0)

(k − j)!
, n ∈ N. (4.12)

Finally, noticing that from the definitions of f(t) and g(t) we have the following equalities

ΦRn (z) =
f (n) (0)

n!
, n ∈ N, and an (−z) =

g(n) (0)

(n− 1)!
, n ∈ Z+,

we deduce from (4.12) that the characteristic function of the maximal partial sums ΦRn is
given by expression (4.10).

Proposition 4.3 (Characteristic function of the asset log-return maximum). Consider the
maximum asset log-return Xm and the increments of the log-returns Yi introduced in (4.1)
and (4.7) respectively. Define Gn := Yj∗+2 + . . .+ Yj∗+n+1 and Rn = max (0, G1, . . . , Gn) for
n = 1 . . .m− 1. Then, the characteristic function of Xm is given by

ΦXm (z) = ΦLj∗+1
(z) · ΦRm−1(z), (4.13)

where ΦLj∗+1
(z) is the characteristic function of the log-return Lj∗+1 and ΦRm−1(z) is com-

puted by means of the recursive formula (4.10) with

an (−z) = E
(
e−izL

+
n

)
, for n = 1, . . . ,m.
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Proof. We start rewriting the log-returns Lj∗+n in terms of the sum Gn

Lj∗+n = ln

(
Sj∗+n
S0

)
= ln

(
Sj∗+n
Sj∗+n−1

)
+ ln

(
Sj∗+n−1

Sj∗+n−2

)
+ . . . + ln

(
Sj∗+1

S0

)
= Yj∗+n + Yj∗+n−1 + . . . + Yj∗+2 + Lj∗+1 = Gn−1 + Lj∗+1,

for n = 1 . . .m. Then, if we take into account the definition of Xm in (4.1), we get

Xm = max (Lj∗+1, Lj∗+2, . . . , Lj∗+m)

= Lj∗+1 + max (0, G1, . . . , Gm−1) = Lj∗+1 + Rm−1.
(4.14)

Finally, substituting (4.14) in the definition of the characteristic function of Xm leads to

ΦXm (z) = E
(
e−izXm

)
= E

(
e−izLj∗+1e−izRm−1

)
= E

(
e−izLj∗+1

)
E
(
e−izRm−1

)
= ΦLj∗+1

(z) · ΦRm−1(z).

Since the increments Yi are independent and identically distributed, Proposition (4.2) applies
and ΦRm−1(z) can be computed by means of the recursive formula (4.10). Additionally,

an (−z) = E
(
e−izG

+
n

)
= E

(
e−izmax(Yj∗+2+...+Yj∗+n+1,0)

)
= E

(
e−izmax(Ln,0)

)
= E

(
e−izL

+
n

)
.

where we have used that Yi are identically distributed random variables to L1 and conse-
quently Ln follows the same distribution than Yj∗+2 + . . .+ Yj∗+n+1.

4.2.2 Spitzer-recurrence Expansion Formula

The main drawback with the recursive formula provided in Proposition 4.3 is that is not
computationally efficient since, as it can be proven, it exhibits sub-exponential complexity.
Particularly, the most involved part in (4.13) is the computation of φRm . To settle this
problem, we derive in next theorem an expansion formula for φRm which is significantly
more effective for large monitoring times m.

Theorem 4.2 (Spitzer-recurrence Expansion Formula). Let Coefftm(·) denote the coefficient
in front of tm. The characteristic function of the maximal sums Rm can be expressed as

φRm (z) = Coefftm

 m∑
j=0

1

j!
·

(
m∑
k=1

ak (−z)

k
tk

)j
 , for m = 1, 2 . . . . (4.15)

Proof. We start with the recursive formula of φRm(z) provided in (4.10). For brevity, we
omit the dependence of φRm(z) and ak(−z) on the argument z and write φm and ak. Taking
into account that a0 = 1, we can rewrite (4.10) as

(m+ 1) · φm =
m∑
k=0

φk · am−k. (4.16)
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Let us introduce the function U(u) =
∑∞

m=0 u
m ·φm. Additionally, we take as initial condition

U(0) = 1. Noting that its derivative is U
′
(u) =

∑∞
m=0m · um−1 · φm, we get that U satisfies

the following differential equation

U + u · U ′ =
∞∑
m=0

(m+ 1) · um−1 · φm. (4.17)

Now multiplying both sides of (4.16) by um and summing over m from 0 to ∞, we deduce

∞∑
m=0

(m+ 1)umφm =
∞∑
m=0

um
m∑
k=0

φk · am−k

=
∞∑
m=0

m∑
k=0

φku
k · am−kum−k = U · A,

(4.18)

where A :=
∑∞

j=0 aju
j. Then, it follows from (4.17) and (4.18) that U + u ·U ′ = U ·A. This

is a separable ordinary differential equation whose solution is

U(t) = exp

(∫ t

0

A(t)− 1

u
du

)
. (4.19)

Now, consider the integral∫ t

0

A(t)− 1

u
du =

∫ t

0

∑∞
k=0 aku

k − 1

u
du =

∫ t

0

∞∑
k=1

aku
k−1du

=
∞∑
k=1

ak

∫ t

0

uk−1du =
∞∑
k=1

ak
tk

k
.

(4.20)

where in the last equality we have assumed that ak are bounded, that is, |ak| < B. Now,
from the definition of U , (4.19) and (4.20), we deduce (4.15) which completes the proof of
the theorem.

Formula (4.15) derived in Theorem 4.2 is in fact a special case of the Spitzer formula
(4.8) provided in Theorem 4.1. Here, we have given a significantly simpler proof based on
the recursive formula deduced in Proposition 4.3.

Remark 4.1. Theorem 4.2 is an important result that enables the evaluation of φXm with
much greater efficiency that is with (4.13). It can be seen that the complexity of formula (4.2)
is O (m3), while the recursion (4.13) has a sub-exponential complexity. Additionally, it easy
to check that (4.15) can be obtained by convoluting the vector (a1 (−z) /1, . . . , am (−z) /m)
with itself j times for j = 0, 1, . . . ,m and summing across the anti-diagonal.

Coefftm

 m∑
j=0

1

j!
·

(
m∑
k=1

ak (z)

k
tk

)j
 =

m∑
j=0

((
a1 (−z) /1, . . . , am (−z) /m∗j

))
m−j

.
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4.3 Computation of the coefficient ak(z)

The calculation of the coefficients ak(z) turns out to be the central point in the evaluation of
the characteristic function ΦXm of the future maximum of the log-returns as one may notice
in the recursive formula (4.10). As has already been shown, these coefficients are calculated

by the expression ak (−z) = EQ

(
e−izL

+
j∗+k

)
, for k = 1, . . . ,m, that is, the coefficients coincide

with the characteristic function of the greater of the log-return process at time tj∗+k and
zero. For simple models, such as the Black-Scholes model, a closed formula can be found by
integrating the probability distribution. However, for more complex and relevant models,
the computation becomes tedious and cumbersome. Actually, it is impossible to derive a
closed formula in most cases and some approximations need to be made. In this section,
we present several approaches to compute these coefficients. The first technique provides a
general methodology for calculating ak, k = 1, . . . ,m, based on inverting the characteristic
function of the log-return process Lj∗+k using Haar Wavelets. The second one uses the same
idea using the Shannon Wavelet family and will allow us to compute the coefficients in a
more efficient way. We start introducing the Haar Wavelet family and deriving what have
been called the WA[a,b] method.

4.3.1 Haar Wavelets

In section 3.2, we introduced the Shannon Wavelet family in order to approximate the
probability density function. Particularly, we saw that it formed a multiresolution analysis
and we could applied the theory developed in section 3.1. In this section, we define a new
family of wavelets, the so-called Haar Wavelet family, which will be used in our future
analysis to find a simpler and more flexible way to compute the coefficients ak(−z).

As we did with the Shannon wavelets, the starting point for the definition of the Haar
Wavelet family is to define its scaling function or father wavelet. In this case, it is given by
the unit step function defined as

φ (x) := X[0,1] (x) =

{
1 if 0 ≤ x ≤ 1,

0 otherwise.
(4.21)

Its dilated and translated instances φm,k (x) := 2m/2φ (2mx− k) forms an orthonormal basis
and gives rise to a multiresolution analysis. Thus, the theory introduced in Section 3.1
applies and a probability density function can be approximated by Haar wavelets functions.

