
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 566–575

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.145

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,  
Zurich, Switzerland

10.1016/j.procs.2017.05.145 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

cuHinesBatch: Solving Multiple Hines systems on GPUs

Human Brain Project ∗

Pedro Valero-Lara1, Ivan Mart́ınez-Pérez1, Antonio J. Peña1,
Xavier Martorell1,2, Raül Sirvent1, and Jesús Labarta1,2

1 Barcelona Supercomputing Center (BSC) Barcelona, Spain.
{pedro.valero, ivan.martinez, antonio.pena, raul.sirvent, jesus.labarta}@bsc.es

2 Universitat Politècnica de Catalunya
xavim@ac.upc.edu

Abstract
The simulation of the behavior of the Human Brain is one of the most important challenges
today in computing. The main problem consists of finding efficient ways to manipulate and
compute the huge volume of data that this kind of simulations need, using the current tech-
nology. In this sense, this work is focused on one of the main steps of such simulation, which
consists of computing the Voltage on neurons’ morphology. This is carried out using the Hines
Algorithm. Although this algorithm is the optimum method in terms of number of operations,
it is in need of non-trivial modifications to be efficiently parallelized on NVIDIA GPUs. We pro-
posed several optimizations to accelerate this algorithm on GPU-based architectures, exploring
the limitations of both, method and architecture, to be able to solve efficiently a high number
of Hines systems (neurons). Each of the optimizations are deeply analyzed and described. To
evaluate the impact of the optimizations on real inputs, we have used 6 different morphologies
in terms of size and branches. Our studies have proven that the optimizations proposed in the
present work can achieve a high performance on those computations with a high number of
neurons, being our GPU implementations about 4× and 8× faster than the OpenMP multicore
implementation (16 cores), using one and two K80 NVIDIA GPUs respectively. Also, it is
important to highlight that these optimizations can continue scaling even when dealing with
number of neurons.

Keywords: Human Brain, Neuron, Hines Algorithm, Parallel Computing, GPUs, Multicore, CUDA.

∗This project has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 720270 (HBP SGA1), from the Spanish Ministry of Economy and Compet-
itiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316-P) and the Departament
d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Pro-
gramació i Entorns d’Execució Paral·lels (2014-SGR-1051). We thank the support of NVIDIA through the
BSC/UPC NVIDIA GPU Center of Excellence. Antonio J. Peña is cofinanced by the Spanish Ministry of
Economy and Competitiveness under Juan de la Cierva fellowship number IJCI-2015-23266.

1

This space is reserved for the Procedia header, do not use it

cuHinesBatch: Solving Multiple Hines systems on GPUs

Human Brain Project ∗

Pedro Valero-Lara1, Ivan Mart́ınez-Pérez1, Antonio J. Peña1,
Xavier Martorell1,2, Raül Sirvent1, and Jesús Labarta1,2

1 Barcelona Supercomputing Center (BSC) Barcelona, Spain.
{pedro.valero, ivan.martinez, antonio.pena, raul.sirvent, jesus.labarta}@bsc.es

2 Universitat Politècnica de Catalunya
xavim@ac.upc.edu

Abstract
The simulation of the behavior of the Human Brain is one of the most important challenges
today in computing. The main problem consists of finding efficient ways to manipulate and
compute the huge volume of data that this kind of simulations need, using the current tech-
nology. In this sense, this work is focused on one of the main steps of such simulation, which
consists of computing the Voltage on neurons’ morphology. This is carried out using the Hines
Algorithm. Although this algorithm is the optimum method in terms of number of operations,
it is in need of non-trivial modifications to be efficiently parallelized on NVIDIA GPUs. We pro-
posed several optimizations to accelerate this algorithm on GPU-based architectures, exploring
the limitations of both, method and architecture, to be able to solve efficiently a high number
of Hines systems (neurons). Each of the optimizations are deeply analyzed and described. To
evaluate the impact of the optimizations on real inputs, we have used 6 different morphologies
in terms of size and branches. Our studies have proven that the optimizations proposed in the
present work can achieve a high performance on those computations with a high number of
neurons, being our GPU implementations about 4× and 8× faster than the OpenMP multicore
implementation (16 cores), using one and two K80 NVIDIA GPUs respectively. Also, it is
important to highlight that these optimizations can continue scaling even when dealing with
number of neurons.

Keywords: Human Brain, Neuron, Hines Algorithm, Parallel Computing, GPUs, Multicore, CUDA.

∗This project has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 720270 (HBP SGA1), from the Spanish Ministry of Economy and Compet-
itiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316-P) and the Departament
d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Pro-
gramació i Entorns d’Execució Paral·lels (2014-SGR-1051). We thank the support of NVIDIA through the
BSC/UPC NVIDIA GPU Center of Excellence. Antonio J. Peña is cofinanced by the Spanish Ministry of
Economy and Competitiveness under Juan de la Cierva fellowship number IJCI-2015-23266.

1

This space is reserved for the Procedia header, do not use it

cuHinesBatch: Solving Multiple Hines systems on GPUs

Human Brain Project ∗

Pedro Valero-Lara1, Ivan Mart́ınez-Pérez1, Antonio J. Peña1,
Xavier Martorell1,2, Raül Sirvent1, and Jesús Labarta1,2

1 Barcelona Supercomputing Center (BSC) Barcelona, Spain.
{pedro.valero, ivan.martinez, antonio.pena, raul.sirvent, jesus.labarta}@bsc.es

2 Universitat Politècnica de Catalunya
xavim@ac.upc.edu

Abstract
The simulation of the behavior of the Human Brain is one of the most important challenges
today in computing. The main problem consists of finding efficient ways to manipulate and
compute the huge volume of data that this kind of simulations need, using the current tech-
nology. In this sense, this work is focused on one of the main steps of such simulation, which
consists of computing the Voltage on neurons’ morphology. This is carried out using the Hines
Algorithm. Although this algorithm is the optimum method in terms of number of operations,
it is in need of non-trivial modifications to be efficiently parallelized on NVIDIA GPUs. We pro-
posed several optimizations to accelerate this algorithm on GPU-based architectures, exploring
the limitations of both, method and architecture, to be able to solve efficiently a high number
of Hines systems (neurons). Each of the optimizations are deeply analyzed and described. To
evaluate the impact of the optimizations on real inputs, we have used 6 different morphologies
in terms of size and branches. Our studies have proven that the optimizations proposed in the
present work can achieve a high performance on those computations with a high number of
neurons, being our GPU implementations about 4× and 8× faster than the OpenMP multicore
implementation (16 cores), using one and two K80 NVIDIA GPUs respectively. Also, it is
important to highlight that these optimizations can continue scaling even when dealing with
number of neurons.

Keywords: Human Brain, Neuron, Hines Algorithm, Parallel Computing, GPUs, Multicore, CUDA.

∗This project has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 720270 (HBP SGA1), from the Spanish Ministry of Economy and Compet-
itiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316-P) and the Departament
d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Pro-
gramació i Entorns d’Execució Paral·lels (2014-SGR-1051). We thank the support of NVIDIA through the
BSC/UPC NVIDIA GPU Center of Excellence. Antonio J. Peña is cofinanced by the Spanish Ministry of
Economy and Competitiveness under Juan de la Cierva fellowship number IJCI-2015-23266.

1

This space is reserved for the Procedia header, do not use it

cuHinesBatch: Solving Multiple Hines systems on GPUs

Human Brain Project ∗

Pedro Valero-Lara1, Ivan Mart́ınez-Pérez1, Antonio J. Peña1,
Xavier Martorell1,2, Raül Sirvent1, and Jesús Labarta1,2

1 Barcelona Supercomputing Center (BSC) Barcelona, Spain.
{pedro.valero, ivan.martinez, antonio.pena, raul.sirvent, jesus.labarta}@bsc.es

2 Universitat Politècnica de Catalunya
xavim@ac.upc.edu

Abstract
The simulation of the behavior of the Human Brain is one of the most important challenges
today in computing. The main problem consists of finding efficient ways to manipulate and
compute the huge volume of data that this kind of simulations need, using the current tech-
nology. In this sense, this work is focused on one of the main steps of such simulation, which
consists of computing the Voltage on neurons’ morphology. This is carried out using the Hines
Algorithm. Although this algorithm is the optimum method in terms of number of operations,
it is in need of non-trivial modifications to be efficiently parallelized on NVIDIA GPUs. We pro-
posed several optimizations to accelerate this algorithm on GPU-based architectures, exploring
the limitations of both, method and architecture, to be able to solve efficiently a high number
of Hines systems (neurons). Each of the optimizations are deeply analyzed and described. To
evaluate the impact of the optimizations on real inputs, we have used 6 different morphologies
in terms of size and branches. Our studies have proven that the optimizations proposed in the
present work can achieve a high performance on those computations with a high number of
neurons, being our GPU implementations about 4× and 8× faster than the OpenMP multicore
implementation (16 cores), using one and two K80 NVIDIA GPUs respectively. Also, it is
important to highlight that these optimizations can continue scaling even when dealing with
number of neurons.

