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Abstract

The family of modes (FOM) approach to solving model predictive control (MPC) problems is a novel
heuristic technique developed at MIT to reduce the exponential time complexity of traditional MPC solving
techniques. This study strives to bring this method closer to the manipulation research community by
addressing some of the weaknesses of FOM, by comparing its results to traditional MPC solving techniques
and by providing methodologies to choose the parameters required for the heuristic, that will ultimately
lead to a FOM-based algorithm capable of tracking complex trajectories.
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1. Introduction

Hogan recently provided an heuristic technique called family of modes (FOM) [16] to respond to the current
need for the robotics manipulation community to solve model predictive control (MPC) problems under
hybrid constraints and underactuation fast enough to be introduced into control loops. The goal of our
study is to bring the FOM technique closer to the manipulation research community.

In order to do that, we reinforce the FOM method by fixing some of its weaknesses -as its sequential
properties-, we provide comparison tools to test the method against traditional hybrid MPC solving tech-
niques -as mixed integer quadratic programming (MIQP)-, and we provide simple and systematic techniques
to set-up the method’s parameters that will ultimately leat to a new variation of the FOM approach that
can properly track complex trajectories.

We also discuss the new lines of research we plan on exploring before presenting this study to 2017’s
International Symposium on Robotics Research (ISRR). They can be summarized as:

• To proof the scalability of this method by increasing the complexity of the considered systems beyond
the one used in Hogan’s work, that tracked straight lines with a single point pusher and a square
slider.

• To check the robustness of the FOM method by using it in models different from those it was designed
for.

We hope that the results from our studies will increase the performance and simplify the implementa-
tion of FOM and will bring it closer to the robotics manipulation research community by both providing
systematic set-up tools and showing its robustness and scalability.

To present our studies and results, we start by providing in chapter 2 all the required theoretical
background in planar pushing manipulation, that will allow ultimately lead to the concept of hybridness, a
concept fundamental to understand the behaviour, the difficulty and the motivation of the FOM controller.
Chapter 3 is completely dedicated to familiarize the reader with hybrid control.

Once the theoretical background is presented, the goal of this study is revisited in chapter 4 emphasizing
the implications on the manipulation research community of being able to solve trajectory-control MPC
problems fast.

The necessary formulation is derived afterwards in chapter 5 and any theoretic concept that still needs
further clarification will be re-discussed here.

Having presented the background, objectives and formulation of our study, we present the core of our
research. We separate it into two main groups. In chapter 6 we study the properties of the FOM method
and we test them in a simulation interface we developed. In chapter 7 we provide a procedure to select
the modes of the FOM and we test it in the simulation interface of the previous chapter. The mode
selection procedure will ultimately lead to the concept of Dynamic Family of Modes (DFOM), a trajectory
optimization method based on FOM that is capable to track complex trajectories.

To conclude the study, all the results we obtained are discussed in chapter 8 together with their
implications. This discussion ultimately leads to chapter 9, that presents the future lines of research we
already mentioned at the beginning of this section.
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2. Planar Pushing

As Mason explained in his talk during his CITRIS People and Robots Seminar Series talk [20], robotics
manipulation research has been traditionally based on a pick and place methodology that consisted in
solving two fundamental problems:

1. Determine a stable grasping configuration: A stable grasping configuration was generally obtained
by finding a set of points that completely constrained the picked object position and orientation with
respect to the gripper.

2. Solving a collision-free trajectory planning problem: Once the object was grasped it was rigidly
attached to the robot gripper and the trajectory planning problem was completely determined at
every point.

This methodology was constantly improved as the manipulation community considered broader and
more complex problems, as Rodriguez’ and Mason’s study [26], that generalized the concept of stable
grasp to caging -a partial immobilization of the grasped object that allows it to move in a bounded
space. Other modifications added further constraints to the problem, as the concept of compliant grasping
manipulation [21], where the object motion of the object is constrained by the task and the constraint
is enforced without exerting heavy force loads on the object. An example of compliant manipulation the
process of activating a lever. The lever only has one degree of freedom and can easily be broken by small
planning uncertainties if a powerful robotic arm is used and the trajectory is controlled uniquely with the
robot position without considering the applied forces. It should be noted that all these variations were
applied to the same pick and place grasping problem. Some of the main motivations that made stable
grasping so popular are:

• Easy to track: The obtained solutions are constrained by the contact points and the gripper pose
so, even if the object could move inside the gripper (as in cagings) the object position could be
deterministically bounded during all the trajectory.

• Robustness: Most grasping point predictions are robust to small sensor noise and applying enough
grasping force allows ignoring uncertainties in the grasped object friction coefficients.

• Simplicity: As explained, the manipulation problem could be formulated simply by a grasping point
identification and a path planning problem.

