
Alex Albas
Gerard Auguets

UPC Telematics Department

WebRTC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87658745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 WebRTC 5
1.1 Project Introduction . 5

1.1.1 Acknowledgments . 6
1.1.2 Motivation and Objectives 7

1.2 About WebRTC . 9
1.2.1 History . 9
1.2.2 Introduction to Real Time Communications 9
1.2.3 Advantages and Drawbacks of Using WebRTC 10
1.2.4 Applications and Use Cases 10
1.2.5 Supported Browsers . 11

1.3 Signaling . 12
1.3.1 Signaling Overview . 12
1.3.2 TURN, STUN, ICE Candidates 16
1.3.3 Signaling Diagram . 18
1.3.4 Session Description Protocol (SDP) 19
1.3.5 Node Server . 24
1.3.6 Node.js Used Modules 32

1.4 WebRTC Technology . 36
1.4.1 JavaScript Introduction 36
1.4.2 WebRTC API’s . 40

1.5 Security . 49
1.5.1 WebRTC Security . 49
1.5.2 HTTPS . 50
1.5.3 HTTPS Communication Data Encryption 52

1.6 WebRTC Project Implementation 56
1.6.1 Application Architecture 56
1.6.2 Setting Up Server . 57
1.6.3 Setting Up Client . 59

1.7 Testing . 65

1.7.1 Statistics and graphs . 68
1.8 Conclusions . 70
1.9 Future Implementations . 71
1.10 Annexed . 72

4

Chapter 1

WebRTC

1.1 Project Introduction

Initially we though to do our projects separately, but at the moment to choose a
project related with WebRTC for Chrome[2], (Generally on Firefox[6]. should
work too), we realized that the core aplication was the same, so we decided make
it together and develop it with the approval of our project tutor Jose Luis.

The application that is going to be developed is web oriented and real time
communications time that it has been developed by Google, thing that make easier
the fact no plugins and extensions are required to install in order to use it.

To use WebRTC applications, there is not recquired, due to no technical knowl-
edge is needed in order to use/enjoy it, taking into account that new society nowa-
days know how open a browser and write an URL.

To start, we did a first research in order to know what we found. After this
researching, we saw for the developing of this web application we will have to
treat many aspects, which we don’t have any (or a little bit) knowledge:

1. WebRTC API’s.[?, 8]

2. HTML language [7].

3. JavaScript language [7].

4. Callback concept.

5. Node.js Server for real time applications.[?]

6. Signaling process.

7. Latex.

5

And other knowledges related, those that have been acquired during this years
at the university, thig that will make easier all the absorption of concepts above:

1. Object oriented programming.

2. Audiovisual coding.

3. Audio/video concepts.

4. Telematics concepts.

5. Unix/linux environment.

Learning all this themes suposed to us a really big challenge, due to this aplica-
tion is going to be developed from scratch, and both (for better or worse) we have
already working full time.

Once already known all the themes to treat, we began with the researching
process by searching Projects, web tutorials, books, PDF, etc...spending lot of time
on it but necessary in order to be able to develop such application.

After long time researching, it was time to design our architecture application,
that it was absolutely designed by us and with the approval of our tutor. Once the
architecture was created, it was time to create!

WebRTC is the present-future technology for real time communications and its
use is greatly increasing lastly.

The goal of this project is to get us started with WebRTC by researching and
understanding this technology and finally trying to develop a simple WebRTC site.

1.1.1 Acknowledgments

Alex:
Nobody said it was easy but it was worth it after all I have to say thanks,

on the one hand to Aloha and my family. My girlfriend Aloha, who has been
supporting me during the lasts years staying at the university, and especially the
last year. You are my engine, I love you ! Many thanks to my Parents and sister
too, without them anything would have been possible. On the other hand, to our
tutor Jose Luis, who has been really involved to make it a success. Thanks Jose!
And last but not least to my university colleague and friend Gerard. We got it.

Gerard:
First I want to say thank to my mother for her support and unconditional love,

for being with me, whenever I needed, without her I would never have achieved.
Many thanks to my father and brothers, for pushing me and motivate me to no stop
never. Finally I want to say thanks to my friends, they were always with me the
few hours I could spend.

6

1.1.2 Motivation and Objectives

Video conferences, video-games, calls, social networks, every day the society
shows clear signs of technological advance, allowing us to establish connections
and communications with anyone, anytime, anywhere. The exponential growth
of connected devices and the access facilities to the network are the key of this
continued expansion and as in any evolving market, new technologies appear in
order to improve the actual communication systems. As in any engineering field,
this improvements seek to improve the functional capabilities and reduce the op-
erating cost of the systems. The scope of this project includes all the above with
the need of establish communications in real time, approaching this practice closer
to the reality. The main objective is to develop a web application through an ex-
panding technology as WebRTC, that allow exchange and establish an interactive
communication and with the possibility of transferring any kind of data between
two clients, in a direct way without intermediate servers and ensuring the secu-
rity and the velocity of the communication. The application will be oriented to
academia, allowing communications between students and teachers, useful for re-
solving issues in real time, without the need to travel or leave home. One of the
main advantages is that the application doesn’t require to install any plug-in or
software, because WebRTC is implemented inside Web-Browsers. This facilitates
the communication because both the student and the teacher can realize the com-
munication from any computer, anyplace, without the need to modify the machine,
only a compatible browser is needed.

Nowadays, perhaps somebody would like to try using this technology to com-
municate with another person. It can be done by visiting many demo sites such as:
http://apprtc.appspot.com which will create a unique URL for your video chat.
Just send this URL to another person with a browser that also supports WebRTC,
and once they open that page, users should see two video elements displayed on
the page: one from your local video camera and one from the other person’s video
camera. There’s a lot of complex negotiation that’s gone on in the background,
but assuming that Chrome/Firefox browsers are used where WebRTC is fully sup-
ported, thats an easy way to getting started.

In this project the following objectives have been defined taking into account
the introduction themes to treat, so it was decided that the application had at least:

1. A Node.js server made to manage the signaling process and text chat rooms
managed by Socket.io and Express node.js modules node as explained in the
section 1.3.5.

2. Web design and implementation made with HTML and JavaScript languages.

7

3. Be able to make a video call in a local environment and in a real environment
correctly. With local environment we mean that the two browsers are on the
same network and there is no Stun/Turn servers, and real environment we
mean that browsers are on different networks and data go through Google
Stun/turn servers.(poner referencia).

4. Management of video stream (pause) and audio streams (mute).

5. Using HTTPS for a secure connection. Creating certificates to establish a
secure connection, because Google Chrome only allows passage of streams
if they come from this type of connection.

6. File sharing with RTCDataChannel.

So, with the objectives clearly defined, let’s start to develop our application.

8

1.2 About WebRTC

1.2.1 History

When the World Wide Web (WWW) was first created in the early 1990’s, it was
built upon a page-centric model that used HREF-based hyper-links. In this early
model of the web, browsers navigated from one page to another in order to present
new content and to update their HTML-based user interfaces.

Around the year 2000, a new approach to web browsing had started to develop,
and by the middle of that decade, it had become standardized as the XMLHttpRe-
quest (XHR) API. This new XHR API enabled web developers to create web ap-
plications that didn’t need to navigate to a new page to update their content or user
interface. It allowed them to utilize server-based web services that provided access
to structured data and snippets of pages or other content. This led to a whole new
approach to the web, which is now commonly referred to as Web 2.0.

The introduction of this new XHR API enabled services such as Gmail, Face-
book, Twitter, and more to create a much more dynamic and social web for us.

Now the web is undergoing yet another transformation that enables individual
web browsers to stream data directly to each other without the need for sending
it via intermediary servers. This new form of peer-to-peer communication is built
upon a new set of API that is being standardized by the Web Real-Time Commu-
nications Working Group available at http://www.w3.org/2011/04/webrtc/ of the
World Wide Web Consortium (W3C), and a set of protocols standardized by Real-
Time Communication in WEB-browsers Working Group available at http://tools.ietf.
org/wg/rtcweb/ of the Internet Engineering Task Force (IETF). Just as the intro-
duction of the XHR API led to the Web 2.0 revolution, the introduction of the new
WebRTC standards is creating a new revolution too.

1.2.2 Introduction to Real Time Communications

Direct peer-to-peer connections often provide lower latency, making gaming, video
streaming, sensor data feeds, and so on, appear faster and more interactive or real-
time, hence the use of this term.

Secure peer-to-peer connections allow the fact of exchanging information pri-
vately without it being logged or managed by intermediary servers. This reduces
the need for some large service providers while creating opportunities for people
to create new types of services and applications. It introduces improved privacy for
some individuals while it may also create new complexities for regulators and law
enforcement organizations.

And the efficient peer-to-peer exchange of binary data streams removes the

9

need to serialize, re-encode, or convert this data at each step in the process. This
leads to a much more efficient use of network and application resources, as well as
creating a less error prone and more robust data exchange pipeline.

This is just a brief overview of how WebRTC can be used.

1.2.3 Advantages and Drawbacks of Using WebRTC

Advantages:

• No plugins are required, just update your browser.
• Handshaking progress between you server and the participants. After the

signaling process has been completed, the webRTC connection has been es-
tablished, the connection is completely P2P (peer to peer).

• Really interesting for file sharing or text chat, because the connections is
being performed between the peers directly.

• Once the connection has been established (for audio and video) the server
get out of the loop of the connection.

• Better encryption: The traffic is encrypted between peers, so it means that
if you are being attacked by a MiD (man in the middle) it’s really harder to
break it down.

Drawbacks:

• One must be careful to not to use passwords or shared secrets at the signaling
process because at this step data is not encrypted.

• Not supported for all browsers: IE & Safari are not supported.
• Mobiles are not supported yet. No native mobile support.
• Scaling can be hard. Large video calls are not well scaled. It means that if

you want to do a multi chat connection, each user has to have a peer to peer
connection with all the other users. Right figures are 4 to 8 users.

1.2.4 Applications and Use Cases

The real-time web allow us to set up dynamic connections to other web browsers
and web enabled devices quickly and easily. This kind of connections open the
door to a whole new range of peer-to-peer communications like:

• Video conferencing.
• Contact Centers.
• In-line customer support. Directly embedded into your website. The most

simplest will be the text chat between customer and the support team but a
call me button will be better.

10

• Tele-medicine like Phemium.
• Insurance claims. Live video feedback to your insurance company instead

of calling, so they can see the conditions of the accident, damage of your car
and so on.

• In context communications, like company meetings, teacher-student meet-
ings, etc.

• Gaming, multi-player.
• Peer file, Screen sharing, data sharing.

So they are very extensive its utilities.