Keywords: Human Brain, Neuron, Hines Algorithm, Parallel Computing, GPUs, Multicore, CUDA.

∗This project has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 720270 (HBP SGA1), from the Spanish Ministry of Economy and Compet-
itiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316-P) and the Departament
d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Pro-
gramació i Entorns d’Execució Paral·lels (2014-SGR-1051). We thank the support of NVIDIA through the
BSC/UPC NVIDIA GPU Center of Excellence. Antonio J. Peña is cofinanced by the Spanish Ministry of
Economy and Competitiveness under Juan de la Cierva fellowship number IJCI-2015-23266.

1

cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

1 Motivation

Today, we can find multiple initiatives that attempt to simulate the behavior of the Human
Brain by computer simulations [9, 5, 7]. This is one of the most important challenges in the
recent history of computing with a large number of practical applications. The main constraint
is being able to simulate efficiently a huge number of neurons using the current computer
technology. One of the most efficient ways in which the scientific community attempts to
simulate the behavior of the Human Brain consists of computing the next 3 major steps [6]:
The computing of 1) the Voltage on neuron morphology, 2) the synaptic elements in each of the
neurons and 3) the connectivity between the neurons. In this work, we focus on the first step
which is one of the most consuming time steps of the simulation. Also it is strongly linked with
the rest of steps. All these steps must be carried out on each of the neurons. The Human Brain
is composed by about 14 thousand million of neurons, which are completely different among
them in size and shape.

The standard algorithm used to compute the Voltage on neurons’ morphology is the Hines
algorithm [8]. This algorithm is based on the Thomas algorithm [2], which solves tridiagonal
systems. Although the use of GPUs to compute the Thomas algorithm has been deeply stud-
ied [16, 15, 4, 17, 3], the differences among these two algorithms, Hines and Thomas, makes us
impossible to use the last one as this can not deal with the sparsity of the Hines matrix.

Previous works [1] have explored the use of other algorithms based on the Stone’s method [10].
Unlike Thomas algorithm, this method is parallel. However, it is in need of a higher number of
operations (20n log 2n) with respect to the (8n) operations of the Thomas algorithm to solve
one single system of size n. Also, the use of parallel methods present some additional drawbacks
to be dealt with. For instance, it would be difficult to compute those neurons that compromise
a size bigger than the maximum number of threads per CUDA block (1024) or shared memory
(48KB). Other problems are the computationally expensive operations such as atomic accesses
and synchronizations necessary to compute this method. Each neuron presents a particular
morphology and so a different scheduling (preprocessing) must be applied to each of them
which makes even more difficult its implementation.

Unlike the work presented in [1], where a relatively low number of neurons (128) is computed
using single precision operations, in this work we are able to execute a very high number of
neurons (up to hundreds of thousands) using double precision operations. We have used the
Hines algorithm, which is the optimum method in terms of number of operations, avoiding
high expensive computational operations, such as synchronizations and atomic accesses. Our
code is able to compute a high number of systems (neurons) of any size in one call (CUDA
kernel), using one thread per Hines system instead of one CUDA block per system. Although
multiple works have explore the use of GPUs to compute multiple independent problems in
parallel without transforming the data layout [13, 14, 11, 12], the particular characteristics of
the sparsity of the Hines matrices forces us to modify the data layout to efficiently exploit the
memory hierarchy of the GPUs (coalescing accesses to GPU memory). These modifications
have not been explored previously, which are deeply described and analyzed in the present
work.

This paper is structured as follows. Section 2 briefly introduces the physical problem at hand
and the general numerical framework that has been selected to cope with it: Hines algorithm. In
Section 3 we present the specific parallel features for the resolution of multiple Hines systems, as
well as the parallel strategies envisaged to optimally enhance the performance. Section 4 shows
the performance achieved by the proposed techniques. Also, this section studies the influence
of different morphologies on performance. Finally, the conclusions are outlined in Section 5.

2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87659072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.145&domain=pdf


 Pedro Valero-Lara et al. / Procedia Computer Science 108C (2017) 566–575 567

This space is reserved for the Procedia header, do not use it

cuHinesBatch: Solving Multiple Hines systems on GPUs

Human Brain Project ∗

Pedro Valero-Lara1, Ivan Mart́ınez-Pérez1, Antonio J. Peña1,
Xavier Martorell1,2, Raül Sirvent1, and Jesús Labarta1,2

1 Barcelona Supercomputing Center (BSC) Barcelona, Spain.
{pedro.valero, ivan.martinez, antonio.pena, raul.sirvent, jesus.labarta}@bsc.es

2 Universitat Politècnica de Catalunya
xavim@ac.upc.edu

Abstract
The simulation of the behavior of the Human Brain is one of the most important challenges
today in computing. The main problem consists of finding efficient ways to manipulate and
compute the huge volume of data that this kind of simulations need, using the current tech-
nology. In this sense, this work is focused on one of the main steps of such simulation, which
consists of computing the Voltage on neurons’ morphology. This is carried out using the Hines
Algorithm. Although this algorithm is the optimum method in terms of number of operations,
it is in need of non-trivial modifications to be efficiently parallelized on NVIDIA GPUs. We pro-
posed several optimizations to accelerate this algorithm on GPU-based architectures, exploring
the limitations of both, method and architecture, to be able to solve efficiently a high number
of Hines systems (neurons). Each of the optimizations are deeply analyzed and described. To
evaluate the impact of the optimizations on real inputs, we have used 6 different morphologies
in terms of size and branches. Our studies have proven that the optimizations proposed in the
present work can achieve a high performance on those computations with a high number of
neurons, being our GPU implementations about 4× and 8× faster than the OpenMP multicore
implementation (16 cores), using one and two K80 NVIDIA GPUs respectively. Also, it is
important to highlight that these optimizations can continue scaling even when dealing with
number of neurons.

Keywords: Human Brain, Neuron, Hines Algorithm, Parallel Computing, GPUs, Multicore, CUDA.

∗This project has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 720270 (HBP SGA1), from the Spanish Ministry of Economy and Compet-
itiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316-P) and the Departament
d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Pro-
gramació i Entorns d’Execució Paral·lels (2014-SGR-1051). We thank the support of NVIDIA through the
BSC/UPC NVIDIA GPU Center of Excellence. Antonio J. Peña is cofinanced by the Spanish Ministry of
Economy and Competitiveness under Juan de la Cierva fellowship number IJCI-2015-23266.

1

This space is reserved for the Procedia header, do not use it

cuHinesBatch: Solving Multiple Hines systems on GPUs

Human Brain Project ∗

Pedro Valero-Lara1, Ivan Mart́ınez-Pérez1, Antonio J. Peña1,
Xavier Martorell1,2, Raül Sirvent1, and Jesús Labarta1,2

1 Barcelona Supercomputing Center (BSC) Barcelona, Spain.
{pedro.valero, ivan.martinez, antonio.pena, raul.sirvent, jesus.labarta}@bsc.es

2 Universitat Politècnica de Catalunya
xavim@ac.upc.edu

Abstract
The simulation of the behavior of the Human Brain is one of the most important challenges
today in computing. The main problem consists of finding efficient ways to manipulate and
compute the huge volume of data that this kind of simulations need, using the current tech-
nology. In this sense, this work is focused on one of the main steps of such simulation, which
consists of computing the Voltage on neurons’ morphology. This is carried out using the Hines
Algorithm. Although this algorithm is the optimum method in terms of number of operations,
it is in need of non-trivial modifications to be efficiently parallelized on NVIDIA GPUs. We pro-
posed several optimizations to accelerate this algorithm on GPU-based architectures, exploring
the limitations of both, method and architecture, to be able to solve efficiently a high number
of Hines systems (neurons). Each of the optimizations are deeply analyzed and described. To
evaluate the impact of the optimizations on real inputs, we have used 6 different morphologies
in terms of size and branches. Our studies have proven that the optimizations proposed in the
present work can achieve a high performance on those computations with a high number of
neurons, being our GPU implementations about 4× and 8× faster than the OpenMP multicore
implementation (16 cores), using one and two K80 NVIDIA GPUs respectively. Also, it is
important to highlight that these optimizations can continue scaling even when dealing with
number of neurons.

