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de Comunicaciones Ópticas por haberme dado la excelente oportunidad de trabajar un año
entero en un ambiente de investigación emocionante y estimulante. Agradezco tanto el apoyo
académico y personal que el grupo me ha brindado, como el económico.
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Abstract

In this work we present a continuous queuing model called the logistic queue model.
We show that in terms of queue size and outflow prediction, our model is as precise as a
discrete event simulator with the additional advantage of speed in simulations. We prove
mathematically that our proposed model has all the theoretical properties one should expect,
e.g. positivity of queue, FIFO property. Finally, in contrast with other continuous models
–Vickrey’s point-queue model– our model can be easily integrated numerically and moreover
it allow us to naturally explore multiple extensions relevant to telecommunication networks
such as: finite queues, multiple servers, priority queues, etc.

Keywords: queueing theory, fluid flow model, fluid queues, telecommunication networks,
simulation, modeling, differential equations.

Resumen

En este trabajo presentamos un modelo continuo de teoŕıa de colas llamado el modelo
de la cola loǵıstica. Mostramos que en cuanto al tamaño de la cola y a la predicción del
fujo de salida se refiere, este es tan preciso como un simulador de eventos discretos con
la ventaja de ser más rápido en las simulaciones. Demostramos matemáticamente que el
modelo posee propiedades teóricas importantes, e.g. positividad de la cola, propiedad FIFO.
Asimismo, a diferencia de otros modelos continuos –modelo de la cola puntual de Vickrey–
nuestro modelo puede integrarse numéricamente con facilidad y además puede extenderse
para casos relevantes a las redes de telecomunicaciones: colas finitas, colas con prioridades,
etc.

Palabras clave: teoŕıa de colas, colas fluidas, redes de telecomunicaciones, simulación,
modelización, ecuaciones diferenciales.
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Chapter 1

Introduction

1.1 Motivation

The expected explosion of services offered on the Internet has revealed new paradigms in
telecommunication networks. Traffic forecasts in [1] and [2] reveal that the exchange of data
between data-centers (DCs) will reach 905 exabytes per year by 2019. This is induced by
an increasing IP traffic that will be mainly coped by video services: 80% of total IP traffic by
2019. Aiming at interconnecting DCs and services, connectivity from the transport network
is required to carry traffic flows between network nodes, each consisting of a mix of different
services.

From the network perspective, transport networks are currently configured with big
static fat pipes. They are based on capacity over-provisioning aiming at guaranteeing traffic
demand and Quality of Service (QoS). Cloud-ready transport network [3] was introduced as
an architecture to handle a dynamic cloud and network interaction. The evolution towards
cloud-ready transport networks (telecom cloud) is based on intelligent control architectures
and elastic data planes that can satisfy cloud requirements efficiently for both network and
cloud operators [5].

The optimization of telecom cloud infrastructures includes network planning and recon-
figuration by means of various mathematical and computational techniques [6]. Among
them, dynamic network simulation is of paramount importance in order to evaluate the
performance of new services and applications over the network. To that end, one of the key
elements in the simulation is how to generate and model network traffic. Traffic generation
is a useful technique that enables studying and evaluating the network performance through
simulation, when real traffic traces are not available. Authors in [7] presented traffic gener-
ators to inject realistic traffic flows in telecom cloud simulated systems. Basically, different
type of functions like piecewise linear, polynomial or trigonometric are used to model traffic
flow average profiles that can be periodical and evolutionary, e.g. incremental. Besides,

13



14 CHAPTER 1. INTRODUCTION

traffic is characterized by a random function around that average.

Simulations based on flow-based models present interesting features such as optimum
efficiency and easiness of traffic parameter characterization. However, the mix of services
that could be aggregated into a flow could be too much heterogeneous and variable to allow
a good characterization following such a simple approach. Moreover, interesting outputs
that could be measured in simulation such as end-to-end latency or node switching delay
cannot be accurately obtained due to the inherent nature of flow-based models that hides
any individual service behavior. This is due to the fact that this approach models traffic
directly without considering queues or servers in the network.

An alternative approach is to use a packet based simulations where traffic is generated
and simulated at the packet level, i.e. characterizing the packet generation of an individ-
ual service and running a discrete event simulation that process the transition of the
packet from source to destination to every intermediate node [8]. This way we do consider
queues and servers in the network, and hence can measure accurately quantities of interest
such as latencies or delays. It is worth noting that the amount of information that could
be obtained from a discrete event simulation based on a packet-based traffic generator is
unbeatable. However, when high income bit-rates e.g. in the order of dozens of Gb/s per
flow, the computational cost of processing the resulting huge number of packets is pro-
hibitive even for small networks. To this aim, in the last years several research works have
focused on providing alternative simulation environments allowing a fine granular view of
the system comparable with that of packet-based simulations with that much more efficiency
and scalability of flow-based ones.

One of the most successful approaches for doing so has been the use of fluid flow models
[9]. Basically the idea is to consider only changes in rates of traffic flows. This can result
in large performance advantages because information about the individual packets is not
considered but only their joint behavior. A fluid simulator records the changes in the fluid
rate in the source and the queue, while a packet simulator records the events of all the
packets in the system. The abstraction takes place when packet flows with little time slots
separations are considered to be in the same fluid flow with a constant fluid rate. Little
time variations among packets are not considered, and in this way the number of events is
reduced. Of course, a critical issue of this kind of models is how to choose the time slots
when one is given an arbitrary flow. Moreover, recording the changes in the fluid rate can
still be seen as being discrete in nature.

In the end, that type of models can be seen as discrete variations of the famous Vickrey’s
point-queue model [11]. This is a purely continuous model –we do not have to keep track of
time slots– of a queue with a server formulated through an ordinary differential equation
(ODE). It has been throughly studied, being one of the most notable works the one done in
[12]. In that article the authors find an explicit solution to the previous differential equation
and with that formula at hand they are able to prove many desirable properties of the point-
queue model, e.g. positivity of the queue size and the first in, first out (FIFO) property.
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However there are some issues with the model. The most obvious one is that the vector field
induced by the differential equation (see 3.4) is not continuous and hence in general there do
not exist classical solutions. This is computationally and numerically problematic since we
can not apply usual ODE integrators. Nevertheless it is worth noting that the authors give
in [13] an applicable numerical algorithm. The main problem that remains is generalization.
Since the numerical algorithm they derive relies in the exact solution they found, we can not
expect to have numerical schemes for more general cases of interest in telecommunication
networks such as: finite queues or priority queues.

1.2 Contributions

In this work we present a novel queuing model to solve the aforementioned problems. This
new model, which we call the logistic queue model can be seen as a smooth formulation
of the point-queue model. This is important, since in such a way we are able to use common
numerical integrators. We give original mathematical proofs of all the theoretical prop-
erties one should expect: i) positivity of the queue size, ii) asymptotic behavior : the queue
gets empty if the inflow does not overflow and iii) FIFO property : the system satisfies a first
in, first out discipline.

Moreover, we validate the model comparing it with a discrete event simulator. This way
we show that for many purposes our model is as precise as a discrete one with the advantage
of speed in simulations. We compare simulation times and conclude that the logistic queue
model is several orders of magnitude faster than a discrete one. Finally, in contrast with the
point-queue model, our model allow us to easily explore multiple extensions –important
for telecommunications– to more general scenarios such as: finite queues, multiple servers,
priority queues, etc.