At least as far as on 1980’s, some drift towards the study of the mechanics of planar pushing started
to appear with studies as Mason’s [22]. The main motivations for this drift were to handle problems that
were not tractable with grasping or to better understand the grasping mechanics. A non-exhaustive list of
the motivations of planar pushing could be:

• You don’t need to lift: Lifting heavy objects using a traditional robotic arm can put heavy torque
strain on the arm in certain arm configurations and the strain can break or topple the arm. If most
or all of the planned trajectory can be done through pushing, the required force is usually reduced
and when the maximum force is achieved safety mechanisms can be implemented so that the arm
doesn’t break.

3



A learning approach to the FOM problem

• Sometimes you need to push to grasp: From the observation of human object handling, it can
be seen that sometimes we prefer or need a previous pushing manipulation before grasping an object.
As can be observed in Figure 4, constrained spaces like a shelf may force us to previously push a
book against one of the self walls to pull it outside so that we can grasp it.

• It Can Represent In-Hand Re-grasping: Humans constantly show the ability and need to modify
a grasping configuration without letting the object out of the grasp. When we write with a pen or
drink from a bottle, we are constantly adapting our initial grasp without letting the object go to
achieve more comfortable configurations. Some studies as Chavan’s [6] [?] have formulated this in-
hand re-grasping as a planar pushing problem by considering either one moving finger or an external
surface as the pusher and the contact between the fixed fingers and the object is described as planar
sliding.

• Weaker Quasistatic Assumptions: As will be further explained in section 5.2, in order to use
quasistatic grasping analysis (commonly done in the manipulation community) a stronger set of
assumptions has to be taken than to use quasistatic pushing.

Figure 1: Figure from [16] that shows a human-like book grasping procedure.

The mechanics of planar pushing are complex and contain some inherent qualities as underactuation
and hybridness that need to be addressed in order to solve planning, simulating or control problems. In
the following sections we are going to introduce the basic assumptions taken and models used in planar
pushing, together with the difficulties that arise from them.

2.1 Coulomb Friction

One of the usual assumptions in the robotics community is considering dry Coulomb contact forces. This
model separates friction into two possible states (static and dynamic or kinetic friction) and the set of rules
which describe it are a combination the work of Amontons [3] and Coulomb [8]:

• Amontons’s first law: The force of friction is directly proportional to the applied load.

• Amontons’s second law: The force of friction is independent of the apparent area of contact.

• Coulomb’s law: Kinetic friction is independent of the sliding velocity.
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This laws are usually condensed by defining the static (µs) and kinetic (µk) coefficients and considering
the normal (fn) and tangential (ft) components of the contact force:

Theorem 2.1. Coulomb’s Law:

ft

{
< µs fn (for static contact)

= µk fn (for kinetic contact)

Where ft is determined in the first situation by force balancing.

Remark 2.2. Through the rest of this thesis we use the common assumption taken in robotics manipulation
of assuming a single coefficient of friction. Thus the previous theorem is simplified to ft ≤ µfn

Mason cites prior statements by Da Vinci (from Truesdell’s notes [29]) and experimental verification by
Truesdell and Guillmor [11] and I would like to add the work of Euler [23], who first distinguished between
static and kinetic friction.

2.2 Contact Slider-Support Surface

In planar pushing, there are two different contacts to be considered: the contact between the object (slider)
and the support surface and the contact between pusher and slider. In this section we are going to introduce
the main theoretical results about the first one. We will start with Mason’s study of the relation between
friction force and both motion and instantaneous center of rotation (which will be used again in section
5.2) and we will end with Goyal’s Limit Surface, that will provide a geometric interpretation to this relation.

The contact between the slider and the support surface is inherently complex. If the slider is supported
by more than three contact points the distribution of support normal forces is indeterminate and, if Coulomb
contact is assumed, this indetermination is propagated to the friction forces. The results in this section are
based on the previous assumption that the pressure distribution is known (for our study we will consider a
homogeneous distribution).

Assuming a known pressure distribution and considering r the position vector of a point of the slider,
v(r) its velocity vector, and p(r) the pressure at that point, then the total force and moment due to friction
can be expressed as:

Definition 2.3. Total force due to friction:

ff = −µ
∫
A

v(r)

|v(r)|p(r)dA (1)

Definition 2.4. Total moment due to friction:

nf = −µ
∫
A

r× v(r)

|v(r)|p(r)dA (2)

If the slider trajectory is assumed to be a rotation over a instantaneous center rIC , the velocity can be
expressed as v(r) = ω × (r− rIC ) = and the previous results can be rewritten as:

Definition 2.5. Total force due to friction:

ff = −µ sgn(θ̇) k̂×
∫
A

r− rIC
|r− rIC |

p(r)dA (3)
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Definition 2.6. Total moment due to friction:

nfz = −µ sign(θ̇)

∫
A

r
r− rIC
|r− rIC |

p(r)dA (4)

Remark 2.7. These equations are well defined when the magnitude of rIC tends to infinity and they
correspond to pure translations perpendicular to it.

