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Abstract

The Minimum Linear Colouring Arrangement problem (MinLCA) is a variation from the Min-
imum Linear Arrangement problem (MinLA) and the Colouring problem. The objective of the
MinLA problem is finding the best way of labelling each vertex of a graph in such a manner
that the sum of the induced distances between two adjacent vertices is the minimum. In our
case, instead of labelling each vertex with a different integer, we group them with the condition
that two adjacent vertices cannot be in the same group, or equivalently, by allowing the vertex
labelling to be a proper colouring of the graph.
In this project, we undertake the task of broadening the previous studies for the MinLCA
problem. The main goal is developing some exact algorithms based on backtracking and some
heuristic algorithms based on a maximal independent set approach and testing them with dif-
ferent instances of graph families. As a secondary goal we are interested in providing theoretical
results for particular graphs. The results will be made available in a simple, open-access bench-
marking platform.

Keywords: MinLCA, Graph Colouring, Backtracking, Maximal Independent Set, Parame-
terised Problems, Benchmarking.
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Chapter 1

Introduction

1.1 Problem formulation

Mathematical modelling is a largely studied field in mathematics. Many problems in real life
can be translated into the language of mathematics. A significant group of these problems, espe-
cially in engineering, can be modelled as graph problems. Among these problems we find graph
layout problems. They are a particular class of combinatorial optimisation problems whose goal
is to find a labelling of the vertices of a graph with distinct consecutive integers, such that a
certain objective cost is optimised.

One particular graph layout problem which has been largely studied by the computer science
community is the minimum linear arrangement problem (MinLA). The objective of this prob-
lem is to find the best way of labelling the vertices of a graph in such a manner that the sum
of the induced distances between two adjacent nodes is the minimum.
The problem we study is a variation of MinLA. Instead of labelling each node with a different
integer, we group them under the condition that two adjacent vertices cannot be in the same
group. More specifically, the layout will be a proper colouring of the graph. This problem is
known as the minimum linear colouring arrangement problem (MinLCA). The problem can
also be seen as a variation of the Colouring problem.

1.2 Interest of the problem

The interest in studying this problem comes from different points of view. First of all, the
study of complexity for computational problems is a very important field in computer science
and mathematics. As shown in later chapters, the problem we study is computationally hard,
so theoretical and practical results on it can be very useful to the computer science community.
More specifically, the Algorithmics, Bioinformatics, Complexity and formal Methods (ALB-
COM) research group from the Computer Science department (CS) of UPC - BaracelonaTech
is interested in this problem. It is a generalisation of the minimum linear arrangement problem,
which has been thoroughly studied by Jordi Petit among others, see [3] and [9] for a full list of
results and references for this and other graph layout problems.

Moreover, this problem is highly related to two other well known graph problems, graph colour-
ing and graph homomorphism. If we look at it as a special case of the latter, it is possible to find
a real world application related to computer science. We see the different nodes of the graph
as different tasks of a computer programme and the edges as incompatibility rules between
them (for example, two tasks that need to be executed on different computers but that share

1



2 CHAPTER 1. INTRODUCTION

some information). Considering that the computers are sequentially numbered and physically
distributed in the order of the sequence, the layout would be the assignment of the tasks to the
different computers which minimises the physical distances between incompatible tasks sharing
information. With this considered, the model might be a way to minimise the time and energy
spent in information exchange.

1.3 State of the art

Even though the minimum linear arrangement problem has been largely studied for many years
(see [3] and [9] for a complete list of results and references for this and other layout problems),
our problem has only been studied by I. Sánchez in his thesis, see [14].
In said thesis, he developed some algorithms based upon those used for the MinLA. The dif-
ference between MinLA and MinLCA is in the solution: in the original problem it has to be
a bijective mapping between the set of vertices and a set of integers, but for our problem we
only need to have a proper colouring. For this reason, some of the algorithms developed for
MinLA can give ideas for developing the algorithms for MinLCA, but due to their differences,
the algorithms need to be different.

In his project, I. Sánchez started presenting the problem, establishing the problem complexity
and giving some theoretical results. After that he developed three types of algorithms: exact,
greedy and local search algorithms.
For the exact algorithms he developed an integer linear programming algorithm, and it was
concluded that the algorithm took too much time to execute and it did not get to an optimal
solution except for very few cases.
The greedy algorithms are based on a breadth-first search. Two different approaches were con-
sidered. The first one uses a nearest colour approach. When the algorithm has to assign a colour
to a vertex v, it checks the colour of its neighbours and increases the preference of the one colour
before and the one colour after the colour of each neighbour. The second greedy algorithm uses
a least cost approach. In this case, the colour assigned to a vertex by the algorithm is the one
with the least increment of the cost at each step.
Finally, for the local search algorithms the simulated annealing algorithm is used. This algo-
rithm works by making small modifications to an initial solution with the aim to get a better
solution at each step. For this algorithm two different approaches were considered. First, an
approach based on the greedy recolourings was taken into account, for which the two greedy
algorithms described above are used to colour the vertices. Secondly, an approach based on
changing the colours was used. In this case, instead of reordering the vertices and recolouring
them, we change the colour of the vertices and see what happens.

In order to test the algorithms, different graph instances were tested. These graphs include the
instances used for the MinLA (see Table 4.1), binomial random graphs, graphs with cliques,
random geometric graphs and outerplanar graphs.

1.4 Goals and scope of the project

The goal of this project is to continue the study of the minimum linear colouring arrangement
problem, started by Isaac Sánchez in his bachelor’s thesis (See [14]).
First of all we study the MinLCA problem and some of its parameterised versions. We start
surveying its computational complexity and then some particular graph classes for which results
for the problem are known. This includes bipartite, complete, planar and outerplanar graphs.
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We complement those results with some new ones for the families of k-trees, complete k-partite
graphs and bounded treewidth graphs. The second ones provide the tools to disprove a con-
jecture made in [14] about the number of colours used in the MinLCA problem and the latter
allows us to give a result for the problem parameterised by the treewidth of the input graph.
Afterwards, we develop some exact and heuristic algorithms and evaluate their performance in
different types of graphs which include the graphs used in the previous study of the MinLCA
and also two new graph families, k-trees and almost 3-complete graphs.
For the exact algorithms we develop a backtracking approach based on a combinatorial search
and test it in instances for big and small orders in order to determine for which size and type
of graph it is feasible to use this approach. For the heuristic algorithms we develop a maximal
independent set approach and compare the results with the heuristic algorithms studied in [14].
Finally, we plan to build an online benchmarking platform with all the obtained results, and
add it to the benchmarking platform built by I. Sánchez in his thesis (See [15]). This way all
the results will be available for further study of the problem.
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Chapter 2

Preliminaries

In order to understand the problem presented, it is necessary to have a basic knowledge about
graph theory and computational complexity. In this chapter we present a brief introduction
to these fields, focusing on the concepts and properties that help make the next chapters self-
contained and easier to follow.

2.1 Graphs

We start providing a brief introduction on graph theory. We give some basic definitions about
this field, focusing on some specific computational problems which help in order to understand
our problem. Through all of this section we follow the notations of [4].

2.1.1 Graphs and notation

We start by defining the concept of a graph, its components and the corresponding notation.

Definition 2.1.1. (Graph) A simple undirected graph is a pair (V,E) of sets such that V is the
set of vertices (or nodes) of the graph and E ⊆ {{u, v}|u, v ∈ V, u 6= v} is the set of edges. The
vertex set of a graph is referred to as V (G) and the edge set as E(G).
The order of a graph is its number of nodes (|V (E)|) and the size is the number of edges
(|E(G)|). Usually we set n = |V (G)| and m = |E(G)|.
A vertex v is incident with an edge e if v ∈ e; then e is an edge at v. Two vertices incident with
an edge are called its endvertices or ends, and an edge joins its ends. If u, v are the endvertices
of an edge, we can write the edge as uv. Two vertices u, v of G are adjacent, or neighbours, if
uv is an edge of G. We will denote two adjacent vertices as u ∼ v. We are considering simple
graphs, so there will be no loops (edges joining a vertex with itself) nor multiple edges (more
than one edge joining the same vertices).
We say that G′ = (V ′, E′) is a subgraph of G when V ′ ⊆ V and E′ ⊆ E. If G′ ⊆ G and G′

contains all the edges xy ∈ E with x, y ∈ V ′ then G′ is and induced subgraph of G. We use the
notation G[V ′] to represent the subgraph induced by V ′ ⊆ V .

Once we have these basic definitions in mind, we state the relationship between neighbours in
a graph.

Definition 2.1.2. (Neighbourhood and Degree) Let G = (V,E) be a graph. The set of neigh-
bours of a vertex v in G is denoted by ΓG(v) = Γ(v).
The degree degg(v) = deg(v) of a vertex v is the number of edges at v. This is equal to the
number of neighbours of v.

5
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2.1.2 Graph types

After this brief introduction we give a taste of different types of graph which are going to be
mentioned in the following chapters.

We start with two basic subgraphs on every graph, the paths and cycles.

Definition 2.1.3. (Paths and Cycles) A path on n vertices is a graph (Pn) of the form V (P ) =
{x1, ..., xn} and E(P ) = {x1x2, ..., xn−1xn}. Such a path has n − 1 edges and thus has length
n− 1.
A cycle on n vertices is a graph (Cn) of the form V (P ) = {x1, ..., xn} and
E (P ) = {x1x2, ..., xn−1xn, xnx1}.

Next, we are going to introduce different graphs for which we know particular results for our
problem.
First, we define a graph where all its nodes are connected. We can see that in this case the
degree of all the nodes is equal to |V (E)| − 1.

Definition 2.1.4. (Complete Graph) A complete graph Kn = (V,E) is a graph where |V | = n
and E = {uv|u, v ∈ V, u 6= v}.

Following the definition of a complete graph, we define bipartite graphs which, as we see in the
next chapters, also has a closed result for our problem.

Definition 2.1.5. (Bipartite graph) A graph G = (V,E) is bipartite if V can be divided into
two disjoint sets A,B, i.e., V = A ∪B and A ∩B = ∅, such that all edges have one endvertex
in A and the other in B.
A complete bipartite graph is a bipartite graph where every edge from a set is connected with
all the edges of the other set.

For the following graphs we do not know closed results for our problems, but we can deduce
simple upper bounds for them. We have planar and outerplanar graphs and k-trees.

Definition 2.1.6. (Planar graphs) A graph G = (V,E) is planar if it can be drawn in the plane
and have its edges intersect only at their endpoints. In other words, it can be drawn in such a
way that no edges cross each other.

Definition 2.1.7. (Outerplanar graphs) A graph G = (V,E) is outerplanar if the vertices can
be drawn in a cycle so that the edges not in the cycle drawn as chords result in a planar graph.

Definition 2.1.8. (k-tree) A k-tree is a graph formed by starting with a complete graph of size
k and repeatedly adding nodes in such a way that each node has exactly k − 1 neighbours, so
the k nodes form a clique.

2.1.3 Problems on graphs

Now we state different computational problems which are directly related to our problem. We
explore the different statements for the property or parameters defining the problem, its deci-
sional version and its parameterised version if it exists.

We start with the Graph Homomorphism problem. Before stating the problem, we need to
define the concept of graph homomorphism.
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Definition 2.1.9. (Graph homomorphism) Let G = (V,E) and H = (V ′, E′) be two graphs.
Then the application ϕ : V → V ′ is an homomorphism if, for any uv ∈ E we have ϕ(u)ϕ(v) ∈ E′.
If, in addition, we require ϕ is bijective and that when uv /∈ E then ϕ(u)ϕ(v) /∈ E we say that
varphi is an isomorphism.

With this we can state the problem in question.

Problem 2.1.1. (Graph Homomorphism) Given two graphs G = (V,E) and G′ = (V ′, E′)
find (if it exists) an homomorphism ϕ between them.

The decisional version for this problem is as follows.

Problem 2.1.2. (Graph Homomorphism-Dec) Given two graphs G = (V,E) and G′ =
(V ′, E′) decide if there is a graph homomorphism between them.

This is a very well known problem. It is NP-Complete. The equivalent problem for Graph
isomorphism, i.e., given two graphs decide if there is a graph isomorphism between them is not
known to be solvable in Polynomial time nor to be NP-Complete. It is known that this problem
is in the low hierarchy of the NP-class and therefore if it is NP-Complete then the Polynomial
Hierarchy (PH) collapses into its second level. (See [16]).

Next we define the concept of linear layout, which is basic in order to define the MinLA
problem.

Definition 2.1.10. (Linear Layout) Let G = (V,E) and n = |V |. A linear layout of G is a
bijective function ϕ : V → [n] = {1, ..., n}.
We call Φ(G) the set of all layouts of a graph G.
Given a layout ϕ of G and an edge uv ∈ E the length of uv on ϕ is

λ(uv, ϕ,G) = |ϕ(u)− ϕ(v)| (2.1)

If we sum the length of all the edges, we get the cost of the linear arrangement,

LA(ϕ,G) =
∑
uv∈E

λ(uv, ϕ,G) (2.2)

Now we can define a problem largely studied and defined in [3], the Minimum Linear Arrange-
ment problem. Our problem is a variation of this one.

Problem 2.1.3. (MinLA) Given a graph G = (V,E), find a layout ϕ∗ ∈ Φ(G) such that
LA(ϕ∗, G) is the minimum,

MinLA(G) = min
ϕ∈Φ(G)

LA(ϕ,G) (2.3)

Problem 2.1.4. (MinLA-Dec) Given a graph G = (V,E) and an integer `, decide if there
exists a layout ϕ∗ ∈ φ(G) such that LA(ϕ∗, G) < `.