For our purposes, it turns out also convenient to work in the frequency domain. Conse-
quently, we should also consider the Fourier transform of the scaling functions, given by

φ̂m,k (w) := 2−m/2e−
iwk
2m

(
1− e−iw/2m

iw/2m

)
. (4.22)
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Next section uses the Haar Wavelets to introduce a general methodology called WA[a,b]

that will be applied to approximate the coefficients ak(−z). The underlying idea of this
strategy is similar to the fundamentals of the SWIFT method.

4.3.2 Approximation of f(x): the WA[a,b] method.

In this section, we present a method to recover a probability density function f from its
characteristic function using the Haar Wavelet family. This method consists on fixing a
priori interval for the approximation and then using Haar wavelets on this bounded interval.

We start considering a probability density function f(x) with Fourier transform f̂(x) of
a given random variable X. One can expect that f decays to zero at infinity, so it can be
approximated in a finite interval [a, b]. Particularly, as it has been recommended by various
authors and argued in the previous chapter, we consider the following approximation

[a, b] :=

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
, (4.23)

where cn denotes the nth cumulant of X. Then, following the multiresolution analysis theory
as we did with the Shannon wavelets, we can approximate the density f in this bounded
interval at a given level of resolution m by:

f (x) ≈ f cm (x) :=
2m−1∑
k=0

cm,k · φm,k
(
x− a
b− a

)
(4.24)

Our next objective is to find a methodology to compute the density coefficients cm,k. For

this, we will approximate f̂ by f̂ cm and then compute cm,k by inverting the Fourier transform.
Proceeding this way, we have:

f̂ (w) =

∫ +∞

−∞
e−iwxf(x)dx ≈

∫ +∞

−∞
e−iwxf cm (x) dx

=
2m−1∑
k=0

cm,k

∫ +∞

−∞
e−iwxφm,k

(
x− a
b− a

)
dx

= (b− a) · e−iaw ·
2m−1∑
k=0

cm,kφ̂m,k ((b− a)w) ,

(4.25)

where we have performed the change of variables y = (x − a)/(b − a) and identified the
Fourier transform of φm,k. This expression leads to the following result:

Lemma 4.2. Define the following functions:

Pm (z) :=
2m−1∑
k=0

cm,kz
k, Qm (z) :=

2
m
2 z.−

2ma
b−a f̂

(
2m

b−ai · log (z)
)

(b− a) · φ̂ (i · log (z))
. (4.26)

Then, the function Pm(z) can be approximated by Qm(z), that is, Pm (z) ≈ Qm (z).
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Proof. Notice first that from (4.22) one deduces that φ̂m,k (w) = 2−
m
2 φ̂
(
w

2m

)
e−i

k
2m

w. If we
use this identity in the approximation made in (4.25) and take y = 2m

b−ai · log (z), we get

f̂

(
2m

b− a
i · log (z)

)
≈ 2−

m
2 (b− a) · z.

2ma
b−a · φ̂m,k (i · log (z)) ·

2m−1∑
k=0

cm,kz
k

= 2−
m
2 (b− a) · z.

2ma
b−a · φ̂m,k (i · log (z)) · Pm (z) .

From this expressions it is immediate to conclude that Pm (z) ≈ Qm (z) which finish the
proof of the lemma.

Observe that the function Pm(z) defined in (4.26) is a polynomial and particularly it is
analytic inside a disc of the complex plane {z ∈ C : |z| < R} for R > 0. Then, Cauchy’s
integral formula can be applied and gives rise to the following closed expression for the
density coefficients

cm,k =
1

2πi

∫
CR

Pm (z)

zk+1
dz, for k = 0, . . . , 2m − 1, (4.27)

where CR denotes the circle of radius R > 0 about the origin. Next theorem uses expression
(4.27) together with Lemma 4.2 to derive an approximation for the numerical computation
of the density coefficients cm,k.

Theorem 4.3 (Approximation of the density coefficients cm,k). Consider the function Qm

defined in Lemma 4.2. Then, the density coefficents can be approximated by

cm,0 ≈ c∗m,0 =
1

π

∫ π

0

<
(
Qm

(
Reiu

))
du,

cm,k ≈ c∗m,k =
2

πRk

∫ π

0

<
(
Qm

(
Reiu

))
cos (ku) du,

(4.28)

for k = 1, . . . , 2m − 1 and where R is a positive real number different from 1.

Proof. Bearing in mind the definition of Pm(z) given by (4.26) in Lemma 4.2, if we make
the change of variables z = R · eiu with R 6= 1 positive, take the real part of Pm(Reiu) and
multiply it by cos(ku), we obtain

<
(
Pm
(
Reiu

))
cos (ku) =

2m−1∑
l=0

cm,lR
l cos (lu) cos (ku)

=
1

2

2m−1∑
l=0

cm,lR
l (cos ((l + k)u) + cos ((l − k)u)) .

(4.29)
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Next, we integrate last expression between 0 and π and distinguish the case k = 0 and the
case k 6= 0. We get respectively:

◦
∫ π

0

<
(
Pm
(
Reiu

))
du =

2m−1∑
l=0

cm,lR
l

∫ π

0

cos (lu) du = π · cm,0,

◦
∫ π

0

<
(
Pm
(
Reiu

))
cos (ku) du

=
1

2

2m−1∑
l=0

cm,lR
l

∫ π

0

(cos ((l + k)u) + cos ((l − k)u)) du =
π

2
cm,kR

k.

By Lemma 4.2, we can replace the function Pm by its approximation Qm to obtain (4.28).

Remark 4.2. In practice, both integrals in (4.28) are computed by means of a numerical
integration method. In order to speed up the computation, we have adapted a trapezoidal rule
in such a way that a FFT algorithm can be applied. For brevity, we show this technique for the
second integral in (4.28) since the computation for first integral is analogous. Thus, applying
the trapezoidal rule in the second integral using as grid points hs = s · π/2m, s = 0, . . . , 2m,

cm,k ≈
2

πRk

∫ π

0

<
(
Qm

(
reiu

))
cos (ku) du

≈ 1

2m ·Rk
·

[
Qm (R) + (−1)kQm (−R) + 2 ·

2m−1∑
s=1

<
(
Qm

(
Reihs

))
<
(
e
ikπs
2m

)]
,

for k = 1, . . . , 2m − 1. This expression allows to apply a FFT algorithm. The computational
complexity associated to a direct computation of the density coefficients by the trapezoidal
rule is O (22m), while the complexity during the application of the FFT algorithm explained
above reduces to O (log (2) ·m · 2m).

4.3.3 Approximation of ak(z) using the WA[a,b] method.

In this section, we provide a general methodology to compute the coefficients ak(z) which
relies on the WA[a,b] method. This technique will be independent of the dynamics of the
log-asset price and will just need the characteristic function of the log-returns of the process
Lj∗+k, k = 1, . . . ,m, which is known in most cases. This fact will make the method really
versatile and flexible since it could be applicable even in the situations where an expression
for the coefficients ak(z) cannot be found analytically.

The underlying idea of this strategy is to approximate the density function using the
WA[a,b] method as we did in (4.24) and compute the analogous of the pay-off coefficients.
We derive two feasible expressions for these pay-off coefficients. The first one comes directly
from replacing the approximation of the density function in the definition of ak(z) as a
characteristic function. The second one involves the Cauchy Residue theorem and provides
a more desirable formula.
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Theorem 4.4 (Approximation of coefficients ak(−z)). Let z ∈ R+. Let cm,j be the co-
efficients resulting from the approximation of the density of Lj∗+k in (4.24). Define J :=
b−a2m/ (b− a)c . Then, the coefficients ak(−z) can be approximated by

ak (−z) ≈ (b− a) 2−
m
2

J−1∑
j=0

cm,j + (b− a)
2m−1∑
j=J+1

cm,j · e−iza · φ̂m,j ((b− a) z)

+ 2
m
2

(
−a− (b− a) J

2m
− 1

iz
·
[
e−iz(a+(b−a)J+1

2m ) + 1
])

cm,J .