These equations provide a relation force-motion for known continuous pressure distributions but if
non-zero support force is allowed at discrete points, they become undefined for rotations about each of
them. In fact, the relation between motion and frictional force cannot generally be described as an analytical
function. Goyal et al. [12] [13] applied concepts of classical plastic theory to describe planar sliding, deriving
the concepts of limit surfaces for dry contact manipulation, that describe a mapping between motion and
force.

Goyal’s work can be generalised to friction models which are more general but, for clarity, the main
concepts will be introduced with the special case of isotropic Coulomb friction (as was presented in their
original paper).

Consider a rigid body sliding over a surface with a known or pressure distribution p(r) at every contact
point and assume that each point of contact follows isotropic Coulomb friction law. Let f(r) be the
differential frictional force applied by each slider particle to the surface. Coulomb law allows us to obtain
two important properties:

1. Limit Curve: The set of possible point differential friction forces is contained inside a circle of radius
µp(r) centred at the origin of the force space. We will call this circle the limit curve (LC) of each
contact point.

2. Maximum Power Inequality. The following relation is held at every contact point:

∀f(r)∗ ∈ LC : (f(r)− f(r)∗) v(r) ≥ 0

Where v(r) is the point velocity at each contact point and f(r)∗ is an arbitrary force that can take
any possible value inside the LC.

The maximum-power inequality and limit curve are concepts introduced from classical plastic theory
that can be interpreted as follows: when slip occurs v(r) is non-zero and, for the case of a circular LC, the
maximum power inequality restricts f(r) to have the same direction as v(r) and lie on the LC boundary.
That is, the frictional load is on the limit curve and the motion vector is normal to the limit curve at f(r).
When the point velocity is zero, the frictional load is undetermined.

Goyal’s study further uses classical results of plastic theory to generalize this concept to general closed
LC that are convex (to allow the maximum power inequality to be held at every contact point) and that
enclose the origin of the force space (to allow positive energy dissipation). The motion-force relationship
properties obtained in this general LC study are summarized in Figure 3 and explained here:

1. If f(r) is in the interior the LC, then v(r) is zero.

2. If f(r) is on a LC boundary point with a well-defined normal, then v(r) is perpendicular to the LC.

3. If f(r) is on a LC vertex, the direction of v(r) is not determined.
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Figure 2: Figure from [12] that shows a limit curve for isotropic Coulomb contact at a certain position ra. A unique
set of va and fa is determined when the point is slipping and it corresponds to the points in the circumference. When
the force lies inside the circle, the point does not move and the frictional force is not determined.

4. For all f(r) in a same flat region of the LC, a common v(r) value is associated, perpendicular to the
LC, so the direction of f(r) is not determined given v(r)

If we consider p the total frictional load wrench

p =

 fx
fy

n0z

 =
∑
r

 fx(r)
fy (r)

r× f(r)


and q the velocity twist

q =

v0x
v0y
ωz


then Goyal’s study generalizes the concept of single point Limit Curves for force-motion relationship to
Limit Surfaces(LS) that relate total wrench and twist for the slider:

Theorem 2.8. Limit Surface:

1. The set of possible load wrenches p is contained inside a LS.

2. The following relation is held at every contact point:

∀p∗ ∈ LS : (p− p∗) q ≥ 0 (5)
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Figure 3: Figure from [12] that shows a general limit curve at a certain contact point. The four possible motion-force
relations are represented on it.

Certain properties are derived for the LS and we are going to list here without proof the ones that apply
to our study:

• With isotropic friction, flat regions appear on the limit surface if and only if it has points of finite
support (infinite stress).

• With isotropic friction, vertices appear on the limit surface if and only if all support points lie on one
straight line segment.

When smooth enough, the limit surface allows to compute the frictional wrench from a non-zero motion
twist, but it should be noted that the reciprocal relation can never be obtained (except for the trivial case
where the wrench is inside the surface and the twist is zero), but the twist direction can be obtained
successfully. As will be discussed in chapter 5, combining the constraints obtained from this relation with
other constraints applied on the Pusher-Slider contact, the motion equations for the pusher slider can be
derived.