1.2.5 Supported Browsers

Communications and Internet form a very powerful business, this can be an ad-
vantage to improve the technology thanks to the rivalry of companies to take the
control of the market. On the other hand this can be a weak point too limiting
the compatibility between the technologies developed by different manufacturers,
webRTC suffer these consequences. Fortunately the big potential of this upcoming
technology is making companies to stop the war between them in order to take
benefit of all the advantages previously commented.

Figure 1.1 shows all the WebRTC compatible browsers and the available char-
acteristics for each one.

Figure 1.1: Browsers supported.

11

1.3 Signaling

1.3.1 Signaling Overview

This is a analog process like the early days of telephone. When you wanted to call
somebody, the signal is picked up by telephone operator, which used to patch the
signal with the final user. It was like a Manual Handshake between two parties.

Signaling [3] is an extremely important part of webRTC. In order for a We-
bRTC application to set up a ’call’, its clients need to exchange information:

• Session control messages used to open or close communication.
• Error messages.
• Media meta data such as codecs and codec settings, bandwidth and media

types.
• Key data, used to establish secure connections.
• Network data, such as a host’s IP address and port as seen by the outside

world.
To avoid redundancy and to maximize compatibility with established technologies,
signaling methods and protocols are not specified by WebRTC standards. This
approach is outlined by JSEP, the JavaScript Session Establishment Protocol,
and for this that’s why signaling is not defined on WebRTC.

12

ALICE BOB

Signaling Signaling

Media

Server

Calling Party HTML Client

APP APP

SDP SDP

Figure 1.2: JSEP diagram

JSEP’s architecture also avoids a browser having to save state: that is, to func-
tion as a signaling state machine. This would be problematic if, for example, sig-
naling data was lost each time a page was reloaded. Instead, signaling state can be
saved on a server. Finally, signaling is used to set up the peer connection, which
is handled by the webRTC standard by the API RTCPeerConnection which will
be discussed on section 1.4.2 later on. Once the RTCPeerConnection has been
established, the server is not needed anymore. The basic concepts in this kind of
processes (Signaling between peers) are two:

• Offer
• Answer

13

That’s the initial scenario. Alice wants to call Bob.

ALICE

Web Server
Socket.io,

Websockets,
Comercial

providers,...

“Offer”

“Answer”

“Offer”

“Answer”

Figure 1.3: Signaling offer-answer scenario

Alice wants to reach Bob’s browser, so an Offer is created to the Server. This
offer contains:

1. The Session Description Protocol (SDP): It contains all the characteristics to
the data (video & audio) to be exchanged:

• Video Codecs.
• Resolution.
• Format.
• etc...

At the same time, Bob is connected to the same server, so he receives from the
server that somebody is calling him. He clicks the button accepting the call, so he
is making an Answer, which it will have an Session Description Protocol (SDP)
as well.

After offer-answer model, in order to establish the Peer to Peer Connection with
all the network information is really important because on the way, information

14

can go through Firewalls, proxy’s, public Internet, etc... So, here is when the ICE
Candidates are starting to make sense, and they will be explained on the following
section.

15

1.3.2 TURN, STUN, ICE Candidates

For meta data signaling, WebRTC API use an intermediary server, but for actual
media and data streaming once a session is established, RTCPeerConnection at-
tempts to connect clients directly: peer to peer. In a simpler world, every WebRTC
endpoint would have a unique address that it could exchange with other peers in
order to communicate directly. In reality most devices live behind one or more lay-
ers of NAT, some have anti-virus software that blocks certain ports and protocols,
and many are behind proxies and corporate firewalls. A firewall and NAT may in
fact be implemented by the same device, such as a home WI-FI router.

WebRTC API can use the ICE framework to overcome the complexities of
real-world networking. To enable this to happen, your application must pass ICE
server URL’s to RTCPeerConnection. ICE tries to find the best path to connect the
Peers. It tries all possibilities in parallel and chooses the most efficient option that
works. ICE first tries to make a connection using the host address obtained from a
device’s operating system and network card; if that fails (which it will for devices
behind NAT’s) ICE obtains an external address using a STUN server, and if that
fails, traffic is routed via a TURN relay server. In particular:

• A STUN server is used to get an external network address.
• TURN servers are used to relay traffic if direct (peer to peer) connection

fails.
Typically, each TURN server also supports STUN. That is to say, a TURN

server is a STUN server with added relaying functionality built in. ICE also copes
with the complexities of NAT setups: in reality, NAT ’hole punching’ may require
more than just a public IP: port address. URL’s for STUN and/or TURN servers
are (optionally) specified by a WebRTC API in the iceServers configuration object
that is the first argument to the RTCPeerConnection constructor.

1 {
2 'iceServers': [
3 {
4 'url': 'stun:stun.l.google.com:19382'
5 },
6 {
7 'url': 'turn:192.158.29.39:3478?transport=udp',
8 'credential': 'JZEOEt2V3Qb0y27GRntt2u2PAYA=',
9 'username': '2824511:1379330808'

10 },
11 {
12 'url': 'turn:192.158.29.39:3478?transport=tcp',
13 'credential': 'JZEOEt2V3Qb0y27GRntt2u2PAYA=',
14 'username': '2824511:1379330808'
15 }
16]
17 }

16

Once RTCPeerConnection has that information, the ICE magic happens auto-
matically: RTCPeerConnection uses the ICE framework to work out the best path
between peers, working with STUN and TURN servers as necessary.

1. STUN Servers:

NAT’s provide a device with an IP address for use within a private local net-
work, but this address can’t be used externally. Without a public address,
there’s no way for WebRTC peers to communicate. To get around this prob-
lem WebRTC uses STUN. STUN servers live on the public Internet and have
one simple task: check the IP port address of an incoming request (from an
application running behind a NAT) and send that address back as a response.
In other words, the application uses a STUN server to discover its IP:Port
from a public perspective. This process enables a WebRTC peer to get a
publicly accessible address for itself, and then pass that on to another peer
via a signaling mechanism, in order to set up a direct link. (In practice, dif-
ferent NAT’s work in different ways, and there may be multiple NAT layers,
but the principle is still the same.) STUN servers don’t have to do much
or remember much, so relatively low-spec STUN servers can handle a large
number of requests. Most WebRTC calls successfully make a connection us-
ing STUN: 86%, according to www.webrtcstats.com, though this can be less
for calls between peers behind firewalls and complex NAT configurations.

2. TURN Servers:

RTCPeerConnection tries to set up direct communication between peers over
UDP. If that fails, RTCPeerConnection resorts to TCP. If that fails, TURN
servers can be used as a fall back, relaying data between endpoints.

Just to reiterate: TURN is used to relay audio/video/data streaming between
peers, not signaling data. TURN servers have public addresses, so they can
be contacted by peers even if the peers are behind firewalls or proxies. TURN
servers have a conceptually simple task to relay a stream but, unlike STUN
servers, they inherently consume a lot of bandwidth. In other words, TURN
servers need to be beefier.

WebRTC is not made for this, due to it is translated to too latency, unthink-
able fact on a real time communications. So, here is when ICE Framework
appears.

Peers must exchange information about the network connection. This is
known as an ICE Candidate and details the available methods the peer is
able to communicate (directly or through a TURN server).

17

1.3.3 Signaling Diagram

The signaling diagram explained in a figure, that’s a way to try to understand what’s
going on in this process:

STUN
SERVER

SIGNALLING
SERVER

GET PUBLIC IP

Alice's Offer (Session Description Protocol)

Bob's Answer SDP

Alice's ICE candidate (Internet Connectivity Establishment)

GET PUBLIC IP

Bob's ICE Candidate

RTCPeerConnection

Figure 1.4: Signaling states

• An Public IP is obtained by STUN server for Alice in order to get out to the
Internet.

• Alice sends an Offer to bob through the Signaling server.
• Bob accepts it by sending an Answer to Alice through the Signaling Server.
• ICE Candidate is going back and forward between Alice and Bob by the

Signaling Server.
• In this case, both could get an public IP, but if there is a firewall in the middle,

other IP they will get.
• When an ICE candidate is ready, it is possible to establish an RTCPeerCon-

nection

18

1.3.4 Session Description Protocol (SDP)

The configuration of an endpoint on a WebRTC connection is called a session de-
scription. The description includes information about the kind of media being sent,
its format, the transfer protocol being used, the endpoint’s IP address and port, and
other information needed to describe a media transfer endpoint. This information is
exchanged and stored using Session Description Protocol [10] (SDP); if you want
details on the format of SDP data, you can find it in RFC 2327.

When a user starts a WebRTC call to another user, a special description is cre-
ated called an offer. This description includes all the information about the caller’s
proposed configuration for the call. The recipient then responds with an answer,
which is a description of their end of the call. In this way, both devices share
with one another the information needed in order to exchange media data. This
exchange is handled using Interactive Connectivity Establishment (ICE, a protocol
which lets two devices use an intermediary to exchange offers and answers even if
the two devices are separated by Network Address Translation (NAT).

Each peer, then, keeps two descriptions on hand: the local description, describ-
ing itself, and the remote description, describing the other end of the call.

The offer/answer process is performed both when a call is first established, but
also any time the call’s format or other configuration needs to change. Regardless
of whether it’s a new call, or reconfiguring an existing one, these are the basic steps
which must occur to exchange the offer and answer:

• Alice calls RTCPeerConnection.createOffer() to create an offer.
• Alice calls RTCPeerConnection.setLocalDescription() to set that offer as the

local description (that is, the description of the local end of the connection).
• Alice uses the signaling server to transmit the offer to the intended receiver

of the call.
• Bob receives the offer and calls RTCPeerConnection.setRemoteDescription()

to record it as the remote description (the description of the other end of the
connection).

• Bob does any setup it needs to do for its end of the call, including adding
outgoing streams to the connection.

• Bob then creates an answer by calling RTCPeerConnection.createAnswer().
• Bob calls RTCPeerConnection.setLocalDescription() to set the answer as its

local description. Bob now knows the configuration of both ends of the
connection.

• Bob uses the signaling server to send the answer to Alice.
• Alice receives the answer.
• Alice calls RTCPeerConnection.setRemoteDescription() to set the answer as

the remote description for its end of the call. It now knows the configuration

19

of both peers. Media begins to flow as configured. Pending and current
descriptions

Taking one step deeper into the process, we find that localDescription and remot-
eDescription, the properties which return these two descriptions, aren’t as simple
as they look. Because during renegotiation, an offer might be rejected because it
proposes an incompatible format, it’s necessary that each endpoint have the ability
to propose a new format but not actually switch to it until it’s accepted by the other
peer. For that reason, WebRTC uses pending and current descriptions.