Keywords: Human Brain, Neuron, Hines Algorithm, Parallel Computing, GPUs, Multicore, CUDA.

∗This project has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 720270 (HBP SGA1), from the Spanish Ministry of Economy and Compet-
itiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316-P) and the Departament
d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Pro-
gramació i Entorns d’Execució Paral·lels (2014-SGR-1051). We thank the support of NVIDIA through the
BSC/UPC NVIDIA GPU Center of Excellence. Antonio J. Peña is cofinanced by the Spanish Ministry of
Economy and Competitiveness under Juan de la Cierva fellowship number IJCI-2015-23266.

1

This space is reserved for the Procedia header, do not use it

cuHinesBatch: Solving Multiple Hines systems on GPUs

Human Brain Project ∗

Pedro Valero-Lara1, Ivan Mart́ınez-Pérez1, Antonio J. Peña1,
Xavier Martorell1,2, Raül Sirvent1, and Jesús Labarta1,2

1 Barcelona Supercomputing Center (BSC) Barcelona, Spain.
{pedro.valero, ivan.martinez, antonio.pena, raul.sirvent, jesus.labarta}@bsc.es

2 Universitat Politècnica de Catalunya
xavim@ac.upc.edu

Abstract
The simulation of the behavior of the Human Brain is one of the most important challenges
today in computing. The main problem consists of finding efficient ways to manipulate and
compute the huge volume of data that this kind of simulations need, using the current tech-
nology. In this sense, this work is focused on one of the main steps of such simulation, which
consists of computing the Voltage on neurons’ morphology. This is carried out using the Hines
Algorithm. Although this algorithm is the optimum method in terms of number of operations,
it is in need of non-trivial modifications to be efficiently parallelized on NVIDIA GPUs. We pro-
posed several optimizations to accelerate this algorithm on GPU-based architectures, exploring
the limitations of both, method and architecture, to be able to solve efficiently a high number
of Hines systems (neurons). Each of the optimizations are deeply analyzed and described. To
evaluate the impact of the optimizations on real inputs, we have used 6 different morphologies
in terms of size and branches. Our studies have proven that the optimizations proposed in the
present work can achieve a high performance on those computations with a high number of
neurons, being our GPU implementations about 4× and 8× faster than the OpenMP multicore
implementation (16 cores), using one and two K80 NVIDIA GPUs respectively. Also, it is
important to highlight that these optimizations can continue scaling even when dealing with
number of neurons.

Keywords: Human Brain, Neuron, Hines Algorithm, Parallel Computing, GPUs, Multicore, CUDA.

∗This project has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 720270 (HBP SGA1), from the Spanish Ministry of Economy and Compet-
itiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316-P) and the Departament
d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Pro-
gramació i Entorns d’Execució Paral·lels (2014-SGR-1051). We thank the support of NVIDIA through the
BSC/UPC NVIDIA GPU Center of Excellence. Antonio J. Peña is cofinanced by the Spanish Ministry of
Economy and Competitiveness under Juan de la Cierva fellowship number IJCI-2015-23266.

1

This space is reserved for the Procedia header, do not use it

cuHinesBatch: Solving Multiple Hines systems on GPUs

Human Brain Project ∗

Pedro Valero-Lara1, Ivan Mart́ınez-Pérez1, Antonio J. Peña1,
Xavier Martorell1,2, Raül Sirvent1, and Jesús Labarta1,2

1 Barcelona Supercomputing Center (BSC) Barcelona, Spain.
{pedro.valero, ivan.martinez, antonio.pena, raul.sirvent, jesus.labarta}@bsc.es

2 Universitat Politècnica de Catalunya
xavim@ac.upc.edu

Abstract
The simulation of the behavior of the Human Brain is one of the most important challenges
today in computing. The main problem consists of finding efficient ways to manipulate and
compute the huge volume of data that this kind of simulations need, using the current tech-
nology. In this sense, this work is focused on one of the main steps of such simulation, which
consists of computing the Voltage on neurons’ morphology. This is carried out using the Hines
Algorithm. Although this algorithm is the optimum method in terms of number of operations,
it is in need of non-trivial modifications to be efficiently parallelized on NVIDIA GPUs. We pro-
posed several optimizations to accelerate this algorithm on GPU-based architectures, exploring
the limitations of both, method and architecture, to be able to solve efficiently a high number
of Hines systems (neurons). Each of the optimizations are deeply analyzed and described. To
evaluate the impact of the optimizations on real inputs, we have used 6 different morphologies
in terms of size and branches. Our studies have proven that the optimizations proposed in the
present work can achieve a high performance on those computations with a high number of
neurons, being our GPU implementations about 4× and 8× faster than the OpenMP multicore
implementation (16 cores), using one and two K80 NVIDIA GPUs respectively. Also, it is
important to highlight that these optimizations can continue scaling even when dealing with
number of neurons.

Keywords: Human Brain, Neuron, Hines Algorithm, Parallel Computing, GPUs, Multicore, CUDA.

∗This project has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 720270 (HBP SGA1), from the Spanish Ministry of Economy and Compet-
itiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316-P) and the Departament
d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Pro-
gramació i Entorns d’Execució Paral·lels (2014-SGR-1051). We thank the support of NVIDIA through the
BSC/UPC NVIDIA GPU Center of Excellence. Antonio J. Peña is cofinanced by the Spanish Ministry of
Economy and Competitiveness under Juan de la Cierva fellowship number IJCI-2015-23266.

1

cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

1 Motivation

Today, we can find multiple initiatives that attempt to simulate the behavior of the Human
Brain by computer simulations [9, 5, 7]. This is one of the most important challenges in the
recent history of computing with a large number of practical applications. The main constraint
is being able to simulate efficiently a huge number of neurons using the current computer
technology. One of the most efficient ways in which the scientific community attempts to
simulate the behavior of the Human Brain consists of computing the next 3 major steps [6]:
The computing of 1) the Voltage on neuron morphology, 2) the synaptic elements in each of the
neurons and 3) the connectivity between the neurons. In this work, we focus on the first step
which is one of the most consuming time steps of the simulation. Also it is strongly linked with
the rest of steps. All these steps must be carried out on each of the neurons. The Human Brain
is composed by about 14 thousand million of neurons, which are completely different among
them in size and shape.

The standard algorithm used to compute the Voltage on neurons’ morphology is the Hines
algorithm [8]. This algorithm is based on the Thomas algorithm [2], which solves tridiagonal
systems. Although the use of GPUs to compute the Thomas algorithm has been deeply stud-
ied [16, 15, 4, 17, 3], the differences among these two algorithms, Hines and Thomas, makes us
impossible to use the last one as this can not deal with the sparsity of the Hines matrix.

Previous works [1] have explored the use of other algorithms based on the Stone’s method [10].
Unlike Thomas algorithm, this method is parallel. However, it is in need of a higher number of
operations (20n log 2n) with respect to the (8n) operations of the Thomas algorithm to solve
one single system of size n. Also, the use of parallel methods present some additional drawbacks
to be dealt with. For instance, it would be difficult to compute those neurons that compromise
a size bigger than the maximum number of threads per CUDA block (1024) or shared memory
(48KB). Other problems are the computationally expensive operations such as atomic accesses
and synchronizations necessary to compute this method. Each neuron presents a particular
morphology and so a different scheduling (preprocessing) must be applied to each of them
which makes even more difficult its implementation.