This problem is NP-Complete. It has been studied in numerous occasions, for example [10],
[11]. To make our Benchmarking for our problem we use the instances J. Petit used in [11].

In the definition of our problem, we have two problems which are highly related to ours, the
MinLA and Graph Colouring problems. We have already seen the MinLA, so now we give
the basic concepts in order to define the Graph Colouring problem. We give some basic
definitions that lead us to the problem in question.
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Definition 2.1.11. (Vertex colouring) Given G = (V,E) and ϕ : V → [k] for some k ∈ N. We
say that ϕ is a vertex colouring if for any uv ∈ E then ϕ(u) 6= ϕ(v). If such colouring exists,
we say that G is k-colourable and ϕ is a k-colouring.
Observe that a k-colouring is a homomorphism from G to Kn for n = |V (G)|.

Definition 2.1.12. (Colouring family) Given G = (V,E) and k ∈ N, the colouring family Fk
of G is defined as the set of colourings ϕ : V (G)→ [k]. That is

Fk(G) = {ϕ : V (G)→ [k] | uv ∈ E(G)⇒ ϕ(u) 6= ϕ(v)} (2.4)

Then we can define the family of all colourings

F (G) =
⋃
k∈N

Fk(G) = {ϕ : V → N | uv ∈ E(G)⇒ ϕ(u) 6= ϕ(v)} (2.5)

Note that by labelling each node with a different colour we get a valid colouring. Therefore
Fn(G) is non-empty thus F (G) 6= ∅. This property allows us to set the following definition.

Definition 2.1.13. (Chromatic number) Given G = (V,E) and k the smallest integer such
that G has a k-colouring, then k is the chromatic number of G. It is denoted as χ(G). A graph
with χ(G) = k is called k-chromatic.

Definition 2.1.14. (Linear distance of a colouring) Given a graph G and a colouring ϕ(G) ∈
F (G), we define the linear distance of ϕ as

L[ϕ](G) =
∑
uv∈E

λ(uv, ϕ,G) =
∑
uv∈E

|ϕ(u)− ϕ(v)| (2.6)

Now we have the tools to define the graph colouring problem.

Problem 2.1.5. (Graph-Colouring) Given a graph G and an integer k, find a k-colouring
ϕ ∈ Fk(G).

Problem 2.1.6. (Graph-Colouring-Dec) Given a graph G and an integer k, decide if there
exists a k-colouring ϕ ∈ Fk(G).

Finally, we are going to look at the parameterised version of this problem.

Problem 2.1.7. (Graph-Colouringk) Given a graph G, find a k-colouring ϕ ∈ Fk(G).

Problem 2.1.8. (Graph-Colouring-Deck) Given a graph G, decide if there exists a k-
colouring ϕ ∈ Fk(G).

The decisional version of the problem is well known to be NP-Complete except for the cases
where k = 0, 1, 2. In fact, it is NP-Hard to compute the chromatic number. The 3-colouring
problem is NP-Complete on planar graphs. However, for k > 3 the k-colouring problem is
known to be in P for planar graphs, since every planar graph has a 4-colouring(see [19]).
This problem is highly related to our problem, in fact, if we find a solution for our problem, it
is also a proper colouring.

2.1.4 Data structures for graphs

In order to work with graphs in a computer program, we first need to decide how to represent
them within the computer. As we can see in [17], there are two commonly used representations
and the choice between them depends primarily upon whether the graph is dense or sparse
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together with other considerations about the operations to be performed.

First of all, we need to map the vertex names to integers between 1 and |V |, so we can quickly
access information corresponding to each vertex using array indexing.

The most straightforward representation for graphs is the adjacency matrix representation.
We have a |V | × |V | array of boolean values, with position [x, y] set to true if there is an edge
from vertex x to vertex y and false otherwise.
The adjacency matrix representation is satisfactory only if the graphs to be processed are dense,
because the matrix requires |V |2 bits of storage and |V |2 steps just to initialize it. If the number
of edges is proportional to |V |2, then this is acceptable because |V |2 steps are required to read
the edges in any case.

Now let us look at a representation that is more suitable for sparse graphs. In the adjacency-
structure representation all the vertices connected to each vertex are listed on an adjacency list
for that vertex. We have |V | empty lists, one for each node. To add an edge connecting x to y
we add x to y’s adjacency list and y to x’s adjacency list.
For this representation, the order in which the edges appear in the input is quite important
because it determines the order in which the vertices appear on the adjacency list. This order
affects, in turn, the order in which edges are processed by algorithms.
Some simple operations are not supported by this representation. For example, to delete a
node x, and all the edges corresponding to it, it is not sufficient to delete nodes from the ad-
jacency list, each node on the adjacency list specifies another vertex whose adjacency list must
be searched to delete a node corresponding to x.

The adjacency matrix representation is more suitable when the basic operations are queries
about the existence or not of potential edges. The second is useful when we operate processing
the neighbours of a node one after the other.

In our case, we will mostly be working with sparse graphs, so we pick the adjacency list repre-
sentation as input to our algorithms.

2.2 Computational Complexity

In order to understand the inherent difficulty of our problem, we study its computational com-
plexity. For this reason we give a basic introduction to this field. We follow the notation of [18].

First of all we need to start with the definition of a Turing machine. A Turing machine can do
everything a real computer can do. Nonetheless, even a Turing machine cannot solve certain
problems. These problems are beyond the theoretical limits of computation. Here we have the
formal definition for a Turing machine.

Definition 2.2.1. (Turing machine) A Turing machine is a 7-tuple, (Q,Σ,Γ, δ, q0, qaccept, qreject),
where Q, Σ, Γ are all finite sets and

1. Q is the set of states,

2. Σ is the input alphabet not containing the blank symbol t,

3. Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,

4. δ : Q× Γ→ Q× Γ× {L,R} is the transition function,
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5. q0 ∈ Q is the start state,

6. qaccept ∈ Q is the accept state, and

7. qreject ∈ Q is the reject state, where qreject 6= qaccept.

The start configuration of a Turing machine M on input w is the configuration q0w, which
indicates that the machine is in the start state q0 with its head at the leftmost position on
the tape. In an accepting configuration the state of the configuration is qaccept. In a rejecting
configuration the state of the configuration is qreject.
M accepts input w if a sequence of configurations C1, C2, ..., Ck exists, where:

1. C1 is the start configuration of M on input w,

2. each Ci yields Ci+1, and

3. Ck is an accepting configuration.

The collection of strings that M accepts is the language of M , denoted L(M). We call a
language Turing-decidable or simply decidable if some Turing machine decides it.

Even if a problem is decidable and thus computationally solvable in principle, it may not be
solvable in practice if the solution requires an inordinate amount of time or memory. Next, we
introduce computational complexity theory, a theory which aims to understand the resources
of the time and memory among others required for solving computational problems. We focus
on a way of measuring the time used to solve a problem.

Definition 2.2.2. (Time complexity) Let M be a deterministic Turing machine that halts on
all inputs. The time complexity of M is the function f : N → N, where f(n) is the maximum
number of steps that M uses on any input of length n. If f(n) is the running time of M , we
say that M runs in time f(n) and that M is an f(n) time Turing machine. Customarily we use
n to represent the length of the input.

Now we come to some important definitions in complexity theory.

Definition 2.2.3. (P) The class of languages that are decidable in polynomial time on a
deterministic single-tape Turing machine is called P.

The class P plays a central role in complexity theory and it is important because it is invariant
for all models of computation that are polynomially equivalent to the deterministic single-tape
Turing machine, and it roughly corresponds to the class of problems solvable on nowadays com-
puters.

We can avoid brute-force search in many problems and obtain polynomial time solutions. How-
ever, attempts to avoid brute-force in certain problems haven’t been successful, and polynomial
time algorithms that solve them are not known to exist.

Even so, there are problems which are not known to have a polynomial time solution but,
if given a solution, it is easy to verify if it is a correct one. Here follows a formal definition of
these concepts.

Definition 2.2.4. (Verifier) A verifier for a language A is an algorithm V , where

A = {w | V accepts 〈w, c〉 for some string c}. (2.7)

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier
runs in polynomial time in the length of w. A language A is polynomially verifiable if it has a
polynomial time verifier.
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With this definition in mind, we can define the class NP.

Definition 2.2.5. (NP) The class of languages that have polynomial time verifiers is called
NP.

The class NP is important because it contains many problems of practical interest. The term
NP comes from nondeterministic polynomial time and is derived from an alternative character-
isation by using nondeterministic polynomial time.
The power of polynomial verifiability seems to be much greater than that of polynomial decid-
ability, but P and NP could be equal. We are unable to prove the existence of a single language
in NP that is not in P. The question of whether P=NP is one of the greatest unsolved problems
in theoretical computer science and contemporary mathematics. If these classes were equal, any
polynomially verifiable problem would be polynomially decidable.
In the early 1970s Stephen Cook and Leonid Levin discovered certain problems in NP whose
individual complexity is related to that of the entire class. If a polynomial time algorithm
exists for any of these problems, all problems in NP would be polynomial time solvable. These
problems are called NP-complete.

In order to give a formal definition of NP-complete problems, we introduce the concept of
reducibility. When a problem A is efficiently reducible to a problem B, an efficient solution of
B can be used to solve A efficiently.

Definition 2.2.6. (Polynomial time computable function) A function f : Σ∗ → Σ∗ is a poly-
nomial time computable function if some polynomial time Turing Machine M exists that halts
with just f(w) on its tape, when started on any input w.

Definition 2.2.7. (Polynomial time reducible language) Language A is polynomial time re-
ducible to language B, written A ≤P B, if a polynomial time computable function f : Σ∗ → Σ∗

exists, where for every w,

w ∈ A⇔ f(w) ∈ B. (2.8)

The function f is called polynomial time reduction of A to B.

If one language is polynomial time reducible to a language already known to have a polynomial
time solution, we obtain a polynomial time solution to the original language, as in the following
theorem.

Theorem 2.2.1. If A ≤P B and B ∈ P , then A ∈ P .

Proof. See [18], pg. 273.

From all this we reach the definition of NP-Completeness.

Definition 2.2.8. (NP-Completeness) A language B is NP-complete if it satisfies two condi-
tions:

1. B is in NP, and

2. every A in NP is polynomial time reducible to B.

Theorem 2.2.2. If B is NP-complete and B ∈ P, then P = NP.

Proof. This theorem follows directly from the definition of polynomial time reducibility.

Theorem 2.2.3. If B is NP-complete and B ≤P C for C in NP, then C is NP-complete.

Proof. See [18], pg. 276.
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2.3 Fixed-Parameter Algorithms

In order to deal with computational intractability, several methods have been developed, for
example approximation algorithms or heuristic methods. Parameterised complexity theory is
another proposal in order to cope with computational intractability in some cases. We give a
basic introduction to this field, focusing on the concepts and properties which we use later. We
follow the notation of [8].
We start giving a formal definition of parameterised problems.

Definition 2.3.1. (Parameterised problems) Given an alphabet Σ to represent the inputs to
decisional problems.
A parameterisation of Σ∗ is a mapping κ : Σ∗ → N that can be computed in polynomial time.
A parameterised problem is a pair (L, κ) where L ⊆ Σ∗ and κ is a parameterisation of Σ∗.
Parameterised problems are decisional problems together with a parameterisation. A problem
can be analysed under different parameterisations.

Many hard computational problems have the following general form: given an object x and
a nonnegative integer k, does x have some property that depends on k? In parameterised
complexity theory, k is called parameter. If we take κ(x, k) = k, then k is the natural pa-
rameterisation of the problem. In many application, the parameter k can be considered to be
”small” in comparison with the size |x| of the given object. Hence, it may be of high interest to
ask whether these problems have deterministic algorithms that are exponential only in respect
to k and polynomial with respect to |x|.

Parameterised problems which can be solved in polynomial time in respect to |x| are called
Fixed Parameter Tractable problems, and we say that they belong to FPT. For a more formal
definition:

Definition 2.3.2. Given an alphabet Σ and a parameterisation κ, we say that A is an FPT
algorithm with respect to κ if there is a computable function f and a polynomial function p
such that for each x ∈ Σ∗, A on input x requires time f(κ(x))p(|x|).
A parameterised problem (L, κ) belongs to FPT if there is an FPT-algorithm with respect to κ
that decides L.

FPT contains all polynomial-time computable problems. For a more general class of problems
we have the W -hierarchy. This collection of computational complexity classes is defined as
follows:

Definition 2.3.3. (W -hierarchy) A parameterised problem is in the class W [i], if every instance
(x, k) can be transformed (in FPT-time) to a combinatorial circuit that has weft at most i, such
that (x, k) ∈ L if and only if there is a satisfying assignment to the inputs, which assigns 1 to
at most k inputs.

Note that FPT = W [0] and W [i] ⊆W [j] for all i ≤ j. Many natural computational problems oc-
cupy the lower levels, in fact the minimum linear arrangement problem (MinLA) parameterised
by the treewidth of the graph is in W [1] (see [6]).

Now we explore a graph parameter that measures the closeness of a graph to a tree: treewidth.
In order to define this parameter we need some concepts first.

Definition 2.3.4. (Tree decomposition) A tree decomposition of a graph G is a tuple (T,X)
where T is a tree and X = {Xv | v ∈ V (T )} is a set of subsets of V (G) such that:

� For every xy ∈ E(G), there is a v ∈ V (T ) with {x, y} ⊆ Xv.
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� For every x ∈ V (G), the subgraph of T induced by X−1(x) = {v ∈ V (T ) | x ∈ Xv} is
non-empty and connected.

To distinguish between vertices of G and T , the vertices of T are called nodes. The sets Xv are
called the bags of the tree decomposition.