Lastly we give an application of the model in a telecommunication network where we
confirm its versatility and potential.

1.3 Organization

The rest of this work is organized as follows: in chapter 2 we review some basic concepts
of optical telecommunication networks and queuing systems. In chapter 3 we present the
logistic queue model. There, we give a full derivation of it, with all the motivations behind
the equations. Then we present original proofs of theoretical properties of the model. Finally
we end the chapter discussing some issues related with the application of the model with
real data. In chapter 4 we present important extensions of the model so that it can handle
more general situations common in telecommunication networks. In chapter 5 we validate
the model comparing its performance with a discrete event simulator. Finally in chapter
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6 we give an application of the model to show its potential. The report ends with some
concluding remarks.



Chapter 2

Background

In this chapter we review some basic concepts of optical networks and queuing systems.

2.1 Introduction to dynamic optical networks

An optical network can be defined as a graph with its representative equipment based on
a certain optical technology. In general, it is represented by an undirected graph where
the edges are fiber optic links and the vertices are optical nodes capable of establishing and
deleting optical connections. The optical technology uses a range of frequencies of the total
Optical Spectrum (OS), and it is measured in Gigahertz (GHz). The capacity of an optical
link depends on the OS width and other factors like the spectral efficiency of established
connections. This part of the network is called the optical layer.

On top of the above described optical layer, large packet nodes (e.g. IP routers or
Ethernet switches) are collocated, they serve as end points of network traffic, as well as
support intermediate transit operation. Thus, a traffic flow is a request of bitrate to be
transported between a source packet node and a termination packet node usually expressed
in Megabits per second (Mb/s) or Gigabits per second (Gb/s). When a demand is accepted,
an optical connection in the network is established between source and termination nodes;
these optical connections are called lightpaths since they allow the data transmission as a
light wave.

From the abstracted view of the packet layer, a lightpath is considered as a virtual link
directly connecting two packet nodes. In this layer, data is transmitted discretely in the form
of packets. Packet sizes are usually measured in bytes (1 byte is equal to 8 bits). Thus,
a virtual topology is used to route and serve traffic between source and destination nodes.
Hence we have two layers in the network: the physical layer –the optical layer– where data is
transmitted as a light wave and a virtual layer –the packet layer– where data is transmitted
in the forms of packets.

17



18 CHAPTER 2. BACKGROUND

In the packet layer is where we have queues and servers. There is where our main focus
will be for the rest of this report. Packets are sent from a source packet node to a termination
packet node using servers of given velocities (usually in Gb/s). When a packet finds a server
occupied it enters into the waiting line, i.e. a queue, until the server becomes free and it
can be used.

Two different approaches can be considered for planning and operating communications
networks: static and dynamic traffic scenarios. In static traffic scenarios, no changes are
considered in the connections established during the working period of the network. Thus,
the information about client demands to be served, i.e. the source and destination nodes
and the required bandwidth, is known in advance. Since the routing of those demands can
be computed before the network begins to operate and no changes are allowed during the
working time, the optimality of the network planning is always kept.

On the contrary, in dynamic traffic scenarios demands are not known in advance and
connections are continuously set up and torn down. We assume that client requests arrive
to the network following a certain probability distribution function. Moreover, connections
remain active during a certain period of time, i.e. the service time, which can be also modeled
by another probability function. In this scenario is where simulation and modeling come
into play. Given a particular situation where we model client requests, network capacities
(queues lengths, server speeds) network topology, etc; we can simulate the network and
evaluate its performance.

Figure 2.1: Simplified network architecture example.

A simplified network architecture is presented in Figure 2.1, where an optical transport
network containing a set of packet nodes is interconnected by means of virtual links in the
packet layer. Each virtual link is supported by one or more optical connections in the optical
layer. Thus, traffic is served through such capacity.

The network in the example interconnects different access and metropolitan areas where
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service end users are. All traffic generated in one area targeting other area in the operator
domain or another network (e.g. Internet) is aggregated in the source packet node and sent
towards the destination node, thus becoming a traffic flow. For instance, in the example
above, the depicted OD flow can include at the same time: i) traffic between end users of
both areas, ii) traffic between the source area and a large Data Center (DC), and iii) traffic
from the small to the large DC.

2.2 Queuing models

Queueing theory is the study of waiting lines. Using mathematical and computational tools
a model is constructed so that queue lengths and waiting times can be predicted. In general
there exist many types of queueing models, being the the probabilistic [14] the most com-
mon ones. They are very important conceptually and theoretically, nevertheless we will not
make use of them explicitly.

The second most usual models are discrete event simulation systems. Before describ-
ing in some detail how we can model a queue and a server using a discrete event simulator
we will describe the functioning of our system in more intuitive terms.

Figure 2.2: Schematic picture of a system consisting of a server with a queue.

In Figure 2.2 we show a schematic picture that models a server with a queue. Entities (e.g.
customers, packets) are generated from Generator following some probability distribution
(e.g. exponential). Each entity is created at a specific instant of time. Then it has to be
served, if the Server is free when it was created, it is processed, else it joins the Queue. We
assume that the server has an associated speed µ, this means that our system is capable of
processing µ entities per unit of time. When the server gets free, the first entity in queue
goes to the server and abandons the waiting line. This type of queues are called first in, first
out (FIFO). Finally all entities end in a Sink where they are terminated.

Now we can describe the flow-chart associated to a discrete event simulator in more
precise terms. A discrete event simulator consists of an ordered list of future events to be
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executed. Each event has an associated instant of time when it has to be done.

Figure 2.3: Flow-chart associated to system consisting of a server with a queue.

The simulator only considers instants at which an event occurs, in the meantime every-
thing remains unchanged. Internally a simulation clock is used to keep track of simulated
time. To process an event in the list, we advance the clock to the time of the event, then
we change the system state to reflect the impact of the event. For example, if a customer
arrives it must be enqueued. Also, new events caused by the event at hand are scheduled
and put in the list of future events. For example, if the server is idle, it starts to serve the
customer, so a new event has to be generated indicating the time at which the server will be
empty again. The simulation ends when no events are left in the list. A detailed scheme of
the whole process for our system is shown in Figure 2.3.

Lastly, we also have fluid flow models where we allow arrivals to be continuous rather
than discrete. This means that instead of considering each entity discretely, we consider the
continuous flow generated by them. Thus, the queue size becomes a continuous function of
time. The logistic queue model is of this type. In the next chapter we will see how they
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come up naturally as a consequence of a conservation law.

2.3 Summary

In this chapter we have given the basic concepts of optical dynamical networks relevant for
the rest of the report. The main idea is that data is transmitted discretely in the form of
packets using servers from a source node to a destination node in the network. Moreover
we have explained in some detail how we can use a discrete event simulator to model a
server with a queue. This is an important model because we will compare the performance
of the logistic queue model with it. It is important to stress that in contrast to a discrete
event simulator, the logistic queue model is a fluid flow model, which means that it does not
consider each packet independently but the flow generated by them. This will be the topic
of next chapter.
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Chapter 3

The logistic queue model

In this chapter we present the logistic queue model. We give a full derivation of it, with all
the motivations behind the equations. Then we give original proofs of theoretical properties
of the model. Finally we end the chapter discussing some issues related with the application
of the model in a realistic data scenario.