(4.30)

Proof. Let fLj∗+k denote the density function of Lj∗+k. By definition, the coefficient ak(z)
can be written as follows

ak (−z) = E
(
e−izL

+
j∗+k

)
=

∫ 0

−∞
fLj∗+k (y) dy +

∫ +∞

0

e−izyfLj∗+k (y) dy. (4.31)

We take the approximation of the density function (4.24) and treat each one of the
integrals in (4.31) separately. We start studying the first integral in (4.31). If we make the
change of variables x = (y − a) / (b− a) and bear in mind the definition of φm,j (x), we get∫ 0

−∞
fLj∗+k (y) dy ≈

2m−1∑
j=0

cm,j (b− a)

∫ −a
b−a

−∞
φm,j (x) dx

=
2m−1∑
j=0

cm,j (b− a) 2m/2
∫

(−∞, −ab−a)∩[
k

2m
, k+1

2m ]
dx

= (b− a) 2−
m
2

J−1∑
j=0

cm,j − 2
m
2

(
a+

(b− a) J

2m

)
cm,J .

(4.32)

In the same way, if we make the same change of variables for the second integral in (4.31)∫ +∞

0

e−izyfLj∗+k (y) dy ≈
2m−1∑
j=0

cm,j (b− a) e−iza
∫ +∞

−a
b−a

φm,j (x) e−(b−a)izxdx

=
2m−1∑
j=0

cm,j (b− a) e−iza · 2m/2
∫

( −ab−a ,+∞)∩[ k
2m

, k+1
2m ]

e−(b−a)izxdx

= (b− a)
2m−1∑
j=J+1

cm,j · e−iza · φ̂m,j ((b− a) z)

− 2m/2

iz

[
e−iz(a+(b−a)J+1

2m ) + 1
]
cm,J .

(4.33)

Finally, introducing the expressions (4.32) and (4.33) in (4.31), and rearranging the terms
gives the approximation (4.30) and concludes the proof.
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Theorem 4.4 provides a closed formula for the numerical computation of the coefficient
ak(z). Notice that this expression (4.30) involves all the density coefficients in the calculation.
An alternative approximation which needs to compute a lower number of density coefficients
can be found applying the Cauchy Residue Theorem. For this purpose, we proceed to for-
mulate the following theorem which gives an expression that connects the coefficient ak(−z)
and the characteristic function ΦLj∗+k by means of a complex integral.

Proposition 4.4 (Fourier representation of ak(z)). Assume MLj∗+k (v) = EQ
(
evLj∗+k

)
, the

moment generating function of Lj∗+k, exists for all v ∈ (a, b), where a < 0 and b > Im(z) >
−1/2. Take α ≥ Im(z) > −1/2 , then the coefficient ak(−z) can be computed by:

ak(z) = 1− i

2π

∫ iα+∞

iα−∞
ΦLj∗+k (−ξ) z

ξ (ξ + z)
dξ, k = 1, . . . ,m. (4.34)

Proof. The proof is based on applying the Cauchy residue theorem and the technical details
are therefore omitted.

Next, we apply the WA[a,b] method to approximate the characteristic function ΦLj∗+k .
Proceeding as in last section, we first truncate the integration domain by (4.23) using the
cumulants and later we approximate the probability density function of Lj∗+k by means of
the Haar wavelet family as in (4.24). Finally, if we apply the same computation as in (4.25),
we get that the characteristic function ΦLj∗+k can be approximated by

ΦLj∗+k (ξ) ≈ (b− a) · e−iaξ ·
2m−1∑
k=0

cm,k · φ̂m,k ((b− a) ξ) , (4.35)

where the density coefficients cm,j are calculated using the expressions provided in Theorem
4.3. Notice that this approximation can be analytically extended to the complex plane. This
fact allows us to apply the Cauchy Residue theorem and gives rise to a closed expression for
the computation of ak(−z) given in next theorem.

Theorem 4.5 (Approximation of coefficients ak(z)). Let z ∈ R+. Let cm,j be the coeffi-
cients resulting from the approximation of the density of Lj∗+k in (4.24). Define Then, the
coefficients ak(z) can be approximated by the following expression

ak (z) ≈ 1− (b− a) ·
2m−1∑
j=J

cm,jVm,j, (4.36)

where we have defined J := b−a2m/ (b− a)c and the coefficients Vm,j as

Vm,j := 2−m/2 ·

(
1− e−iz(

j
2m

(b−a)+a)

(
1− e−i b−a2m

z

i b−a
2m
z

))
. (4.37)
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Proof. Note that z ∈ R+ and particularly Im(z) = 0. Then, Proposition 4.4 applies with
α = 1 and the coefficients ak(z) are

ak(z) = 1− i

2π

∫ i+∞

i−∞
ΦLj∗+k (ξ)

z

ξ (ξ + z)
dξ

= 1− i

2π

∫ +∞

−∞
ΦLj∗+k (i+ t)

z

(i+ t) (i+ t+ z)
dt

≈ 1− i (b− a)

2π

2m−1∑
k=0

cm,j

∫ +∞

−∞
e−ia(i+t) · φ̂m,j ((b− a) (i+ t))

z

(i+ t) (i+ t+ z)
dt,

where we have taken the parameterization ξ (t) = i + t for t ∈ (−∞,∞) in the second
equality and we have introduced expression (4.35) in the approximation. Define

Vm,j :=

∫ +∞

−∞

i

2π
· e−ia(i+t) · φ̂m,j ((b− a) (i+ t))

z

(i+ t) (i+ t+ z)
dt

=

∫ +∞

−∞

i2−m/2

2π
· e−i(i+t)(a+

j(b−a)
2m ) · φ̂

(
(b− a)

2m
(i+ t)

)
z

(i+ t) (i+ t+ z)
dt.

(4.38)

It remains to show that Vm,j equals zero for j ≤ J and (4.37) for j > J . We will use the
Cauchy’s residue theorem to evaluate the integral in (4.38). Let us first define by g(t) the
function inside the integral in (4.38) and study the case j ≤ J . We consider the contour
shown in Figure 4.1 on the left. As g has not poles inside, the Cauchy’s residue theorem
leads to ∫

ΥR

g(w)dw = −
∫

ΓR

g(w)dw. (4.39)

Let us show that the integral on ΓR goes to 0 as R→∞. If we consider w(θ) = R cos (θ) +
iR sin (θ), θ ∈ [0, π], a parameterization of ΓR, we obtain∣∣∣∣∫

ΓR

g(w)dw

∣∣∣∣ =

∣∣∣∣∣
∫ π

0

i · 2−m/2

2π
· z · e−i(i+w(θ))(a+

j(b−a)
2m ) · φ̂

((
b−a
2m

)
(i+ w (θ))

)
[R cos (θ) + i (1 +R sin (θ))] · [(R cos (θ) + z) + i (1 +R sin (θ))]

dθ

∣∣∣∣∣
≤ z

2π
2−m/2ea+

j(b−a)
2m

(
1 + e(b−a)/2m

) 1

R3
π

R→+∞−→ 0,

where we have used that
∣∣∣e−i(i+w(θ))(a+

j(b−a)
2m )

∣∣∣ = e(1+R sin(θ))(a+
j(b−a)

2m ). Then, as θ ∈ [0, π] and

j ≤ J ≤ −a2m/ (b− a), this expression is bounded by ea+j(b−a)/2m . We have also used that

1

|R cos (θ) + i (1 +R sin (θ))| · |(R cos (θ) + z) + i (1 +R sin (θ))|

≤ 1

|R cos (θ) + iR sin (θ)| · |R cos (θ) + iR sin (θ)|
=

1

R2
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Figure 4.1: The figure on the left shows the contour used to evaluate the integral when
j ≤ J . The figure on the right shows the contour to evaluate the integral when j > J .

and φ̂
(

(b−a)
2m

(i+ t)
)

can be bounded by
(
1 + e(b−a)/2m

)
/R. Finally, taking limits as R→∞

in (4.39) and noticing that the term on the left coincides with Vm,j, we conclude that the
approximation coefficient Vm,j = 0 when j ≤ −a2m/ (b− a).

The case j > J requires to evaluate g(w) over the contour on the right in Figure 4.1.
Again, as the function g(w) is holomorphic inside the contour, we can apply the Cauchy’s
residue theorem. Notice, however, that in this case the function has two poles at w = −i
and w = −z − i. Thus, the Cauchy’s residue theorem gives us now:∫

ΥR

g(w)dw +

∫
ΓR

g(w)dw = 2πi (Res (g,−i) + Res (g,−z − i)) , (4.40)

As the poles are simple, their residues can be computed respectively as follows:

• lim
w−→−i

(w + i) g(w) = lim
w−→−i

i

2π
· e−ia(i+t) · φ̂m,j ((b− a) (i+ t))

z

(i+ w + z)

=
i

2π
· 2−m/2,

• lim
w−→−i−z

(w + i+ z)g(w) = lim
w−→−i−z

i

2π
· e−ia(i+t) · φ̂m,j ((b− a) (i+ t))

z

(i+ w)

=
i

2π
· 2−m/2e−iz(

j
2m

(b−a)+a)

(
1− e−i b−a2m

z

i b−a
2m
z

)
.