The current description (which is returned by the RTCPeerConnection.currentLocalDescription
and RTCPeerConnection.currentRemoteDescription properties) represents the de-
scription currently in actual use by the connection. This is the most recent connec-
tion that both sides have fully agreed to use.

The pending description (returned by RTCPeerConnection.pendingLocalDescription
and RTCPeerConnection.pendingRemoteDescription) indicates a description which
is currently under consideration following a call to setLocalDescription() or se-
tRemoteDescription(), respectively.

When reading the description (returned by RTCPeerConnection.localDescription
and RTCPeerConnection.remoteDescription), the returned value is the value of
pendingLocalDescription/pendingRemoteDescription if there’s a pending descrip-
tion (that is, the pending description isn’t null); otherwise, the current description
(currentLocalDescription/currentRemoteDescription) is returned.

When changing the description by calling setLocalDescription() or setRemot-
eDescription(), the specified description is set as the pending description, and the
WebRTC layer begins to evaluate whether or not it’s acceptable. Once the pro-
posed description has been agreed upon, the value of currentLocalDescription or
currentRemoteDescription is changed to the pending description, and the pending
description is set to null again, indicating that there isn’t a pending description.

SDP Architecture

Below table introduces high-level breakup of SDP into components that semanti-
cally describe a multimedia session, oriented in to a WebRTC session.

SDP Components:
• Session Description
• Time Description
• Media Description

An SDP session description consists of a number of lines of text of the form:
<type>=<value>. where <type> must be exactly one case-significant char-
acter and <value> is structured text whose format depends on <type>. In general,
<value> is either a number of fields delimited by a single space character or a

20

free format string, and is case-significant unless a specific field defines otherwise.
Whitespace must not be used on either side of the "=" sign.

Some lines in each description are required and some are optional,but all must
appear in exactly the order given here (the fixed order greatly enhances error de-
tection and allows for a simple parser). Optional items are marked with a "*".

21

Table 1.1: Session Description

v= Protocol version
o= Originator and session identifier
s= Session name
i=* Session information
u=* URL description
e=* E-mail address
p=* Phone number
c=* Connection information
b=* Bandwidth information
z=* Time zone adjustments
k=* Encryption key
a=* Attribute information

Table 1.2: Time Description

t= Time the session is active
r=* Repeat session times

Table 1.3: Media Description

m= Media name and transport address

22

SDP example:

v=0;
o= jdoe 2890844526 2890842807 IN IP4 10.47.16.5;
s= SDP WebRTC Alex-Gerard;
i= A example of SDP used in WebRTC;
u=http://Alex-Gerard-EetWebRTC-PFG.com;
e=j.eetwebrtc@gmail.com (Alex Albas, Gerard Auguets);
c=IN IP4 224.2.17.12/127;
t=2873397496 2873404696;
m= audio 54609 UDP/TLS/RTP/SAVPF;
a=rtpmap:0 PCMU/8000;
a=rtcp-mux; \\Alice can perform RTP/RTCP Mux
a=rtcp:54609 IN IP4 24.23.204.141 \\Port for RTCP data
a=ptime:60 \\Audio packetization of 60 ms
a=sendrecv \\Alice can send and receive audio
a=setup:actpass \\Alice can perform DTLS before answer arrives
a=fingerprint:sha-1 99:41:49:83:4a:97:0e:1f:ef:6d:f7:c9:c7:70:
9d:1f:66:79:a8:07 \\DTLS Fingerprint for SRTP
a=ice-ufrag:074c6550 \\ICE user fragment
a=ice-pwd:a28a397a4c3f31747d1ee3 \\ICE password
a=candidate:0 1 UDP 2122194687
192.168.1.4 54609 typ host \\RTP Host Candidate
a=candidate:0 2 UDP 2122194687
192.168.1.4 54609 typ host \\RTCP Host Candidate
a=candidate:1 1 UDP 1685987071 24.23.204.141 64678 typ srflx
addr 192.168.1.4 rport 54609 \\RTP Server Reflexive ICE Candidate
a=candidate:1 2 UDP 1685987071 24.23.204.141 64678 typ srflx
raddr 192.168.1.4 rport 54609\\RTCP Server Reflexive Candidate
a=rtcp-fb:109 nack \\Indicates NACK RTCP feedback support
a=rtcp-rsize Alice intends to use reduced size RTCP for this session

23

1.3.5 Node Server

About Node

Node[4] is an interface to the V8 JavaScript runtime the super-fast JavaScript inter-
preter that runs in the Chrome browser. As it happens, you can also download V8
and embed it into anything; Node does that, for web servers. JavaScript is after all,
just a language there’s nothing that says it couldn’t be used on a server as well as in
the users browser. In a typical LAMP server stack, there is an underlying Apache
or NGINX web server, with PHP running on top of it. Each new connection to the
server spawns a new thread, and it’s very easy to quickly lose performance or for
a site to go down. the only way to support more users being to add more servers.
It simply doesn’t scale well. With Node, this isn’t the case. There is no Apache
to listen for incoming connections and return HTTP status codes so node will need
to handle that core server architecture itself. Luckily, there is modules to make
this easier, but it can still be a little overwhelming at the beginning. The result,
however, is a high performance web application.

It is used to develop I/O intensive web applications like video streaming sites,
single-page applications, and other web applications. Node.js is open source, com-
pletely free, and used by thousands of developers around the world.

In this project just Node.js and some specifications are introduced in order to
understand the WebRTC application that has been created.

Node Features

The following features make node.js essential for any of software architects:
• Asynchronous and event Driven: All API of Node.js library are asyn-

chronous (Non-blocking code), so it means that the server never waits for
an API to return data. The server will move to the next API after calling it
and the notification mechanism of Events of Node.js helps the server to get
a response from the previous call.

• Really fast: Node.js library is very fast in code execution because it is built
on Google Chrome’s V8 JavaScript Engine.

• Highly Scalable with single Threated model: This technologies uses a sin-
gle threated model with event looping which helps the server to respond in a
non-blocking code and it makes the server really scalable instead of the tra-
ditional servers that just can handle a limited number of threads. Node.js can
provide service to high number of requests than typical servers like Apache
HTTP server.

• No storing data: There is no data buffered, just output the data in chunks.
• MIT license: https://raw.githubusercontent.com/joyent/node/v0.12.0/LICENSE

24

Main Concepts

The following diagrams shows some of the most important concepts(there are
much more of them) that node offers to anybody who wants to use it:

Node.js Server

Modules Callbacks

Streaming

Error Handling

Console

Buffer

I/O

Figure 1.5: Node Main concepts

• Console & Debugging: The console module provides a simple debugging
console that is similar to the JavaScript console mechanism provided by web
browsers. The best debugger is console.log(), but sometimes it is needed
in order to see the call stack and orient yourself in asynchronous code a bit
more. The server will move to the next API after calling it and the notifica-
tion mechanism of Events of Node.js helps the server to get a response from
the previous call.
The following example show how it works:

1
2 console.log('hello world');
3 // Prints: hello world, to stdout
4 console.log('hello %s', 'world');
5 // Prints: hello world, to stdout
6 console.error(new Error('Whoops, something bad happened'));
7 // Prints: [Error: Whoops, something bad happened], to stderr
8
9 const name = 'Will Robinson';

10 console.warn(`Danger ${name}! Danger!`);
11 // Prints: Danger Will Robinson! Danger!, to stderr

25

• Callbacks:Callback is an asynchronous equivalent for a function. A callback
function is called at the completion of a given task. Node makes heavy use
of callbacks. All API of Node are written in such a way that they supports
callbacks.
For example, a function to read a file may start reading file and return the
control to execution environment immediately so that next instruction can
be executed. Once file I/O is complete, it will call the callback function
while passing the callback function, the content of the file as parameter. So
there is no blocking or wait for File I/O. This makes Node.js highly scalable,
as it can process high number of request without waiting for any function to
return result.
Example:

1
2 fs.readdir(source, function(err, files) {
3 if (err) {
4 console.log('Error finding files: ' + err)
5 } else {
6 files.forEach(function(filename, fileIndex) {
7 console.log(filename)
8 gm(source + filename).size(function(err, values) {
9 if (err) {

10 console.log('Error identifying file size: ' + err)
11 } else {
12 console.log(filename + ' : ' + values)
13 aspect = (values.width / values.height)
14 widths.forEach(function(width, widthIndex) {
15 height = Math.round(width / aspect)
16 console.log('resizing ' + filename + 'to ' + height

+ 'x' + height)
17 this.resize(width, height).write(destination + 'w' +

width + '_' + filename, function(err) {
18 if (err) console.log('Error writing file: ' + err)
19 })
20 }.bind(this))
21 }
22 })
23 })
24 }
25 })

• I/O Files: Reading and writing from/to The files system is done by the ’fs’
module. There two sets of methods: Asynchronous and Synchronous. For
example, if a file is required to be read, it can be done by using this two
modalities:

– Asynchronous:
1 var fs = require('fs');
2 fs.readFile('/etc/passwd', function(err, buf) {
3 console.log(buf.toString());
4 });

26

Node will continue executing any JavaScript code it encounters while
reading the file. Once all JavaScript is done being executed and the file
is ready, it will run the anonymous function and print the file contents.

– Synchronous:
1 var fs = require('fs');
2 var contents = fs.readFileSync('/etc/passwd').toString

();
3 console.log(contents);

In this example, the contents variable will be set to the contents of the
file, and no JavaScript code will be executed while the file is being
read.

27

• Streaming: Streaming data is a term that mean an application processes the
data while it’s still receiving it. This is useful for extra large datasets, like
video or database migrations.

1 var fs = require('fs');
2 fs.createReadStream('./data/users.csv').pipe(process.stdout);

• Export Modules:A module encapsulates related code into a single unit of
code. When creating a module, this can be interpreted as moving all related
functions into a file. It can be explained with a simple example, in order to
catch the main idea of what is a module:

– Imagine this sample of code:
1 // HelloHola.js
2 sayHelloInEnglish = function() {
3 return "Hello";
4 };
5
6 sayHelloInSpanish = function() {
7 return "Hola";
8 };

– Exporting a module:The utility of HelloHola.js increases when its en-
capsulated code can be utilized in other files. So let’s redactor HelloHola.js
to achieve this goal.

1 module.exports = {
2 sayHelloInEnglish: function() {
3 return "HELLO";
4 },
5
6 sayHelloInSpanish: function() {
7 return "Hola";
8 }
9 };

– Importing a module:The keyword ’require’ is used in Node.js to im-
port modules, so in this ways the previous exported modules can be
used as many times as needed.