Unlike the work presented in [1], where a relatively low number of neurons (128) is computed
using single precision operations, in this work we are able to execute a very high number of
neurons (up to hundreds of thousands) using double precision operations. We have used the
Hines algorithm, which is the optimum method in terms of number of operations, avoiding
high expensive computational operations, such as synchronizations and atomic accesses. Our
code is able to compute a high number of systems (neurons) of any size in one call (CUDA
kernel), using one thread per Hines system instead of one CUDA block per system. Although
multiple works have explore the use of GPUs to compute multiple independent problems in
parallel without transforming the data layout [13, 14, 11, 12], the particular characteristics of
the sparsity of the Hines matrices forces us to modify the data layout to efficiently exploit the
memory hierarchy of the GPUs (coalescing accesses to GPU memory). These modifications
have not been explored previously, which are deeply described and analyzed in the present
work.

This paper is structured as follows. Section 2 briefly introduces the physical problem at hand
and the general numerical framework that has been selected to cope with it: Hines algorithm. In
Section 3 we present the specific parallel features for the resolution of multiple Hines systems, as
well as the parallel strategies envisaged to optimally enhance the performance. Section 4 shows
the performance achieved by the proposed techniques. Also, this section studies the influence
of different morphologies on performance. Finally, the conclusions are outlined in Section 5.

2



568 Pedro Valero-Lara et al. / Procedia Computer Science 108C (2017) 566–575cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

2 Hines Algorithm

In this section, we describe the numerical framework behind the computation of the Voltage on
neurons morphology. It follows the next general form:

C
∂V

∂t
+ I = f

∂

∂x
(g

∂V

∂x
) (1)

where f and g are functions on x-dimension and the current I and capacitance C [6] depend
on the voltage V. Discretizing the previous equation on a given morphology we obtain a system
that has to be solved every time-step. This system must be solved at each point:

aiV
n+1
i+1 + diV

n+1
i + biV

n+1
i−1 = ri (2)

where the coefficients of the matrix are defined as follow:

upper diagonal: ai = −
figi+1

2

2∆2
x

lower diagonal: bi = −
figi+1

2

2∆2
x

diagonal: di =
Ci

∆t
− (ai + bi)

rhs: ri =
Ci

∆t
V n
i − I − ai(V

n
i−1 − V n

i )− bi(V
n
i+1 − V n

i )

The ai and bi are constant in the time, and they are computed once at start up. Otherwise,
the diagonal (d) and right-side-hand (rhs) coefficients are updated every time-step when solving
the system.

The discretization above explained is extended to include branching, where the spatial do-
main (neuron morphology) is composed of a series of one-dimension sections that are joined at
branch points according to the neuron morphology.

Figure 1: Example of a neuron morphology and its numbering (left-top and bottom) and
sparsity pattern corresponding to the numbering followed (top-right).

For sake of clarity, we illustrate a simple example of a neuron morphology in Figure 1. It is
important to note that the graph formed by the neuron morphology is an acyclic graph, i.e. it
has no loops. The nodes are numbered using a scheme that gives the matrix sparsity structure
that allows to solve the system in linear time.

To describe the sparsity of the matrix from the numbering used, we need an array (pi i ∈ [2 :
n]) which stores the parent indexes of each node. The pattern of the matrix which illustrates
the morphology shown above is graphically illustrated in Figure 1.

3

cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

The Hines matrices feature the following properties: they are symmetric, the diagonal coef-
ficients are all nonzero and per each off-diagonal element, there is one off-diagonal element in
the corresponding row and column (see row/column 7, 12, 17 and 22 in Figure 1).

Given the aforementioned properties, the Hines systems (Ax = b) can be efficiently solved
by using an algorithm similar to Thomas algorithm for solving tri-diagonal systems. This
algorithm, called Hines algorithm, is almost identical to the Thomas algorithm except by the
sparsity pattern given by the morphology of the neurons whose pattern is stored by the p
vector. An example of the sequential code used to implement the Hines algorithm is illustrated
in pseudo-code in Algorithm 1.

Algorithm 1 Hines algorithm.

1: void solveHines(double *u, double *l, double *d,
2: double *rhs, int *p, int cellSize)
3: // u → upper vector, l → lower vector
4: int i;
5: double factor;
6: // Backward Sweep
7: for i = cellSize− 1 → 0 do
8: factor = u[i] / d[i];
9: d[p[i]] -= factor × l[i];

10: rhs[p[i]] -= factor × rhs[i];
11: end for
12: rhs[0] /= d[0];
13: // Forward Sweep
14: for i = 1 → cellSize− 1 do
15: rhs[i] -= l[i] × rhs[p[i]];
16: rhs[i] /= d[i];
17: end for

3 Implementation of Multiple Hines Solve on GPUs

An efficient memory management is critical to achieve a good performance, but even much
more on those architectures based on a high throughput and a high memory latency, such as
the GPUs. In this sense, we focus on presenting the different data layouts proposed and analyze
the impact of these on the overall performance. Three different data layouts were explored:
Flat, Full-Interleaved and Block-Interleaved. While the Flat data layout consists of storing all
the elements of each of the systems in contiguous memory locations, in the Full-Interleaved data
layout, first, we store the first elements of each of the systems in contiguous memory locations,
after that we store the set of the second elements, and so on until the last element. Similarly
to the Full-Interleaved data layout, the Block-Interleaved data layout divides the set of systems
in groups of systems of a given size (BS ), whose elements are stored in memory by using the
strategy followed by the Full-Interleaved approach.

For sake of clarity, Figure 2 illustrates a simple example composed by four different Hines
systems of three elements each. Please, note that we only illustrate one vector per system in
Figure 2, but in the real scenario we would have 4 vectors per Hines system (Pseudocode 1)
on which are carried out the strategies above described. As widely known, one of the most
important requirements to achieve a good performance on NVIDIA GPUs is to have contiguous
threads accessing contiguous memory locations (coalescing memory accesses). This is the main
motivation behind the proposal of the different data layouts. Our GPU implementation consists

4



 Pedro Valero-Lara et al. / Procedia Computer Science 108C (2017) 566–575 569cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

2 Hines Algorithm

In this section, we describe the numerical framework behind the computation of the Voltage on
neurons morphology. It follows the next general form:

C
∂V

∂t
+ I = f

∂

∂x
(g

∂V

∂x
) (1)

where f and g are functions on x-dimension and the current I and capacitance C [6] depend
on the voltage V. Discretizing the previous equation on a given morphology we obtain a system
that has to be solved every time-step. This system must be solved at each point:

aiV
n+1
i+1 + diV

n+1
i + biV

n+1
i−1 = ri (2)

where the coefficients of the matrix are defined as follow:

upper diagonal: ai = −
figi+1

2

2∆2
x

lower diagonal: bi = −
figi+1

2

2∆2
x

diagonal: di =
Ci

∆t
− (ai + bi)

rhs: ri =
Ci

∆t
V n
i − I − ai(V

n
i−1 − V n

i )− bi(V
n
i+1 − V n

i )

The ai and bi are constant in the time, and they are computed once at start up. Otherwise,
the diagonal (d) and right-side-hand (rhs) coefficients are updated every time-step when solving
the system.

The discretization above explained is extended to include branching, where the spatial do-
main (neuron morphology) is composed of a series of one-dimension sections that are joined at
branch points according to the neuron morphology.

Figure 1: Example of a neuron morphology and its numbering (left-top and bottom) and
sparsity pattern corresponding to the numbering followed (top-right).

For sake of clarity, we illustrate a simple example of a neuron morphology in Figure 1. It is
important to note that the graph formed by the neuron morphology is an acyclic graph, i.e. it
has no loops. The nodes are numbered using a scheme that gives the matrix sparsity structure
that allows to solve the system in linear time.

To describe the sparsity of the matrix from the numbering used, we need an array (pi i ∈ [2 :
n]) which stores the parent indexes of each node. The pattern of the matrix which illustrates
the morphology shown above is graphically illustrated in Figure 1.

3

cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

The Hines matrices feature the following properties: they are symmetric, the diagonal coef-
ficients are all nonzero and per each off-diagonal element, there is one off-diagonal element in
the corresponding row and column (see row/column 7, 12, 17 and 22 in Figure 1).

Given the aforementioned properties, the Hines systems (Ax = b) can be efficiently solved
by using an algorithm similar to Thomas algorithm for solving tri-diagonal systems. This
algorithm, called Hines algorithm, is almost identical to the Thomas algorithm except by the
sparsity pattern given by the morphology of the neurons whose pattern is stored by the p
vector. An example of the sequential code used to implement the Hines algorithm is illustrated
in pseudo-code in Algorithm 1.