(4.41)

In the same way as we did in the case j ≤ J , one shows that the integral of g(w) over
ΓR goes to 0 as R → ∞. Then, taking limits as R → ∞ in (4.40), noticing that the first
integral on the left-hand side coincides with Vm,j and using the expressions of the residues
(4.41), one obtains (4.35).
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4.3.4 Approximation of ak(z) using Shannon wavelets.

Recall that our aim is to apply the SWIFT method for pricing discrete lookback options.
The first step is to approximate the density function of the asset log-return maximum fXm
in terms of the Shannon scaling functions as stated in Proposition 3.2, that is,

fXm (y|x) ≈ f ∗Xm (y|x) =

k2∑
k=k1

dm,k (x)φm,k (y) , (4.42)

where dm,k are now the density coefficients. These coefficients will be computed by means of
(3.29) fixing first a J-value, denoted here by , and using a FFT algorithm as in Remark 3.2.
Notice also that, using this strategy, we should evaluate the characteristic function φXm(z)
at points zs = (2s+ 1) π2m/2 for s = 0, . . . , 2−1 − 1.

The main drawback of using Haar wavelets to approximate the coefficients ak(zs) is that a
high level of resolution m is needed as it will be seen in the section of numerical experiments.
In addition, this methodology does not allow to apply a FFT algorithm and the coefficients
ak(zs) need to be calculated one by one. Then, motivated by the good approximation
properties of the Shannon wavelets, we derive in Theorem 4.6 an approximation which relies
on this wavelet family. This formula has the noteworthy feature of allowing the application
of a FFT algorithm which considerably reduces the CPU time.

Theorem 4.6 (Approximation of coefficients ak(−z) by means of Shannon wavelets). Let
cm̃,j be the coefficients resulting from approximating the density function of Lj∗+k by Shannon
wavelets at a level of resolution m̃ and j1 and j2 the limits values in the summation. Let δi,j
denote the Dirac’s delta. Define j̄2 := max (0, j2) and j̄1 := min (0, j1). Then, the coefficients
ak(−z) can be approximated by

ak(−z) ≈ 1

2m̃/2
·

(
1

2
· cm̃,j1 +

−1∑
j=j1+1

cm̃,j +
1

2
· cm̃,0

)
· δj̄1,j1

+
1

2m̃/2
·

(
1

2
· cm̃,0 +

j2−1∑
j=1

e−iz
j

2m̃ · cm̃,j +
1

2
· cm̃,j2

)
· δj̄2,j2 .

(4.43)

Proof. We start estimating the density function of Lj∗+k by means of the Shannon scaling
functions (3.4) and truncating the infinite integration domain to a finite domain Im̃ =
[j1/2

m̃, j2/2
m̃]. Then, if we introduce these approximations in the expression of the coefficient

ak(−z) in (4.31), we get

ak (−z) ≈
j2∑
j=j1

cm̃,j ·

(∫ j̄2/2m̃

0

e−izy · φm̃,j(y)dy +

∫ 0

j̄1/2m̃
φm̃,j(y)dy

)
. (4.44)

We treat each one of the integrals in (4.44) separately. We start analyzing the first integral.
If we apply a trapezoidal rule with grid points

{
0, 1/2m̃, . . . , j̄2/2

m̃
}

and we take into account
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that φm̃,j(h/2
m̃) = 2m̃/2δj,h as we saw Lemma 3.1, we obtain:∫ j̄2/2m̃

0

e−izyφm̃,j(y)dy ≈ 1

2m̃
·

1

2
φm̃,j (0) +

j̄2−1∑
s=1

e−iz
s

2m̃ φm̃,j

( s

2m̃

)
+

1

2
e−iz

j̄2
2m̃ φm̃,j

(
j̄2

2m̃

)
=

1

2m̃/2
·

1

2
δj,0 +

j̄2−1∑
s=1

e−iz
s

2m̃ · δj,s +
1

2
· δj,j̄2

 .

In the same way, if we apply a trapezoidal rule to the second integral in (4.31) with grid
points

{
j̄1/2

m̃, (j̄1 + 1) /2m̃, . . . ,−1/2m̃, 0
}

, one gets a similar expression:∫ 0

j̄1/2m̃
φm̃,j(y)dy ≈ 1

2m̃
·

1

2
· φm̃,j

(
j̄1

2m̃

)
+

−1∑
s=j̄1+1

φm̃,j

( s

2m̃

)
+

1

2
· φm̃,j (0)


=

1

2m̃/2
·

1

2
· δj,j̄1 +

−1∑
s=j̄1+1

δj,s +
1

2
· δj,0

 .

If we replace both integrals in (4.44) by their approximations, we obtain expression (4.43).

The main advantage of approximating coefficients ak(−z) using Theorem 4.6 is that we
work with Shannon wavelets which exhibit better approximation properties of the probability
density function Lj∗+k than Haar wavelets. Another noteworthy feature of this strategy is
that it allows the application of a FFT algorithm in order to speed up the computation.
Next remark provides the basis to do that.

Remark 4.3. The reason why we are evaluating the coefficients ak is to compute the charac-
teristic function of the asset log-return maximum φXm(z) at points zs = (2s+ 1) π2m/2 for
s = 0, . . . , 2−1 − 1. In consequence, we particularly need to evaluate ak(−z) at these points.
This can be done efficiently by rewriting (4.43) at zs as:

ak(−zs) ≈
1

2m̃/2
·

(
1

2
· cm̃,j1 +

−1∑
j=j1+1

cm̃,j +
1

2
· cm̃,0

)
· δj̄1,j1

+
1

2m̃/2
·

(
−1

2
· cm̃,0 +

j2−1∑
j=0

(
cm̃,j · e−

ijπ

2+m̃−m
)
e−

2πisj

2+m̃−m +
1

2
· cm̃,j2

)
· δj̄2,j2 .

(4.45)

This expression (4.45) allows to apply the FFT algorithm in the second term of the sum
to compute the coefficients ak(−zs). We just need to extend the summation from j2 − 1 to

2+m̃−m− 1 by assuming that the terms cm̃,j · e−
ijπ

2+m̃−m are zero in this range. The computa-
tional complexity is reduced from O

(
2+m̃−m · j2

)
when we use directly expression (4.45) to

O
(
log (2) · (+ m̃−m) · 2+m̃−m

)
by using the FFT algorithm.



CHAPTER 4. DISCRETE LOOKBACK OPTION PRICING USING THE SWIFT
METHOD 59

4.4 The pay-off coefficients for Discrete Lookback

Options

As we saw in Chapter 3 for the pricing of European options, the last step of the SWIFT
method is to determine the pay-off coefficients Vm,k. To this end, the strategy to follow is to
approximate, first of all, the density function of the asset log-return maximum fXm in terms
of the Shannon scaling functions as in (4.42).

Next, we should introduce this approximation in the valuation formula of the correspond-
ing derivative. As has already been mentioned, we mainly focus in fixed lookback call options
and floating lookback put options. Since using Lemma 4.1 the price of the floating lookback
put option can be directly determined if we hold the price of the fixed lookback call options
in the case M ≥ K, we concentrate in this last one. Its valuation formula is given by (4.4)
in Proposition 4.1. Then, if we introduce the approximation (4.42), we obtain:

LCfix (t, T ) = S0e
−r(T−t) · EQ

[(
eXm −R

)
+

]
+ (M −K) e−r(T−t)1[K,+∞] (M)

= S0e
−r(T−t) ·

∫
R∩Im

(ex −R)+ · fXm (x) dx + (M −K) e−r(T−t)1[K,+∞] (M)

= S0e
−r(T−t) ·

k2∑
k=k1

dm,k · Vm,k + (M −K) e−r(T−t)1[K,+∞] (M) ,

whereR := K/S0 and 1[K,+∞] (M) is the indicator function. Note also that we have truncated
the infinite integration domain to a finite domain Im = [k1/2

m, k2/2
m] and we have defined

the pay-off coefficients in the following way:

Vm,k :=

∫
R∩Im

(ex −R)+ · φm,k (x) dx =

∫
[ln(R),∞]∩Im

(ex −R) · φm,k (x) dx.