3.1 Derivation

Assume we have a system with an inflow of entities arriving to a server of constant speed
µ with an infinitely long queue as the one of Figure 3.1. In probabilistic terminology the
system is denoted as G/D/1 [14]. We will derive an equation that relates the number of
entities in queue C with the inflow to the system f and the outflow g.

Figure 3.1: Example of a system with a queue and a server of speed µ.

Note that each quantity has the following units:

• [µ] = entities/time.

• [C] = entities.

• [f ] = [g] = entities/time.

23
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We will assume that the amount of entities in queue C(t) in the instant t is a real number.
This will be a reasonable approximation if the inflow is large enough: f � 1, physically
this means that many entities arrive to the system (which is the case in telecommunication
networks). Also, this will make us not to distinguish between entities in queue and entities
in the system. Therefore, for a short period of time dt the amount of entities that have
arrived to the system is approximately f(t) · dt and likewise the number of them that have
abandoned it is g(t) · dt. This gives us the following conservation law:

C(t+ dt) = C(t) + f(t) · dt− g(t) · dt,

which in the limit when dt→ 0 reads:

C ′(t) = f(t)− g(t). (3.1)

We shall assume that there is a functional relationship between f, g and C, and express
the outflow as a function of the inflow and the queue size:

g(t) = g(f, C) = µ+ e−αC(t) [min{µ, f(t)} − µ] . (3.2)

where:

1. µ > 0 is maximum outflow rate of the server.

2. α is a positive parameter taken to be ρ
µ
, where ρ = λ

µ
is the average intensity, λ is the

mean of the inflow to the system:

λ = 1
t1−t0

∫ t1

t0

f(t)dt

and [t0, t1] is the interval of definition of f .

The rationale behind this definition of α = ρ
µ

is the following: dividing by µ normalizes
the queue size, and weighting by ρ takes into account the intensity of the inflow. Note that
by construction we have:

1. If at t the queue is empty, i.e. C(t) = 0, then the outflow is just min{µ, f(t)}.

2. If the inflow is bigger than the maximum capacity, i.e. f(t) > µ, then the outflow is
just µ.

3. If C(t)→ +∞ then the outflow tends to µ.

It is instructive to have a qualitative idea of how the outflow depends of the queue size. In
Figure 3.2 we make a plot of g = g(f0, C0) for a fixed time t0 and varying C0 = C(t0).

In the picture we are assuming that f(t0) = 0.5. It is important to stress that this figure
reflects all possible outflows we may get at a fixed instant of time t0 depending on the queue
size C0 we have. Finally we put together (3.1) and (3.2) in the following definition:
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Figure 3.2: Possible outflows we may get at a fixed instant of time t0 depending on the queue
size C0.

Definition 3.1.1 (Logistic Queue Model). Given an initial condition C(t0) = C0, a
continuous and positive inflow function f : [t0,+∞) → [0,+∞) and a maximum outflow
rate µ > 0, the logistic queue model is the following ordinary differential equation:

{
C ′(t) = f(t)−

[
µ+ e−αC(t) (min{µ, f(t)} − µ)

]
for t > t0,

C(t0) = C0.
(3.3)

Remark 3.1.2 Observe that if we let α → +∞ we get the famous Vickrey’s point-queue
model [11, 12]:

C ′(t) = f(t)−

{
min{µ, f(t)} if C(t) = 0,

µ if C(t) 6= 0.
(3.4)

Note that the right hand side of the ODE is not continuous when C → 0. In the next section
we will prove that the logistic queue model has all theoretical properties of the point-queue
model discussed before with the additional advantage that it is easy to integrate numerically
because the ODE is smooth. Moreover, we will see that our model allow us to explore multiple
extensions to more general scenarios such as: finite queues, multiple servers, priority queues,
etc.
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3.2 Theoretical Properties

In this section we prove theoretical properties of the model. Let’s start with existence,
uniqueness and positivity.

Proposition 3.2.1 (Existence, Uniqueness and Positivity). Given an initial condition
C(t0) = C0 ≥ 0, a continuous and positive inflow function f ≥ 0 and a maximum outflow
rate µ > 0, we have that there exist a unique continuous differentiable solution C(t) to the
system (3.3) defined in an interval [t0, Tmax) for Tmax ≤ +∞. Moreover such solution is
always greater or equal than zero.

Proof. Existence, uniqueness and differentiability of C(t) in an interval [t0, Tmax) for Tmax ≤
+∞ is an easy consequence of the fact that the right hand side of (3.3) is a smooth function
of the variable C and it is continuous in t, hence we can apply Cauchy-Lipschitz theorem [15].
Let us prove now positivity. Assume that for some time t− > t0 we have that C(t−) < 0.
Then, since C(t) is continuous and C0 ≥ 0, there must be a t+ and a t∗ such that t+ < t∗ < t−
where C(t+) ≥ 0 and C(t∗) = 0 (see Figure 3.3). Also, after reducing the interval I = [t+, t−]
if necessary, we may assume that C(t) is strictly decreasing there. Therefore we have:

C ′(t) ≤ 0 in I = [t+, t−].

Figure 3.3: C is decreasing in [t+, t−].

Let’s see how this implies that f(t) ≤ µ in I. Indeed if f(t) > µ for some t ∈ I we would
have using (3.3) that C ′(t) = f(t)− µ > 0, which is a contradiction. Hence we deduce that
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C̃(t) ≡ 0 is a solution of{
Q′(t) = f(t)−

[
µ+ e−αQ(t) (min{µ, f(t)} − µ)

]
for t ∈ I,

Q(t∗) = 0,
(3.5)

which is impossible because we would have two different solutions C and C̃ of (3.5) in
I.

Remark 3.2.2 As a consequence of the previous proposition we deduce that if the queue
starts empty, i.e. C(t0) = 0, and the inflow is always smaller than the maximum outflow
rate:

f(t) < µ for all t ≥ t0,

then the queue remains empty for all times and the outflow is equal to the inflow.

Now we are ready to prove some asymptotic properties of the queue:

Proposition 3.2.3 (Asymptotic behavior). Let C(t0) = C0 ≥ 0 be an initial condition,
f ≥ 0 a continuous and positive inflow function and µ > 0 a maximum outflow rate. Then
the solution of (3.3) is defined for all times, i.e. it is defined in the interval [t0,+∞).
Moreover if the inflow satisfies:

f(t) ≤ f∞ < µ for all t ≥ tf (3.6)

for some time tf > t0 then
lim
t→+∞

C(t) = 0.

Proof. Note that we can rewrite (3.3) as:

C ′(t) = f(t)− µ+ e−αC(t) (µ−min{µ, f(t)}) , (3.7)

but since C(t) ≥ 0 we have that e−αC(t) ≤ 1, and moreover µ−min{µ, f(t)} ≤ µ. Hence we
deduce that:

C ′(t) ≤ f(t)− µ+ µ = f(t),

so finally we get that:

C(t) ≤ C0 +

∫ t

t0

f(s)ds.

Therefore C(t) is defined for all times since f is continuous and hence integrable. Assume
now that f satisfies (3.6). Then, using (3.7), we get:

C ′(t) = (1− e−αC(t)) · (f(t)− µ)

≤ (1− e−αC(t)) · (f∞ − µ), for all t ≥ tf .
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Now, it is well known that the exponential satisfies:

eαC =
∞∑
n=0

(αC)n

n!
≥ 1 + αC, for all C ≥ 0.

Hence,

e−αC ≤ 1

1 + αC
⇔ 1− e−αC ≥ 1− 1

1 + αC
=

αC

1 + αC
.