1 // main.js
2 var greetings = require("./greetings.js");
3
4 //-----Same as above----
5 // main.js
6 var greetings = {
7 sayHelloInEnglish: function() {
8 return "HELLO";
9 },

10
11 sayHelloInSpanish: function() {
12 return "Hola";
13 }
14 };

28

• Buffer: Buffer is a Node.js addition to four primitives (boolean, string, num-
ber and RegExp) and all-encompassing objects (array and functions are also
objects) in front-end JavaScript. We can think of buffers as extremely effi-
cient data stores. In fact, Node.js will try to use buffers any time it can, e.g.,
reading from file system, receiving packets over the network.

29

Environment Setup

In order to make a local setup environment for Node.js, some basic steps are re-
quired:

• Text editor, such as Notepad, Sublime text, vim , vi, etc...
• Install the Node.js binary: The files created with the text editor are called

source files and contain program source code. The source files for Node.js
programs are typically named with the extension ".js". In order to install on
UNIX/Linux/Mac OS X:

1. Download and extract the archive node-v0.XX.OSName.tar.gz into /tmp.

2. Move the extracted files into /usr/local/nodejs directory.
For example:

$ sudo apt-get install nodejs

Add /usr/local/nodejs/bin to the PATH environment vari-
able.

$ export PATH=/usr/local/nodejs/bin

• Executing a Node.js file: Executing a Node file is really simple, but it will
be explained with a simple web HTTP server example:

1. Create a file named ’server.js’ a fill with code below:
1 var http = require('http');
2 http.createServer(function (req, res) {
3 res.writeHead(200, {'Content-Type': 'text/plain'});
4 res.end('Hello World\n');
5 }).listen(1337, '127.0.0.1');
6 console.log('Server running at http://127.0.0.1:1337/')

;]

2. Open the console and execute the js file.

$ node server.js

3. As a result, it will be prompted on the console

Server running at http://127.0.0.1:1337/

• NPM install; The Node Packages Modules provides two basic functionali-
ties:

1. Access to on line repositories (packages/modules) to use them.

2. Command line utility to install this packages and version/dependency
management like apt-get on Linux.

30

In order to install a package, exist this simple syntax:

$ npm install express

And for using them, just require command is used at the beginning on the
JavaScript code:

var express = require('express');

31

1.3.6 Node.js Used Modules

Socket.io

1. Socket.io Overview:

It’s important to provide timely feedback to users in your web application.
It all started with the introduction of XMLHttpRequest by Microsoft which
became what we now know as AJAX. AJAX long-polling used to be the
standard way to fetch server-sent data for an application, though it wasn’t the
most ideal solution. Long-polling involves sending periodic HTTP requests
for data, introducing latency and increasing server load.

The IETF standardized Web Sockets in 2011, providing a way for developers
to send and receive data through a TCP socket. All major browsers began
to roll out support for the standard, and developers started to use it in their
projects.

Socket.IO[5] is an event-based bi-directional communication layer for real
time web applications, built atop Engine.IO. It abstracts many transports,
including AJAX long-polling and Web Sockets, into a single API. It allows
developers to send and receive data without worrying about cross-browser
compatibility.

2. First Major Release:

Socket.IO finally reached version 1.0 on the 28th of May, 2014. The Socket.IO
project contained two parts before 1.0: a transport handling implementation,
and a high-level API. Transport handling has been moved out into a sepa-
rate, framework-agnostic project: Engine.IO. This allows other developers
to build new API and projects for the real time web without reinventing the
wheel.

Apart from architectural changes, Socket.IO 1.0 introduces many user-facing
changes, including:

• Binary streaming support.
• Improved support for horizontal scaling.
• Removal of cluttered debug messages in the console by default.
• Support for Node.js streams via the socket.io-stream module.

3. The Basics: Socket.IO provides both server-side and client-side components
with similar API.

• Server-side: On the server-side, Socket.IO works by adding event lis-
teners to an instance of http.Server.

32

1 var server = require("net").createServer();
2 var io = require("socket.io")(server);
3
4 var handleClient = function (socket) {
5 // we've got a client connection
6 socket.emit("tweet", {user: "nodesource", text: "Hello,

world!"});
7 };
8
9 io.on("connection", handleClient);

10
11 server.listen(8080);

• Client-side: The HTTP server will begin to serve the client library at
/socket.io/socket.io.js. To connect to our Socket.IO server, is needed to
put the following in the body tag:

1 <script src="/socket.io/socket.io.js"></script>
2 <script>
3 var socket = io.connect("http://localhost");
4 </script>

Express

1. Express Overview: Express [1] is a minimal and flexible Node.js web ap-
plication framework that provides a robust set of features for web and mobile
applications. Express is a really handy Node.js module in order to handling
with the common conventions when writing web applications. It includes:

• Writing API’s.
• Handling request and responses.
• Routing data.
• Managing Front-end rendering.

2. Routing: It refers to the definition of application end points (URiS) and how
they respond to client requests. Example of a really basic route:

1 var express = require('express');
2 var app = express();
3
4 // respond with "hello world" when a GET request is made to the

homepage
5 app.get('/', function(req, res) {
6 res.send('hello world');
7 });

• Typical Route methods: A route method is derived from one of the
HTTP methods, and is attached to an instance of the express class. The
following code shows two typical route methods to the root of the API:

33

1 // GET method route
2 app.get('/', function (req, res) {
3 res.send('GET request to the homepage');
4 });
5
6 // POST method route
7 app.post('/', function (req, res) {
8 res.send('POST request to the homepage');
9 });

• Route paths: In combination with a request method, define endpoints
at which request can be made. Route paths can be strings, string pat-
terns or regular expressions. Here there are some route paths String-
based examples:
This route path will match requests to the root route, ’/’.

1 app.get('/', function (req, res) {
2 res.send('root');
3 });

This route path will match requests to /about:

1 app.get('/about', function (req, res) {
2 res.send('about');
3 });

• Response methods: The methods on the response object (res) can send
a response to the client, and terminate the request-response cycle. If
none of these methods are called from a route handler, the client request
will be left hanging. Here some examples of the most common used
response methods:
It will render the ’index.ejs’ to the client that has made a request by
including on the response.

1 app.get('/', function(req, res){
2 res.render('index.ejs');
3 });

It will send a response of various types:

1 router.get('/', function(req, res){
2 res.send('hello world');
3 });

Prompt a file to be downloaded:

1 router.get('/download', function(req, res){
2 res.send('/res.download('/report-12345.pdf');');
3 });

34

Express + Socket.io = Express.io

The result of combining Socket.io and Express results Express.io, a real time-web
framework for node.js. In this project this framework is used in order to take ad-
vantage of some of characteristics from this really powerful modules.

35

1.4 WebRTC Technology

1.4.1 JavaScript Introduction

JavaScript[7]is an object-oriented dynamic language with types and operators, stan-
dard built-in objects, and methods. Object-oriented languages can be considered
as the software design through a set of cooperating objects instead of a traditional
software based on a set of instructions or a list of instructions for the computer. On
the Object-oriented languages every object can receive messages, process data and
send it to other objects so every object is like a independent machine with a defined
responsibility. Its syntax is based on the Java and C languages so many structures
from those languages apply to JavaScript as well.

Unlike most programming languages, the JavaScript language has no concept
of input or output. It is designed to run as a scripting language in a host environ-
ment, and it is up to the host environment to provide mechanisms for communi-
cating with the outside world. The most common host environment is the browser.
JavaScript is not a programming language in strict sense. Instead, it is a scripting
language because it uses the browser to do all the work.

All of the above make JavaScript the programing language of the Web. The
overwhelming majority of modern websites use JavaScript, and all modern web
browsers. JavaScript is part of the triad of technologies that all Web developer
must learn: HTML to specify the content of the web page, CSS to specify the
presentation of web pages, and JavaScript to specify the behavior of web pages.

To be useful, every language must have a platform or standard library or API of
functions for performing things like input and output. The core JavaScript language
defines a minimal API for working with text, arrays, dates, and regular expressions
but does not include any input or output functionality. Input, output and more so-
phisticated features such as networking, storage, and graphics are the responsibility
of the host environment within which JavaScript is embedded.

JavaScript is a fundamental tool for the development of this project but is not
the ultimate goal, therefore only the most important concepts related to this project
will be reviewed.

1. Objects:

JavaScript’s fundamental data type is the object. An object is a compos-
ite value: it aggregates multiple values (primitive values or other objects)
and allows you to store and retrieve those values by name. An object is
an unordered collection of properties, each of which has a name and value.
JavaScript objects also inherits the properties of another object, known as
its “prototype.” The methods of an object are typically inherited properties,

36

and this “prototypical inheritance” is a key feature of JavaScript. JavaScript
objects are dynamic, this means that properties can usually be added and
deleted , but they can be used to simulate the static objects and structures
of statically typed languages. Any Value in JavaScript that is not a string, a
number, true, false, null, or undefined is an object.

Every object has three associated object attributes:

• An object’s prototype is a reference to another object from which prop-
erties are inherited.

• An object’s class is a string that categorizes the type of an object.
• An object’s extensible flags specifies whether new properties may be

added to the object.

The easiest way to create an object is to include an object literal in your
JavaScript code. An object literal is a comma-separated list of colon-separated
name: value pairs, enclosed within curly braces. A property name is a
JavaScript identifier or a string literal. There are some examples:

1 var empty = {}; // An object with no properties
2
3 var book = { //Complex object
4 "Main title": "WebRTC",
5 'sub-title': "PFG",
6 "for": "UPC",
7 author: {
8 firstname1: "Alex",
9 surname1: "Albas",

10 firstname2: "Gerard",
11 surname2: "Auguets",
12 }
13 };

The new operator creates and initializes a new object. The new keyword
must be followed by a function invocation. This is called constructor and
servers to initialize a newly created object. Core JavaScript includes built-in
constructors for native types. In addition is common to define to define new
constructor functions to initialize newly created objects. This project uses
many constructors related with the WebRTC API’s.

2. Functions:

A function is a block of JavaScript code that is defined once but may be
executed, any number of times. JavaScript functions are parameterized: a
function definition may include a list of identifiers known as parameters, that
work as local variables for the body of the function. Function invocations
provide values, or arguments, for the function’s parameters. If a function
is assigned to the property of an object, it is known as a method of that

37

object. JavaScript function definitions can be nested within other functions,
and they have access to any variables that are in scope where they are defined,
it enables important and powerful programming techniques.

A function is created by an expression that starts with the keyword function .
Functions have a set of parameters and a body, which contains the statements
that are to be executed when the function is called. The function body must
always be wrapped in braces, even when it consist of only a single statement.