Algorithm 1 Hines algorithm.

1: void solveHines(double *u, double *l, double *d,
2: double *rhs, int *p, int cellSize)
3: // u → upper vector, l → lower vector
4: int i;
5: double factor;
6: // Backward Sweep
7: for i = cellSize− 1 → 0 do
8: factor = u[i] / d[i];
9: d[p[i]] -= factor × l[i];

10: rhs[p[i]] -= factor × rhs[i];
11: end for
12: rhs[0] /= d[0];
13: // Forward Sweep
14: for i = 1 → cellSize− 1 do
15: rhs[i] -= l[i] × rhs[p[i]];
16: rhs[i] /= d[i];
17: end for

3 Implementation of Multiple Hines Solve on GPUs

An efficient memory management is critical to achieve a good performance, but even much
more on those architectures based on a high throughput and a high memory latency, such as
the GPUs. In this sense, we focus on presenting the different data layouts proposed and analyze
the impact of these on the overall performance. Three different data layouts were explored:
Flat, Full-Interleaved and Block-Interleaved. While the Flat data layout consists of storing all
the elements of each of the systems in contiguous memory locations, in the Full-Interleaved data
layout, first, we store the first elements of each of the systems in contiguous memory locations,
after that we store the set of the second elements, and so on until the last element. Similarly
to the Full-Interleaved data layout, the Block-Interleaved data layout divides the set of systems
in groups of systems of a given size (BS ), whose elements are stored in memory by using the
strategy followed by the Full-Interleaved approach.

For sake of clarity, Figure 2 illustrates a simple example composed by four different Hines
systems of three elements each. Please, note that we only illustrate one vector per system in
Figure 2, but in the real scenario we would have 4 vectors per Hines system (Pseudocode 1)
on which are carried out the strategies above described. As widely known, one of the most
important requirements to achieve a good performance on NVIDIA GPUs is to have contiguous
threads accessing contiguous memory locations (coalescing memory accesses). This is the main
motivation behind the proposal of the different data layouts. Our GPU implementation consists

4



570 Pedro Valero-Lara et al. / Procedia Computer Science 108C (2017) 566–575cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

Size of the system

Set of vectors

Set of first elements

Set of second elements

Set of third elements

Second blockFirst block

Figure 2: Example of the different data layouts proposed, Flat (top), Full-Interleaved (center),
Block-Interleaved (bottom) with a BS equal to 2, for four Hines systems of three elements each.
Point-line represents the jumps in memory carried out by the first thread/system.

of using one thread per Hines system. As commented in Section 1, we decided to explore this
approach to avoid dealing with atomic accesses and synchronizations, as well as to be able
to execute a very high number of neurons of any size. Using the Flat data layout we can
not exploit coalescence; however by interleaving (Full-Interleaved data layout) the elements
of the vectors (u, l, d, rhs and p in Pseudocode 1), contiguous threads access to contiguous
memory locations. Although, we exploit coalescence in the memory accesses by using this
approach, the threads have to jump in memory as many elements as the number of systems
to access the next element of the vector(s) (Point-lines in Figure 2). This could cause an
inefficient use of the memory hierarchy. This is why we study an additional approach, the
called Block-Interleaved data layout. Using this approach we reduce the number of elements
among consecutive elements of the same system, and so the jumps in memory are not as big
as in the previous approach (Full-Interleaved), while keeping the coalesced memory accesses.
Also, the use of the Block-Interleaved data layout can take advantage better of the growing
importance of the bigger and bigger cache memories in the memory hierarchy of the current
and upcoming CUDA architectures.

3.1 Implementation based on Shared Memory

Unlike the previous approaches, here we explore the use of shared memory for our target
application. The shared memory is much faster than the global memory; however it presents
some important constraints to deal with. This memory is useful when the same data can be
reused either by the same thread or by other thread of the same block of threads (CUDA
block). Also, it is small (until 48KB in the architecture used) and its use hinders the exchange
among blocks of threads by the CUDA scheduler to overlap accesses to global memory with
computation.

As we can see in Pseudocode 1, in our problem the elements of the vectors a, d, b, rhs
and p are reused in the Forward Sweep after computing the Backward Sweep. However, the
granularity used (1 thread per system) and the limit of the shared memory (48KB) prevents

5

cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

from storing all the vectors in shared memory. To be able to use shared memory we have to
use the Block-Interleaved data layout. The number of systems to be grouped (BS ) is imposed
by the size of the shared memory. In order to address the limitation of shared memory, we
only store the rhs vector, as this is the vector on which more accesses are carried out. In this
sense, the more systems are packed in shared memory, the more accesses to shared memory are
carried out.

4 Performance Analysis

To carry out the experiments, we have used an heterogeneous node1 composed of 2× Intel
Xeon E5-2630v3 (Haswell) with 8 cores and 20 MB L3 cache each, and 2× K80 NVIDIA GPU
(Kepler) with a total of 4992 cores and 24 GB GDDR5 of global memory each. Each K80 is
composed of 2×logic GPUs similar to K40. This node is a Linux (Red Hat 4.4.7-16) machine,
on which we have used the next configuration (compilers version and flags): gcc 4.4.7, nvcc
(CUDA) 7.5, -O3, -fopenmp, -arch=sm 37. The code evaluated in this section is available in a
public access repository2.

To evaluate the different implementations described in the previous section, we have used
real configurations (neurons’ morphologies)3. In particular, 6 different neurons were used, which
can be divided into 6 different categories regarding their sizes and number of branches. More
details are described in Table 1. We have considered these 6 different morphologies, as a wide
range of the neurons fall into the chosen morphologies.

Name Size #Branches Code Name neuron ID

small-low 76 7 299-DG-IN-Neuron2 NMO 00076
small-high 76 29 202-2-19nj NMO 00076
medium-low 305 30 59D-40X NMO 00302
medium-high 319 157 Culture-9-5 NMO 00319

big-low 695 66 28-2-2 NMO 00695
big-high 691 341 HSE-fluoro02 NMO 00691

Table 1: Summary of the neurons used.

In this section, 5 different implementations are analyzed. One is based on OpenMPMulticore
using the Flat data layout (Section 3). This implementation makes use of an OpenMP pragma
(#pragma omp for) on the top of the for loop which goes over the different independent Hines
systems to distribute blocks of systems over the available cores. The rest of implementations are
based on GPU. Basically, we have one implementation per each of the data layout described:
Flat, Full-Interleaved and Block-Interleaved. Additionally, we study the use of shared memory
(Block-Shared) over Block-Interleaved. There are multiple different configurations regarding
the block-size (BS ) and CUDA block for the last two scenarios (Block-Interleaved and Block-
Shared). For sake of clarity we focus on one of the possible test cases to evaluate these two
approaches. The benefit shown for these two implementations is similar to the rest of test-cases.

First, we evaluate the Multicore, Flat and Full-Interleaved for 256, 2,560, 25,600 and 256,000
medium-high (Table 1) neurons (Fig. 3). On those test cases that do not compromise a high
number of neurons (256 and 2,560), Multicore obtains better performance than the GPU-based

1MinoTauro, https://www.bsc.es/ca/innovation-and-services/supercomputers-and-facilities/

minotauro
2BSC-GitLab, https://pm.bsc.es/gitlab/imartin1/cuHinesBatch
3http://www.neuromorpho.org/

6



 Pedro Valero-Lara et al. / Procedia Computer Science 108C (2017) 566–575 571cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

Size of the system

Set of vectors

Set of first elements

Set of second elements

Set of third elements

Second blockFirst block

Figure 2: Example of the different data layouts proposed, Flat (top), Full-Interleaved (center),
Block-Interleaved (bottom) with a BS equal to 2, for four Hines systems of three elements each.
Point-line represents the jumps in memory carried out by the first thread/system.

of using one thread per Hines system. As commented in Section 1, we decided to explore this
approach to avoid dealing with atomic accesses and synchronizations, as well as to be able
to execute a very high number of neurons of any size. Using the Flat data layout we can
not exploit coalescence; however by interleaving (Full-Interleaved data layout) the elements
of the vectors (u, l, d, rhs and p in Pseudocode 1), contiguous threads access to contiguous
memory locations. Although, we exploit coalescence in the memory accesses by using this
approach, the threads have to jump in memory as many elements as the number of systems
to access the next element of the vector(s) (Point-lines in Figure 2). This could cause an
inefficient use of the memory hierarchy. This is why we study an additional approach, the
called Block-Interleaved data layout. Using this approach we reduce the number of elements
among consecutive elements of the same system, and so the jumps in memory are not as big
as in the previous approach (Full-Interleaved), while keeping the coalesced memory accesses.
Also, the use of the Block-Interleaved data layout can take advantage better of the growing
importance of the bigger and bigger cache memories in the memory hierarchy of the current
and upcoming CUDA architectures.