Now, since (f∞ − µ) < 0 we get the following inequality:

C ′ ≤ αC · (f∞ − µ)

1 + αC
.

Calling β = µ− f∞ > 0 and rearranging terms we obtain:

(1 +
1

αC
) · C ′ ≤ −β ⇔ d

dt

(
C +

logC

α

)
≤ d

dt
(−βt) .

Therefore, integrating from tf to t,

C(t) +
logC(t)

α
≤ −βt+ k, for all t ≥ tf

where k = Cf +
logCf
α

+ βtf and Cf = C(tf ). Applying the exponential in both sides of the
inequality one gets:

C1/α · eC ≤ e−βt+k. (3.8)

Finally, last equation implies that

C(t) ≤ eα(k−βt), for all t ≥ tf .

So the queue gets empty exponentially fast as stated.

Remark 3.2.4 Equation (3.8) gives us an estimate of how fast the queue goes to zero.
Assuming (3.6) and given a fixed tolerance ε > 0, if we impose that:

C(t) ≤ eα(k−βt) · e−αC(t) ≤ ε,

then we find that the emptying time Tε(Cf ) ≥ tf needed to empty the queue within a
tolerance ε > 0 satisfies the following bound:

Tε(Cf ) ≤ tf +
Cf − ε
µ− f∞

+
1

α · (µ− f∞)
· log

(
Cf
ε

)
. (3.9)

Note that the previous equation has the following expected physical properties:
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1. The fastest way to empty the queue is by stopping the inflow, i.e. taking f∞ = 0. On
the other hand, if f∞ → µ then the bound goes to infinity as expected.

2. If α→ +∞ then we get that the bound is equal to the emptying time of the point-queue
model (3.4).

3. The bound is optimal because if we take ε = Cf then we deduce that Tε(Cf ) = tf .

�

Example 3.2.5 Constant inflow. Assume that the inflow to the system is constant, i.e.
f(t) ≡ f∞ < µ. Fix also some C0 > 0 and t0 = 0. Then we have that (3.3) reduces to:{

C ′(t) = f∞ −
[
µ+ e−αC(t) (f∞ − µ)

]
for t > 0,

C(0) = C0.
(3.10)

This can be easily integrated, so we get the following explicit formula:

C(t) =
1

α
log
(
1 + keγt

)
(3.11)

where γ = α · (f∞ − µ) < 0 and k = eαC0 − 1 > 0. From the formula above is clear that
C(t) ≥ 0 and that limt→+∞C(t) = 0 as expected (see Figure 3.4).

Figure 3.4: Plot of queue size (3.11) for constant inflow f(t) ≡ 0.5 with µ = 1, α = 1
2

and
C0 = 1.
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Let’s now compare the bound we got in previous remark for the emptying time:

T̂ε(C0) =
C0 − ε
µ− f∞

+
1

α · (µ− f∞)
· log

(
C0

ε

)
, (3.12)

with the exact one we get with the analytical solution:

Tε(C0) =
1

α · (µ− f∞)
· log

(
eαC0 − 1

eαε − 1

)
. (3.13)

Note that we have the following:

1. Tε(C0) ≤ T̂ε(C0) as we already know.

2. In the limit:

lim
α→+∞

Tε(C0) =
C0 − ε
µ− f∞

.

So we recover the emptying time of the point-queue model.

3. When both C0 and ε are small, we have that eαC0−1
eαε−1 ≈

C0

ε
. Hence T and T̂ only differ

by the linear term C0−ε
µ−f∞ .

To conclude this example in Figure 3.5 we make a plot of T and T̂ with respect to C0 and
for µ = 1, f∞ = 0.5, α = 1

2
and ε = 0.05.

Figure 3.5: Comparison of Tε and T̂ε for µ = 1, f∞ = 0.5, α = 1
2

and ε = 0.05.
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As already said, we can see in the plot that the bound is pretty accurate when C0 is
small, afterwards it deteriorates. �

To end this section we will show that our model satisfies the FIFO (first-in first-out)
property, this is, that the entity that arrives first to the queue is also the one that gets out
first. To accomplish this, we introduce the exit time of an entity that has arrived in the
instant t as:

Λ(t) = t+
C(t)

µ
. (3.14)

The rationale behind this definition is the following: C(t)/µ has units of time and it
represents approximately the amount of time needed for emptying the queue if no more
entities arrived after t.

We have the following proposition:

Proposition 3.2.6 (FIFO property). Let C(t0) = C0 ≥ 0 be an initial condition, f ≥ 0
a continuous and positive inflow function and µ > 0 a maximum outflow rate. Then

If t < s we have that Λ(t) < Λ(s).

In other words the exit time of an entity that has arrived in the instant t is smaller than
other that arrives at s > t.

Proof. We have that Λ(t) < Λ(s) is equivalent to:

C(s)− C(t)

s− t
> −µ. (3.15)

Since C is differentiable, by the Mean-Value theorem [17] we know that there exists a ξ ∈ (t, s)
such that

C ′(ξ) =
C(s)− C(t)

s− t
.

Now, we distinguish two cases:

1. f(ξ) < µ. There are two sub-possibilities:

• C(ξ) = 0. In this case C ′(ξ) = f(ξ)− f(ξ) = 0 > −µ, so (3.15) holds.

• C(ξ) > 0. In this case the outflow g satisfies 0 < g(ξ) < µ, hence

C ′(ξ) = f(ξ)− g(ξ) ≥ −g(ξ) > −µ.

2. f(ξ) ≥ µ. In this case C ′(ξ) = f(ξ)− µ > −µ, so (3.15) holds.
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3.3 Applying the model

When we apply the logistic model with real data there are several considerations that must
be taken into account. We discuss some of them in the following.

3.3.1 Discrete inflow

The inflow must be given to the logistic model in a continuous fashion. However in practice
we only see discrete entities arriving to the system. Hence we need to approximate our ideal
continuous inflow. In order to do this, we simply count how many entities have occurred
each dt seconds and then add them. In more mathematical terms, in a point of the form
ti+1 = (i+ 1) · dt we put

f(ti+1) ≈
1

dt

∑
(entities occurring in [i · dt, (i+ 1) · dt]) .

It may also be the case that we are already given the inflow at a discrete set of times, in
that case we do not need to deal with entities at all.

3.3.2 Integrating the ODE

Next we will need to solve the ODE (3.3). In order to do this we can use very standard
mathematical algorithms for integrating differential equations. For example Runge-Kutta
methods [16]. The only caution one needs to take care of is the interpolation of the inflow
between two successive points ti and ti+1. A linear interpolation usually suffices.

3.3.3 Queue error due to aggregation time

Approximating the inflow as discussed introduces an error in the model that we can not
avoid but which we can estimate. Denote by Clog(t) the queue size given by the logistic
queue model, and by Cdisc(t) the real queue size. An entity that enters to the system at
t ∈ [i · dt, (i+ 1) · dt] will experience a delay of Cdisc(t)/µ seconds, nevertheless aggregating
each dt seconds the model can not account the fact that the packet got in at t, hence:

|Cdisc(t)
µ

− Clog(t)

µ
| ≤ dt.