The following example show a simple function example:
1 var power = function (base,exponent) { //Function declaration
2 var result = 1;
3 for (var count = 0; count < exponent; count++){
4 result *= base;}
5 return result; //The function returns "result" when invoked
6 };

The return statement determines the value the function returns. When con-
trol come across such a statement, it immediately jumps out of the current
function and gives the returned value to the code that called the function.
The return keyword without an expression after it will cause the function to
return undefined.

Another important property of functions is that the variables created inside
of them, including their parameters, are local to the function. This means,
for example, that the result variable in the power will be newly created every
time the function is called. Variables declared outside the function are called
global, because they are visible throughout the program. It is possible to
access such variables from inside a function, as long as you haven’t declared
a local variable with the same name.

3. Callbacks:

In JavaScript, functions are first-class objects, for this reason, is possible
to pass a function as an argument in another function and later execute
that passed-in function or ever return it to be executed later. This kind of
functions are the most widely used functional programming technique in
JavaScript.

A callback function, also known as a higher-order function, is a function
that is passed to another function as a parameter, and the callback function
is called inside the other function. Callback functions can pass functions
around like variables and return them in functions and use them in other
functions. The callback function is not executed immediately. It is ’called
back’ at some specified point inside the containing function’s body just as

38

if the callback were defined in the containing function, this means that is a
closure.

1
2 function myvideo(param1,param2,callback){
3 alert('Video started on channel' + param1 + ' ' + param2);
4 callback();
5 }
6
7 myvideo('1', '2', function(){
8 alert ('Video finished');
9 });

In the last example, the function my video accepts three parameters. In this
case, the third parameter is the callback function. When the function exe-
cutes, it spits out an alert message with the passed values displayed. Then it
executes the callback function.

39

1.4.2 WebRTC API’s

WebRTC [8]. consist of several interrelated API’s and protocols which work to-
gether to support the exchange of data and media between two or more clients.

GetUserMedia Method & MediaStream API

The GetUserMedia method prompts the user for permission to use video and audio
input devices (such as a camera, a shared screen, or a microphone):

• If the user provides permission, then the successCallback is invoked with the
resulting MediaStream object as its argument.

• If the user denies permission or media is not available, then the errorCallback
is called with Permissibleness or NotFoundError respectively.

Note that it is possible for neither completion callback to be called, as the user
is not required to make a choice. Once the media is accessed, Streams can be
shown using the HTML tag <video> any web page and it can be handled through
the object RTCPeerConnection. The GetUserMedia method uses three parameters.
Next, we show the syntax:

1 navigator.getUserMedia(constraints, successCallback, errorCallback);

The meaning of each argument is the following:

• Constraints (Mandatory): A MediaStreamConstaints object specifying the
types of media to request, along with any requirements for each type. There
are several ways to set up the constrains. Next, we show some examples of
how set the minimum and maximum values for video resolution:

1 //Simple examples of constrains
2
3 // 1) Set video and audio
4
5 { audio: true, video: true }
6
7 // 2) Set width/height for video
8 {
9 audio: true,

10 video: { width: 1280, height: 720 }
11 }
12
13 // 3) Set min/max & ideal values for width/height
14 {
15 audio: true,
16 video: {
17 width: { min: 1024, ideal: 1280, max: 1920 },
18 height: { min: 776, ideal: 720, max: 1080 }
19 }
20 }

40

• Success callback (Mandatory): When the call succeeds, the function speci-
fied in the successCallback is invoked with the MediaStream object that con-
tains the media stream. It may be assigned to that object with the appropriate
element and work with it.

• Error callback (Optional): When the call fails, the function specified in the
errorCallback is invoked with a MediaStreamError object as its sole argu-
ment. this object is is modeled on Dom Exception.

Calling the getUserMedia method:

1
2 //Referencing the <video> tag in a javaScript variable
3 var myVideoArea = document.querySelector("#myVideoTag");
4
5 // Test browser support:
6 // getUserMedia needs to be prefixed with webkit- or moz-.
7 // Therefor it will work only Chrome and Firefox.
8 navigator.getUserMedia = (
9 navigator.getUserMedia ||

10 navigator.webkitGetUserMedia ||
11 navigator.mozGetUserMedia ||
12 navigator.msGetUserMedia);
13
14 //-----Setting up getUserMedia-----------//
15 //Setting up the audio/video Constraints
16 navigator.getUserMedia({
17 'audio': true,
18 'video': true
19 //Once the stream is created, display in myVideo tag, and add our

stream
20 //as a source of audio/video to our RTCPeerConnection object
21 }, function (stream) {
22 displaySignalMessage("going to display my stream...");
23 //Adding the local stream in order to display it on the video

tag.
24 myVideoArea.src = URL.createObjectURL(stream);
25 //Adding the stream to RTCPeerConnection
26 rtcPeerConn.addStream(stream);
27 }, logError);
28
29 //Callback error function
30 function logError(error) {
31 displaySignalMessage(error.name + ': ' + error.message);
32 }

The MediaStream API is designed to allow the web page to access streams
of media from local input devices, such as cameras and microphone using the
browser’s native API, without the need of any other third-party pluggins. The Me-
diaStream interface represents a stream of media content, formed by several tracks
such as video or audio tracks.

41

Figure 1.6: Media Stream object

The two main components in the MediaStream API are the MediaStreamTrack
and MediaStream interfaces. MediaStreamTrack object represents media of a sin-
gle type that originates from one media source, e.g. video produced by a web cam.
A MediaStream object is used to group several MediaStreamTrack objects into one
unit that can be recorded or rendered in a media element. Each MediaStream can
contain zero or more MediaStreamTrack objects.

A MediaStream object can be created from many MediaStreamTrack also from
existing media streams or tracks using the MediaStream() constructor. The con-
structor argument can either be an existing MediaStream object in which case all
the tracks of the given stream are added to the new MediaStream object, or an
array of MediaStreamTrack objects. Figure 1.6 illustrates the composition of a
MediaStream object.

The tracks that compose a MediaStream are stored in a track set. The track
set must contain the MediaStreamTrack objects that correspond to the tracks of
the stream. The order of the tracks inside the set is defined by the User and the
API never will put any requirement on the order. The way to find a specific Medi-
aStreamTrack inside a MediaStream object is to search by its MediaStreamTrack
ID.

A MediaStreamTrack can be in two states in its life-cycle: live or ended. In
the live state mode the track is available for being used. A live track can be active
or muted (disabled). A muted MediaStreamTrack renders either silence (Audio)
or black frames (Video), or zero information in general. Normally a Streamed is
muted when the source is temporally unable to provide the track with data. A track
can be muted by the end user. In the ended state mode the track is disabled because
the source is disconnected or disabled.

All tracks in a MediaStream are intended to be synchronized when rendered but
different MediaStream objects do not need to be synchronized. While the intent is
to synchronize tracks, it could be better in some circumstances to permit tracks
to lose synchronization. In particular, when tracks are remotely sourced and real-

42

time, it can be better to allow loss of synchronization than to accumulate delays or
risk glitches and other artifacts. Implementations are expected to understand the
implications of choices regarding synchronization of playback and the effect that
these have on user perception.

Next we show in some tables the main attributes and methods of MediaStream
and MediaStreamTrack.

Table 1.4: MediaStream Attributes

active Return true if MediaStream is active and false otherwise
ID Identifier string “UUID 36 characters long”
onaddtrack The event type of this event handler is addtrack
onremovetrack The event type of this event handler is removetrack

Table 1.5: MediaStream methods

addtrack Adds the given MediaStreamTrack to this MediaStream
clone Clones the given MediaStream and all its tracks
getAudioTracks Returns a sequence of MediaStreamTrack objects representing the AudioTracks in this stream
getTrackById Returns a MediaStreamTrack object from this stream track set whose id is equal to trakId
getTracks Returns a sequence of MediaStreamTrack objects representing all the tracks in this stream
getVideoTracks Returns a sequence of MediaStreamTrack objects representing the VideoTracks in this stream
removeTrack Removes the given MediaStreamTrack object from this MediaStream

Table 1.6: MediaStreamTrack Attributes

enabled The enabled attribute controls the enabled state for the object.
ID ID attribute MUST return the value to which it was initialized when the object

was created.
kind The kind attribute MUST return the string "audio" if this object represents an

audio track or "video" if this object represents a video track.
label The label attribute MUST return the label of the object’s corresponding source,

if any.
muted The muted attribute MUST return true if the track is muted, and false otherwise.
onended The event type of this event handler is ended.
onmute The event type of this event handler is mute.
onoverconstrained The event type of this event handler is overconstrained.
onunmute The event type of this event handler is unmute.
readyState The readyState attribute represents the state of the track. It MUST return the

value as most recently set by the User Agent.

43

Table 1.7: MediaStreamTrack methods

applyConstraints Optional parameter in order to add a new constraint structure to apply to this
object

clone Clones this MediaStreamTrack.
getCapabilities The getCapabilities() method returns the dictionary of the names of the con-

strainable properties that the object supports.
getConstraints The getConstraints method returns the Constraints that were the argument to

the most recent successful call of applyConstraints(), maintaining the order in
which they were specified.

getSettings The getSettings() method returns the current settings of all the constrainable
properties of the object, whether they are platform defaults or have been set by
applyConstraints().

stop Set track’s readyState attribute to ended.

44

RTCPeerConnection API

The RTCPeerConnection interface represents a WebRTC connection between the
local computer and a remote peer. It provides methods to connect to a remote peer,
maintain and monitor the connection, and close the connection once it’s no longer
needed.

RTCPeerConnection API doesn’t handle the signaling process this means that
the user is completely free to choose any method. Communications are coordinated
via a signaling channel which is provided by unspecified means, but generally it is
a script in the HTML page at the server using Web Sockets.

The main functionality of this application is to transmit the acquired flow by
the getUserMedia API (Audio, video, Constraints...) and send it to the other peer
managing all the parameters necessary to carry out transmission of multimedia data
stream, in a simple and transparent way, simplifying all the necessary processes
shown below. RTCPeerConnection Handles:

• Signal processing and voice engine to remove noise from audio and video
data and provide echo cancellation.

• Codec handling and video engine.
• Compression and decompression of audio and video.
• Transport and Peer to peer communication in order to find the optimal route

through firewalls, NATs and relays.
• Security, encrypting the data to guarantee secure communications.
• Bandwidth management.
RTCPeerConnection API only has to send and receive MediaStreamTracks

over a peer-to-peer connection. The encoding of MediaStreamTracks is managed
through objects called RTCRtpSenders in the same way, the reception and decod-
ing of MediaStreamTracks is managed through objects called RTCRtpReceivers.