Definition 2.3.5. (Treewidth) The width of a tree decomposition (T,X) for G is defined as
maxv∈V (T ) |Xv| − 1.
The treewidth (tw(G)) of a graph G is the minimum width over all tree decompositions of G.

Deciding if a graph has treewidth w is NP-complete, but computing a tree decomposition with
width at most w (if it exists) takes O(f(w)n) time.

We make T into a rooted tree by choosing a root r ∈ V (T ), and replacing edges by arcs in
such a way that every node points to its parent. For v ∈ V (T ), RT (v) denotes the nodes in
the subtree rooted at v (including v). For v ∈ V (T ), V (v) = X(RT (v)), and G(v) = G[V (v)].
Thus, we have an induced subgraph associated to each node.

A tree decomposition with a particularly simple structure is given by the following definition.
It is useful to have such tree decomposition when solving problems by dynamic programming
on tree decompositions, as we see in Subsection 3.4.3.

Definition 2.3.6. (Nice tree decomposition) A rooted decomposition (T,X) is nice if for every
u ∈ V (T )

� |Xu| = 1 (start node)

� u has one child v

a) with Xu ⊆ Xv and |Xu| = |Xv| − 1 (forget node)

b) with Xv ⊆ Xu and |Xu| = |Xv|+ 1 (introduce node)

� u has two children v and w with Xu = Xv = Xw (join node)

Lemma 2.3.1. Computing a rooted nice tree decomposition with width at most w, given a tree
decomposition of width at most w takes O(wn) time.

Every node of the nice tree decomposition has a graph associated to it. First of all, for the start
node we have an isolated vertex. Secondly, the graph associated with the forget node is the
same as the graph associated to its child without the edges connecting the vertex x, which is
not in the node. For the introduce node we have the same graph associated to its child adding
one vertex and its edges. Finally, for the join node, the two graphs associated to its children
only share the vertices of the join node and there are not any edges between vertices outside
of the node, so the graph associated to the join node is the graph resulting of joining the two
subgraphs.

With this results we have the tools to prove that a solution of MinLCAk for bounded treewidth
graphs can be computed in O(f(k,w)n) time.

2.4 Experimental platform

To test our algorithms on the instances we have chosen and compare our results to those in [14]
we make some experiments using the same computational platform.
Before showing the results for every algorithm, it is important to have in mind the implemen-
tation details and the technical description to the cluster that we use to execute our code.
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2.4.1 Implementation details

All the algorithms in this project have been implemented using C++11 and an open-source
graph library called LEMON (Library for Efficient Modelling and Optimization Network [5])
version 1.3.1, which is part of the COIN-OR initiative [2].
The code has been written using C++ templates and inheritance and it should work on any
system with a C++ compiler. The plots for the results have been made with MATLAB R2016b.

2.4.2 The cluster at RDLab

To obtain the results for our algorithms we are using the cluster at RDLab [13]. When we talk
about clusters in computer science, we refer to a set of connected computers through high speed
networks which work together in problem solving.
The cluster at RDLab works with the Oracle Grid Engine, a queue system that allows for
assigning dedicated resources to each task. It runs on a Ubuntu 12.04.2 LTS system with an
x86 64 architecture with Xeon X5670 CPUs running at 2.93 GHz.
Unless stated otherwise, the executions have been made using a single thread and a maximum
of 2GB of RAM.
Our code has been compiled using C++ compiler from the GNU Compiler Collection (GCC)
with version 4.6.3 and the CMake build tool version 2.8.7.



Chapter 3

The Minimum Linear Colouring
Arrangement problem

In this chapter we define and analyse basic properties of the Minimum Linear Colouring Ar-
rangement problem (MinLCA). First of all we introduce the problem and its variations. Then,
we look at the computational complexity of the problem and some upper and lower bounds.
Finally, we present results for some particular classes of graphs studied in [14] and we give some
results for the parameterised version of the problem.

3.1 Definition and examples

3.1.1 The Minimum Linear Colouring Arrangement problem

We begin with some simple definitions which will help us define the MinLCA problem.

Definition 3.1.1. Given a graph G, we define

LCAk(G) =

{
minϕ∈Fk(G) L[ϕ](G), if Fk(G) 6= ∅
+∞, if Fk(G) = ∅

(3.1)

Definition 3.1.2. (MinLCA(G)) Given a graph G, we define

MinLCA(G) = min
ϕ∈F (G)

L[ϕ](G) = min
k∈N

LCAk(G) (3.2)

With this two definitions, we can state the general formulation of our problem as follows.

Problem 3.1.1. (MinLCA) Given a graph G, find a colouring ϕ ∈ F (G) so that L[ϕ](G) =
MinLCA(G).

In Figure 3.1 we can see the solution for the MinLCA problem for a simple graph.

We can also consider the decisional version of the MinLCA problem.

Problem 3.1.2. (MinLCA-Dec) Given a graph G and an integer L, decide if there exists a
colouring ϕ ∈ F (G) so that L[ϕ](G) ≤ L.

Once we have this general definitions of our problems we state the parameterised formulation
by the number of colours, for a fixed integer k.

Problem 3.1.3. (MinLCAk) Given a graph G, find a colouring ϕ ∈ Fk(G) so that L[ϕ](G) =
LCAk(G).

15



16 CHAPTER 3. THE MINIMUM LINEAR COLOURING ARRANGEMENT PROBLEM

Figure 3.1: Original graph and optimal layout for MinLCA with cost 4.

As done before, we now can consider the parameterised decisional version of the problem.

Problem 3.1.4. (MinLCA-Deck) Given a graph G and an integer L, decide if there exists a
colouring ϕ ∈ Fk(G) so that L[ϕ](G) ≤ L.

3.2 Computational complexity

In the previous section we introduced the MinLCA problem. In order to make a deep analysis
of our problem, we need to look at the complexity of the problem. First we see that the problem
is NP-complete and afterwards we give some upper and lower bounds for the problem. These
results were first presented in [14].

3.2.1 NP-Completeness

Before proving the NP-completeness of our problem we need to prove a basic lemma in which
we give an upper bound for L[ϕ](G).

Lemma 3.2.1. Given G = (V,E) a graph and k ∈ Z an integer. Then,

L[ϕ](G) ≤ |E|(k − 1) ∀ϕ ∈ Fk(G) (3.3)

Proof. We have maxuv∈E |ϕ(u)−ϕ(v)| ≤ k−1, because maxv∈V ϕ(v) = k and minv∈V ϕ(v) = 1.
Then,

L[ϕ](G) =
∑
uv∈E

|ϕ(u)− ϕ(v)| ≤
∑
uv∈E

(k − 1) = m(k − 1) = |E|(k − 1) (3.4)

Now we have all the tools to prove the NP-completeness of the MinLCA problem.

Theorem 3.2.2. The decisional version of MinLCAk is NP-Complete for any k > 2 and P
for k ≤ 2.

Proof. First of all we prove the basic cases. For k = 1, we only have a proper colouring for a
graph with no edges. Then, given a graph G = (V,E) and an integer L, there only exists a
solution if |E| = 0 and L ≥ 0.

For k = 2, given G = (V,E) and an integer L, we only have a proper colouring if G is bipartite
(see Lemma 3.3.2). For bipartite graphs we know that MinLCA(G) = |E| (see Theorem 3.3.3).
Then we only need to see if |E| ≤ L. Therefore, for k ≤ 2 MinLCA-Deck is in P.
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Now we prove the general case. First of all we see that MinLCA-Deck is in NP. We have
to find an algorithm to verify a solution in polynomial time. In Algorithm 3.1 we provide the
code for a verifier for MinLCA-DECk in polynomial time.
We have two loops, in line 3.1.3 we are doing a loop linear on n = |V | and in line 3.1.8 we are
doing a loop with at most m = |E| steps. So then, the cost of our algorithm is O(n + m). If
we consider that the costs of the sums and comparisons are not constant, then we only have to
add a log(n) factor to the cost function.
Now we need to prove that our algorithm is NP-Hard. To do so, we will reduce it from GRAPH-
COLOURING-DECk. Suppose thatA(G, k, L) decides MinLCA-Deck and let L = |E|(k−1).
If G is k-colourable then Fk(G) 6= ∅. Because of Lemma 3.2.1 we have that A(G, k, L) returns
true. If we know that it returns true for the values (G, k, L), then we know that there exists a
ϕ ∈ Fk(G) (whatever the value of L).
So then we have that MinLCA-Deck is NP-Complete.

Algorithm 3.1 Verifier for MinLCA-Deck

Input:
G = (V,E), V = {1, ..., n}, |E| = m presented in an adjacency list
k, L ≥ 0 integers
ϕ possible colouring of the problem

Output:
ϕ ∈ Fk(G) and L[ϕ](G) ≤ L

1: function MINLCA-VERIF(G, k, L, ϕ)
2: LCA← 0
3: for v ∈ V do
4: if ϕ(v) > k then . If true then ϕ /∈ Fk(G)
5: return false
6: end if
7: end for
8: for uv ∈ E do
9: if ϕ(u) = ϕ(v) then . If true then ϕ is not a proper colouring

10: return false
11: end if
12: LCA← LCA+ |ϕ(u)− ϕ(v)|
13: end for
14: if LCA ≤ L then . If true then ϕ is a solution
15: return true
16: else . Else ϕ is not a solution
17: return false
18: end if
19: end function

3.2.2 Upper and lower bounds

Once we have proved the NP-completeness of the problem, we look at some basic upper and
lower bounds for the MinLCA.
It is important to notice that every linear arrangement is a linear colouring arrangement in
particular. This means that all known upper bounds for the MinLA are also upper bounds
(although rough) for the MinLCA.



18 CHAPTER 3. THE MINIMUM LINEAR COLOURING ARRANGEMENT PROBLEM

Now we present some bounds which come directly from the definition of the problem. These
bounds were first stated in [14].

Proposition 3.2.3. (Lower bound for MinLCA). Given a graph G = (V,E), the number of
edges is a lower bound for MinLCA(G). If |E| = m, then

m ≤MinLCA(G) (3.5)

Proof. The graph has m edges, and each edge uv has a cost |ϕ(u)− ϕ(v)| ≥ 1, because ϕ(u) 6=
ϕ(v).

Proposition 3.2.4. (Upper bound for MinLCA). Given a graph G = (V,E), the chromatic
number of G and the number of edges m give us the following upper bound:

MinLCA(G) ≤ (χ(G)− 1)m (3.6)

And equality holds only when χ(G) ≤ 2.

Proof. Let k = χ(G) and apply Lemma 3.2.1. Considering m ≥ 1, there is always at least one
edge with cost 1, therefore equality holds only when all edges have cost 1.

3.3 Previous results for particular graphs

In the next two section we look at some particular graphs for which the MinLCA problem has
a closed results or a more adjusted upper bound. This is the case of bipartite graphs, complete
graphs, complete balanced k-partite graphs, planar graphs, outerplanar graphs and k-trees.
First of all we state the results previously studied in [14] for binomial, complete, planar and
outerplanar graphs.

3.3.1 Bipartite graphs

We defined the concept of bipartite graphs in Chapter 2, now we are going to look at some
results which lead us to a closed result stated in [14] for the MinLCA.

Theorem 3.3.1. A graph G is bipartite if and only if it contains no odd cycles as subgraphs.

Proof. See [4], pg. 9.

Lemma 3.3.2. A graph G is bipartite if and only if χ(G) ≤ 2.

Proof. We just need to see the disjoint sets A, B from the definition as colours 1 and 2 for ϕ
and vice-versa.

Now we can enunciate the closed result of MinLCA for bipartite graphs.

Theorem 3.3.3. (MinLCA for bipartite graphs) A graph G = (V,E), with |E| = m, is
bipartite if and only if MinLCA(G) = m.

Proof. ⇒ We have χ(G) ≤ 2. We just need to apply Propositions 3.2.3 and 3.2.4.
⇐ We show that G needs to be 2-colourable.
Suppose χ(G) = k ≥ 3. Let ϕ ∈ F be a colouring of G such that L[ϕ](G) = MinLCA(G) = m.
Let v ∈ V such that ϕ(v) = maxu∈V ϕ(u) = r ≥ k, which exists because we need at least k



3.3. PREVIOUS RESULTS FOR PARTICULAR GRAPHS 19

colours.
Given that L[ϕ](G) = m, all vertices adjacent to v must have colour r − 1. But then, v could
be coloured with colour r − 2 which is a contradiction.
So χ(G) ≤ 2 and G is bipartite.

As we can see, when we have a bipartite graph we have an equality in the lower bound for the
MinLCA problem that we saw in Proposition 3.2.3.

In Figure 3.2 we have an example of a bipartite graph and its result for the MinLCA problem.

Figure 3.2: Bipartite graph and optimal layout for MinLCA with cost 4.

As a direct result from this theorem we have a result for the parameterised version of the
problem.

Corollary 3.3.4. (MinLCAk for bipartite graphs) Given G = (V,E) a bipartite graph,

MinLCAk(G) = m ∀k ≥ 2 (3.7)

3.3.2 Complete graphs

For complete graphs we also have a closed result for the MinLCA which was given in [14]. In
this case we have a more elaborate proof than in the case of bipartite graphs.