If the traffic is really intense, i.e. if ρ = λ
µ

is near one, the best we can expect for is:

|Cdisc(t)− Clog(t)| ∼ µ · (1− ρ) · dt. (3.16)

In chapter 5 we verify empirically previous equation.
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3.4 Summary

In this chapter we have presented the logistic queue model and its main theoretical properties.
We have given original mathematical proofs of reasonable properties all queueing models
ought have: positivity of the queue, emptying of the queue and FIFO property. We have
seen how fluid flow models come up as a consequence of a conservation law. Then the
logistic queue model appears as a functional relationship of the queue size, the inflow and
the outflow. We have also discussed issues related to the application of the model with real
data. In the next chapter we will discuss extensions of the basic model which will turn out
to be useful in the framework of telecommunication networks.
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Chapter 4

Extensions for Communication
Networks

In this chapter we present variations of the model that allow us to address more general
scenarios present in telecommunication networks than the one assumed until now. Namely:

• If we have a probabilistic distribution on service times, i.e. a G/G/1 system.

• If we have a finite queue.

• If we have k servers, i.e. a G/D/k system.

• If two flows join in a server and then they separate following different paths.

• If we have priority queues.

Note that we may also have combinations of the previous cases.

4.1 Variable service times

Until this point we have assumed that µ is constant. Nevertheless it is very easy to see that
all results that we have proven are still valid even when µ = µ(t) depends on time as long
as µ(t) ≥ 0 for all t.

4.2 Finite queue

Assume we are only able to store a finite number of entities Cmax > 0 in queue. We would
like to add this restriction to the model. The idea is to annihilate the inflow when the queue

35
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size overflows the maximum storage capacity. Ideally we replace f for f̃ where:

f̃(C(t), t) = H(C(t)) · f(t)

and H is a Heaviside function:

H(C) =

{
1 for C ≤ Cmax,

0 for C > Cmax.

The only problem with this approach is that we would be introducing discontinuities to C ′

Figure 4.1: Approximations of Heaviside function for k = 5, 10.

and thus we would not be able to apply existence theorems or numerical integration. Hence,
we use the logistic function as a smooth approximation of H:

Hk(C) =
1

1 + ( 1
H0
− 1) · ek(C−Cmax)

where Hk(Cmax) = H0 > 0. Note that:∫ +∞

−∞
(H(x)−Hk(x))2dx =

∫ Cmax

−∞
(1−Hk(x))2dx+

∫ +∞

Cmax

(Hk(x))2dx

= 2 ·
∫ +∞

Cmax

(Hk(x))2dx ≤ 1

k
.
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Hence Hk → H as k → +∞ in the L2 norm. This convergence is shown in Figure 4.1.

Therefore we obtain the following logistic finite-queue model:{
C ′(t) = f̃(C(t), t)−

[
µ+ e−αC(t)

(
min{µ, f̃(C(t), t)} − µ

)]
for t > t0,

C(t0) = C0.
(4.1)

where
f̃(C(t), t) = Hk(C(t)) · f(t).

Theorem 4.2.1. Let C(t0) = C0 ≥ 0 be an initial condition, f ≥ 0 a continuous and positive
inflow function, µ > 0 a maximum outflow rate and Cmax > 0 a maximum queue capacity.
Then we have that the system (4.1) satisfies the following properties:

1. There exists a unique an positive solution defined for all times.

2. If the inflow is strictly smaller than the maximum outflow rate then the queue gets
empty exponentially fast.

3. FIFO: the exit time of an entity that has arrived in the instant t is smaller than other
that arrives at s > t.

4. If C0 < Cmax and the inflow satisfies that

f(t) ≤Mf for all t ≥ t0 for some Mf > 0, (4.2)

then there exists a H0 > 0 and a k > 0 such that Hk approximates H as precisely as
desired (in the L2 sense) and moreover

C(t) ≤ Cmax for all t ≥ t0.

Proof. Properties 1,2 and 3 follow because the right hand side of (4.1) is locally Lipschitz
continuous [15] so we can apply again existence and uniqueness, and afterwards repeat
analogous arguments like the ones given in the previous chapter. Let’s prove property
number 4. Assume there is a t′ > t0 such that C(t′) > Cmax. Since C(t0) < Cmax, there
must exist a t∗ such that C(t∗) = Cmax. We shall assume that in a sufficiently small interval
I around t∗ the function C(t) is strictly increasing, so that C ′(t) > 0 for t ∈ I. Analogously
as in the proof of Proposition 3.2.1 we must have that f̃ > µ in I. Hence

C ′(t∗) = f̃(C(t∗), t∗)− µ = H0 · f(t∗)− µ
≤ H0 ·Mf − µ = 0

where we have taken H0 = µ
Mf

. Whence we get a contradiction, so the queue remains

bounded by Cmax for all times.
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4.3 Multiple servers

Assume we have k servers of speed µ0. When an entity arrives to the system it goes to the
first server that finds empty and else goes to the queue. The key modification of (3.3) now,
is to make µ = µ(C(t)) dependent of the queue size. We take:

µ(C(t)) =

{
µ0k if C(t) ≥ k − 1,

µ0 (1 + C(t)) if C(t) ≤ k − 1.
(4.3)

The idea behind this equation is the following: if there are no entities in queue and one
arrives it gets served at speed µ0 as usual. On the other hand, if there are, say, 5 entities
in queue and 1 more arrives, we should have 5+1 servers functioning in order to serve all 6
entities. Hence the total speed of the system would be 6µ0.

4.4 Separation of flows

Assume f1 and f2 are two inflows that join in a system with a server and a queue as in
Figure 4.2. They are processed in that system but afterwards they follow different paths.
Denote by g1 and g2 the corresponding outflows.

Figure 4.2: Two flows join in a server with a queue and then each of them follow a different
path.

We can obtain them with a very simple argument. If we denote by f = f1 + f2 and
process this inflow, we get an aggregated outflow g. Then, for each t we should have that:

f1(t)

f(t)
=
g1(t)

g(t)
,

hence
g1(t) = g(t)

f(t)
· f1(t).
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Likewise,
g2(t) = g(t)

f(t)
· f2(t).

Note that this way we have that g1(t) + g2(t) = g(t) as expected. A similar argument can
be given in the case we have more than two flows.

4.5 Priority queues

Assume again f1 and f2 are two inflows that join in a system with a server of fixed speed µ.
The only difference is that this time we assume that the flow f1 has a priority over f2, i.e.
entities coming from f1 will be served first than entities from f2. We will model separately
the queues formed by each flow:{

C ′1(t) = f1(t)−
[
µ1 + e−α1C1(t) (min{µ1, f1(t)} − µ1)

]
,

C ′2(t) = f2(t)−
[
µ2 + e−α2C2(t) (min{µ2, f2(t)} − µ2)

]
,

(4.4)

where we impose that µ1 + µ2 = µ. The key idea now is to take:

µ2(C1(t)) =
f2(t)

f(t)
µe−βC1(t)

where f = f1 + f2. Also we take µ1(C1(t)) = µ− µ2(C1(t)). Observe that:

1. If C1 = 0 then µ1 = f1
f
µ and µ2 = f2

f
µ so each speed is proportional to its inflow

weight.

2. If C1 → +∞ then µ1 → µ and µ2 → 0 so just the priority one entities are served and
the others are not.

4.6 Summary

In this chapter we have presented variations of the basic logistic queue model that allow us
to address more general scenarios present in telecommunication networks. This is one of the
main advantages of our model over others. We have shown how we can modify slightly the
main equation to include important cases such as: finite queues and priority queues. This
will be useful in chapter 6 when we present an application of the model in a network.
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Chapter 5

Validation and Results

In this chapter we validate the logistic queue model comparing its performance with a discrete
event simulator.