When a MediaStreamTrack is attached to a RTCPeerConnection via the ad-
dTrack method, a RTCRtpSenders object is created to be associated with this Me-
diaStreamTrack. On the other hand, RTCRtpReceivers are created when remote
signaling indicates that there are new tracks available. Then, each MediaStream-
Track and its associated RTCRtpReceivers are surfaced to the application via the
“ontrack” event.

Thus, a RTCPeerConnection object contains a set of RTCRtpSenders repre-
senting all the tracks to be sent, and a set of RTCRtpReceivers representing tracks
that are to be received on this RTCPeerConnection object. All of these sets are
initialized to zero when the RTCPeerConnection object is created.

In the following code, a couple of RTCPeerConnection objects are created:
1 pc = new RTCPeerConnection(null); // local
2 pc = new RTCPeerconnection(iceServers); // Using google servers for

testing

45

In the first declaration we use null as configuration parameter. This configura-
tion allow us to perform local tests. The second configuration has the information
to find and access Google servers.

A RTCPeerConnection object has an associated ICE agent , signaling state,
ICE gathering state, and ICE connection state, these are initialized when the object
is created. ICE stands for Interactive Connectivity Establishment , its a techniques
used in NAT(network address translator) for establishing communication for VOIP,
peer-peer, instant-messaging, and other kind of interactive media. Typically ice
candidate provides the information about the ipaddress and port from where the
data is going to be exchanged.

The onaddstream method will be called every time that we get a stream from
the remote client. This means that our connection succeeded and this method will
attach a remote video to the RTCPeerconnection communication. Next, we have to
attach our local stream to the RTCPeerconnection object to send our streams to the
remote client. Finally, we have to create an offer which tells the other client how
to interact with us once the network connection is established. This offer has to
include information such as possible video formats, possible audio formats and so
on. A typical way of expressing this offer is using the Session Description protocol
(SDP), which is further discussed in Section 1.3.4.

Once we have an offer, we set the local descriptor to it and then, the descriptor
is sended to the signaling server to be sent to the called party.

1 pc.onaddstream = gotRemoteStream;
2 pc.addStream(localStream);
3 pc.createOffer(gotOffer);
4
5 function gotOffer(desc) {
6 pc.setLocalDescription(desc);
7 sendOffer(desc);}
8
9 function gotAnswer (desc) {

10 pc.setRemoteDescription(desc);
11 }
12
13 function gotRemoteStream(e) {
14 attachMediaStream(remoteVideo, e.stream);
15 }

On the called party, the answering client determine if the received message is a
description or an ICE candidate. If is a description, the answering client will set it
as the remote description on his RTCPeerconnection object and create the answer.
After all this work, the application is ready to let the browser directly connect to the
called party. If the message is an ICE candidate, the candidate should be added to
the RTCPeerconnection object. The browser will continue trying candidates until
a connection is made or it runs out of candidates.

46

RTCDataChannel API

Currently sending information is present in many areas like communications, file
transfer and video games. This requires fast communications, low-latency and
guaranteeing the security of the data. The improvements related to audio and video
introduced in communications by WebRTC provide a great number of advantages
listed above, this technology also offers an sending data aimed application in order
to send data directly from one browser to another. In this way we avoid the use
of servers and intermediate relays that increase the latency of the system and the
cost of service. Currently there are other data channels as Websockets, Ajax and
many more, but these technologies are designed for client/server communications.
RTCDataChannel works directly with the RTCPeerConnection API, which allows
connectivity between two clients without requiring intermediate servers, generat-
ing a low-latency communication. RTCDataChannel is designed to replicate ex-
actly the Websockets technology, this allows the application to support sending
strings as well as any of the binary types of JavaScript such as Blob, ArrayBuffer
and ArrayBufferView, especially useful for gaming applications.

This technology allow two working modes:
• Unreliable mode: This mode does not guarantee the correct transmission

of all the packets because works through UDP protocol, but eliminates the
overhead so it is a faster mode, especially useful for gaming applications.

• Reliable mode: This mode guarantee the transmission and order of all the
packets because works through TCP protocol, but adds overhead in order to
handling the control and error flow.

Now is possible to share files directly in a browser to browser mode. Building
on top of RTCDatachannel means that the transferred file data is encrypted and
doesn’t touch an application provide serves. This functionality, combined with the
possibility of connecting to multiple clients for faster sharing, makes WebRTC file
sharing a strong candidate for the web, just need to follow the next steps:

1. Read a JavaScript file.

2. Make a peerconnection between clients, using RTCPeerConnection.

3. Create a data channel between clients, using RTCDatachannel.

There are several points to consider with this method: Normally a reliable
mode will be chooses in order to realize the file transfer, because a unreliable Dat-
achannel will take some design effort for the ACK/retransmit protocol, it may not
be much faster than using reliable transport so reliable and unordered should pro-
vide the best of both methods. Another point to consider is the file size, if it is

47

small can be stored and loaded as simple Blob object, and send it through a reli-
able channel. For larger files a chunking mechanism is required. File chunks are
loaded and sent to another peer with chukId metadata so the peer can recognize
them. The current recommendation for maximum chunk size is 16KB.

The following code shows an RTCDatachannel example:
A peerConnection object is needed in order to establish the connection between

peers thanks to the signaling mechanisms. Once the dataChannel is created, the
client can use it to send and receive data between peers. There are several event
handlers in order to manage the communications inside the DataChannel, they are
explained inside the code.

1 var peerConnection = new RTCPeerConnection();
2
3 // Establish your peer connection using your signaling channel here
4 var dataChannel =
5 peerConnection.createDataChannel("STUN SERVERS", dataChannelOptions)

;
6
7 dataChannel.onerror = function (error) { //Manages error handling
8 console.log("Data Channel Error:", error);
9 };

10
11 dataChannel.onmessage = function (event) { //Specifies a function to

be called when the message event is fired on the channel.
12 console.log("Got Data Channel Message:", event.data);
13 };
14
15 dataChannel.onopen = function () { //Manages the channel aperture
16 dataChannel.send("Hello World!");
17 };
18
19 dataChannel.onclose = function () {
20 console.log("The Data Channel is Closed"); //Manage the channel

closure
21 };

48

1.5 Security

1.5.1 WebRTC Security

WebRTC implementations can transfer sensitive content, as video, audio, docu-
ments etc. Ensuring communications security is a fundamental requirement for
this type of applications,and from the earliest developments of this technology was
taken into account.

WebRTC is developed over many underlying technologies in order to develop
all the components which enable this technology such as the RTCPeerConnection
and RTCDataChannel API. The following figure show all the underlying technolo-
gies used by WebRTC.

Figure 1.7: underlying technologies

Many of this technologies have been explained in previous sections such as
SDR, STUN, ICE... The WebRTC architecture assumes from a security perspective
that network resources exist in a hierarchy of trust. From the user’s perspective,
the browser or user client is basis of all WebRTC security, and acts their Trusted
Computer Base (TCB).

The browser’s job is to enable access to the Internet, while providing adequate
security protections to the user. The security requirements of WebRTC are built
directly upon this requirement; the browser is the portal through which the user
accesses all WebRTC applications and content. While HTML and JavaScript pro-
vided by the server can cause the browser to execute a variety of actions, the
browser segregates those scripts into sandboxes. Said sandboxes isolate scripts
from each other, and from the user’s computer. Generally speaking, scripts are
only allowed to interact with resources from the same domain - or more specifi-
cally, the same "origin". The browser enforces all security policies that the user

49

desires and is the first step in the verification of all third parties. All authenticated
entities have their identity checked by the browser.

If the user chooses a suitable browser which they know can trust, then all We-
bRTC communication can be considered "secure" and to follow the standard ac-
cepted security architecture of WebRTC technology. However, if there is any doubt
that a browser is "trust able" (e.g. having been downloaded from a third party rather
than a trusted location), then all following interaction with WebRTC applications
is impacted and may not be reliably secure.

In other words, the level of trust provided to the user by WebRTC is directly
influenced by the user’s trust in the browser.

WebRTC is not a plugin, all the underlying technology is installed simply as
part of downloading a suitable WebRTC-compatible browser, such as Chrome or
Firefox. As such there is o risk of installation of malware or viruses through the
use of an good WebRTC application. However, WebRTC applications should still
be acceded via a HTTPS website signed by a valid authenticator.

Using WebRTC, the browser can access local resources. WebRTC combat this
by requiring the user to give explicit permission for the camera or microphone to
be used. Furthermore, when either the microphone or camera is being used the
client UI is required to expressly show the user that the microphone or camera are
being operated. In Chrome, this takes the form of a red dot on any tab accessing a
user’s media.

1.5.2 HTTPS

HTTPS (Hypertext transfer protocol secure) is a communication protocol that uses
the HTTP (Hypertext transfer protocol secure) and the SSL/TLS (Secure sockets
layer/Transport layer security) protocols to provide encrypted communication and
secure identification of a Web Server. This technology consist of communication
over HTTP within a connection encrypted by transport layer security or secure
sockets layer. It creates a secure channel over an insecure network. This ensures
reasonable protection from eavesdroppers and man-in-the-middle attacks, provided
that adequate cipher suites are used and that the server certificate is verified and
trusted.

HTTP operates at the highest layer of the TCP/IP model, the Application layer;
as does the TLS security protocol (operating as a lower sublayer of the same layer),
which encrypts an HTTP message prior to transmission and decrypts a message
upon arrival. Strictly speaking, HTTPS is not a separate protocol, but refers to use
of ordinary HTTP over an encrypted SSL/TLS connection.

This technology has important security related elements:

50

• Web server authentication: The browser ensures the identity of the Web
server by validation the server’s certificate against the certificate of the CA
(Certificate authority).

• Communication privacy: The browser uses the public key included in the
server’s certificate to encrypt a secret key to server. All data exchanged
between the server and the browser will be encrypted with the secret key.

51

1.5.3 HTTPS Communication Data Encryption

Encryption makes impossible for an eavesdropper to determine the contents of
communication streams, only parties with access to the secret encryption key can
decode the communication streams.

Encryption is a mandatory feature of WebRTC, and is enforced on all compo-
nents, including signaling mechanisms. Resultantly, all media streams sent over
WebRTC are securely encrypted, enacted through standardized and well-known
encryption protocols. The encryption protocol used depends on the channel type;
data streams are encrypted using Datagram Transport Layer Security (DTLS) and
media streams are encrypted using Secure Real-time Transport Protocol (SRTP).

DTLS

DTLS (Datagram Transport Layer Security) is a standardized protocol, built into
all browsers that support WebRTC, and used in email and voip communications
to encrypt information. DTLS itself is modeled upon the stream-oriented TLS,
a protocol which offers full encryption with asymmetric cryptography methods,
data authentication and message authentication.