3.1 Implementation based on Shared Memory

Unlike the previous approaches, here we explore the use of shared memory for our target
application. The shared memory is much faster than the global memory; however it presents
some important constraints to deal with. This memory is useful when the same data can be
reused either by the same thread or by other thread of the same block of threads (CUDA
block). Also, it is small (until 48KB in the architecture used) and its use hinders the exchange
among blocks of threads by the CUDA scheduler to overlap accesses to global memory with
computation.

As we can see in Pseudocode 1, in our problem the elements of the vectors a, d, b, rhs
and p are reused in the Forward Sweep after computing the Backward Sweep. However, the
granularity used (1 thread per system) and the limit of the shared memory (48KB) prevents

5

cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

from storing all the vectors in shared memory. To be able to use shared memory we have to
use the Block-Interleaved data layout. The number of systems to be grouped (BS ) is imposed
by the size of the shared memory. In order to address the limitation of shared memory, we
only store the rhs vector, as this is the vector on which more accesses are carried out. In this
sense, the more systems are packed in shared memory, the more accesses to shared memory are
carried out.

4 Performance Analysis

To carry out the experiments, we have used an heterogeneous node1 composed of 2× Intel
Xeon E5-2630v3 (Haswell) with 8 cores and 20 MB L3 cache each, and 2× K80 NVIDIA GPU
(Kepler) with a total of 4992 cores and 24 GB GDDR5 of global memory each. Each K80 is
composed of 2×logic GPUs similar to K40. This node is a Linux (Red Hat 4.4.7-16) machine,
on which we have used the next configuration (compilers version and flags): gcc 4.4.7, nvcc
(CUDA) 7.5, -O3, -fopenmp, -arch=sm 37. The code evaluated in this section is available in a
public access repository2.

To evaluate the different implementations described in the previous section, we have used
real configurations (neurons’ morphologies)3. In particular, 6 different neurons were used, which
can be divided into 6 different categories regarding their sizes and number of branches. More
details are described in Table 1. We have considered these 6 different morphologies, as a wide
range of the neurons fall into the chosen morphologies.

Name Size #Branches Code Name neuron ID

small-low 76 7 299-DG-IN-Neuron2 NMO 00076
small-high 76 29 202-2-19nj NMO 00076
medium-low 305 30 59D-40X NMO 00302
medium-high 319 157 Culture-9-5 NMO 00319

big-low 695 66 28-2-2 NMO 00695
big-high 691 341 HSE-fluoro02 NMO 00691

Table 1: Summary of the neurons used.

In this section, 5 different implementations are analyzed. One is based on OpenMPMulticore
using the Flat data layout (Section 3). This implementation makes use of an OpenMP pragma
(#pragma omp for) on the top of the for loop which goes over the different independent Hines
systems to distribute blocks of systems over the available cores. The rest of implementations are
based on GPU. Basically, we have one implementation per each of the data layout described:
Flat, Full-Interleaved and Block-Interleaved. Additionally, we study the use of shared memory
(Block-Shared) over Block-Interleaved. There are multiple different configurations regarding
the block-size (BS ) and CUDA block for the last two scenarios (Block-Interleaved and Block-
Shared). For sake of clarity we focus on one of the possible test cases to evaluate these two
approaches. The benefit shown for these two implementations is similar to the rest of test-cases.

First, we evaluate the Multicore, Flat and Full-Interleaved for 256, 2,560, 25,600 and 256,000
medium-high (Table 1) neurons (Fig. 3). On those test cases that do not compromise a high
number of neurons (256 and 2,560), Multicore obtains better performance than the GPU-based

1MinoTauro, https://www.bsc.es/ca/innovation-and-services/supercomputers-and-facilities/

minotauro
2BSC-GitLab, https://pm.bsc.es/gitlab/imartin1/cuHinesBatch
3http://www.neuromorpho.org/

6



572 Pedro Valero-Lara et al. / Procedia Computer Science 108C (2017) 566–575cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

implementations. This is mainly because of the parallelism of these tests, which is not enough to
saturate GPU and this can not reduce the impact of the high latency by overlapping execution
and memory accesses. The use of multicore (16 cores and 2 sockets) supposes a speedup (over
sequential execution) about 2 for 256 neurons and about 6 for 256,000 neurons. As shown,
Flat is not able to scale, even on those test-cases that involve a high number of neurons, being
even slower than multicore execution, achieving a maximum speedup about 2. This is because
of the memory access pattern which can not exploit coalescing (contiguous threads access to
contiguous memory locations). On the other hand, Full-Interleaved turns up as the best choice,
being faster than Multicore and Flat, when dealing with a high number of neurons (25,600 and
256,000). Unlike Flat, Full-Interleaved takes advantage of coalescing when accessing to global
memory. As expected, this has an impressive impact on performance, being Full-Interleaved
about 20× and 25× faster than sequential code when computing 25,600 and 256,000 neurons
respectively on one K80 GPU. The use of multiple GPUs is only beneficial on those test cases
with an enough computational load where a high number of neurons must be computed (25,600
and 256,000 neurons), with an extra benefit close to the ideal scaling (about 1.9× faster than
using one K80 GPU).

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Flat(one logic GPU)

Full-Inter.(one logic GPU)
Full-Inter.(K80)

Full-Inter.(2xK80)

Figure 3: Performance (speedup over sequential execution) achieved by multicore (16 cores, 2
sockets) and the GPU-based approaches, Flat and Full-Interleaved (using different number of
GPUs), using medium-high neurons.

As it is not possible to have the control on CUDA scheduler, we have explored a high
number of different combinations regarding block-size (BS) for the Block-Interleaved approach
(Sec. 3). For sake of clarity, and given the huge number of different test-cases possible, we
have focused on one particular scenario. It consists of computing 256,000 medium-high neurons
using different block sizes (BS ) and fixing the size of the CUDA block (number of threads per
block). This is a characteristic case among the tests carried out, as the features (sizes and
number of branches) of the morphology used is in between of the other two morphologies. As
shown in Fig. 4-left, some of the cases are slightly better than the Full-Interleaved approach,
being about a 2% faster.

Next we analyze the performance of the Block-Shared implementation. We focus on the same
scenario used for the Block-Interleaved. Fig. 4-right graphically illustrates the performance
achieved by the Block-Shared and the other approaches. Although using shared memory is
better than the performance achieved by the Flat approach, it is much smaller than the Full-
Interleaved counterpart. For this particular scenario (medium-high morphology), a very low
number of systems saturate the capacity of the shared memory (48KB). Also, the data reuse

7

cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

 12.4

 12.6

 12.8

 13

 13.2

Full-Inter 32 64 128 256 512

S
p
e
e
d
U

p

Block(Interleaved)-Size

 2

 4

 6

 8

 10

 12

 14

Multi Flat Full-Inter Shared

S
p
e
e
d
U

p

Approaches

Figure 4: (Left) Performance (speedup over sequential execution) achieved by the Block-
Interleaved approach for multiple BS (32, 64, 128, 256, 512) for a CUDA Block size equal
to 128. (Right) Performance (speedup over sequential execution) achieved by the Block-Shared
implementation, Flat, Full-Interleaved (Full-Inter) and Multicore (Multi) using 16 cores. The
test-case consisted of computing 256,000 medium-high neurons, using one of the two logic GPUs
in one K80 NVIDIA GPU.

is low using one-thread per Hines system. These drawbacks do not allow to achieve a better
performance when the shared memory is used.

Finally, we evaluate the impact on performance of the particularities of each of the mor-
phologies (Table 1). The performance achieved by the Flat is not included as it was proven to
be very inefficient. As shown in Fig. 5, both approaches, Multicore and Full-Interleaved, show a
similar trend in performance independently of the neurons’ morphology. In particular the peak
speedup achieved on the different morphologies does not vary significantly (47×-55×).