5.1 Notations

In this section we recall all our notation and its meaning. They will be used throughly in
the following sections.

- Maximum outflow rate: µ. Its units are entities/time. It will be assumed to be
constant, for example, µ = 1 Gb/s. It is given, so it is an input.

- Queue size at t: C(t). Its units are entities. It varies over time. Our goal is to predict
this quantity.

- Inflow to the system at t: f(t). Its units are entities/time. It varies over time. It is
given, so it is an input.

- Outflow of the system at t: g(t). Its units are entities/time. It varies over time. Our
goal is to predict this quantity.

- Mean inflow : λ. Its units are entities/time. It is the mean of the inflow f .

- Mean intensity or occupancy : ρ. It has no units. It is defined as λ
µ
. This quantity

gives us an idea of the average use of the server.

- Aggregation time: dt. Its units are time. When a flow is given in discrete form, we will
assume it is given each dt seconds. Usually dt = 60.

- Logistic model parameter : α. It is defined as ρ
µ
.

41
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5.2 Error measures

In the following sections we will compare the queue size given by the logistic queue model,
which we denote Clog(t), with the queue size given by a discrete packet simulator, which we
denote Cdisc(t). In order to compare them we need some error measures. Most of the time
those quantities are given at discrete instants of time. So in the end we will only have two
vectors Cdisc,Clog evaluated at a finite number of times n. Since the logistic model will not
react to small fluctuations in the queue, we will be mostly interested in checking if the model
captures big queues. These are the important ones because they affect the outflow the most.
We define:

1 Error relative to the maximum:
‖Cdisc −Clog‖
‖1 ·max (Cdisc) ‖

where 1 is vector of ones of length n.

2 Maximum occupancy error :

|max (Cdisc)−max (Clog) |
|max (Cdisc) |

.

Likewise, we will want to compare the outflow given by the logistic queue model, which we
denote glog(t), with the outflow given by the discrete Simulink simulator, which we denote
gdisc(t). Again, in order to compare them we need some error measures. Most of the time
those quantities are given at discrete instants of time. So in the end we will only have two
vectors gdisc = (g1

disc, . . . , g
n
disc) and glog = (g1

log , . . . , g
n
log) evaluated at a finite number of

times n. We define:

3 Mean relative outflow error :
1

n

n∑
i=1

|gidisc − gilog|
|gidisc|

4 Global relative error :
‖gdisc − glog‖
‖gdisc‖

5.3 User service characterization

In order to test the logistic queue model, we will model and simulate realistic traffic flows.
In the following we will focus in video flows due to the easiness of characterization, but the
extension to other kind of services is straightforward. We will model the inflow created by
a video user in a discrete way, i.e. packet by packet.
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For characterizing video streaming, an on-demand video file was served from a set of
HTTP servers to a single end user based on the MPEG-DASH v1.4 standard. On the server-
side, two virtual machines each running an Apache HTTP server instance were responsible
for serving the audio and the video components, respectively. The video was served at HD
720p and its duration was 10 minutes.

Now, we will make some statistical assumptions about the packets generated while using
a video service:

1. All packets are assumed to be of the same constant size.

2. Packets are assumed to come in bursts of variable size. We will assume that the size
of each burst follows a Normal distribution.

3. Bursts are assumed to be separated by variable intervals of time. We will assume
that the size of an interval of time separating two bursts –Interburst time– follows an
Exponential distribution.

4. Finally, packets are assumed to be separated by variable intervals of time inside a
burst. We will assume that the size of an interval of time separating two packets inside
a burst –Interpacket time– also follows an Exponential distribution.

Once the real video flows were generated, the parameters of each distribution were estimated
using standard statistical methods. We obtained the results of Table 5.1.

Table 5.1: Estimation of parameters for a video user.

Packet size (Bytes) 1464
Burst size (mean) 1714
Burst size (variance) 278
Interburst time (seconds) 5.56
Interpacket time (seconds) 0.00345

Next we want to model the use of video service. Since we are interested in simulating
more than a few hours, we cannot assume that each video user is watching video continuously
without stopping.

Hence we assume that uses of the service are separated by an interval of time –Interuse
time– following an Exponential distribution with mean 45 minutes. So in mean, a typical
user watches some videos each forty five minutes. Finally, we know from experience that not
all videos are of the same length, and even if they were, it is possible and usual to watch
more than one. Therefore we also assume a probability distribution on video consumptions
listed in Table 5.2.
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Table 5.2: Length of video consumptions and their probabilities.

Video use (minutes) Probability
5 0.4

15 0.3
30 0.25
120 0.05

Using all previous assumption we can simulate all packets generated by a video user. Its
easier to picture all the previous concepts with a figure. In Figure 5.1 we show a simulated
packet flow using the previously estimated parameters.

Figure 5.1: Simulation of packets generated by a video user during two hours. Each blue
line represents a packet.

Now we want to compute the flow fv it generates. In order to do this, we simply count how
many packets have occurred each dt = 60 seconds and then add them. In more mathematical
terms, in a point of the form ti+1 = (i+ 1) · dt we put

fv(ti+1) ≈
1

dt

∑
(packets occurring in [i · dt, (i+ 1) · dt]) .

In Figure 5.2 we plot the flow generated by a typical video user. As it is expected, the
service is not being used constantly, but rather sparely as wanted.
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Figure 5.2: Flow fv generated by one video user during two hours.

5.4 Implementation

As already said, in the following we will compare the queue size given by the logistic queue
model with the queue size given by a discrete packet simulator. We implemented both
models using standard software:

1. The logistic queue model was implemented in MATLAB. The only thing that has to be
done is to solve the ordinary differential equation (3.3). In Matlab there are several
libraries for solving differential equations, being the most usual ones ode45 and ode113.
Both functions give indistinguishable results.

2. The discrete packets simulator was implemented in SIMULINK. Simulink is a block dia-
gram environment for multidomain simulation and Model-Based Design. It supports
simulation, automatic code generation, and continuous test and verification of embed-
ded systems. We can see a screenshot of part of the implemented system in Figure
5.3.
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Figure 5.3: Implementation of a queue with a server in Simulink.

5.5 Illustrative example

In order to have an intuitive understanding of the model and all the things involved with
it, we will first give an illustrative example of its performance. Later we will make a more
exhaustive performance analysis. We assume the following particular scenario:

1. We aggregate 10 video users in a server of maximum velocity µ = 11.33 Mb/s during
2 days.

2. The queue is assumed to be large enough so that we do not lose any packets.

For generating the video flows we use the method described in the previous section. The
goal is to predict the queue formed under this scenario and the outflow we get.
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Inflow

Adding the 10 video flows we get the inflow of Figure 5.4. In other words we put

f(t) =
10∑
v=1

fv(t).

Figure 5.4: Inflow to the system. Its standard deviation is 2.53 Mb/s.

The mean of the inflow is λ = 6 Mb/s, hence the average intensity is ρ = 53%. Therefore
we take α = ρ

µ
= 0.05. As we see in the picture, during some periods of time, the inflow is

bigger than the maximum outflow µ, therefore in those moments we expect the queue size
to increase.