Theorem 3.3.5. (MinLCA for complete graphs) If G = (V,E) is the complete graph Kn, then

MinLCA(G) =
n3 − n

6
(3.8)

Proof. Since G is complete, all vertices are adjacent to each other and we need to use exactly n
colours. Without loss of generality, suppose V = [n] and that we choose the colouring ϕ(v) = v
for every v ∈ V . Then, we have

L[ϕ](G) =
∑
uv∈E

|ϕ(u)− ϕ(v)| =
∑
uv∈E

|u− v|

If we consider the edges uv with u < v, since uv and vu are the same edge,

L[ϕ](G) =
n−1∑
u=1

n∑
v=u+1

(v − u)

changing v for v − u,

L[ϕ](G) =

n−1∑
u=1

n−u∑
v=1

v
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for which the inner sum can be seen as the cost of the edges incident to u which are on its right.
Now change u for n− u,

L[ϕ](G) =
n−1∑
u=1

u∑
v=1

v

The inner sum is an arithmetic series from 1 to n− 1,

L[ϕ](G) =
n−1∑
u=1

u(u+ 1)

2
=

1

2

(
n−1∑
u=1

u2 +
n−1∑
u=1

u

)
=

1

2

(
n−1∑
u=1

u2 +
n(n− 1)

2

)

and using the identity for the series of the first n− 1 squares,

L[ϕ](G) =
1

2

(
n(n− 1)(2n− 1)

6
+
n(n− 1)

2

)
=
n(n− 1)(n+ 1)

6
=
n3 − n

6

We can observe that the solution of a complete graph Kn is exactly the same for MinLCA and
MinLA.

In figure 3.3 we have an example of a complete graph and its result for the MinLCA problem.

Figure 3.3: Complete graph and optimal layout for MinLCA with cost 10.

From this theorem we can state a result for the parameterised version of the MinLCA problem.

Corollary 3.3.6. (MinLCAk for complete graphs) If G = (V,E) is the complete graph Kn,
then

MinLCAk(G) =
n3 − n

6
∀k ≥ n (3.9)

3.3.3 Planar graphs

In the case of planar graphs, we have a very important result which helps us give an upper
bound for the MinLCA problem.This result is really difficult to prove. Indeed, all accepted
proofs make use of computers and were not widely accepted at first. For more information on
this topic, including the story of the theorem and a complete list of references, you can refer to
[19].

Theorem 3.3.7. (Four colour theorem) Every planar graph is 4-colourable.

From this result, in [14] an upper bound for the MinLCA problem for planar graphs was
deduced.

Corollary 3.3.8. If G = (V,E) is planar, with |E| = m, then MinLCA(G) < 3m



3.4. NEW RESULTS FOR PARTICULAR GRAPHS 21

3.3.4 Outerplanar graphs

In the case of outerplanar graphs, we also have an important result given in [14] from which we
can extract an upper bound for the MinLCA.

Theorem 3.3.9. If G is an outerplanar graph, then χ(G) ≤ 3.

Corollary 3.3.10. If G = (V,E) is outerplanar, with |E| = m, then MinLCA(G) < 2m.

3.4 New results for particular graphs

In this section we look at some new results found for particular graphs such as complete balanced
k-partite graphs, k-trees and bounded treewidth graphs. Looking into complete balanced k-
partite graphs we find a counter-example to the conjecture made in [14] that the optimal value
for the MinLCA can be obtained using as many colours as the chromatic number.

3.4.1 Complete balanced k-partite graphs

Now that we have looked at the results for bipartite and complete graphs, we can consider the
class of multipartite graphs and prove a closed result for the MinLCA problem.

Definition 3.4.1. (Complete balanced k-partite graphs) A k-partite graph is a graph whose
vertices are or can be partitioned into k different independent sets.
A complete k-partite graph is a k-partite graph in which there is an edge between every pair of
vertices from different independent sets.
A complete balanced k-partite graph is a complete k-partite graph where every set has the same
cardinality.

It is immediate from the definition that every k-partite graphG has chromatic number χ(G) = k.
With this result we can deduce an exact result for the MinLCA problem for complete balanced
k-partite graphs.

Proposition 3.4.1. If G = (V,E) is a complete balanced k-partite graph with |V | = kn, then

MinLCAk(G) = n2k
3 − k

6
(3.10)

Proof. As we have a complete balanced k-partite graph, we have k sets Si with i = {1, ..., k}.
Because the graph is balanced, every k-colouring has the same result for the MinLCA problem,
so we choose to colour the nodes from set Si with colour i.
Every node from a set has n edges with the nodes of every other set, so the number of edges
between two sets are n2. Then, for set S1, the sum of the distances of all the edges with a node
in S1 is the sum of the distance between colours by the number of edges:

1n2 + 2n2 + ...+ (k − 2)n2 + (k − 1)n2
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Then if we sum the distances for every set we have:

S1 : 1n2 + 2n2 + ...+ (k − 2)n2 + (k − 1)n2+

S2 : 1n2 + 2n2 + ...+ (k − 2)n2+

·
·

Sk−2 : 1n2 + 2n2+

Sk−1 : 1n2 =

= 1(k − 1)n2 + 2(k − 2)n2 + ...+ (k − 2)2n2 + (k − 1)1n2

= n2
k−1∑
i=1

i(k − i)

If we divide the sum into two series we have MinLCA(G) = n2
(
k
∑k−1

i=1 i−
∑k−1

i=1 i
2
)

. As we

know the two series have a closed sum, we can compute the result:

MinLCA(G) = n2

(
k

(k − 1)k

2
− (k − 1)k(2k − 1)

6

)
= n2k

3 − k
6

This result for the parameterised formulation on the chromatic number leads us to question
whether it is also true for the general formulation. In the next proposition we see that indeed
it is.

Proposition 3.4.2. If G = (V,E) is a complete balanced k-partite graph with |V | = kn, then

MinLCA(G) = MinLCAk(G)

Proof. We have k sets Si where every node from a set is connected to all the nodes from the
other sets, and nodes from the same set are not connected.
Suppose we have an optimal solution where the nodes of some set Si are distributed in m
different colours.
Let Sij be the different subsets of the set Si obtained by grouping into the same subset the
nodes with the same colour, with j ∈ {1, ...,m} and let `j be the sum of the distances between
one node from Sij and all its adjacent vertices (note that for all vertices of Sij , `j has the same
value as they all have the same adjacent vertices).
We can compute the sum of the distances of all the edges with a node in Si as

|Si1 |`1 + |Si2 |`2 + ...+ |Sim |`m

Then, as we have an optimal solution, `j needs to have the same value for all subsets, otherwise
we could recolour the nodes using the colour of the subset which has the minimum value of `j
(it is possible as we do not have any edges between nodes from the same set and there cannot
be any vertex from other sets with the same colour) and we would have a better solution, which
is contradictory to the supposition that we have the optimal solution.
As we have the same value for all subsets, we can choose the colour of an arbitrary subset and
assign it to the other subsets and the value for MinLCA(G) will not change. This proves that
the optimal solution of the parameterised version of the problem with the chromatic number is
the same as the general version of the problem.
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In [14] the author made the conjecture that the optimal value for the MinLCA problem could
be obtained using the chromatic number as the number of colours. More specifically:

Conjecture 3.4.3. (Number of colours in an optimal linear colouring arrangement) The min-
imum linear colouring arrangement can be obtained using as many colours as the chromatic
number. In other words, if G is a graph and χ(G) = k, then

MinLCA(G) = LCAk(G)

We can disprove this conjecture with a counterexample using two complete balanced 3-partite
graphs. First of all, to ensure the correctness of the proof we give an easy combinatorial result.

Lemma 3.4.4. Let π : [k] → [k] be a derangement, i.e., a permutation without fixed points.
Then there is some i ∈ {1, ..., k} for which |π(i)− i| > 1.

Proof. Suppose that for all integers i with i ∈ {1, ..., k} we have |π(i) − i| = 1 (as it is a
derangement, we cannot have |π(i) − i| = 0). Then, the only possible values of π(i) are i + 1
and i−1. If we look at i = 1, there is only one possible value for the permutation, π(1) = 2. As
we have a bijection, for every i ∈ {1, ..., k} we must have π(i) = i+ 1. But if we look at i = k,
we find that the permutation can only have one value, π(k) = k − 1. We reach a contradiction
under the assumption that for all integers i ∈ {1, ..., k} we have |π(i)− i| = 1.
This means that there has to be at least one integer i for which |π(i)− i| > 1.

We can now show an example of a graph for which a solution computed with the chromatic
number is worse than the optimal value, which uses more colours.

Exemple 3.4.1. Given two complete balanced 3-partite graphs, we join them adding edges
between two sets in a way that for every set of one of the grapshs, all nodes from a set are
connected to all the nodes from a set of the other graph, see Figure 3.4.

Figure 3.4: Counterexample for the conjecture of the number of colours in an optimal linear colouring
arrangement.

This graph can be coloured using 3 colours, assigning different colours to the pairs of sets from
the two graphs which are connected. In a more mathematical way, we assign 3 colours to one
graph and then we make a derangement to the other graph, where we identify two sets from
different graphs if they are connected with each other. As we have seen in Lemma 3.4.4, if we
do it this way at least one element of the derangement will have distance greater than 1 for all
possible solutions with three colours. In Figure 3.5 we can see the distances of colouring the
graph with three and four colours. As changing the ordering of the colours does not change
the cost of the MinLCA problem for complete balanced 3-partite graphs, we only need to look
at the cost of the edges that join the two graphs. As we see, if we do it with four colours, we
can obtain distance 1 between all joined sets, so we have a better solution using 4 colours than
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using 3.
This proves that for this type of graph we have MinLCA(G) < MinLCAχ(G)(G) and with this
we can disprove Conjecture 3.4.3.

Figure 3.5: Comparison between using 3 colours and 4 colours for two complete balanced 3-partite
graphs.

3.4.2 k-tree

These graphs are interesting because they are the maximal graphs with a given treewidth, i. e.,
they are graphs to which no more nodes can be added without increasing their treewidth.
For k-trees we have an exact result for the chromatic number, which leads us to an upper bound
for the MinLCA problem.

Proposition 3.4.5. If G is a k-tree, then χ(G) = k

Proof. It is immediate by the construction of the graph. We assign k colours to the initial
complete graph of size k. Then for every node that we add, we connect it with k − 1 nodes, so
there is at least one node which is not connected to the node and has a different colour than the
nodes connected. We assign this colour to the new node, so in the end we have k colours.

Proposition 3.4.6. If G is a k-tree with k + t nodes, then

MinLCA(G) ≤ k3 − k
6

+
(
k2t− 2kt+ t

)
(3.11)

Proof. As we have seen before, for the initial complete graph of size k we have MinLCA(G) =
k3 − k

6
. Therefore, we only need to compute the partial sum of the distance for the t nodes

added to the initial graph. For every node added, we connect it with k − 1 nodes. Assuming
we colour the graph with the chromatic number, the cost for every edge added is at maximum
k − 1, so then we can compute the upper bound:

MinLCA(G) ≤ k3 − k
6

+
t∑

j=1

k−1∑
i=1

(k − 1)

If we develop the series we get:

MinLCA(G) ≤ k3 − k
6

+
t∑

j=1

(k − 1)2 =
k3 − k

6
+ (k − 1)2t =

k3 − k
6

+ k2t− 2kt+ t
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3.4.3 Bounded treewidth graphs

k-tree subgraphs have interesting properties. In fact, partial k-trees are defined either as a
subgraph of a k-tree or as a graph with treewidth at most k. These graphs have the property
that many combinatorial problems on graphs are solvable in polynomial time when restricted
to them, for bounded values of k. If a family of graphs has bounded treewidth, then it is a
subfamily of the partial k-trees, where k is the bound on the treewidth. Families of graphs with
this property include outerplanar graphs, cactus graphs, pseudoforests, series-parallel graphs,
Hallin graphs and Apollonian networks (see [1]).

We want to see that the parameterised version of our problem with bounded treewidth graphs
can be solved in polynomial time. As we see in Section 2.3, given a bounded treewidth graph
with treewidth w we can compute a rooted nice tree decomposition of the graph with the same
width. We use dynamic programming on the tree decomposition.

Theorem 3.4.7. Let (T,X) be a rooted nice tree decomposition of width w of a graph G with
n vertices. Then MinLCAk(G) can be computed in time f(w)nO(1) = kO(w)+O(1)n.

Proof. We use dynamic programming on the rooted nice tree decomposition. For each node
v ∈ V (T ) we keep a table Pv(ϕ) for each ϕ ∈ Fk(G[Xv]) holding:

Pv(ϕ) =


minϕ′∈Fk(G(v))

ϕ′
∣∣
Xv

=ϕ

L[ϕ′](G(v)) if some ϕ′ exists

+∞ otherwise

Then the value for the root of the tree decomposition Pr(∅) is the value for MinLCAk(G).

In order to ensure the correctness of our algorithm we use the properties for nice tree de-
compositions defined in 2.3. We deal with each type of node separately:

� Start node: In this case, for a node u we have Xu = {x}, where x ∈ V (G). We have k
possible colourings for the vertex: ϕ ∈ Fk({x}), ϕ(x) = i, with i ∈ {1, ..., k}.
As we only have one isolated node in G(u), the cost is zero for all colourings, Pu(ϕ) = 0,
i ∈ {1, ..., k}.

� Introduce node: In this case, for a node u and its only child v, we have Xu = Xv + {x},
where x ∈ V (G). For every proper colouring ϕ of G(v) we have k possible colourings for
Xu. For i ∈ {1, ..., k}, we have

ϕi(y) =

{
ϕ(y) y ∈ Xv

i y = x

Then the cost for the subtree is

Pu(ϕ) = min
i∈{1,...,k}

ϕi∈Fk(G(u))

Pv(ϕ) +
∑
y∈Xv

|i− ϕ(y)|


This sum is correct because the subgraph induced by node u is the same as the subgraph
induced by node v adding the node x and the edges between vertices of node v and x.

� Forget node: Now, for a node u and its only child v, we have Xu = Xv − {x}. For every
proper colouring ϕ of G(v) we subtract the cost of the vertex x as follows:

Pu(ϕ) = Pv(ϕ)−
∑
y∈Xv

(|ϕ(x)− ϕ(y)|)
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In this case the formula is correct because the subgraph induced by node u is the same as
the subgraph induced by node v without the edges connecting x.