Notice, however, that this integral cannot be computed analytically. Next proposition pro-
vides an expression to efficiently compute Vm,k together with an error estimate.

Proposition 4.5 (Approximation of Fixed Lookback call option pay-off coefficients and
error estimate). Let us define k̄1 := max (k1, ln(R) · 2m). Then, an approximation of the
pay-off coefficients for a Fixed Lookback call option is computed as

Vm,k ≈ V ∗m,k :=

{
2m/2

2J−1

∑2J−1

j=1

[
I1

(
k̄1

2m
, k2

2m

)
−R · I2

(
k̄1

2m
, k2

2m

)]
if k2 > ln(R),

0 if k2 ≤ ln(R),
(4.46)

where the integrals I1 and I2 are defined as in Proposition 3.4. Additionally, if we consider
J ≥ log2 (πNk), we find the following estimation of the error

∣∣Vm,k − V ∗m,k∣∣ ≤ 1

2m/2
·D · (πNk)

2

22(J+1) − (πNk)
2 , (4.47)
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Nk := max
(∣∣k̄1 − k

∣∣ , |k2 − k|
)
, D :=

∣∣k2 − k̄1

∣∣ · max
y∈

[
k̄1
2m

,
k2
2m

] |ey −R| .
Proof. The proof is completely analogous to the one made in Proposition 3.4 to approximate
the European option pay-off coefficients.

Remark 4.4. Similar formulas to those provided in Remark 3.5 for the computation of
integrals I1 and I2 can be derived in this case for lookback options. As a consequence, the
pay-off coefficients V ∗m,k may be computed using a FFT algorithm by fixing a constant J value
defined here by ̄ := dlog2 (πN)e, where N := maxk1<k<k2 Nk. Another feasible strategy is to
calculate the pay-off coefficients beforehand with high accuracy for later use by means of the
estimate (4.47) in order to save some CPU time.

4.5 Numerical experiments

In this section, we carry out several numerical experiments to evaluate the accuracy, efficiency
and robustness of the SWITF method for pricing Discrete Lookback options. We take into
account three dynamics for the asset log-return Lt in order to show the versatility of this
pricing technique: the first one is the geometric Brownian motion (GBM) for which an
analytic expression for the coefficients ak(z) will be derived. The other two are the Variance
Gamma process (VG) and the Heston model. These last dynamics do not hold an analytic
expression for ak and they will be computed with the approximations described in Theorem
4.4 (using Haar Wavelets) and Theorem 4.5 (using Shannon Wavelets).

We also implement the evaluation of the characteristic function of the asset log-return
maximum Xm by means of the recursive formula (4.13) and recursion (4.15). We show
that although recursion (4.15) provides a lower theoretical computational complexity, the
restrictions of programming with MATLAB make more efficient the recursive formula (4.13).
Finally, we demonstrate the efficiency and accuracy of the method by comparing our results
with those obtained with the FTBS method in [9]. Before starting to show the results
obtained, however, we should still fix a criterion to determine the scale of approximation m
of the probability density function and the limit value k1 and k2 in the summation.

4.5.1 Scale of approximation m

Recall that the error of approximation at a scale m depends on the decay of the Fourier
transform of the probability density function and is given by expression (3.11). In the case
of European option pricing analyzed in Chapter 3, we studied the decay properties of the
analytic expression of the Fourier transform of the underlying process in order to determine
a proper scale m. For lookback options, however, we do not hold an analytic formula of the
characteristic function of Xm. Instead, we have in hands a recursive formula that allows its
evaluation and the decays properties may be studied numerically.
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To illustrate the dependency of the parameter m with respect to the decay of the charac-
teristic function, we price a lookback put option with fixed strike considering three dynamics
with a different rate of decay and compare it with the scale m. The probability density
function and the modulus of the characteristic functions of all the dynamics have been nu-
merically computed and represented in Figure 4.2 on the left and right respectively. The
results of the experiments obtained are shown in Table 4.5.1.

Figure 4.2: Density function (left) and modulus of the characteristic function (right). The
dotted red line corresponds to GBM dynamics, the thick blue line to Heston dynamics and
the dashed green line to VG dynamics.

We first consider Variance Gamma (VG) dynamics with parameters S0 = 100, K = 110,
r = 0.0548, σ = 0.1927, µ = −0.2859, ν = 0.25 and six monitoring points evenly spaced in
T = [0, 5]. The reference value is 19.746659329720089 computed using a high scale m with
the SWIFT method 1. We see in Table 4.5.1 that we achieve the smaller error with the lower
scale (m = 4). The explanation of this fact is that the Variance Gamma process shows the
fastest rate of decay of the characteristic function as it can be observed in Figure 4.2. Second,
we consider GBM dynamics with parameters S0 = 100, K = 110, r = 0.1, σ = 0.3 and six
monitoring points evenly spaced in T = [0, 0.5]. The reference value is 13.300135659395124.
Now, we also use an scale of m = 4, but the error is higher since the rate of decay of φXm
is slower in this case. Finally, we work with Heston dynamics with parameters S0 = 100,
K = 110, r = 0.1, λ = 1.5768, ν = 0.5751, ū = 0.0398, u0 = 0.0175, ρ = −0.5711 and six
monitoring points evenly spaced in the lifetime of the option T = [0, 0.5]. Now, the reference
value is 27.020436365846209 and the rate of decay of the characteristic function becomes the
slowest of the three dynamics. This translates into needing a big scale (m = 10) to achieve
a smaller error.

1All the reference values in this section are computed by means of the SWIFT method using a high scale
m. Particularly, we take m = 20 and we assume that the value obtained is the exact price.
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PROCESS DECAY OF FT SCALE NUMERICAL VALUE ERROR
VG fast m=3 19.74666301974 8.235 · 10−08

GBM middle-fast m=4 13.30013522239 4.3699 · 10−07

HESTON slow m=10 27.02036351942 4.0129 · 10−04

Table 4.1: Scale and error of the three dynamics considered in the pricing of the lookback
put option with fixed strike K = 110.

Another remarkable fact which is worth noting is that the rate of decay of the charac-
teristic function of the asset log-return maximum Xm decreases as we add more monitoring
points in the lifetime of the option. This implies that we may need to take larger scales of
approximation m when we consider lookback options with a high frequency of monitoring
points to keep the accuracy of the approximation. This feature is exemplified in Figure
4.3, where we consider GBM and VG dynamics for the log-asset process Lt with the same
parameters as before and a lifetime of T = [0, 0.5] and T = [0, 5] respectively. We represent
the modulus of the characteristic function for 3, 6, 11, 16 and 21 monitoring points.

Figure 4.3: Modulus of the characteristic function φXm compared with the number of moni-
toring points for GBM (left) and VG (right) dynamics.

4.5.2 Limit values k1 and k2 in the summation

Once the scale of the approximation m has been fixed, the limit values k1 and k2 of the
summation should be determined. For the European option case, we used a formula involving
the cumulants. In this case, we do not hold an expression for the cumulants of the asset
log-return maximum Xm and this strategy cannot be practiced.

A possible alternative to overcome this problem is the following: departing from k = 0, we
increase and decrease this value obtaining k1 and k2. We also compute the area underneath
the curve with expression (3.16) on the fly. We stop when the area is close to 1 below some
prescribed tolerance. Notice, however, that although we do not need a priori truncation of
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the domain, this strategy involve extra CPU time since it does not allow the use of an FFT
algorithm for computing the density coefficients.

Thus, the strategy that we finally adopt is to take an a priori truncation of the integration
domain based on the analysis of the numerical density function. In other words, we plot the
probability density function beforehand by computing the density coefficients with large
k1 and k2 values. Then, we take a integration domain truncation by choosing two proper
values that enclose most of the area underneath the curve. Finally, we make sure that the
approximation is good enough by checking numerically that the area is close to 1.

Table 4.2 shows the truncations of the integration domain for the dynamics considered
in the previous subsection 4.5.1. Initial values of a and b has been taken by observing the
probability density functions of Xm represented in Figure 4.2. Then, we have refined these
values until we have obtained the errors displayed in the table. The same technique is used
in the subsequent experiments.