Asymmetric encrypting

(Public Key A,
Private Key A)
(Public Key A,
Private Key A)

(Public Key B,
Private Key B)

Figure 1.8: Asymmetric encrypting

Asymmetric cryptography is a encrypting system that uses two keys, a public
key known to everyone and a private or secret key known only by the recipient of
the message. When Alice wants to send a secure message to Bob, she uses Bob’s
public key to encrypt the message. Bob then uses her private key to decrypting.

If Alice wants to send a message to Bob, she must know the public key of Bob,
in order to encrypt the message.

E(message, Pulickeybob) = encryptedmessage

In the above example, a private message encryptedmessage is generated us-
ing the public key of Bob, PublickeyBob, and the message m through an encryp-
tion algorithm.

52

An important element to the public key system is that the public and private
keys are related in such a way that only the public key can be used to encrypt
messages and only the corresponding private key can be used to decrypt them.
Moreover, it is virtually impossible to deduce the private key if you know the public
key.

E−1(encryptedmessage, PrivatekeyBob) = message

Public and private key are related, and are the only way to decrypt the initial
message. The decoding algorithm is able to perform the reverse process.

DecryptEncrypt

Bob's public key Bob's private key

TEXT TEXTCiphertex

Figure 1.9: Assymetric encrypting process

This is one of the securest encrypting methods, but slower than others, for this
reason WebRTC uses DTLS to encrypt data because it is more sensitive than other
type of media.

53

SRTP

Basic RTP does not have any built-in security mechanisms, and thus places no pro-
tections of the confidentiality of transmitted data. External mechanisms are instead
relied on to provide encryption. In fact, the use of unencrypted RTP is explicitly
forbidden by the WebRTC specification. WebRTC use SRTP for the encryption
for mediaStreams because is a lighter-weight option than DTLS. For encryption
and decryption of the data flow, SRTP uses AES as the default cipher. AES is a
symmetric-key algorithm, meaning the same key is used for both encrypting and
decrypting the data.

Symmetric encrypting
The symmetric setting considers two parties who share a key and will use this

key to imbue communicated data with various security attributes. The main secu-
rity goals are privacy and authenticity of the communicated data.

Symmetric cryptography is a encrypting system that uses one keys, a secret
key known only by the recipient of the message and the sender. For example, Alice
wants to send a message to Bob, first of all, Alice and Bob needs to exchange
the key in order to encrypt the message or data. When both have the key, Alice
proceeds to encrypt the message with the key.

(Private Key) (Private Key)

Figure 1.10: Symmetric encrypting

When both have the private key, Alice encrypt the message with the key and
get the the message encrypted (cipher text C).

E(Message, PrivateKey) = Encryptedmessage

Next to that, Alice send the cipher text and bob has to decrypt the received message,
passing the private key through a decrypting algorithm.

Finally Bob obtains the initial message, with the guarantee that no one else has
been able to get the information.

E−1(Encryptedmessage, PrivatekeY) = Message

54

Encrypting
Algorithm

Alice
Message

Private Key

Encrypted
message

Encrypting
Algorithm

Encrypting
Algorithm

Decrypting
Algorithm

Private Key

Alice
Message

Figure 1.11: Symmetric encrypting

55

1.6 WebRTC Project Implementation

1.6.1 Application Architecture

The application follows the basic outline for a WebRTC implementation[9]. From
a general point of view, the following figure illustrates all the devices and compo-
nents involved in the process and their communication mechanism:

ALICE BOB

(I.I) Offer (I.II) Answer

(I) Signalling process

(II) GetUserMedia
(III) RTCPeerConnection

Server Node

HTML Client HTML Client

Figure 1.12: WebRTC Architecture

The architecture can be separated in two parts, server architecture and client
architecture, both work separately but are strongly related.

Client Architecture Overview:
The client architecture is very simple, just need a WebRTC compatible browser

as the following:
• Chrome Browser[2] version 51.0 or later.
• Firefox Browser[6] version 45 or later.
Server Architecture Overview:
This side is the responsible for carrying out the signaling process and connect

the client side’s in order to establish communication.
Our server is running in a Linux machine by the telematic department by UPC

with the following characteristics:
• Distribution: Linux
• Server IP: 147.83.39.232
• Ports: 8101 (HTTP), 8102 (HTTPS)

56

1.6.2 Setting Up Server

In the following code all the modules needed are imported using the require()
method.

1 //Getting the modules
2 var https = require('https');
3 var fs = require('fs');
4 var path = require('path');
5 var express = require('express.io');

In order to enable the server to handle HTTPS connections, the server need to read
the keys and certificates created through OPENSSL in Linux.

$ openssl genrsa 1024 > file.pem //Generating RSA KEY.
$ openssl req -new -key file.pem -out csr.pem
//Input data in order to generate crs.pem
$ openssl x509 -req -days 365 -in csr.pem -signkey file.pem -out file.crt
//SSL certificate saved

1 //Key & Certificate for https server.
2 var options = {
3 key: fs.readFileSync(path.resolve('/home/webrtc/localcopy/code/

file.pem')),
4 cert: fs.readFileSync(path.resolve('/home/webrtc/localcopy/code/

file.crt'))
5 };

HTTPS server creation, request and response.
1 app.https(options).io();
2 var PORT = 8102; //Defined HTTPS server port
3 //var PORT = 8101; //Defined HTTP server port
4 console.log('server started and listen to port: ' + PORT);
5 //ask for static files on the public directory
6 app.use(express.static(__dirname + '/public'));
7
8 app.get('/', function(req, res){ //When a request comes index.ejs is

provide to the client
9 res.render('index.ejs');

10 });

Every time that a client connect/disconnect to the server a message on the console
of the server will be printed.

1 //Display on the console connected/disconnected users
2 app.io.on('connection' , function(socket){
3 console.log("A user connected!!");
4 socket.on('disconnect', function() {
5 // make your disconnection actions
6 console.log("User disconnected!!");
7 })
8 })

57

Announcement of a client connection and joining into the room introduced by
the user at the beginning of the connection. The room and the signal room have to
be the same

1 //message other clients when some new user enter to the chatroom
2 app.io.route('ready', function(req){
3 //req.data bring the name of the room (for textchat and signaling

room)
4 req.io.join(req.data.chat_room);
5 req.io.join(req.data.signal_room);
6 req.io.join(req.data.files_room);
7 //Send a broadcast message to the room with name req.data
8 app.io.room(req.data).broadcast('announce', {
9 message:'New client in the ' + req.data + 'room.'

10 });
11 })

This function set up the listening port able to receive connections:
1 app.listen(PORT);

Signaling Channel

This is really similar to the implementation of text chat messages. One key differ-
ence with the text chat is that the sender will not receive his own message because
of using req() method instead off app.io.room.

1 //Signaling process
2 app.io.route('signal', function(req){
3 req.io.room(req.data.room).broadcast('signaling_message', {
4 type:req.data.type,
5 message:req.data.message
6 });
7 })

Text chat

This function sends a broadcast message to all the clients (sender included), that
are connected in to the same room.

1 //Sending text messages to the connected clients
2 app.io.route('send', function(req){
3 app.io.room(req.data.room).broadcast('message', {
4 message:req.data.message,
5 author:req.data.author
6 });
7
8 })

Some functions will be added on the client side in order to send messages to the
server, and realize the communication.

58

1.6.3 Setting Up Client

The following code illustrate all the variable definitions in order to link the HTML
tags with the JavaScript variables and to perform the configuration of the room and
iceServers.

1 //Referencing to video tags
2 var myVideoArea = document.querySelector("#myVideoTag");
3 var theirVideoArea = document.querySelector("#theirVideoTag");
4 //Reference to the video selector
5 var videoSelect = document.querySelector('#camera');
6 //Referencing to chat text selector
7 var myName = document.querySelector("#myName");
8 var myMessage = document.querySelector("#myMessage");
9 var sendMessage = document.querySelector("#sendMessage");

10 var chatArea = document.querySelector("#chatArea");
11 var clear = document.querySelector("#clear");
12 var ROOM = prompt('type a room name');
13
14 var SIGNAL_ROOM = ROOM;
15 var FILES_ROOM = "files";
16 //Referencing to signaling messages
17 var signalingArea = document.querySelector("#signalingArea");
18
19 var configuration = {
20 'iceServers': [{
21 'url': 'stun:stun.l.google.com:19302',
22 'url': 'stun:stun1.l.google.com:19302'
23 }]
24 };
25 var rtcPeerConn;
26 };

Media Devices

In WebRTC getUserMedia is not implemented in the same way for all the browsers,
the next code try to several different calls and at least one of them will return a
valid reference. If any of this three calls to getUserMedia works, the navigator will
contain a valid reference.

1 if (typeof MediaStreamTrack === 'undefined' || typeof
MediaStreamTrack.getSources === 'undefined') {

2 document.querySelector("#cameraSelector").style.visibility = "hidden
";

3 } else {
4 MediaStreamTrack.getSources(getCameras);
5
6 //console.log(MediaStreamTrack.getMediaDevices(getCameras));
7 }

This method find all the media devices connected to the computer by the video
type, such as web cams. It is used if the client has more than one video input
device.

59

1 function getCameras(sourceInfos) {
2 for (var i = 0; i < sourceInfos.length; ++i) {
3 var sourceInfo = sourceInfos[i];
4 var option = document.createElement('option');
5 option.value = sourceInfo.id;
6 if (sourceInfo.kind === 'video') {
7 option.text = sourceInfo.label || 'camera' + (videoSelect.length +

1);
8 videoSelect.appendChild(option);
9 }

10 }
11 }

Setting Up the Socket.io Client

Connecting the socket client to the socket server.

1
2 //Connect to our socket server
3 io = io.connect();
4 //Message type 'ready' implies that our server will announce a new

client join to the room.
5 io.emit('ready', {
6 "chat_room": ROOM,
7 "signal_room": SIGNAL_ROOM,
8 "files_room":FILES_ROOM
9 });

10
11 //Handling the announcement: Display when new user has join into the

room
12 io.on('announce', function (data) {
13 displayMessage(data.message);
14 });

This functions allow to exchange text messages in both directions client/server.