� Join node: In this case we have a node u with two children v1 and v2, with Xu = Xv1 =
Xv2 . Every proper colouring ϕ for G(u) is also a proper colouring for G(v1) and G(v2).
Then, we have

Pu(ϕ) = Pv1(ϕ) + Pv2(ϕ)−
∑

xy∈E(Xu)

|ϕ(x)− ϕ(y)|

This formula is correct because there are not any edges between G(v1) and G(v2), except
for those in Xu. This way, the value for Pu(ϕ) is the sum of the cost for the two children
subtracting the cost of the edges of Xu, which are duplicate.

Finally, the root node r has Xr = ∅, so then we have Pr(∅) = MinLCA(G).
We compute the value for MinLCAk tracing back through the tree decomposition. Therefore,
we have cost kO(w)+O(1)n as we wanted to prove.

The parameterised version of the Minimum linear arrangement problem (MinLA) has been
largely studied by the community. In fact, the standard parameterisation of MinLA is fixed-
parameter tractable (FPT). Although most parameterised problems are FPT parameterised by
the treewidth of the input graph, graph layout problems are a notable exception. The MinLA
problem is, in fact W[1]-hard for bounded treewidth graphs (see [6]).
This result contrasts with our result, for we have found that the MinLCA problem with a fixed
number of colours and bounded treewidht is, in fact, fixed parameter tractable (FPT).
This leaves an open problem for the MinLCA problem parameterised only by the treewidth of
the graph.

Open problem 3.4.1. Finding whether the minimum linear colouring arrangement problem
parameterised by the treewidth of the input graph is in FPT or W[1]-hard.



Chapter 4

Algorithms and instances

In this chapter, we present the algorithms developed and the instances used in this project.
First of all we define some basic components which help in simplifying the presentation of the
algorithms later on. Afterwards, we look at the exact algorithms, which use backtracking with
a combinatorial search. Following this we look at the heuristic proposal developed using a max-
imal independent set approach. Finally, we study the instances used in the previous study of
the MinLCA and we also present some new instances influenced by the parameterised cases.
All the algorithms have been developed using LEMON. In order to store the graphs, the algo-
rithms use a graph structure from this library which is a simple and fast graph implementation.
It is also quite memory efficient but it does not support node and edge deletion. It provides
constant time counting for nodes and edges.

4.1 Basic components

First of all, in order to simplify the presentation of our algorithms, we define some basic com-
ponents that we use repeatedly. We develop two functions that update the cost of the solution
computed by our algorithm: setColour paints a given node with a given colour and updates
the current cost and unColour uncolours the given node and updates the current cost. The
pseudocode for these functions are given in Algorithm 4.1 and Algorithm 4.2. We also use a
decisional function for deciding whether a node can be painted with a certain colour or not:
check Node Colour checks if a given node can be painted with a given colour checking its
neighbours. The pseudocode for this function is given in Algorithm 4.3. We also develop a de-
cisional function which returns whether all nodes have been coloured: check All Coloured.
The pseudocode for this is given in Algorithm 4.4. Finally we develop a function that checks
whether a colour has been used: Check Colour Used. This can be found on Algorithm 4.5.
Note that all these components can be computed in linear time O(n), where n = |V |.

27
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Algorithm 4.1 Set colour

Global variables/conditions:
G = (V,E), |V | = n, the current colouring ϕ and the current cost lca. v can be coloured
by c.

Input:
Given v ∈ V and a colour c.

Output:
Colours v with the colour c and updates the current cost lca.

1: function setColour(v, c)
2: old Colour ← ϕ(v)
3: ϕ(v)← c
4: for uv ∈ E do
5: u Colour ← ϕ(u)
6: if u Colour 6= Undefined then
7: if old Colour 6= Undefined then
8: lca ← lca - |u Colour - old colour|
9: end if

10: lca ← lca + |c - u Colour|
11: end if
12: end for
13: end function

Algorithm 4.2 Uncolouring nodes

Global variables:
G = (V,E), |V | = n, the current colouring ϕ and the current cost lca.

Input:
Given v ∈ V .

Output:
Uncolours v and updates the current cost lca.

1: function unColour(v)
2: old Colour ← ϕ(v)
3: ϕ(v)← Undefined
4: for uv ∈ E do
5: u Colour ← ϕ(u)
6: if u Colour 6= Undefined then
7: lca ← lca - |u Colour - old colour|
8: end if
9: end for

10: end function
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Algorithm 4.3 Check node colouring

Global variables:
G = (V,E), |V | = n and the current colouring ϕ.

Input:
Given v ∈ V and a colour c.

Output:
Checks if node v can be painted with colour c.

1: function Check Node Colour(v, c)
2: for uv ∈ E do
3: if ϕ(u) = c then
4: return false
5: end if
6: end for
7: return true
8: end function

Algorithm 4.4 Check all coloured

Global variables:
G = (V,E), |V | = n and the current colouring ϕ.

Output:
Checks if all nodes are coloured

1: function Check All Coloured
2: for u ∈ V do
3: if ϕ(u) =Undefined then
4: return false
5: end if
6: end for
7: return true
8: end function

Algorithm 4.5 Check colour used

Global variables:
G = (V,E), |V | = n and the current colouring ϕ.

Input: Colour c
Output:

Checks whether c has been used
1: function Check Colour Used(c)
2: for u ∈ V do
3: if ϕ(u) =c then
4: return true
5: end if
6: end for
7: return false
8: end function



30 CHAPTER 4. ALGORITHMS AND INSTANCES

4.2 Backtracking

We develop an exact algorithm using backtracking. A backtracking algorithm enumerates a
set of partial candidates that, in principle, could be completed in various ways to give all the
possible solutions to the given problem. The completion is done incrementally, by a sequence
of candidate extension steps.
Conceptually, the partial candidates are represented as the nodes of a tree structure, the poten-
tial search tree. Each partial candidate is the parent of the candidates that differ from it by a
single extension step; the leaves of the tree are the partial candidates that cannot be extended
any further.
The backtracking algorithm traverses this search tree recursively, from the root down, in depth-
first order. At each node, the algorithm checks whether the node can be completed to a valid
solution. If it cannot, the whole sub-tree rooted at the node is skipped (pruned). Otherwise,
the algorithm checks whether the node itself is a valid solution, and if so reports it to the user.
For more information on backtracking, see [7].

4.2.1 Basic schema

This algorithm is based on a combinatorial search. It considers searching every possible combi-
nation in order to solve our optimization problem. The search tree is pruned to avoid considering
cases which will not lead to any optimal solution.
The idea of our algorithm is as follows:

Given a stack with all the uncoloured nodes of our graph we do the following.

� If we have painted all the nodes and the stack is empty we check if it is the best colouring
among all the previous colourings we had and we return ignoring the rest of the steps.
Otherwise we ignore this step.

� We take the top node v of the stack.

� For every colour c, if v can be coloured with c we paint it, update the current cost, pop
it off the stack and go back to the first step.
Once we return to this step we will uncolour v, update the current cost and push v into
the stack again.

This algorithm takes O(nn) time in the worst case, which is a graph without edges where we
have to check all possible colourings. As we have n vertices and the maximum number of colours
is n, we have nn possible colourings.
The pseudocode is given on Algorithm 4.6.

4.2.2 Improvements

If we analyse this algorithm we notice that we are allowing the possibility of using non-
consecutive integers as colours, which clearly increases the cost.
We also notice that when the number of colours needed k are less than the number of nodes
n and we use consecutive colours, we repeat each colouring n − k times, because we have the
same results whether we use use the colours {0, ..., k − 1} or {1, ..., k}.
To avoid this we make two improvements of our algorithm. The idea for this is making the
recursive function dependent on the number of colours and the vertices and making sure that
if we paint a node with a colour c greater than 0, then there is at least one node painted with
the colour c− 1.
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This way we force our algorithm to use consecutive colours and always start with the colour 0.
The sketch for this algorithm is as follows:

Given a vector v with all the nodes from the graph, for every colour c and index i of v:

� If the cost is greater than the best cost found or c is greater than the number of nodes
and not all nodes are coloured then we don’t explore this branch.

� If all the nodes are coloured, then if the cost is better than the best cost found we update
the best colouring to the current colouring. Otherwise we return to the previous step.

� If non of the above is true then we take the node u with index i in v. If c is zero or c is
greater than zero and there is at least one node painted with colour c− 1 then, if u hasn’t
been painted and it is a valid colour we paint it and we go back to the first step for (c,
i+ 1) if i+ 1 is a valid index or for (c+ 1, 0) otherwise. Then we uncolour u and we go
to the first step with the same values as before without the node painted.

For this improvement we have the same computational cost for the worst case as in the first
backtracking algorithm. The algorithm takes O(nn) time to give a solution for the worst case.
The pseudocode for this modification is given in Algorithm 4.7.
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Algorithm 4.6 Backtracking

Global variables:
G = (V,E), |V | = n, a stack with the uncoloured nodes S, the maximum number of colours
maxK, the current cost lca and the best cost best lca.
Suppose we have a variable Solution = Not Found

Input:
Let i be the number of coloured nodes.

Output:
Returns either the best solution found or reports that the graph cannot be coloured with
maxK colours.

1: function Backtracking(i)
2: if lca > best lca then . If the cost is greater than the best, return
3: return
4: end if
5: if i ≥ n and S.empty() then . If we have coloured all nodes
6: if lca < best lca then
7: Solution ← Found
8: best colouring ← colouring
9: best lca← lca

10: end if
11: return
12: end if
13: v ← S.top() . Top uncoloured node of the stack
14: for c ← 0 to maxK − 1 do
15: if Check Node Colour(v, c) then . Check proper colouring if ϕ(v) = c
16: setColour(v, c)
17: S.pop()
18: Backtracking(i+1)
19: unColour(v)
20: ϕ(v)← Undefined
21: S.push(v)
22: end if
23: end for
24: end function
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Algorithm 4.7 Backtracking for Colours

Global variables:
G = (V,E), |V | = n, a vector V with all the nodes, the maximum number of colours maxK,
the current cost lca and the best cost best lca.
Suppose we have a variable Solution = Not Found

Input:
Let c be a colour and i the index of v.

Output:
Returns either the best solution or reports that the graph cannot be coloured with maxK
colours.

1: function Backtracking Colours(c, i)
2: if lca > best lca then . If the cost is greater than the best, return
3: return
4: end if
5: if c >= maxK and not Check All Coloured() then
6: return
7: end if
8: if Check All Coloured then . If we have coloured all nodes
9: if lca < best lca then

10: Solution ← Found
11: best colouring ← colouring
12: best lca← lca
13: end if
14: return
15: end if
16: u← V [i]
17: if c = 0 or (c > 0 and Check Colour Used(c-1)) then
18: if ϕ(u) = -1 and Check Node Colouring(u, c) then
19: Set Colour(u, c)
20: if i+1 < n then
21: Backtracking Colours(c, i+1)
22: else
23: Backtracking Colours(c+1, 0)
24: end if
25: end if
26: if i+1 < n then
27: Backtracking Colours(c, i+1)
28: else
29: Backtracking Colours(c+1, 0)
30: end if
31: end if
32: end function
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4.3 Maximal Independent Set Approach

These algorithms are based on finding maximal independent sets of a given graph and then
assigning a colour to each set. First of all we define the concept of maximal independent sets.

Definition 4.3.1. (Maximal Independent Set) In graph theory, an independent set is a set of
vertices of a graph such that for every two vertices in the set, there is no edge connecting the
two.
A maximal independent set (MIS) is an independent set which is not a subset of any other
independent set.

What we try to do for our algorithm is grouping the vertices of a graph in maximal independent
sets and assigning a colour to each set.
The idea for our algorithm is as follows:

First of all, we find maximal independent sets for our graph. To do so, given an array of length
k + 1 with a set on every index of the array we put all the nodes of our graph into the first
index. Then, starting with the first index of the array, we iterate through the sets until we have
all vertices assigned to a maximal independent set. Let i be the index of the current set.

� If i = k+ 1, then the first k sets of the array have at least one vertex. We check if all the
vertices have a set assigned, i.e., we check whether there is any vertex in the set k + 1. If
there is not, we have found our maximal independent sets. Otherwise, we have not found
a solution.

� If there is at least a vertex in our set i, we select one vertex from the set erasing it from
the set and we assign the set i to this vertex. Then we take all the neighbours of the
vertex we have selected which are in the set, we erase them from the set and put them in
the next set i + 1. Then we go back to the first step until there are no more vertices in
the set i.

� Otherwise, if the set i + 1 has no vertices we go back to the first step with i = k + 1. If
the set i+ 1 does have some vertex we go back to the first step with the set i.

This algorithm takes O(n2) time to execute in the worst case. This case is when we have a
complete graph. We have n iterations of the algorithm in which we assign one node to a set,
and on every iteration we look at the neighbours of the node in question. So if we have a
complete graph, every iteration costs n− 1 time because we look at the neighbours of the node
in question. Therefore, in the worst case the algorithm takes n2−n time to execute, i.e., O(n2)
time. The pseudocode for this algorithm (Independent set) is given in Algorithm 4.8.

Once we have our maximal independent sets, we have to assign each of them a colour. Given r
the number of sets obtained, we do it in 3 different ways:

� Combinations without repetition (Set Combination): We look into all possible combi-
nations for the colours without repeating them and we stay with the one which gives us
the best cost. This takes O(r!) time.

� Best of Two (Best of two): We assign a colour c to one of the sets and then for the
next sets we look the cost of assigning the colour c+ 1 and c− 1 and we paint it with the
one that gives us the best cost. This takes us O(r)

� Random colouring (Rand selection): We assign a colour randomly to every set. This
takes us O(r) time.