Comparison of queues

We feed the inflow f to both the Simulink discrete model and to the logistic queue model
and compare the queue results we get in both cases. Note that f is given to the discrete
simulator in discrete form, i.e. packet by packet as it was generated, whereas to the logistic
model the inflow is given in a continuous fashion, i.e. aggregated each 60 seconds and then
linearly interpolated when needed. Just looking at Figures 5.5 and 5.6 of the queues formed
is impossible to tell the difference, hence we need some metrics to compare them. We will
use the two measures introduced before:
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Figure 5.5: Queue of the discrete simulator. Figure 5.6: Queue of the logistic model.

- Error relative to the maximum:

‖Cdisc −Clog‖
‖1 ·max (Cdisc) ‖

= 0.63%

- Maximum occupancy error :

|max (Cdisc)−max (Clog) |
|max (Cdisc) |

= 2.08%

It is worth to examine both queues superposed in a neighborhood of the maximum
occupancy. This is shown in Figure 5.7.

Comparison of outflows

We can also compare both outflows, the one given by the discrete simulator and the other
computed from the logistic queue. As expected both flows do not exceed the maximum
capacity µ. Just looking at Figures 5.8 and 5.9 is again impossible to say anything. We
again use the two measures already introduced:

- Mean relative outflow error :

1

n

n∑
i=1

|gidisc − gilog|
|gidisc|

= 0.67%

- Global relative error :
‖gdisc − glog‖
‖gdisc‖

= 1.58%
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Figure 5.7: Superposition of logistic and discrete queues in a neighborhood of the maximum
queue occupancy.

Figure 5.8: Outflow of discrete simulator. Figure 5.9: Outflow of logistic model.

Comparison with no queue model

In order to have a reference to compare with, we can compute the previous error measures
with the inflow to the system. This would be the simplest model in which we assume that
the outflow equals the inflow and the queue has no effect whatsoever. In this example the
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mean relative error is:
1

n

n∑
i=1

|gidisc − f i|
|gidisc|

= 0.75%,

while the global relative error is:

‖gdisc − f‖
‖gdisc‖

= 5.27%.

As expected mean-wise the relative errors are very similar. This is due to the fact that most
of the time the inflow is smaller than µ and hence the outflow g is equal to f . On the other
hand the global relative error is sensibly bigger for the no queue model since this measure
penalizes more point-wise errors.

Discussion of example

As already stated the goal of this example was to introduce in an intuitive fashion all concepts
involved with the model in a practical setting. The results are very promising in the sense
that our model captures very well the queue generated and hence also the outflow. At the
end of the day, one may wonder why it is worth introducing a continuous model (the logistic
queue model) if we already can make discrete simulations and get quite accurate results.
The key is of course scalability. In this illustrative example the simulation time of the
discrete simulator was around 60021 seconds, which is about 16 hours. On the other hand
to the logistic queue model the whole process only took about 29 seconds. So the continuous
model is around 2000 times faster! This is expectable since the discrete simulator had to
process around 2.45 · 107 entities. In the next section we will make a more comprehensive
analysis of the performance of the model.

5.6 Performance Analysis

In this subsection we analyze how the error measures introduced in the previous examples
evolve as the intensity of the inflow is varied. Again we assume the same scenario as in the
example where we aggregate 10 video users in a server of maximum velocity µ = 11.33 Mb/s
during 2 days each 60 seconds.

We vary inflow intensities ρ from approximately 45% to 85%. In order to do so we simply
reduce the Interuse time introduced before when modeling a video user. Recall that this
parameter represented the amount of time between two uses of video service. Hence reducing
it, we only make our 10 users watch videos more often. In total 21 simulations were launched
both in the discrete event simulator implemented in Simulink and using the logistic queue
model implemented in Matlab. Of the 21 simulations 3 of them had not finished after more
than a month in the discrete simulator, and therefore they were discarded. Note that in
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each simulation we are generating around 25 million packets, so in total in 21 simulations
we generated about 500 million packets, which is roughly about 6000 GigaBytes of data.

Comparison of queues

We first compare the maximum queue size given by both models. In Figure 5.10 we can see
a plot of both curves for different intensities.

Figure 5.10: Comparison of maximum queue size for both models varying the inflow intensity.

As we see both curves are quite close. In dashed lines we have plotted the error bound
(3.16).

It is also interesting to see how the maximum occupancy error evolves as the intensity
increases. We see in Figure 5.11 how the error decreases as the intensity increases. In Figure
5.12 we plot the error relative to the maximum introduced earlier. Again the error reduces
as the intensity increases. This is again in accordance with (3.16).

Comparison of outflows

Next we compare the outflow given by the logistic queue model with the one given by the
discrete simulator. In order to have a reference to compare with, we also plot the error of
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Figure 5.11: Maximum occupancy error of the logistic model varying the inflow intensity.

Figure 5.12: Error relative to the maximum of the logistic model varying the inflow intensity.
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Figure 5.13: Global relative error of the outflows given by logistic model and the no-queue
model varying the inflow intensity.

the no-queue model as discussed before. Recall that this just assumes that the queue has
no effect whatsoever so the outflows just equals the inflow. We begin by plotting the global
relative error in Figure 5.13.

Note how the error of the no-queue model increases as the intensity increases. This is to
be expected because increasing the intensity increases the queue size and therefore makes
the outflow differ more from the inflow. On the other hand the error of the logistic queue
model seems quite stable, its mean is around 2%.

Finally we compute the mean relative error. In Figure 5.14 we observe that until ρ = 55%
there is no big difference between both models, both errors are quite low. This is again logical
since we know that the outflow of the system is almost identical to the inflow when there
are not a big queues.

Scalability: simulation times

Now we want to compare the simulation time of both models. Since the mean simulation
time of the logistic model is 26.3 seconds but the mean of the discrete simulator is 7.6 days
we apply the function log10.

As we see in Figure 5.15, the logistic queue model is about 5 orders of magnitude faster
than the discrete simulator when the intensity of the inflow is about 60%. This is a huge
difference, the continuous model is 100, 000 times faster than the discrete one.
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Figure 5.14: Mean relative error of the outflows given by logistic model and the no-queue
model varying the inflow intensity.

Figure 5.15: Simulation times of logistic and discrete queue model varying the inflow inten-
sity.



5.7. SUMMARY 55

5.7 Summary

In this chapter we have validated the logistic queue model comparing its performance with
a discrete event simulator. We have shown that:

• Our model is as precise as the discrete one. We compared queue sizes and outflow pre-
dictions and the results show that differences are minimal. For example, the global
relative error of the outflow given by the logistic model is only about 2%.

• Our model is several orders of magnitude faster than the discrete one. For example, when
the mean intensity of the inflow is 60% the logistic model is about 100,000 times faster
than the discrete one.

In the next chapter we will give an application of the logistic queue model in a scenario
where a discrete simulation would be unfeasible. We will be dealing with flows of the order
of Gb/s.
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Chapter 6

Case study example

In this chapter we present a case study using the logistic queue model in a telecommunication
network. Basically we study how the latency of the network is affected when we introduce
an external priority flow into play. We will be dealing with flows of the order of Gb/s, this
is where our model becomes useful, since running a discrete simulation for these orders of
magnitude would be impossible.

6.1 Scenario

For the rest of this chapter we will assume the scenario shown in Figure 6.1:

1. A set of flows f1, . . . , fn are generated from secondary packet nodes oi of an optical
network. We assume we have n nodes oi.

2. A proportion pij of each flow fi has to be sent from oi to a specific packet node dj at
the other side of the network. We assume we have m nodes dj.