1 //Handling the text message
2 io.on('message', function (data) {
3 displayMessage(data.author + ": " + data.message);
4 });
5
6 //Listener for "submit button". When "submit" is pressed, socket "emit

" a json object to the server.
7 sendMessage.addEventListener('click', function (ev) {
8 io.emit('send', {
9 "author": myName.value,

10 "message": myMessage.value,
11 "room": ROOM
12 });
13 ev.preventDefault();
14 }, false);

60

Client Signaling Process

Io.emit () function sends the first signaling message to any client listening.
1 io.emit('signal', {
2 "type": "user_here",
3 "message": "Are you ready for a call?",
4 "room": SIGNAL_ROOM
5 });

When a server receives a message from a client, it will be shown in the current chat
area tag.

1 io.on('signaling_message', function (data) {
2 displaySignalMessage("Signal received: " + data.type);

61

Creating The RTCPeerConnection

Each time the client receives a signaling message from the server, the io.on handler
does is to check that if the RTCPeerConnection has been initialized, if is not ini-
tialized the handler calls the startSignaling() method. After a RTCPeerConnection
has been initialized, the next step is save the message received from the server by
a JSON file in to a variable in order to check the type of the signaling message re-
ceived. If it is an SDP message that means the remote party has made and offer. In
order to respond this offer the RTCPeerConnection will be invoked and will create
a response by sending the localDescriptionProtocol. If it is not an SDP message,
must be an IceCandidate, and the RTCPeerConnection is invoked in order to add
this IceCandidate.

1 io.on('signaling_message', function (data) {
2 displaySignalMessage("Signal received: " + data.type);
3
4 //Setting up the RTC Peer Connection object
5
6 if (!rtcPeerConn) {
7 console.log("Start Signaling?");
8 startSignaling();
9

10 console.log('Yes, Signalingng has been started!!');
11 }
12 if (data.type != "user_here") {
13 var message = JSON.parse(data.message);
14 if (message.sdp) {
15 rtcPeerConn.setRemoteDescription(new RTCSessionDescription(

message.sdp), function () {
16 //if we have received an offer, we need to answer
17 if (rtcPeerConn.remoteDescription.type == 'offer') {
18 rtcPeerConn.createAnswer(sendLocalDesc, logError);
19 }
20 }, logError);
21 } else {
22 rtcPeerConn.addIceCandidate(new RTCIceCandidate(message.candidate));
23 }
24 }
25 });

62

First of all the function initialize the RTCPeerConnection with the configura-
tion parameters defined above. Next to that, a different event handler are added in
order to receive offers and IceCandidates. The onnegotiationneeded will be trig-
gered when the Alice receives and SDP offer and Alice will return an answer to
Bob. The SDP offer is generated by sendLocalDesc() method defined below. The
last event handler include in the startSignaling() method is onaddstream(), when
this event handler receives a stream from their own peer, add this stream to the
video area of the another client.

1 function startSignaling() {
2 displaySignalMessage("starting signaling...");
3 rtcPeerConn = new RTCPeerConnection(configuration,null);
4 //Send any ice candidates to the other peer
5 rtcPeerConn.onicecandidate = function (evt) {
6 if (evt.candidate) {
7 io.emit('signal', {
8 "type": "ice candidate",
9 "message": JSON.stringify({

10 'candidate': evt.candidate
11 }),
12 "room": SIGNAL_ROOM
13 });
14 displaySignalMessage("Completed that ICE

candidate");
15 }
16 };
17 //let the 'negotiationneeded' event trigger offer

generation (SDP offer)
18 rtcPeerConn.onnegotiationneeded = function () {
19 displaySignalMessage("on negotiation called");
20 rtcPeerConn.createOffer(sendLocalDesc, logError);
21 };
22
23 //Once remote stream arrives, show it in the remote

video element
24 rtcPeerConn.onaddstream = function (evt) {
25 displaySignalMessage("going to add their stream...

");
26 theirVideoArea.src = URL.createObjectURL(

evt.stream);
27 };

Getting The Media

Figure below shows a key function in order to get the media from the client com-
puter. This method is called after the signaling process has been completed. The
function receives three parameters, the constraints (in order to turn on the audio
and video) and two callbacks methods names one for a success connection to cam-
era or audio (this one is called if a MediaStream is passed), and one for a failed
connection (which is called if an error object is passed). This method pertains to

63

startSignaling() function but it is explained here to better understand the process.
1 //This goes inside startSignaling() function.
2 navigator.getUserMedia({
3 'audio': true,
4 'video': true
5 //Once the stream is created, display in myVideo

tag, and add our stream as a source of audio/
video to our RTCPeerConn

6 }, function (stream) {
7 displaySignalMessage("going to display my

stream...");
8 //Adding the local stream to the video tag.
9 myVideoArea.src = URL.createObjectURL(stream);

10 //
11 rtcPeerConn.addStream(stream);
12 }, logError);

This function creates a local session description protocol (SDP) containing infor-
mation about the video codecs, resolutions, log information, etc.

1 function sendLocalDesc(desc) {
2 rtcPeerConn.setLocalDescription(desc, function () {
3 displaySignalMessage("sending local description");
4 console.log(rtcPeerConn.localDescription);
5 io.emit('signal', {
6 "type": "SDP",
7 "message": JSON.stringify({
8 'sdp': rtcPeerConn.localDescription
9 }),

10 "room": SIGNAL_ROOM
11 });
12 }, logError)
13 }

64

1.7 Testing

This section shows some performance tests in order to ensure the proper system
operation.

1. Establishing connection with the UPC telematics server:

Figure 1.13: Server

2. The caller party chooses the name of the room in order to create the signaling
between the clients. When the called party wants to connect with the caller
party, only have to enter the same room name and choose the name that will
be seen.

Figure 1.14: Room

Figure 1.15: Name

65

3. The signaling process start to run until both clients know each other through
the processes previously mentioned. At the bottom of the page the signaling
information is presented.

Signaling Messages:

Signal received: SDP
starging signaling...
Signal received: ice candidate
Signal received: ice candidate
Signal received: ice candidate
Signal received: ice candidate
going to add their stream...
sending local description
Completed that ICE candidate
going to display my stream...
on negotiation called
sending local description
Signal received: ice candidate
Signal received: ice candidate
Signal received: ice candidate
Signal received: ice candidate
Signal received: ice candidate
Signal received: ice candidate
Signal received: SDP
Completed that ICE candidate

4. Then, the connection has been established and the application is fully oper-
ational.

Figure 1.16: WebRTCEET

66

5. As observed below the socket.io chat server (Signaling server) is running
and working.

Figure 1.17: Name

67

1.7.1 Statistics and graphs

Another strong point of WebRTC (Only for Chrome) is the possibility to view the
multimedia flows that are running over a communication. With the tool Webrtc-
internals, the MediaStream can be analyzed both you send as you get.

The following figures illustrates the analyzed information relative to the sended
audio sources:

• AudioOutputLevel
• BitsReceivedPerSecond
• PacketLost
• PacketsReceivedPerSecond

Figure 1.18: WebRTC internals

Figure 1.19: WebRTC internals

68

The following figures illustrates the analyzed information relative to the
sended video sources:

Figure 1.20: WebRTC internals

Figure 1.21: WebRTC internals

69

1.8 Conclusions

Finally, we conclude with a very satisfactory rating for the project development and
the system implementation. Following the main guidelines set at the beginnning,
the obtained result is very close to the main requirements, achieving good results in
all the project areas, such as the implementation of an application that handles real
time multimedia communications through WebRTC without the use of pluggins
using a simple web browser, the implementation of extra functionalities such as
text chat, streaming handles, room selection, server creation, and of course, without
forgetting the learning about the knowledge required in order to carry it out.

This application fits very well in the academic sector, as it was intended, fa-
cilitating the communications between the student and teacher. The functionality
is transposable to many fields such as medicine, sale or information business, this
place the WebRTC technology as a strong candidate to overrule the field of the real
time communications in a near future.

Technically we have seen the solidity of this new technology, the new possibil-
ities that offer in the real time communications field, and the efficiency improve-
ments presented against its competitors, improving latency times, the quality of
the video and audio, the security over the involved systems, increasing the ease
and versatility in any computer. On the other hand, it is a very recent technology,
so there are not many examples in order to provide reliability. In addition, there
is a continuous variation in their native functions as well as the browser version,
creating some inestability.

From an academic point of view, this project has been a very enriching per-
sonal contribution, providing a wealth of knowledge related to real time communi-
cations, the mecanisms and technologies related with WebRTC and their predeces-
sors, many programation languajes and a significant improvement in the analysis
about communication systems.

As a personal conclusion, we finish this project with a great satisfaction, a
great ride, and an improved vision about all the themes treated in the sections of
this project. We hope to continue in the near future.

70

1.9 Future Implementations

This project includes the following features:
• Video conference
• Chat
• Room creation

The programming of this project is a Low-level implementation, avoiding the use
of API’s developed by third parties, this allows the base to be used as a solid starting
point for future deployments.

Here is a list of functional improvements that can be easy implemented through
the designed system:

1. Screen Sharing: This improvement allows screen sharing between users in
a secure way using the implemented WebRTC protocols. The transmission
will be realized by RTCDataChannel such as video conference. Screen Shar-
ing is developed in the code of the present project but actually can not be
operative because Chrome browser has disabled this possibility without the
use of plug-ins or browser extensions because of the vulnerability caused in
their systems.

2. File Transfer: Enables sending files in a direct way between two clients with-
out a intermediate server to store the data, as previous features, sending will
be made by RTCDataChannel.

3. Interactive Board: Interactive board allow both clients to interact with a
blackboard to draw. Both clients can observe changes in the board at the
same time. Very useful for learning environments.

4. Multi conference: Similar to a simple WebRTC communication, Multi con-
ference allow for communication between multiple clients. This improve-
ment is useful for five users.

5. Co-browsing: Enables to interact with the screen of another client, useful to
indicate or modify content. This improvement suffers the same limitation
that Screen Sharing and can not be implemented without plugins because of
security problems.

71

1.10 Annexed

The code is available for all the scientific community in the following repository.
Everybody can download it and try, for own implementation nonprofit.

https://github.com/eetwebrtc/WebRTC

72

Bibliography

[1] Express.js. http://expressjs.com/es/.

[2] Google chrome. https://www.google.es/chrome/browser/
desktop/.

[3] Is a google project for webrtc. http://www.html5rocks.com/es/.

[4] Node.js. https://nodejs.org/en/.

[5] Socket.io. http://socket.io/.

[6] Technologia web para desarroladores. https://developer.
mozilla.org/es/docs/Web.

[7] W3school. http://www.w3schools.com/about/default.asp/.

[8] Webrtc 1.0: Real-time communication between browsers. http://www.
w3.org/TR/2012/WD-webrtc-20120821/.

[9] Webrtc blueprints. https://www.webrtcexample.com/
WebRTC-Blueprints/.

[10] Webrtc hacks. https://webrtchacks.com/.

73