The pseudocode is given in Algorithms 4.9, 4.10 and 4.11.
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Algorithm 4.8 Maximal Independent Set

Global variables:
G = (V,E), |V | = n, the maximum number of colours maxK, the number of colours used
k = maxK, a vector of sets indep sets with size maxK +1, a map of nodes node set where
we will store the set index for each node.
Suppose we have a variable Solution = Not Found

Input:
Let c be the index of the set we are looking into.

Output:
Returns either the vector of sets with our independent sets or there is no solution for maxK
colours.

1: function Independent set(c)
2: if c ≥ maxK then . If c is not a valid set position
3: if indep sets[maxK] is empty then . If there aren’t any nodes left
4: for v ∈ V do
5: index ← node set[v]
6: indep sets[index].insert(v)
7: end for
8: else
9: Solution ← Not Found

10: end if
11: return
12: end if
13: if indep sets[c] is not empty then
14: v ← indep sets[c].begin()
15: node set[v] = c
16: for uv ∈ E do
17: if u is in indep sets[c] then
18: Erase u from indep sets[c]
19: Insert u in indep sets[c+1]
20: end if
21: end for
22: Independent set(c)
23: else
24: if indep sets[c+1] is empty then
25: k ← c
26: Independent set(maxK)
27: else
28: Independent set(c+1)
29: end if
30: end if
31: end function
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Algorithm 4.9 Colour Sets with Set Combinations

Global variables:
G = (V,E), |V | = n, the maximum number of colours maxK, the number of colours used
(number of sets) k, the vector of sets indep sets with size k, the current cost lca and the
best cost best lca.
Suppose we have a variable Solution = Not Found

Input:
Let i be the set index.

Output:
Returns the best colouring and the cost.

1: function Set combination(i)
2: if lca > best lca then . If the cost is greater than the best, return
3: return
4: end if
5: if i ≥ k then
6: if lca < best lca then
7: best lca← lca
8: Solution ← Found
9: best colouring ← colouring

10: end if
11: return
12: end if
13: for c ← 0 to k do
14: if c not used then
15: for v ∈ indep sets[i] do
16: setColour(v, c)
17: end for
18: Set combination(i+1)
19: for v ∈ indep sets[i] do
20: unColour(v)
21: end for
22: end if
23: end for
24: end function
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Algorithm 4.10 Colour Sets with Best of Two

Global variables:
G = (V,E), |V | = n, the maximum number of colours maxK, the number of colours used
(number of sets) k, the vector of sets indep sets with size k, the current cost lca and the
best cost best lca.
Suppose we have a variable Solution = Not Found

Output:
Returns the best colouring and the cost.

1: function Best of two
2: max ← k
3: min ← k
4: for v ∈ indep sets[0] do
5: ϕ(v)← k
6: for uv ∈ E do
7: if ϕ(u) 6= Undefined then
8: lca← lca+ |c− ϕ(u)|
9: end if

10: end for
11: end for
12: for i ← 1 to k do
13: for v ∈ indep sets[i] do
14: setColour(v, max+ 1)
15: end for
16: lca1← lca
17: for v ∈ indep sets[i] do
18: unColour(v)
19: end for
20: for v ∈ indep sets[i] do
21: setColour(v, min− 1)
22: end for
23: lca2← lca
24: if lca1 < lca2 then
25: for v ∈ indep sets[i] do
26: unColour(v)
27: end for
28: for v ∈ indep sets[i] do
29: setColour(v, max+ 1)
30: end for
31: max ← max+1
32: else
33: min ← min-1
34: end if
35: end for
36: best lca← lca
37: best colouring ← colouring
38: end function
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Algorithm 4.11 Colour Sets with Random Selection

Global variables: For every algorithm we have the following implicit parameters:
G = (V,E), |V | = n, the maximum number of colours maxK, the number of colours used
(number of sets) k, the vector of sets indep sets with size k, the current cost lca and the
best cost best lca.
Suppose we have a variable Solution = Not Found

Output:
Returns the best colouring and the cost.

1: function Rand selection
2: set colours ← -1 . Vector with size k and with -1 in every entry
3: for i ← 0 to k do
4: set colours[i] ← i
5: end for
6: for i ← k − 1 to 1 do
7: j ← random%i . random integer between 0 and i-1
8: old ← set colours[i]
9: set colours[i] ← set colours[j]

10: set colours[j] ← old
11: for v ∈ indep sets[i] do
12: setColour(v, set colours[i])
13: end for
14: end for
15: for v ∈ indep sets[0] do
16: setColour(v, set colours[0])
17: end for
18: best lca← lca
19: best colouring ← colouring
20: end function
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4.4 Benchmarking platform

Now we show the different instances we use for our algorithms. We work with different types of
graphs which might give interesting results for the MinLCA problem. Although the minimum
linear arrangement problem was known before, in [11], the author used some particular graphs
to do some benchmarks. Many articles about the minimum linear arrangement problem have
used these particular instances since then (see Table 4.1 for the complete list). In [14], Isaac
Sánchez used them for the minimum linear colouring arrangement problem, so we are also going
to use them in order to compare the results. In the MinLCA Benchmarking, 4 different types
of random graphs were chosen to study. We will use the same graphs in order to compare
the results with our algorithms. We also present two new instances which we think might be
interesting to study. This two instances are k-trees and almost 3-complete graphs.

Table 4.1: MinLA instances

For each graph, its name, number of nodes, number of edges, degree information
(minimum/average/maximum), diameter and family.

Name Nodes Edges Degree Diameter Family

randomA1 1000 4974 1/9.95/21 6 Gn=1000,p=0.01

randomA2 1000 24738 28/49.47/72 3 Gn=1000,p=0.05

ramdomA3 1000 49820 72/99.64/129 4 Gn=1000,p=0.1

randomA4 1000 8177 4/16.35/29 4 Gn=1000,p=0.0164

randomG4 1000 8173 5/16.34/31 23 Gn=1000(r = 0.075)

hc100 1024 5120 10/10/10 10 10-hypercube
mesh33x33 1089 2112 2/3.88/4 64 33 × 33-mesh
bintree10 1023 1022 1/1.99/3 18 10-bintree

3elt 4720 13722 3/5.81/9 65

FE
airfoil1 4253 12289 3/5.78/10 65
crack 10240 30380 3/5.93/9.00 121
whitaker3 9800 28989 3/5.91/8 161

c1y 828 1749 2/4.22/304 10

VLSI
c2y 980 2102 1/4.29/327 11
c3y 1327 2844 1/4.29/364 13
c4y 1366 2915 1/4.26/309 14
c5y 1202 2557 1/4.25/323 13

gd95c 62 144 2/4.65/15 11

GD
gd96a 1076 4676 1/3.06/111 20
gd96b 111 193 2/3.47/47 18
gd96c 65 125 2/3.84/6 10
gd96d 180 228 1/2.53/27 8

small 5 8 2/3/4 2

4.4.1 Binomial random graphs

Definition 4.4.1. (Binomial random graph) G is a binomial random graph from the family
G(n, p) if |V (G)| = n and every edge of G exists with probability p.

A reason to study these graphs is that all graphs are potentially in them. In fact, G(n, p = 0.5)
contains all graphs (with isomorphism) with equiprobability.
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In the MinLA benchmarking p is chosen small because the interest is in sparse graphs, but it
is large enough to ensure connected graphs.
For the MinLCA benchmarking instances are generated with p such that the expected number
of edges is not within a constant factor of n2. This way we generate not-too-dense graphs.
To choose an adequate probability p we put the number of edges as a function fo the number of
vertices n, that is |E(G)| = f(n) =

(
n
2

)
. Then we consider a random variable M for the number

of edges. This variable follows a binomial distribution, M ∼ Binom
((
n
2

)
, p
)
, so if we want to

have f(n) edges on average, we can use the formula for the expectation of M :

f(n) = E(M) = p

(
n

2

)
= p

n(n− 1)

2
≈ pn

2

2
(4.1)

so then we can set p =
2f(n)

n2
.

4.4.2 Random geometric graphs

Definition 4.4.2. (Random geometric graphs) G is a random geometric graph of the family
G(n; r) if it has n vertices uniformly distributed in some metric space and two u ∼ v if d(u, v) ≤ r
for some distance d.

In the MinLA benchmarking, a random geometric graph with 1000 nodes and radius 0.075
(randomG4) is chosen.

For the MinLCA benchmarking, for implementation reasons the unit disc distance is chosen.
These graphs are not too dense for a small radius r which may depend on n and usually they
have some interesting properties.

For choosing the radius we choose a small radius r > 0. Since the distribution is uniform in the
unit disc D1(0), which has an area of π, the average proportion of vertices adjacent to a vertex

v (those in the disc Dr(v)) approaches the ratio between both disks,
πr2

π
= r2. Considering

this, the degree of v is deg(v) = nr2 on average. And since, by double counting, we have

2|E(G)| =
∑

v∈V (G) deg(v) ≈ 2n2r2, if we want |E(G)| = f(n) we can take r2 =
2f(n)

n2
.

4.4.3 Graphs with cliques

These graphs were chosen in the MinLCA benchmarking in order to have more or less symmetric
graphs for which we can know their optimal cost analytically in an easy way. That way we can
know if our algorithms behave well for easy instances.

We generate this graphs in two ways: cycles of cliques and interconnected cliques.

Definition 4.4.3. (Cycles of cliques) G belongs to the family of cycles of cliques if given two
integers s and t, G has t cliques isomorphic to Ks and there is a cycle connecting all the cliques
(choosing two nodes from each clique).

Corollary 4.4.1. If G = (V,E) is a cycle of t cliques of order s, then

MinLCA(G) = t

(
1 +

s3 − s
6

)
(4.2)

Proof. We just have to notice that each clique has cost
s3 − s

6
by applying Theorem 3.3.5, and

that the cycle connecting the cliques has length 2t, with t edges from a different clique each.
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If we colour the cycle using colours 1 and 2 (the subgraph is bipartite; it is an even cycle) the
cliques can be optimally coloured because they have at least one edge with cost 1, which can
be the one which is part of the cycle.

Definition 4.4.4. (Interconnected cliques) G belongs to this family if given two integers s and
t, G has t cliques each one isomorphic to Ks and two cliques are adjacent with probability p
chosen (It is the same idea as the G(t, p) family with the end-vertices in each clique chosen at
random).

The expected cost for this kind of graph is around t
s3 − s

6
+MinLCA(H), where H ∈ G(t, p).

4.4.4 Outerplanar graphs

Generating random outerplanar graphs has been studied in different publications. In this case,
for the MinLCA benchmarking, an algorithm was used which works by breaking the outer cycle
in two parts, randomly adding chords from one part to the other and then adding more chords
between the vertices of the same side. You can find the algorithms in [14], pg. 38.

4.4.5 k-tree

In order to test the algorithms with k-trees we have developed an algorithm to generate them.
First of all, if we want to generate a k-tree of order k + t, the algorithm generates a complete
graph of order k. Then it randomly chooses k − 1 nodes from the graph and adds an edge
between these nodes and a new node. From the resulting graph it randomly chooses k−1 nodes
again and adds edges from these nodes to a new one until we have k + t nodes.
In order to choose the k − 1 nodes randomly we use the random class from LEMON with a
random seed.

4.4.6 Almost 3-complete graphs

This family of graphs is a variation for the complete balanced 3-partite family. We take a
complete balanced 3-partite graph and add a few new edges between nodes from the same set.
More formally, we have:

Definition 4.4.5. (Almost 3-complete) G belongs to this family (Kα1,α2,α3) if it has three sets
(S1, S2, S3) of n nodes each where every node from each set is connected with all the nodes from
the other sets, and there are αi edges between nodes from set Si (i = {1, 2, 3}).

The reason to study this graphs is because the chromatic number should be small and we want
to see if the backtracking algorithm will have good results with this type of graphs.
In fact, we can give a very simple upper bound for the chromatic number.

Proposition 4.4.2. If Kα1,α2,α3 is an almost 3-complete graph, then χ(G) ≤ 3 + α1 + α2 + α3

Proof. It is immediate by the construction of the graph. We assign a different colour to every
set, so we have three colours. Then for every edge that we add between two nodes of a set
we assign to one of the nodes a new colour, and we do it for all new edges. Then we have
α1 + α2 + α3 new colours. Note that in some cases when assigning the colour to a node from a
new edge we could reuse the same colour used for another edge, hence the inequality. So then
we have χ(G) ≤ 3 + α1 + α2 + α3.
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In order to test this instances with the algorithms we develop an algorithm to generate almost
3-complete graphs. This algorithm generates three sets of n nodes and connects every node
from a set with all the nodes from the other sets. Then for every set i, it randomly chooses αi
pairs of nodes and adds an edge between them.
In order to choose the new edges added randomly, we use the random class from LEMON.

4.4.7 Trees, meshes and hypercubes

These three instances are graphs with optima solutions known for the minimum linear arrange-
ment problem. They are included in the MinLA benchmarking.
A tree is an undirected graph in which any two vertices are connected by exactly one path. We
have a binary tree with 10 levels (bintree10).
A mesh or grid graph, is a graph whose drawing, embedded in some Euclidean space Rn, forms
a regular tilling. This implies that the group of bijective functions that send the graph to itself
is a lattice in the group-theoretical sense (see [4]). We have a 33x33 grid graph (mesh33x33).
Finally, an hypercube graph is a graph formed from the vertices and edges of an n-dimensional
hypercube. In this case we have a 10-hypercube (hc10).