MODEL STRIKE a b f (k1/2
m) f (k2/2

m) ERROR
GMB 110 -0.6 1.3 1.9769 · 10−09 4.5546 · 10−10 2.4281 · 10−09

VG 110 -3 3.3 2.8294 · 10−11 6.8447 · 10−14 8.7101 · 10−11

HESTON 110 -0.2 0.9 1.7228 · 10−09 4.4206 · 10−12 4.9116 · 10−10

Table 4.2: Absolute error of the computed area under the recovered density by the SWIFT
method at a scale m = 12 corresponding to GMB, VG and Heston dynamics.

4.5.3 Computation of the characteristic function φXm

The computation of the characteristic function of the asset log-return maximum Xm is the
most involved part in the valuation of Discrete Lookback options. In Section 4.2, we saw
that it may be calculated using the recursive formula (4.13). Additionally, we derived a
recursion in Theorem 4.2 which enabled the evaluation of φXm and significantly reduced the
complexity of its computation for a large number of monitoring points.

In table 4.3, we provide a comparison of the numerical complexity between the recursive
formula (4.13) and recursion (4.15) by showing the number of terms involved in the evaluation
of φXm . It clearly shows that recursion (4.15) dominates for m ≥ 30 and therefore provides
a greater efficiency in pricing discrete lookback options with a high number of monitoring
points. For example, at m = 200, the recursive formula (4.13) requires approximately
9.25 · 1015 terms to calculate φXm compared to 1.33 · 106 using the recursion (4.15).

In order to analyze its computational performance, we have implemented both techniques
in our method for the valuation of Discrete Lookback options. This has been done using the
software MATLAB. It is worth mentioning that MATLAB loses efficiency with loops and
consequently we have vectorized our implementation. Table 4.4 provides a comparison of the
CPU times between this two techniques when pricing a lookback put option with fixed strike
under GBM dynamics with parameters S0 = 100, K = 110, r = 0.1, σ = 0.3 and lifetime
T = [0, 0.5]. Contrary to our expectations, one observes that the CPU times required when
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we use the recursive formula (4.13) are lower than those obtained with recursion (4.15), and
this difference becomes larger with the number of monitoring times. The reason for this
apparent contradiction with the results showed in Table 4.3 is that the implementation of
the method requires the computation of many loops, and recursive formula (4.13) allows to
be efficiently vectorized contrary to recursion (4.15). It is highly likely that the efficiency of
our method improves by implementing it in a software such that C++ with recursion (4.15).

MONITORING P. RECURSIVE F. (4.13) RECURSION (4.15) RATIO
30 4525 5604 8.1 · 10−1

50 20875 204226 1.0 · 10−1

100 166750 190569292 8.8 · 10−4

150 562625 40853235313 1.4 · 10−5

200 1333500 3.973 · 1012 3.4 · 10−7

300 4500250 9.253 · 1015 4.9 · 10−10

500 20833750 2.300 · 1021 9.1 · 10−15

Table 4.3: Comparison of the number of terms in evaluating the characteristic function φXm
using the recursive formula (4.13) and recursion (4.15).

MONIT. P. CPU (s) RECURSIVE F. CPU (s) RECURSION RATIO
6 0.011 0.013 1.1818
21 0.032 0.067 2.0938
41 0.067 0.214 3.2084
101 0.181 1.364 7.5357
301 1.212 14.745 12.1652
501 3.681 45.998 13.4093

Table 4.4: Comparison of the CPU time (in seconds) to price a lookback put option with
fixed strike under GBM dynamics using the recursive formula (4.13) and recursion (4.15).

4.5.4 Pricing of Discrete Lookback options with the SWIFT
method.

In this subsection, we carry out some numerical experiments concerning the pricing of Dis-
crete Lookback options with the SWIFT method. Specifically, we aim to show the accuracy,
efficiency and robustness of the method. Before we proceed to consider the specifics of these
experiments, however, we provide in Table 4.5.4 a recap of the main steps of algorithm stud-
ied in this chapter as well as giving a detailed idea of the numerical implementation. Note
that we have implemented the method with the FFT algorithm in order to make it more
efficient. Additionally, we have selected the version of the algorithm which uses the recursive
formula (4.13) and the Shannon wavelet family since it turns out to be the fastest choice.
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Numerical Implementation of the SWIFT method
Assume we have a Discrete Lookback option whose underlying asset log-returns Lj follows
a certain dynamics and its characteristic function is analytically available. The following
steps provide the price of the option:

1. Fix the scale of approximation m by studying the rate of decay of the asset log-return
maximum Xm as detailed in 4.5.1.

2. Fix an integration domain truncation [a, b] by studying the area underneath the
curve of the density function of Xm as detailed in Section 4.5.2 and determine the
limit values k1 := d2m · ae and k2 := b2m · bc.

3. Evaluate the characteristic function using the recursive formula (4.13) or the re-
cursion (4.15). Evaluate each of the coefficients ak(z) using Theorem 4.5 (Haar
Wavelets) or a FFT algorithm with Remark 4.3 (Shannon Wavelets).

4. Fix a -value with  := dlog2 (πMm)e where Mm := maxk1<k<k2 Mm,k and Mm,k :=
max (|2ma− k| , |2ma+ k|) and use Remark 3.2 to apply the FFT algorithm to com-
pute the density coefficients c∗m,k for k = k1, . . . , k2.

5. Fix a j̄-value and compute the pay-off coefficients V ∗m,k for k = k1, . . . , k2 using a
FFT algorithm with Remark 4.4.

6. Determine the price V ∗T of the Discrete Lookback option using the Feynman-Kac
formula, that is, V ∗T := e−r(T−t)

∑k2

k=k1
c∗m,k (x) · V ∗m,k.

Table 4.5: Numerical Implementation of the SWIFT method for Discrete Lookback options.

We check the accuracy and efficiency of the SWIFT method by pricing a lookback put
option with fixed strike under GBM dynamics and a lookback call with floating strike under a
VG process. We take as reference values the results given in the valuation of the same options
in [9] and compare the CPU times reported. We should notice that the Fourier transform
B-spline method (FTBS) is used in [9]. Additionally, the authors of this method perform the
experiments using an Intel Core I7-3610QM processor and carry out the implementation in
C++. It is worth noting that the comparison is a bit unfair since we perform our experiments
in a worse computer. We also carry out our implementation in MATLAB which precludes
us to use recursion (4.15) that would make our method much more efficient. Then, we just
include the comparison to give an idea of the high efficiency of our algorithm.

We start our numerical analysis by pricing a lookback put option with fixed strike under
GBM dynamics with parameters S0 = 100, r = 0.1, σ = 0.3 and lifetime T = [0, 0.5]. We
consider different strikes (K = 110 and K = 120) and monitoring times ranging from 5 to
160. We also note that under GBM dynamics, an analytic expression for the coefficients ak
can be derived by the simple integration of (4.31) against to the probability density function
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of a Normal Distribution with probability cumulative function Φ. This computation leads
to the following expression:

ak(z) = Φ

(
−µ ·

√
tj∗+k
σ

)
+ ez·tj∗+k·(−

1
2
zσ2+iµ)

− 1

2
· e

µ2·tj∗+k
2σ2 ·fadd

(
−
√
tj∗+k

2
· (−z · σ + i · µ/σ)

)
.

where fadd(w) denotes the complex Faddeeva function which has been implemented using
an algorithm by [26] which ensures an accuracy of 13 digits in almost the entire complex
plane.

The results are described in Table 4.6. We first observe that the implementation with
the exact analytic expression of ak(z) makes the method much more efficient than if we use
Haar wavelets. We also see that the scale of the approximation m increases as we add more
monitoring points in the same way that we predicted in Section 4.5.1 where we saw that the
rate of decay of the characteristic function decreases with the number of monitoring points.
Finally, if we compare the CPU times of the SWIFT using Shannon wavelets with the FTBS
method 2, we can see that our method approaches the efficiency of the FTBS method in spite
of the limitations that we previously mentioned. Actually, there is a case (80 monitoring
times) in which the SWIFT method performs faster than the FTBS method.