After comparing the performance achieved by Multicore and GPU, now we focus on evalu-
ating the efficiency of our GPU implementation. To do that, we make use of nvprof 4. We do
not obtain results very different depending on the input (number and shape of neurons). In all
cases, we obtain more than 99% of efficiency (sm efficiency). It is also achieved a bandwidth
(Global Load Throughput) close to 160GB/s, being the theoretical peak equal to 240 GB/s
and the effective about the bandwidth achieved by our implementation. As most of the GPU
applications, our implementation is memory bound and this is reflected by a low occupancy
(about 24%).

5 Final Remarks

In this work several optimizations on NVIDIA GPUs for the Hines Algorithm have presented.
Three different GPU-based implementations were deeply described and analyzed. This compu-
tation is indeed one of the main bottlenecks in the simulation of the Human Brain.

Block-Interleaved is positioned as the fastest approach against the others when dealing with
a high number of neurons. However this implementation is difficult to tune being not possible
to know the best configuration in advance. In contrast, Full-Interleaved is almost as fast as
Block-Interleaved and is not in need of being tuned a priori. It is important to highlight that
both approaches require to modify the data layout by interleaving the elements of the vectors.

4nvprof -m achieved occupancy,sm efficiency,gld throughput,gst throughput,gld efficiency,
gst efficiency ./run

8



 Pedro Valero-Lara et al. / Procedia Computer Science 108C (2017) 566–575 573cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

implementations. This is mainly because of the parallelism of these tests, which is not enough to
saturate GPU and this can not reduce the impact of the high latency by overlapping execution
and memory accesses. The use of multicore (16 cores and 2 sockets) supposes a speedup (over
sequential execution) about 2 for 256 neurons and about 6 for 256,000 neurons. As shown,
Flat is not able to scale, even on those test-cases that involve a high number of neurons, being
even slower than multicore execution, achieving a maximum speedup about 2. This is because
of the memory access pattern which can not exploit coalescing (contiguous threads access to
contiguous memory locations). On the other hand, Full-Interleaved turns up as the best choice,
being faster than Multicore and Flat, when dealing with a high number of neurons (25,600 and
256,000). Unlike Flat, Full-Interleaved takes advantage of coalescing when accessing to global
memory. As expected, this has an impressive impact on performance, being Full-Interleaved
about 20× and 25× faster than sequential code when computing 25,600 and 256,000 neurons
respectively on one K80 GPU. The use of multiple GPUs is only beneficial on those test cases
with an enough computational load where a high number of neurons must be computed (25,600
and 256,000 neurons), with an extra benefit close to the ideal scaling (about 1.9× faster than
using one K80 GPU).

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Flat(one logic GPU)

Full-Inter.(one logic GPU)
Full-Inter.(K80)

Full-Inter.(2xK80)

Figure 3: Performance (speedup over sequential execution) achieved by multicore (16 cores, 2
sockets) and the GPU-based approaches, Flat and Full-Interleaved (using different number of
GPUs), using medium-high neurons.

As it is not possible to have the control on CUDA scheduler, we have explored a high
number of different combinations regarding block-size (BS) for the Block-Interleaved approach
(Sec. 3). For sake of clarity, and given the huge number of different test-cases possible, we
have focused on one particular scenario. It consists of computing 256,000 medium-high neurons
using different block sizes (BS ) and fixing the size of the CUDA block (number of threads per
block). This is a characteristic case among the tests carried out, as the features (sizes and
number of branches) of the morphology used is in between of the other two morphologies. As
shown in Fig. 4-left, some of the cases are slightly better than the Full-Interleaved approach,
being about a 2% faster.

Next we analyze the performance of the Block-Shared implementation. We focus on the same
scenario used for the Block-Interleaved. Fig. 4-right graphically illustrates the performance
achieved by the Block-Shared and the other approaches. Although using shared memory is
better than the performance achieved by the Flat approach, it is much smaller than the Full-
Interleaved counterpart. For this particular scenario (medium-high morphology), a very low
number of systems saturate the capacity of the shared memory (48KB). Also, the data reuse

7

cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

 12.4

 12.6

 12.8

 13

 13.2

Full-Inter 32 64 128 256 512

S
p
e
e
d
U

p

Block(Interleaved)-Size

 2

 4

 6

 8

 10

 12

 14

Multi Flat Full-Inter Shared

S
p
e
e
d
U

p

Approaches

Figure 4: (Left) Performance (speedup over sequential execution) achieved by the Block-
Interleaved approach for multiple BS (32, 64, 128, 256, 512) for a CUDA Block size equal
to 128. (Right) Performance (speedup over sequential execution) achieved by the Block-Shared
implementation, Flat, Full-Interleaved (Full-Inter) and Multicore (Multi) using 16 cores. The
test-case consisted of computing 256,000 medium-high neurons, using one of the two logic GPUs
in one K80 NVIDIA GPU.

is low using one-thread per Hines system. These drawbacks do not allow to achieve a better
performance when the shared memory is used.

Finally, we evaluate the impact on performance of the particularities of each of the mor-
phologies (Table 1). The performance achieved by the Flat is not included as it was proven to
be very inefficient. As shown in Fig. 5, both approaches, Multicore and Full-Interleaved, show a
similar trend in performance independently of the neurons’ morphology. In particular the peak
speedup achieved on the different morphologies does not vary significantly (47×-55×).

After comparing the performance achieved by Multicore and GPU, now we focus on evalu-
ating the efficiency of our GPU implementation. To do that, we make use of nvprof 4. We do
not obtain results very different depending on the input (number and shape of neurons). In all
cases, we obtain more than 99% of efficiency (sm efficiency). It is also achieved a bandwidth
(Global Load Throughput) close to 160GB/s, being the theoretical peak equal to 240 GB/s
and the effective about the bandwidth achieved by our implementation. As most of the GPU
applications, our implementation is memory bound and this is reflected by a low occupancy
(about 24%).

5 Final Remarks

In this work several optimizations on NVIDIA GPUs for the Hines Algorithm have presented.
Three different GPU-based implementations were deeply described and analyzed. This compu-
tation is indeed one of the main bottlenecks in the simulation of the Human Brain.

Block-Interleaved is positioned as the fastest approach against the others when dealing with
a high number of neurons. However this implementation is difficult to tune being not possible
to know the best configuration in advance. In contrast, Full-Interleaved is almost as fast as
Block-Interleaved and is not in need of being tuned a priori. It is important to highlight that
both approaches require to modify the data layout by interleaving the elements of the vectors.

4nvprof -m achieved occupancy,sm efficiency,gld throughput,gst throughput,gld efficiency,
gst efficiency ./run

8



574 Pedro Valero-Lara et al. / Procedia Computer Science 108C (2017) 566–575cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU) 

Full-Inter.(K80) 
Full-Inter.(2xK80) 

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

Figure 5: Performance (speedup over sequential execution) achieved for computing multiple
(256, 2,560, 25,600, 256,000) neurons using different morphologies: small-low (top-left), small-
high (top-right), medium-low (center-left), medium-high (center-right), big-low (bottom-left)
and big-high (bottom-right).

This preprocessing compromises an irrelevant cost with respect to the whole process, as for our
target application (the simulation of the Human Brain), this is carried out just once at the
very beginning of the simulation. Using Full-Interleaved we obtain a similar behavior in terms
of performance when different morphologies are considered. This is particularly interesting to
evaluate the scalability and robustness of the implementation. As overview, while multicore

9

cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

(16 cores and 2 sockets) gives us a maximum speedup against sequential execution about 6×,
using 2×K80 NVIDIA GPUs it is achieved a peak speedup about 55×.

As future work, we plan to implement a version of Full-Interleaved that can deal with
different morphologies in parallel.

References

[1] Roy Ben-Shalom, Gilad Liberman, and Alon Korngreen. Accelerating compartmental modeling
on a graphical processing unit. Frontiers in Neuroanatomy, 7:4, 2013.

[2] Samuel Daniel Conte and Carl W. De Boor. Elementary Numerical Analysis: An Algorithmic
Approach. McGraw-Hill Higher Education, 3rd edition, 1980.