4.4.8 Other graphs

For the MinLA benchmarking, some other graphs were chosen. This instances come from dif-
ferent engineering applications and can be classified in graphs from finite element discretisation,
graphs from VLSI design and graphs from graph-drawing competitions.
The VLSI family come from different circular layouts, and are c1y to c5y.
The graphs from finite element discretisation come from different fields such as fluid dynamics
(arifoil1 and 3elt), earthquake wave propagation (whitaker3) and structural mechanics
(crack).
Finally we have graphs from graph-drawing competitions. This graphs are mostly planar
(gd95c and gd96a to gd96d).



Chapter 5

Experimental Results for
Backtracking

In this chapter we analyse and present the results of the backtracking algorithm for the chosen
instances. First of all, we detail the experiment design, afterwards we look at the results and
we compare them with the results of [14].

5.1 Experiment design

The backtracking algorithm takes too much time to execute even in small graphs, so in order
to analyse the results obtained with this algorithm we are going to do two types of restrictions.
On the one hand, as done in [14] for the integer linear programming algorithm, we broaden the
memory used in every execution to 8 threads and 8GB of RAM instead of 2, and we limit the
time to 5h for each instance.
On the other hand, we limit the maximum number of colours for our algorithm, starting with
two colours and increasing the number. In this case, if we find the first number of colours for
which our algorithm has a solution, we find the chromatic number of the graph. For graphs
that we already know the chromatic number, we limit the colours for this number directly (for
example, bipartite or outerplanar graphs) and then we limit the number of colours to some
slightly higher integer to see whether it finds the best result with the chromatic number or not.

Apart from this, for the different types of graphs chosen for the MinLCA problem, we ex-
ecute the backtracking algorithm for small orders. This way we can determine the maximum
order for which it is feasible to obtain an exact result with the backtracking algorithm for every
type of graph.

5.2 Results

5.2.1 MinLA instances

If we look at the results obtained with the 5 hour limitation with the MinLA instances (see
Table 4.1), we see that the algorithm has not finished for any graph except for the small graph
and the bipartite graphs (bintree, gd96b, gd96d, hc10 and mesh33x33), so we only get
an exact result for these graphs. Despite this, we have found an upper bound for every graph,
i.e., some value for the MinLCA problem was found for every instance, although it is not the
optimal value.

43
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Comparing our results to those of [14] for the integer linear programming, we see that the
results found don’t improve the results we had, however there were three graphs which did not
have an upper bound (crack, randomA3 and whitaker3), and for this graphs we have found
one with our algorithm. In Table 5.1, we can see our results compared with those found with
integer linear programming.
If we look at the results, in some cases even though the cost does not improve, the number
of colours used is lower, so we have a better upper bound for the chromatic number for these
graphs and we see that the cost seems not to decrease.

Now if we look at the results obtained by limiting the number of colours for each graph, we see
that we don’t have better results for the MinLCA than those that we found before. However,
with these results we can deduce a better upper bound for the chromatic number of this graphs.
In Table 5.2 we have a summary for the upper bounds known for the MinLCA problem and we
have highlighted those for which we have improved the upper bound for the chromatic number.

5.2.2 MinLCA instances

In [14], the author chose not to execute the new MinLCA instances (binomial random graphs,
random geometric graphs, graphs with cliques and outerplanar graphs) with integer linear
programming, because of the amount of time needed for each execution compared to the poor
results obtained. In our case, we have executed the backtracking algorithm for these instances
with the restrictions specified.
For the restriction of 5 hours, we see that the local optimals found do not improve the results
for the greedy algorithms, and the number of colours used is quite similar to those results.
For the restriction of the maximum number of colours, we tried limiting the number of colours
to the lower number of colours used in other algorithms. For some instances there was no result
found. For the outerplanar graphs we limited the colours to the chromatic number which we
know is 3, but no result was found for any instance with 3 colours, so we executed the algorithm
again with 4 colours.
In Tables 5.3, 5.5, 5.6 and 5.4 we can see the results from this two limitations compared with
the greedy algorithm solutions. As we can see, for the executions in which we do get a result
for the colour restriction, we find that the cost is less or equal than the result found for the 5
hour limitation, although it does not improve the greedy algorithm results. In Figure 5.1 we
can see the results for the four types of graph.
Apart from this, we have ran the backtracking algorithm for the MinLCA problem choosing
graphs with small orders from the MinLCA instances. We choose graphs of orders 10, 15, 20,
25 and 30. In Tables 5.9, 5.7, 5.8 and 5.10 we can see the results for these graphs and if the
algorithm delivered an exact solution or not. As we can see, the backtracking algorithm only
gave the optimal solution for graphs of order 10. Even so, it is possible that the algorithm has
found the optimal solution even if it has not finished.
For the results for graphs with cliques, we have cliques of order 5 with two cliques adjacent with

probability p. The cost of MinLCA for the cliques is
53 − 5

6
= 20. If t is the number of cliques,

the cost for all cliques is 5t. Then, if e is the number of edges between cliques, the minimum
cost possible for these graphs is 5t+ e. If we look at the results we can see that for all graphs
of order 15 the cost is the minimum possible, so the algorithm has found the optimal solution,
although it has not finished. For graphs of order 20 we have the minimum cost for all graphs
except for one in which we have 5t + e + 1. In this graph we have 4 extra edges for 4 cliques,
so at least one edge has to have distance 2. We conclude that for graphs of order 20 we also
have the optimal result. In Table 5.9 we can see for which graphs the algorithm returned the
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optimal solution even though it did not finish.
As we know, outerplanar graphs can be coloured using 3 colours. The upper bound stated in
Proposition 3.2.4 gives us MinLCA(G) ≤ 2|E| for outerplanar graphs. If we look at the results
obtained in Table 5.10, we can see that in all cases even though we do not know if we have
optimal solutions for all the instances, we have that cost/|E| is less than 1.5. So experimentally

we have found a better upper bound for outerplanar graphs, which is that MinLCA(G) ≤ 3

2
|E|.

In [14], the author made the conjecture that this upper bound holds for all graphs with χ(G) ≤ 3.

Figure 5.1: Backtracking results for MinLCA instances with small orders.

We have chosen to do a boxplot of the results for every instance with the cost/|E| because
this way we can compare the results for the different families of graphs used and we can also
see whether the cost compared with the number of edges of the algorithm is similar for all
instances as for graphs with cliques, or on the contrary, this cost is very disparate for the
different instances as for random geometric graphs.

5.2.3 k-tree instances

We have done executions for graphs of orders 1000, 5000, 10000, 50000 and 100000 starting
with a clique of size ten and adding nodes and edges using five different seeds for each order.
In Table 5.11 we can see the results for this instances with the two restrictions. As we can
observe, restricting the colours to the chromatic number we have obtained equal or better
result for k-trees than those found with the 5 hour restriction.

We also run executions for graphs of orders 10, 15, 20, 25 and 30 with 5 different random seeds.
In Table 5.12 we can see the results for this instances and whether the algorithm reached the
optimal solution or not. As we can see, for graphs of orders up to 15, the algorithm found an
optimal solution. Comparing this with the results for the MinLCA instances, we can say that
the algorithm works better with k-trees, because it has ended for bigger orders than the other
instances. We also notice that some instances which have found the optimal solution have not
found it with the chromatic number. Even so, there could be a solution with the chromatic
number and the same cost as the optimal solution, so this does not prove Conjecture 3.4.3.
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5.2.4 Almost 3-complete instances

In this case we make executions for graphs of orders 90, 450, 900, 4500 and 9000 for five different
seeds with three sets of equal order and with every set having a reduced number of extra edges.
In Table 5.13 we can see the results for these instances with the two restrictions. As we can
observe, in this case we obtain the same result with the two restrictions. We also notice that
the number of colours used is 6, which is the chromatic number, for we have added at least
one edge on every set, and this forces to have at least one more colour for every set. This also
means that we do not have any cycle of order 3, because if so, we would need more colours to
have a proper colouring. Because of this, we can see that for every order of almost 3-complete
instances we have the same cost, even though we have different graphs.

We also run the algorithm for graphs of orders 9, 15, 21, 27 and 33 for five different ran-
dom seeds. These results can be found in Table 5.14. As we can see, for graphs of order 9 we
obtain the optimal solution and the same cost for all graphs. That is because in this instance,
only one edge was added on every set, therefore, the cost of MinLCA is the same for the dif-
ferent graphs. We notice that for all graphs we have used the chromatic number for the result
as in the results for bigger orders. Also like in the results for bigger orders, for every instance
of the same order we have the same cost (except for order 15).
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Table 5.2: Chromatic number for MinLA instances

For each graph, its name, number of nodes, number of edges and chromatic number.
Highlighted we have the instances for which we have found a better upper bound for the

chromatic number

Name |V | |E| χ(G)

3elt 4720 13722 5
airfoil1 4253 12289 5
bintree10 1023 1022 2
c1y 828 1749 5
c2y 980 2102 5
c3y 1327 2844 5
c4y 1366 2915 5
c5y 1202 2557 5
crack 10240 30380 6
gd95c 62 144 6
gd96a 1076 4676 5
gd96b 111 193 2
gd96c 65 125 4
gd96d 180 228 2
hc10 1024 5120 2
mesh33x33 1089 2112 2
randomA1 1000 4974 8
randomA2 1000 24738 19
ramdomA3 1000 49820 31
randomA4 1000 8177 10
randomG4 1000 8173 17
small 5 8 3
whitaker3 9800 28989 5
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Table 5.7: Backtracking results for binomial random graphs of small orders

For each graph, its name, number of nodes, number of edges, edge probability, number of
colours, cost, cost/|E| and if it is an optimal solution.

Instance |V | |E| edge prob. colours cost optimal?

gr-10-84458055 10 15 0.3322 3 17 YES
gr-10-97953427 10 17 0.3322 4 21 YES
gr-10-256996916 10 12 0.3322 3 14 YES
gr-10-360678409 10 10 0.3322 3 11 YES
gr-10-671420410 10 17 0.3322 5 21 YES
gr-15-84458055 15 35 0.2605 4 46
gr-15-97953427 15 22 0.2605 3 26
gr-15-256996916 15 25 0.2605 4 28
gr-15-360678409 15 24 0.2605 4 27
gr-15-671420410 15 28 0.2605 4 32
gr-20-84458055 20 39 0.2161 4 53
gr-20-97953427 20 29 0.2161 3 33
gr-20-256996916 20 44 0.2161 4 58
gr-20-360678409 20 40 0.2161 4 58
gr-20-671420410 20 45 0.2161 4 61
gr-25-84458055 25 67 0.1858 5 104
gr-25-97953427 25 43 0.1858 4 56
gr-25-256996916 25 57 0.1858 4 80
gr-25-360678409 25 52 0.1858 4 68
gr-25-671420410 25 61 0.1858 4 88
gr-30-84458055 30 89 0.1636 5 148
gr-30-97953427 30 55 0.1636 4 78
gr-30-256996916 30 73 0.1636 4 111
gr-30-360678409 30 65 0.1636 4 95
gr-30-671420410 30 72 0.1636 4 103
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Table 5.8: Backtracking results for random geometric graphs of small orders

For each graph, its name, number of nodes, number of edges, radius, number of colours, cost
and if it is an optimal solution.

Instance |V | |E| radius colours cost optimal?

rg-gr-10-84458055 10 17 0.5764 3 22 YES
rg-gr-10-97953427 10 16 0.5764 3 21 YES
rg-gr-10-256996916 10 16 0.5764 5 27 YES
rg-gr-10-360678409 10 17 0.5764 5 28 YES
rg-gr-10-671420410 10 12 0.5764 4 17 YES
rg-gr-15-84458055 15 36 0.5104 5 59
rg-gr-15-97953427 15 36 0.5104 6 55
rg-gr-15-256996916 15 41 0.5104 6 71
rg-gr-15-360678409 15 44 0.5104 7 93
rg-gr-15-671420410 15 32 0.5104 6 60
rg-gr-20-84458055 20 57 0.4649 6 108
rg-gr-20-97953427 20 61 0.14649 6 121
rg-gr-20-256996916 20 69 0.4649 6 135
rg-gr-20-360678409 20 72 0.4649 7 165
rg-gr-20-671420410 20 49 0.4649 6 93
rg-gr-25-84458055 25 85 0.431 6 180
rg-gr-25-97953427 25 90 0.431 7 213
rg-gr-25-256996916 25 116 0.431 8 302
rg-gr-25-360678409 25 105 0.431 8 272
rg-gr-25-671420410 25 85 0.431 7 198
rg-gr-30-84458055 30 112 0.4044 7 268
rg-gr-30-97953427 30 123 0.4044 8 332
rg-gr-30-256996916 30 153 0.4044 9 441
rg-gr-30-360678409 30 136 0.4044 9 398
rg-gr-30-671420410 30 120 0.4044 8 327
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Table 5.9: Backtracking results for graphs with cliques of small orders

For each graph, its name, number of nodes, number of edges, edge between cliques probability,
number of colours, cost and if it is an optimal solution.