K m SCALE PRICE FTBS SWIFT (exact) SWIFT (haar)
110 5 3 13.300 0.002 0.011 0.799
120 5 3 18.837 0.002 0.011 0.799
110 10 4 14.123 0.004 0.019 1.621
120 10 4 19.323 0.004 0.019 1.621
110 20 4 14.806 0.012 0.036 3.271
120 20 4 19.743 0.012 0.036 3.271
110 40 5 15.345 0.040 0.089 6.046
120 40 5 20.083 0.040 0.089 6.046
110 80 5 15.745 0.145 0.142 14.728
120 80 5 20.346 0.145 0.142 14.728
110 160 6 16.059 0.663 0.866 28.901
120 160 6 20.544 0.663 0.866 28.901

Table 4.6: CPU times (in seconds) of the valuation of a lookback put option with fixed
strike under GBM dynamics using the FTBS method and SWIFT method with the exact
expression of ak(z) and Haar Wavelets. Here, m denotes the number of monitoring points.

2The FTBS method also uses the analytic expression of the coefficients ak(x). Additionally, it also
implements the evaluation of the characteristic functions by means of recursion (4.15).
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We conclude our numerical experiments by pricing a discrete lookback call option with
floating strike under a VG process with parameters S0 = 100, r = 0.0548, σ = 0.1927,
µ = −0.2859 and ν = 0.25. We consider strike prices K = 105, K = 110 and K = 115
for contracts with annual monitoring points and contract duration T , ranging from 5 to
75 years. The results obtained are shown in Table 4.7. Again, the implementation of the
SWIFT method with Shannon wavelets clearly dominates the Haar Wavelet’s alternative.
The scale of the approximation m keeps constant for the different numbers of monitoring
points while the width of the integration domain truncation increases. Finally, comparing the
CPU times of the SWITF method with Shannon basis and the FTBS method 3, we observe
that for a small number of monitoring points (m = 5) the FTBS method is more efficient.
However, when we consider a larger number of monitoring points (m = 10 and m = 20),
the SWIFT method becomes increasingly faster. We note again that this greater efficiency
of the SWIFT method could well become much more noticeable if it were implemented in
C++ with recursion (4.15).

K T, m scale price FTBS a b SWIFT (shannon) SWIFT (haar)
105 5 4 39.080 0.03 -3 3.3 0.071 1.191
110 5 4 36.110 0.03 -3 3.3 0.071 1.191
115 5 4 33.303 0.03 -3 3.3 0.071 1.191
105 10 4 64.126 0.20 -3 3.8 0.181 2.335
110 10 4 61.626 0.20 -3 3.8 0.181 2.335
115 10 4 59.205 0.20 -3 3.8 0.181 2.335
105 20 4 94.639 1.16 -3 5.8 0.507 17.846
110 20 4 93.096 1.16 -3 5.8 0.507 17.846
115 20 4 91.580 1.16 -3 5.8 0.507 17.846

Table 4.7: CPU times (in seconds) of the valuation of a discrete lookback call option
with floating strike using the FTBS method and SWIFT method with Shannon and Haar
Wavelets. Parameters a and b are the values of the integration domain truncation.

3In this case, coefficients ak(z) do not allow a closed expression. The FTBS derives a numerical approx-
imation using the Cauchy Residue Theorem to compute them.
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Chapter 5

Conclusions

During this thesis, we have explored a recently proposed method for pricing European op-
tions, the so-called SWIFT method, introduced by Luis Ortiz-Gracia and Cornelis W. Oost-
erlee in 2016 (see [19]). This method explodes the outstanding approximation properties of
Shannon wavelets within the European option pricing framework. More precisely, we use the
Shannon father wavelet, which is the sinus cardinal function, and carry out an approxima-
tion of the density function of the log-asset price in a multiresolution analysis environment
where the desired scale of approximation is fixed. Both the density and pay-off coefficients
are computed using Vieta’s formula to derive an expression which allows the application of
a FFT algorithm in order to speed up their computation. This research is accompanied with
the subsequent error analysis of each of the approximations.

The presented numerical results show that this methodology is highly robust and accu-
rate. Very low scales of approximation are generally needed to converge accurately to the
solution. This feature together with the fact that this method allows the usage of a FFT
algorithm make this strategy extremely efficient, showing exponential convergence and being
able to price options in milliseconds. The SWIFT method also turns out to be very versatile
since it is easily adaptable to different log-asset price dynamics if the analytic expression of
the characteristic function of the process is available.

Finally, another remarkable property of this method is that it does not rely on an a priori
truncation of the entire real line, since it can do it adaptively in order to meet a predefined
tolerance error regarding the mass underneath the density function. The accuracy is then
not affected by the width of the interval for the approximation and it automatically com-
putes the number of coefficients needed for the new interval.

Encouraged by the extraordinary results obtained for European options, we have re-
searched the adaptation of the SWIFT method for one of the preferred exotic options among
investors nowadays, the Discrete Lookback options. Although the underlying idea of the
methodology is essentially analogous (first we approximate the density function by Shannon
Wavelets and then we compute the density and pay-off coefficients), the complexity of the
pay-off function leads to emerging challenges concerning the characteristic function com-
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putation, termed here as the characteristic function of the asset log-return maximum Xm.
It turns out impossible to derive an analytic expression for this function and it should be
calculated by a recursive formula which, in turn, involves the computation of a large number
of new coefficients ak. The efficient calculation of ak becomes the central point to make the
SWIFT method for Discrete Lookback option highly efficient. Additionally, for the most
relevant dynamics, we do not hold a closed expression for ak and numerical approximations
need to be done. Next, we provide a list of the key contributions of our own research
carried out in the second part of this thesis:

• We derive a recursive formula for the evaluation of the characteristic function of the
asset log-return maximum Xm based on the application of the Spitzer’s Formula and
using similar ideas to those in [18]. Further, we compare it with an alternative recursion
introduced in [9]. Although the theoretical computational complexity is clearly lower
for this recursion, our derivation turns out to be considerably more efficient as we
implement it with the software MATLAB. It is also worth mentioning that our recursive
formula allows to price the option at any monitoring time.

• We develop a general methodology to approximate numerically the coefficients ak. We
explore several approaches: first we use Haar wavelets and rule out this technique
since it results excessively inefficient. Second, we derive a strategy using Shannon
wavelets which allows a fast computation of ak by the application of a FFT algorithm.
Furthermore, this methodology turns out to be remarkably versatile and flexible since it
does not depend on the dynamics and only requires the availability of the characteristic
function of the log-return process Lt.

• We provide an efficient implementation of the SWIFT method for Discrete Lookback
options in MATLAB and analyze our results by comparing them with those reported
in [9]. Again, the method shows to be robust, efficient and accurate. Additionally,
although the comparison of CPU times is a bit unfair due to the fact that our method
has been implemented in a worse computer and with a different programming software,
the SWIFT method seems to be more efficient than the highly efficient FTBS method
introduced in [9] as the number of monitoring points increases (case of interest), spe-
cially for the Variance Gamma Process.

The lack of time has left several aspects open both to complete the method and to verify
that it is actually more efficient than the FTBS method. Further research needs then to
be done to improve the methodology derived in this thesis. This includes the derivation of
an expression for the cumulants of the characteristic function of Xm in order to avoid the
dependence on an a priori truncation of the integration domain, the performance of an error
analysis for each of the approximations and the implementation of the method in C++ to
include the recurrence of the characteristic function developed in [9] which exhibits a lower
computational complexity. It would also be convenient to implement the FTBS method in
the same computer and programming language to a fair comparison of CPU times.
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Appendix A

Processes and Characteristic functions

In this chapter, we provide the definition of the models considered in the numerical ex-
periments sections together with their characteristic functions which have been used in the
implementation of the SWIFT method. Our definition of the characteristic function coin-
cides with the following definition of the Fourier transform of the density function f of the
process:

f̂ (ξ) =

∫
R
f(x) · e−i·x·ξdx.

For further details on these processes, we refer to the reader to [30] for the Geometric Brown-
ian Motion, [22] for the CGMY model, [15] for the Heston model and [6] for Variance Gamma.