[3] cuSPARSE. Nvidia-cuda toolkit documentation. http://docs.nvidia.com/cuda/cusparse/.

[4] Andrew A. Davidson, Yao Zhang, and John D. Owens. An auto-tuned method for solving large
tridiagonal systems on the GPU. In 25th IEEE International Symposium on Parallel and Dis-
tributed Processing, IPDPS, Anchorage, Alaska, USA, pages 956–965, May 2011.

[5] Ecole Polytechnique Federale de Lausanne (EPFL). The Blue Brain Project.
http://bluebrain.epfl.ch/.

[6] Sandra Diaz-Pier, Mikal Naveau, Markus Butz-Ostendorf, and Abigail Morrison. Automatic gen-
eration of connectivity for large-scale neuronal network models through structural plasticity. Fron-
tiers in Neuroanatomy, 10:57, 2016.

[7] European Commission Future and Emerging Technologies Flagship. Human Brain Project (HBP).
https://www.humanbrainproject.eu/.

[8] Michael Hines. Efficient computation of branched nerve equations. International Journal of Bio-
Medical Computing, 15(1):69 – 76, 1984.

[9] National Institutes of Health. Brain research through advancing innovative neurotechnologies
(brain). https://www.braininitiative.nih.gov/about/index.htm.

[10] Harold S. Stone. An efficient parallel algorithm for the solution of a tridiagonal linear system of
equations. J. ACM, 20(1):27–38, January 1973.

[11] Pedro Valero-Lara. Multi-gpu acceleration of DARTEL (early detection of alzheimer). In 2014
IEEE International Conference on Cluster Computing, CLUSTER 2014, Madrid, Spain, Septem-
ber 22-26, 2014, pages 346–354, 2014.

[12] Pedro Valero-Lara, Poornima Nookala, Fernando L. Pelayo, Johan Jansson, Serapheim Dim-
itropoulos, and Ioan Raicu. Many-task computing on many-core architectures. Scalable Com-
puting: Practice and Experience, 17(1):32–46, 2016.

[13] Pedro Valero-Lara and Fernando L. Pelayo. Towards a more efficient use of gpus. In International
Conference on Computational Science and Its Applications, ICCSA 2011, Santander, Spain, June
20-23, 2011, pages 3–9, 2011.

[14] Pedro Valero-Lara and Fernando L. Pelayo. Analysis in performance and new model for multiple
kernels executions on many-core architectures. In IEEE 12th International Conference on Cognitive
Informatics and Cognitive Computing, ICCI*CC 2013, New York, NY, USA, July 16-18, 2013,
pages 189–194, 2013.

[15] Pedro Valero-Lara, Alfredo Pinelli, Julien Favier, and Manuel Prieto-Mat́ıas. Block tridiagonal
solvers on heterogeneous architectures. In 10th IEEE International Symposium on Parallel and
Distributed Processing with Applications, ISPA, Leganes, Madrid, Spain, pages 609–616, July 2012.

[16] Pedro Valero-Lara, Alfredo Pinelli, and Manuel Prieto-Mat́ıas. Fast finite difference poisson solvers
on heterogeneous architectures. Computer Physics Communications, 185(4):1265–1272, 2014.

[17] Yao Zhang, Jonathan Cohen, and John D. Owens. Fast tridiagonal solvers on the GPU. In Proceed-
ings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP, Bangalore, India, pages 127–136, January 2010.

10



 Pedro Valero-Lara et al. / Procedia Computer Science 108C (2017) 566–575 575cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU) 

Full-Inter.(K80) 
Full-Inter.(2xK80) 

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

Figure 5: Performance (speedup over sequential execution) achieved for computing multiple
(256, 2,560, 25,600, 256,000) neurons using different morphologies: small-low (top-left), small-
high (top-right), medium-low (center-left), medium-high (center-right), big-low (bottom-left)
and big-high (bottom-right).

This preprocessing compromises an irrelevant cost with respect to the whole process, as for our
target application (the simulation of the Human Brain), this is carried out just once at the
very beginning of the simulation. Using Full-Interleaved we obtain a similar behavior in terms
of performance when different morphologies are considered. This is particularly interesting to
evaluate the scalability and robustness of the implementation. As overview, while multicore

9

cuHinesBatch: Solving multiple Hines Systems on GPUs Pedro Valero-Lara et al.

(16 cores and 2 sockets) gives us a maximum speedup against sequential execution about 6×,
using 2×K80 NVIDIA GPUs it is achieved a peak speedup about 55×.

As future work, we plan to implement a version of Full-Interleaved that can deal with
different morphologies in parallel.

References

[1] Roy Ben-Shalom, Gilad Liberman, and Alon Korngreen. Accelerating compartmental modeling
on a graphical processing unit. Frontiers in Neuroanatomy, 7:4, 2013.

[2] Samuel Daniel Conte and Carl W. De Boor. Elementary Numerical Analysis: An Algorithmic
Approach. McGraw-Hill Higher Education, 3rd edition, 1980.

[3] cuSPARSE. Nvidia-cuda toolkit documentation. http://docs.nvidia.com/cuda/cusparse/.

[4] Andrew A. Davidson, Yao Zhang, and John D. Owens. An auto-tuned method for solving large
tridiagonal systems on the GPU. In 25th IEEE International Symposium on Parallel and Dis-
tributed Processing, IPDPS, Anchorage, Alaska, USA, pages 956–965, May 2011.

[5] Ecole Polytechnique Federale de Lausanne (EPFL). The Blue Brain Project.
http://bluebrain.epfl.ch/.

[6] Sandra Diaz-Pier, Mikal Naveau, Markus Butz-Ostendorf, and Abigail Morrison. Automatic gen-
eration of connectivity for large-scale neuronal network models through structural plasticity. Fron-
tiers in Neuroanatomy, 10:57, 2016.

[7] European Commission Future and Emerging Technologies Flagship. Human Brain Project (HBP).
https://www.humanbrainproject.eu/.

[8] Michael Hines. Efficient computation of branched nerve equations. International Journal of Bio-
Medical Computing, 15(1):69 – 76, 1984.

[9] National Institutes of Health. Brain research through advancing innovative neurotechnologies
(brain). https://www.braininitiative.nih.gov/about/index.htm.

[10] Harold S. Stone. An efficient parallel algorithm for the solution of a tridiagonal linear system of
equations. J. ACM, 20(1):27–38, January 1973.

[11] Pedro Valero-Lara. Multi-gpu acceleration of DARTEL (early detection of alzheimer). In 2014
IEEE International Conference on Cluster Computing, CLUSTER 2014, Madrid, Spain, Septem-
ber 22-26, 2014, pages 346–354, 2014.

[12] Pedro Valero-Lara, Poornima Nookala, Fernando L. Pelayo, Johan Jansson, Serapheim Dim-
itropoulos, and Ioan Raicu. Many-task computing on many-core architectures. Scalable Com-
puting: Practice and Experience, 17(1):32–46, 2016.

[13] Pedro Valero-Lara and Fernando L. Pelayo. Towards a more efficient use of gpus. In International
Conference on Computational Science and Its Applications, ICCSA 2011, Santander, Spain, June
20-23, 2011, pages 3–9, 2011.

[14] Pedro Valero-Lara and Fernando L. Pelayo. Analysis in performance and new model for multiple
kernels executions on many-core architectures. In IEEE 12th International Conference on Cognitive
Informatics and Cognitive Computing, ICCI*CC 2013, New York, NY, USA, July 16-18, 2013,
pages 189–194, 2013.

[15] Pedro Valero-Lara, Alfredo Pinelli, Julien Favier, and Manuel Prieto-Mat́ıas. Block tridiagonal
solvers on heterogeneous architectures. In 10th IEEE International Symposium on Parallel and
Distributed Processing with Applications, ISPA, Leganes, Madrid, Spain, pages 609–616, July 2012.

[16] Pedro Valero-Lara, Alfredo Pinelli, and Manuel Prieto-Mat́ıas. Fast finite difference poisson solvers
on heterogeneous architectures. Computer Physics Communications, 185(4):1265–1272, 2014.

[17] Yao Zhang, Jonathan Cohen, and John D. Owens. Fast tridiagonal solvers on the GPU. In Proceed-
ings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP, Bangalore, India, pages 127–136, January 2010.

10