3. This is done through a big connection from an origin node O to a destination node D.
This link has a server of speed µ with a queue attached to it of maximum capacity
Cmax.

4. Each flow fi travels through a link between the node oi and the node O. That given
connection has a a server of velocity µi and a queue. These queues are assumed to be
large enough so that we do not lose any packets.

5. Finally we assume that links between the node D and the destination nodes dj have
a server of velocity ξj and a queue. Likewise, these queues are assumed to be large
enough so that we do not lose any packets.

57
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In terms of entities (or packets) our network is equivalent to the one depicted in Figure
6.2.

Figure 6.1: Network for the scenario in flow form. The goal is to send packets from region
o to region d of the network. In the picture n = 2 and m = 3.

Figure 6.2: Network for the scenario in packet form. The goal is to send packets from region
o to region d of the network. In the picture n = 2 and m = 3.

We will be mainly interested in computing the latency Lij(t) between node oi and node
dj at instant t. Physically this represent the amount of time it takes to a packet to travel
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from oi to dj if it departures at t. In our system we have that:

Lij(t) =
Co
i (t) + s

µi
+
C(to) + s

µ
+
Cd
j (td) + s

ξj
,

where

- s is the size of each packet.

- Co
i (t) is the queue formed between node oi and O at t.

- C(to) is the queue formed between node O and D at to.

- to is the instant at which the packet arrives to O: to = t+
Coi (t)+s

µi
.

- Cd
j (td) is the queue formed between node D and dj at td.

- td is the instant at which the packet arrives to D: td = to + C(to)+s
µi

.

It is easy to see that the previous formula can be generalized for more general networks.
Moreover we define the expected latency of going from region o of the network to region
d as:

Lod(t) =
1

n ·m
∑
i,j

Lij(t).

Finally we define the maximum expected latency as

Lmax = max
t
Lod(t).

We will be interested in studying how this quantity changes when we modify the scenario
just described above.

6.2 Applying the logistic queue model

Applying the model in the scenario just described is quite straightforward. First we process
each flow fi using the logistic queue model (3.3) to obtain flows gi. These are the outflows
of each oi and the inflows to O. Doing this we obtain the functions Co

i (t). Then we put
g :=

∑n
i=1 gi and process this flow using the logistic finite queue mode (4.1) to obtain a new

flow h. This is the outflow of O and the inflow to D. Doing this we obtain the function C(t).
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Now, we must take into account the origin oi of each flow and its destination dj, hence by
(4.4):

hj(t) =
n∑
i=1

pij ·
(
gi(t)

g(t)
· h(t)

)
.

This is the outflow of D and the inflow to dj. Finally we process each hj using again the
the logistic queue model (3.3). Doing this we obtain the functions Cd

j (t).

6.3 Empirical results

- For generating the flows fi we use the method described in section 5.3 when we modeled
a video user. In total n = 4 flows were generated during 1 day.

- Each flow fi consists of 10,000 video users, the mean inflow rate of each flow is about 12.5
Gb/s. We take all µi = 25 Gb/s.

- For the big link OD we take µ = 100 Gb/s and Cmax = 25 GigaBytes.

- Since the mean of each flow fi is about 12.5 Gb/s and n = 4, we expect the use of the OD
link to be around 50%.

- We take m = 5 nodes dj. Each link has a speed of ξj = 20 Gb/s.

- Finally, the matrix pij is chosen to be:

p =


0.1293 0.3124 0.0548 0.2534 0.2501
0.1600 0.1681 0.0497 0.2203 0.4019
0.3029 0.0009 0.1687 0.2224 0.3051
0.0042 0.3710 0.2344 0.0250 0.3655

 ,
so, for instance, 12.93% of the packets generated from node o1 go to node d1.

Then, in this setting we get the expected latency of Figure 6.3. We see that for a packet
that departs from region o of the network we expect that it takes at most 0.2 seconds to
get to its destination in region d. The whole simulation took only about 2 minutes to be
completed.
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Figure 6.3: Expected latency in seconds of going from region o to region d.

Change in the scenario

Now, it may be the case that another flow of packets needs to be sent to D using the same
link OD that the node O was using as in Figure 6.2. This is represented in Figure 6.1 by
the node P . We will assume that the flow going from P to D has priority over the flow
going from O to D. We implement this using model (4.4): we inject an additional priority
flow into the system. We are interested in seeing how this will affect the maximum expected
latency of going from region o to region d. The results, varying the intensity of the priority
flow are shown in Figure 6.4.

As expected the latency gets bigger as the priority flow gets bigger. Nevertheless it
is interesting to observe that for priority flows smaller than 18 Gb/s we get a tolerable
maximum expected latency of about 0.5 seconds. Afterwards the increase is exponential and
we get unacceptable latencies.

6.4 Summary

In this chapter we have seen how we could apply the main ideas developed along the project
to a telecommunication network. We have only scratched the surface, showing only the
potential of the model. Along the way we have seen how we can calculate a quantity of
interest in the network: the latency. This in contrast to other network models that do not
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Figure 6.4: Maximum expected latency in seconds of going from region o to region d varying
the intensity of an extra priority flow in the simulation.

modelize queues of servers as stated in the introduction.



Chapter 7

Concluding Remarks

7.1 Contributions archieved

In this work we have presented a novel continuous queuing model called the logistic queue
model. We have proven mathematically that our proposed model has many desirable the-
oretical properties. Moreover, we validated the model comparing it with a discrete event
simulator. We showed that in terms of queue size and outflow prediction our model is as
precise as a discrete one with the advantage of speed in simulations. We compared simula-
tion times and concluded that the logistic queue model is several orders of magnitude faster
than the discrete one. Finally in contrast with the point-queue model our model allow us to
easily explore multiple extensions to more general scenarios such as: finite queues, multiple
servers, priority queues, etc. This in turn allowed us to show an application of all the tools
developed.

7.2 Personal evaluation

Throughout this project I have applied many skills developed in the master program (MAMME).
Specially useful have been the courses regarding modelling with differential equations and
others related to the numerical solution of them. Moreover, elective courses taken from the
statistics master (MESIO) have proven to be of conceptual help in the development of the
thesis. Also, I have had to learn from scratch other important topics like discrete event
simulators and the functioning of dynamic optical networks. This project enabled me to
participate in the research Grup de Comunicacions Òptiques (GCO) was conducting. I have
had the opportunity of learning how to read and compare research papers, how to study
some topics that I had not covered during my university courses, how to improve my pro-
gramming skills (mostly in Simulink), how to modelize using mathematical tools, as well as
the capacity to solve relevant real world problems.
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7.3 Future work

This work will be partially included as UPC contribution to the H2020 European METRO-
HAUL project (G.A. no 761727). Specifically, a traffic generation tool will be defined and
implemented for creating realistic traffic traces exchanged in/between optical metro networks
(metro flows). The tool (to be developed in Python) will basically consists in: i) a graphical
user interface where different configuration parameters can be tuned, e.g. characteristics
and magnitude of individual user/service flows, periodic pattern, duration, etc; ii) a traffic
generation engine that will receive input parameters to output metro flow traffic traces; and
iii) a visualization module to easily check generated traffic flows, as well as different export
formats to facilitate the use of data for multiple use cases including network optimization
and analytics. The main contributions of this master thesis will be used to build a fast and
accurate traffic generation engine based on the logistic queue model.
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