1) The Geometric Brownian Motion (GBM). The GBM is a continuous-time
stochastic process used in mathematical finance to describe stock prices dynamics in one
of the most important and notorious models in modern financial theory, the Black-Scholes
model. This model was developed in 1973 by Fisher Black, Robert Merton and Myron Sc-
holes and is still widely used in 2017 since computations become relatively easy. The model
assumes that the price of heavily traded assets St follows a geometric Brownian motion with
constant drift µ and volatility σ depicted by the following SDE:

dXt =
(
r − σ2/2

)
· dt + σ ·Wt,

where Xt = log(St/K) is the log-asset price and r is the risk-less interest rate. We have
also assumed risk-neutral probability measure. It is easy to see from this expression that the
log-asset price Xt follows a normal distribution. Hence, one may derive the characteristic
function of the GBM straightforwardly by computing the Fourier transform of a normal
probability distribution. One obtains then:

f̂GBM (ξ) = exp

(
− iξ ·

(
r − q − 1

2
σ2

)
· (T − t)− 1

2
σ2ξ2 · (T − t)

)
,

where parameter q represents a dividend yield, which is often set to zero in our experiments.
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2) The CGMY model. One problem with the GBM model is that it is not able to
reproduce the volatility skew or smile present in most financial markets. Over the past
few years it has been shown that several exponential Lévy models are, at least to some
extent, able to reproduce the skew or the smile. One particular model is the CGMY model
introduced by Carr and explained with detail in [22]. The main feature of this model is the
incorporation of a jump component which intuitively models the abrupt news arrival. Now,
the dynamics of the log-asset price Xt are driven by the following SDE:

dXt = (r − v) · dt + dLt,

where again r is the risk-less interest rate, v is a convexity adjustment so that EQ (ST ) =
er(T−t)St and dLt is the increment of a Lévy process. In this case, the probability density
function does not allow an analytic expression and the characteristic function of the log-asset
price should be found employing other techniques. It reads:

f̂CGMY (ξ) = exp
(
− iξ · (r − q + s) · (T − t)

)
· exp

(
C · Γ (−Y ) ·

(
(M + iξ)Y −MY + (G− iξ)Y −GY

)
· (T − t)

)
,

with C, G, M and Y parameters governing the density and Γ(·) represents the Gamma
function. Additionally,

s = −C · Γ (−Y ) ·
(

(M − 1)Y −MY + (G+ 1)Y −GY
)
.

The parameter C controls the overall kurtosis of the distribution. The parameters G and
M control the overall rate of exponential decay on the right and left of the Lévy density,
respectively. When they are equal to each other, the distribution of the CGMY model be-
comes symmetric. The case G 6= M leads to a skewed distribution. Finally, the parameter
Y is used to characterize the fine structure of the stochastic process.

3) The Heston Model. The main drawback of the CGMY model (also present in the
Black-Scholes model) is the assumption that volatility remains constant over the option’s
life and unaffected by the changes in the price level of the underlying security, which is not
the case because volatility fluctuates with the level of supply and demand. To settle this
shortcoming, stochastic volatility models were introduced. These models adopt the approach
that the volatility of the underlying price is a stochastic process rather than a constant or
a deterministic function. We particularly focus on the Heston Model developed in 1993 by
Steven Heston. This model integrates now a new SDE for the volatility, denoted here by√
ut in addition to the one of the underlying asset:{

dXt =
(
µ− 1

2
ut
)
·Xt · dt +

√
ut ·Xt · dW1t,

dut = λ · (ū− ut) · dt + η · √ut · dW2t,
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whereXt denotes the log-asset price and ut the variance of the asset price process. Parameters
λ ≥ 0, ū ≥ 0 and ν ≥ 0 are called the speed of mean reversion, the mean level of variance,
and the volatility of the volatility, respectively. Furthermore, the Brownian motions W1t and
W2t are assumed to be correlated with correlation coefficient ρ. Thus, ρ is another parameter
of the model. As in the case of the CGMY model, it is not possible to find a closed expression
for the probability density function and the characteristic function should be found using
more sophisticated methodologies. It is given now by:

f̂Heston (ξ;u0) = exp

(
− iξµ · (T − t) +

u0

η2
·
(

1− e−D·(T−t)

1−G · e−D·(T−t)

)
· (λ+ iρηξ −D)

)
· exp

(
λū

η2
·
(

(λ+ iρηξ −D) · (T − t)− 2 · ln
(

1−G · e−D·(T−t)

1−G

)))
,

where we have introduced the following variables depending on ξ,

D =

√
(λ+ iρηξ)2 + (ξ2 − iξ) η2 and G =

λ+ iρηξ −D
λ+ iρηξ +D

.

4) The Variance Gamma (VG) process. This process is another three parameter
generalization of Brownian motion as a model for the dynamics of the logarithm of the stock
price. Again, it allows for a wider modeling of skewness and kurtosis than the Brownian
motion does. This new process is obtained by evaluating a Brownian motion W (t), with
constant drift and volatility, at a random time change Γ(t; 1, ν) which has a gamma density
and is often viewed as ”business time”, reflecting the random speedups and slowdowns in
real-time economic and business activity. The dynamics of the log-asset price Xt are given
by:

Xt = µ · Γ(t; 1, ν) + W (Γ(t; 1, ν)) ,

where µ and σ > 0 are the drift and the volatility of the Brownian motion respectively, and
ν > 0 is the variance rate of the gamma time change. This model allows us to control the
skew via the parameter µ and the kurtosis by means of parameter ν. We are interested,
however, in the risk-netural dynamics since we aim to apply the Feynman-Kac formula. In
this case, the dynamics equation reads:

Xt = r · t + µ · γt + σW (γt) − ω · t,

where again W (t) is the standard Brownian Motion and we have introduced γt ∼ Γ(t/ν, ν)
and the compensator ω = −(1/ν) · ln

(
1− µ · ν − 1

2
σ2ν . The probability density function

does not allow a closed expression and the characteristic function should be found using
more sophisticated methodologies. It reads:

f̂V G (ξ) = e−i·ξ·(r−ω)·(T−t) ·
(

1

1 + i · µνξ + 1
2
· σ2νξ2

)T−t
ν

.
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Appendix B

Cumulants of the processes

The cumulants cn of a probability distribution are a set of quantities that provide an alter-
native to the moments of the distribution. The moments determine the cumulants in the
sense that any two probability distributions whose moments are identical will have identical
cumulants as well, and similarly the cumulants determine the moments. We provide in next
statement the exact definition of the nth cumulant cn by means of the introduction of the
cumulant generating function g(ω) of a random variable:

Definition B.1 (Cumulant generating function). Let φX be the characteristic function cor-
responding to a random variable X. We define the cumulant generating function of this
random variable by the following expression,

g(ω) := logE
(
eωX

)
= log φX (−iω) , (B.1)

and the nth cumulant of X, denoted here by cn, is given by the nth derivative at zero of the
cumulant genrating function g(ω), that is, cn := g(n)(0).

The first cumulant c1 is the mean, the second cumulant c2 is the variance, and the
third cumulant c3 is the same as the third central moment. But fourth and higher-order
cumulants are not equal to central moments. As have been mentioned in the section of
numerical experiments, we use the cumulants to determine the size of the integration interval
since they often provide reliable intervals for the approximation. We particularly use the
following formula to determine the integration interval:

[a, b] :=

[
x0 + c1 − L

√
c2 +

√
c4, x0 + c1 + L

√
c2 +

√
c4

]
, with L = 10.

Next table summarizes the values of the cumulants for the different processes considered
in this thesis: the geometric Brownian motion (GBM), the CGMY model, the Heston model
and the Variance Gamma process (VG).
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GBM

c1 = µ · T
c2 = σ2 · T
c4 = 0

w = 0

CGMY

c1 = µT + C · T · Γ (1− Y ) ·
(
MY−1 −GY−1

)
c2 = σ2T + C · T · Γ (2− Y ) ·

(
MY−2 +GY−2

)
c4 = C · T · Γ (4− Y ) ·

(
MY−4 +GY−4

)
w = −C · Γ (−Y ) ·

[
(M − 1)Y −MY + (G+ 1)Y −GY

]

HESTON

c1 = µ · T +
(
1− e−λT

)
· ū− u0

2λ
− 1

2
ū · T

c2 =
1

8 · λ2
·
[
ηTλe−λT · (u0 − ū) · (8λρ− 4η)

+ λρη ·
(
1 − e−λT

)
· (16ū − 8u0)

+ 2ūλT ·
(
−4λρη + η2 + 4λ2

)
+ η2 ·

(
(ū− 2u0) · e−2λT + ū ·

(
6e−λT − 7

)
+ 2u0

)
+ 8λ2 · (u0 − ū) ·

(
1 − e−λT

) ]
c4 = 0

w = 0

VG

c1 = (r + µ) · T
c2 =

(
σ2 + νµ2

)
· T

c4 = 3 ·
(
σ4ν + 2µ4ν3 + 4σ2µ2ν2

)
· T

w =
1

ν
· ln
(
1− µν − σ2ν/2

)
Table B.1: Cumulants for the GBM, CGMY and Heston dynamics.
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