Instance |V | |E| edge prob. colours cost optimal?

qg-gr-10-84458055 10 21 0.5 5 41 YES
qg-gr-10-97953427 10 21 0.5 5 41 YES
qg-gr-10-256996916 10 20 0.5 5 40 YES
qg-gr-10-360678409 10 20 0.5 5 40 YES
qg-gr-10-671420410 10 20 0.5 5 40 YES
qg-gr-15-84458055 15 32 0.5283 5 62 YES
qg-gr-15-97953427 15 33 0.5289 5 63 YES
qg-gr-15-256996916 15 31 0.5283 5 61 YES
qg-gr-15-360678409 15 31 0.5283 5 61 YES
qg-gr-15-671420410 15 32 0.5283 5 62 YES
qg-gr-20-84458055 20 42 0.5 5 82 YES
qg-gr-20-97953427 20 43 0.5 5 83 YES
qg-gr-20-256996916 20 41 0.5 5 81 YES
qg-gr-20-360678409 20 42 0.5 5 82 YES
qg-gr-20-671420410 20 44 0.5 5 85 YES
qg-gr-25-84458055 25 54 0.4644 5 105
qg-gr-25-97953427 25 55 0.4644 5 105 YES
qg-gr-25-256996916 25 52 0.4644 5 102 YES
qg-gr-25-360678409 25 52 0.4644 5 103
qg-gr-25-671420410 25 58 0.4644 5 111
qg-gr-30-84458055 30 66 0.4308 5 127
qg-gr-30-97953427 30 67 0.4308 5 129
qg-gr-30-256996916 30 63 0.4308 5 127
qg-gr-30-360678409 30 64 0.4308 5 125
qg-gr-30-671420410 30 71 0.4308 5 137
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Table 5.10: Backtracking results for outerplanar graphs of small orders

For each graph, its name, number of nodes, number of edges, number of colours, cost and if it
is an optimal solution.

Instance |V | |E| colours cost optimal?

ro-gr-10-84458055 10 13 3 14 YES
ro-gr-10-97953427 10 16 3 20 YES
ro-gr-10-256996916 10 15 3 18 YES
ro-gr-10-360678409 10 14 4 16 YES
ro-gr-10-671420410 10 13 3 15 YES
ro-gr-15-84458055 15 23 4 28
ro-gr-15-97953427 15 23 4 28
ro-gr-15-256996916 15 18 4 20
ro-gr-15-360678409 15 23 3 26
ro-gr-15-671420410 15 17 3 18
ro-gr-20-84458055 20 31 4 39
ro-gr-20-97953427 20 29 3 33
ro-gr-20-256996916 20 29 4 33
ro-gr-20-360678409 20 32 3 39
ro-gr-20-671420410 20 26 4 28
ro-gr-25-84458055 25 36 3 41
ro-gr-25-97953427 25 36 4 41
ro-gr-25-256996916 25 40 3 50
ro-gr-25-360678409 25 39 3 47
ro-gr-25-671420410 25 36 4 43
ro-gr-30-84458055 30 50 4 64
ro-gr-30-97953427 30 51 4 69
ro-gr-30-256996916 30 47 3 58
ro-gr-30-360678409 30 47 3 57
ro-gr-30-671420410 30 42 3 51
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Table 5.12: Backtracking results for k-trees of small orders

For each graph, its name, number of nodes, number of edges, number of colours, cost and if it
is an optimal solution.

Instance |V | |E| colours cost optimal?

kt-gr-10-84458055 10 30 5 55 YES
kt-gr-10-97953427 10 30 5 52 YES
kt-gr-10-256996916 10 30 5 50 YES
kt-gr-10-360678409 10 30 6 54 YES
kt-gr-10-671420410 10 30 5 51 YES
kt-gr-15-84458055 15 50 5 81 YES
kt-gr-15-97953427 15 50 6 82 YES
kt-gr-15-256996916 15 50 5 84 YES
kt-gr-15-360678409 15 50 5 83 YES
kt-gr-15-671420410 15 50 5 86 YES
kt-gr-20-84458055 20 135 10 413
kt-gr-20-97953427 20 135 10 398
kt-gr-20-256996916 20 135 10 387
kt-gr-20-360678409 20 135 11 414
kt-gr-20-671420410 20 135 10 401
kt-gr-25-84458055 25 180 10 565
kt-gr-25-97953427 25 180 10 508
kt-gr-25-256996916 25 180 10 526
kt-gr-25-360678409 25 180 11 552
kt-gr-25-671420410 25 180 10 543
kt-gr-30-84458055 30 315 15 1398
kt-gr-30-97953427 30 315 15 1358
kt-gr-30-256996916 30 315 15 1372
kt-gr-30-360678409 30 315 15 1437
kt-gr-30-671420410 30 315 15 1408
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Table 5.14: Backtracking results for almost 3-complete graphs of small orders

For each graph, its name, number of nodes, number of edges, number of colours, cost and if it
is an optimal solution.

Instance |V | |E| colours cost optimal?

tk-gr-9-84458055 9 30 6 59 YES
tk-gr-9-97953427 9 30 6 59 YES
tk-gr-9-256996916 9 30 6 59 YES
tk-gr-9-360678409 9 30 6 59 YES
tk-gr-9-671420410 9 30 6 59 YES
tk-gr-15-84458055 15 81 6 150
tk-gr-15-97953427 15 81 6 150
tk-gr-15-256996916 15 81 6 160
tk-gr-15-360678409 15 81 6 160
tk-gr-15-671420410 15 81 6 150
tk-gr-21-84458055 21 153 6 312
tk-gr-21-97953427 21 153 6 312
tk-gr-21-256996916 21 153 6 312
tk-gr-21-360678409 21 153 6 312
tk-gr-21-671420410 21 153 6 312
tk-gr-27-84458055 27 249 6 509
tk-gr-27-97953427 27 249 6 509
tk-gr-27-256996916 27 249 6 509
tk-gr-27-360678409 27 249 6 509
tk-gr-27-671420410 27 249 6 509
tk-gr-33-84458055 33 369 6 753
tk-gr-33-97953427 33 369 6 753
tk-gr-33-256996916 33 369 6 753
tk-gr-33-360678409 33 369 6 753
tk-gr-33-671420410 33 369 6 753



Chapter 6

Experimental results for Maximal
Independent Set

In this chapter we are going to look at the results with the Maximal Independent Set approach.
As done in the previous chapter, first we detail the experiment design and then we look at the
results obtained.

6.1 Experiment design

6.1.1 MinLA instances

In order to compare the results of these instances (see Table 4.1) with those given in [14], we
follow the same experiment design. We choose 50 randomly distributed integers from the set
{1,..., 1 × 109} as seeds for the graph reading method. This method does a uniform ordering
of the vertices using the Mersenne twister random generator from LEMON. As the maximal
independent set found for the algorithm is different depending on the first node picked, this
approach helps us make a random exploration of the graph.

6.1.2 MinLCA instances

We run the algorithms for graphs of orders 1000, 5000, 10000, 50000 and 100000 using five dif-
ferent seeds for each order and type of graph. As done in [14], we have done one execution of the
algorithms per random instance. In this case, we have not ran the Set Combinations algorithm,
because the time of execution was too long and as we can see in the results obtained for the
MinLA instances, the results are similar to those obtained with the Best of Two approach.

6.1.3 k-tree instances

We run the algorithm for k-trees of orders 1000, 5000, 10000, 50000, 100000 using five different
random seeds for each order and with every set having a reduced number of extra edges.

6.1.4 Almost 3-complete instances

We run executions for almost 3-complete graphs of orders 90, 450, 900, 4500, 9000 using five
different random seeds for each order and with every set having a reduced number of extra
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edges. We do not execute the algorithm for instances of greater orders because the graph uses
a lot of memory in order to store the edges.

6.2 Results

6.2.1 MinLA instances

The results for this experiment are given in Table 6.1. We observe that for some graphs
(randomA2, randomA3 and randomG4) we do not have results for the Set Combinations
algorithm. This is because the computational cost was too high compared to the other two
results.
To analyse and compare the results we look at Figure 6.1. As we can see, we have one plot
for every algorithm. It is clear that the Best of Two and Set Combinations algorithms have
quite a similar result and they are quite different from the results from the Random Selection
algorithm. We notice that the scale for the Random Selection algorithm is different than the
other two plots, so to compare them, we look at Figure 6.2.
In this figure, we observe that the Random Selection algorithm has a big interquartile difference
and the median is much higher than the median of the Best of Two algorithm, so the results
for this algorithm are hihgly dependent on the ordering of the vertices. Then we can conclude
that the Random Selection algorithm does not give good results if we compare it with the Best
of Two algorithm.
Moreover, as the Best of Two and the Set Combinations algorithms are quite similar, but the
Set Combinations has a higher computational cost, we conclude that the Best of Two algorithm
is the best option out of the three algorithms presented for these instances.

6.2.2 MinLCA instances

We have executed the algorithm for binomial random graphs, random geometric graphs, random
outerplanar graphs and graphs with cliques. The results are given in Table 6.2, Table 6.3, Table
6.4 and Table 6.5.
If we look, for example, at the results for binomial random graphs, we see that the Random
Selection results are between a 25% and a 59% worse than those for the Best of Two algorithm.
If we look at the results for graphs with cliques, this percentages are a little lower, between
7% and 38% worse. If we look at Figure 6.3, we can see a comparison between the four types
of graph and the two algorithms used. As stated before, the Random Selection algorithm is
highly dependant on the ordering of the vertices, because the interquartile difference is very big
compared with the Best of Two algorithm.
If we compare the four instances, we can see that the best and more adjusted results are for
outerplanar graphs, and the worse results are those from the random geometric graphs. In
fact, for the latter results, the interquartile difference for the Best of Two algorithm is quite
significant if we compare it with the other instances.

6.2.3 k-tree instances

The results for this experiment are given in Table 6.6. As we can clearly see, the number of
colours used is always the chromatic number and as stated before, the Best of Two algorithm
gives much better results than the Random Selection algorithm. If we compute the value of the
upper bound found in Proposition 3.4.6, we can see that our result improves it significantly.
For example, for the first instance the upper bound is 80355 and our result is 22270.
In this case the difference between the two algorithms is very similar in all instances. In fact,
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the Random Selection algorithm is between a 54% and a 56% worse than the Best of Two
algorithm.

6.2.4 Almost 3-complete instances

The results for this experiment are given in Table 6.7. As stated in the results for the backtrack-
ing algorithm, the chromatic number is used for all instances and we have the same results for
all almost 3-complete instances of the same order. In this case we have the worst result for the
Random Selection algorithm, we can see that for all instances the cost for Random Selection is
more than doubles the cost for the Best of Two algorithm. This is logical because the number
of edges for this instances is greater than the number of edges for the other instances, so the
cost increases significantly for worse results.

In Figure 6.4 we can see a comparison between all algorithms used in MinLCA benchmark-
ing. We observe that the random geometric graph instances have a big interquartile difference
compared with the other instances, so this instances are highly dependant on the ordering of
the vertices, because they give very different results for different instances. We notice that the
outerplanar graphs and the almost 3-complete graphs are the ones with the best results and the
interquartile range is very small. This is due to the fact that the algorithm uses between 4 and
5 colours for outerplanar graphs and 6 colours for almost 3-complete graphs for each instance.
This contributes to giving similar results for all instances.
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Chapter 7

Conclusions

In this project, we have undertaken the task of continuing the study for the minimum linear
colouring arrangement problem first studied by Isaac Sánchez in his bachelor’s thesis, see [14].

First of all, we have studied the problem from a theoretical point of view. We have broadened
the results for particular graphs with graph families such as k-trees, complete balanced k-partite
graphs and bounded treewidth graphs. Related to the latter, we have been able to prove that
the MinLCA problem with a fixed number of colours and bounded treewidth is in the class
FPT. We also have been able to disprove the conjecture stated in [14] that the optimal value
for the MinLCA problem can be obtained using the chromatic number of the graph. We have
done so by using a counterexample with two complete balanced 3-partite graphs.

Secondly, we have made an experimental study of the problem developing different algorithms
and testing them with various instances of graph families. We have devised an exact algorithm
based on backtracking and three similar heuristic algorithms based on a maximal independent
set approach. We have tested these algorithms with some instances used in the MinLA bench-
marking (see Table 4.1), several graph families used in the previous MinLCA study, such as
binomial random graphs, random geometric graphs, graphs with cliques and outerplanar graphs
and also with some new instances which come from the families of k-trees and almost 3-complete
graphs.
Although these experiments have given poor results comparing them with the results from the
previous study of the MinLCA, we have been able to determine the best approach for the max-
imal independent set algorithm and for which families of graphs our algorithms have a better
behaviour.
Finally, we make these results publicly available allowing future work for the problem.

A computationally hard problem such as the minimum linear colouring arrangement problem
can be studied from many points of view. This offers a great range of options from which to
develop future work for the problem.
On the one hand, continuing with the experimental studies of the problem, the backtracking al-
gorithm could be adapted in order to find exact algorithms for particular graphs with a feasible
computational cost or new approximation algorithms could be developed for the general case.
In addition, the algorithm for bounded treewidth graphs studied in Subsection 3.4.3 could be
implemented and tested for some families of graphs with bounded treewidth.
On the other hand, from a theoretical point of view, the parameterised version of the algorithm
still has many paths to explore. Regarding this, a question about the problem parameterised
by the treewidth of the graph has been raised. Since we have found that the MinLCA problem
for a fixed number of colours and bounded treewidth is in FPT, and we know that the MinLA
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problem with bounded treewidth is W [1]-hard, the question of whether the MinLCA problem
with a bounded treewidth is in FPT or W [1]-hard remains as an open problem and we leave it
for future studies of the MinLCA.

Open problem. Finding whether the minimum linear colouring arrangement problem param-
eterised by the treewidth of the input graph is in FPT or W[1]-hard.

We have also noticed looking at the results for outerplanar graphs that there seems to be a
better bound for the MinLCA for these family of graphs. Indeed in [14], a conjecture was
made about graphs with chromatic number 3 and our experimental results seem to reinforce
this conjecture. Even so, we have not proven that these is in fact true, so it remains as a
conjecture.

Conjecture. If G is a graph and χ(G) = 3, then

MinLCA(G) ≤ 3

2
|E(G)|

In conclusion, in this project we have continued the previous study for the minimum linear
colouring arrangement problem. We have given various new theoretical results and developed,
implemented and tested some algorithms with different techniques. Finally we make everything
available in an open-access platform for future studies of the problem, which still has many
paths to explore.
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