2.3 Contact Pusher-Slider. Friction Cone And Hybridness

The contact between the pusher fingers and the slider sides could be described as in the previous section
(by considering the finger a slider and the slider side a support surface) but the nature of the problem
allows some simplifications. The fingers we consider never rotate with respect to the slider side, so all the
motion is pure translation. Furthermore, we only consider planar pushing (we do not consider operations
as tilting the slider), so we are only interested in moving the pusher along one dimension of the slider face
(for most purposes we consider the slider to be flat).
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A common and useful geometric interpretation of Coulomb’s law called the friction cone (according to
Mason first constructed by Moseley [24]) is widely used in the robotics community for one dimensional single
point contacts. Given a point on a surface interacting with it with total contact force f, we decompose
it into its normal fn and tangential ft components with respect to the contact surface. Coulomb friction
compact formulation states that ft ≤ µfn, where µ is the proportionality factor usually called friction
coefficient, where the equality holds on dynamic friction. Letting α be the angle between f and fn (or,
alternatively, the normal of the surface on the point of contact), Coulomb’s law is equivalent to:

Theorem 2.9. The set of feasible forces in dry Coulomb contact must satisfy:

α := tan−1
ft
fn
≤ µ

So, the set of feasible contact forces lies inside a closed cone with aperture 2µ.

Figure 4: Figure from [22] that shows the friction cone, the geometric interpretation of Coulomb’s Law. The set
of all vectors following.

Consider a single point finger pushing a planar slider. There are three possible contact states: The
finger can stick to the slider (Sticking State), the slider can slide with a slip to the left relative to the finger
(Sliding Left State) or it can slide with slip to the right (Sliding Right State). This section shows that in
each state the pusher can apply a different range of forces to the slider. Each of this different range of
forces will translate into different ranges of friction reactive wrench, that will ultimately lead to different
slider twist ranges.
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This multiple system state phenomenon (inherent in Coulomb Contact) is commonly referred as hybrid-
ness. Hybridness appears in many manipulation situations different than sticking/sliding ones. For example
a gripper can throw the object in the air to re-grasp it, change the number of fingers contacting the object,
change the pusher-slider contact side while pushing a slider of irregular shape, etc. It also appears in other
robotic fields as locomotion, where there are always at least two differentiated states (aerial state and
ground state) with clearly different dynamics.

In the following chapter, we are going to discuss the hybridness phenomenon in more detail by covering
why is it important to take into account, the problems that arise when considering hybridness in planning
and control problems and different methods to solve them in each field, that will ultimately lead to the
introduction to the FOM method.

3. Hybridness in Manipulation Problems

Through all this section, we will compare the role of hybridness in different aspects of manipulation problems.
The principal fields we will distinguish are simulation, trajectory planning and trajectory control. Each of
these fields take a different role when studying a general manipulation problem, that we can generally
defined as follows:

Definition 3.1. Manipulation Problem:

Given a system conformed by a set of points in a metric space M and a parametrization c(x) (for x
in a certain configuration space C) that uniquely describes the position of all the points of interest in the
metric space, a manipulation problem consists in changing a certain initial configuration x0 into a final
configuration xf following appropriate constraints.

Simulation problems consist on accurately reproducing the real physics of a manipulation problem to
safely and quickly study its properties. A key property of most simulation problems is that, at every instant
of time, we know the configuration of the system until the current time step and the only variables we need
to compute are the ones that define the configuration in the next step.

Planning problems consist on finding a trajectory in the configuration state to go from state x0 to xf .
Most simple planning problems have a state variable that defines the configuration of the object we need to
manipulate and a actuator state variable that describes the configuration of the gripper or other tool used
to move the object. As opposed to simulation problems, planning problems don’t have full information
about the state of the object and actuator state variables for each step of the trajectory, and they are
usually variables of the problem. Because of this difference, the equations that describe the evolution of
the same actuator-object system can have different properties in planning or simulation problems. As an
example, the motion equations we derive in section 5.5 are generally non-linear (they are linear with respect
to the object state variables but not with respect to the actuator state variables), but they can be expressed
as linear equations on the actuator state variables for the first step of the problem, where we know the
initial state of the object.

Traditional control designs as PID controllers can successfully control a system by solving only local
manipulation problem, in a similar way as simulation. PID only use the notion of the current and past
differences between the configuration of the object x and its objective value x∗ to devise a control response
to stabilize the realized trajectory around the objective one. Such control cannot be used for pushing
because of a phenomenon called underactuation.
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3.1 Underactuation. Trajectory Optimization

A control problem with first order motion constraints ẋ = f(x, u) for some control input u is underactuated
when f is non-exhaustive in the configuration velocities space. In most problems, ẋ is the result of converting
a second order Newtonian equation ẍ = m

∑
F to a system of first order ordinary differential equations

(ODEs) and underactuation is usually caused by the controller being able to transmit only a limited set of
forces and moments to the object.

In stable grasping, the system is fully activated (see remark 3.2) at all times. On the other hand, for
a single simple point finger pushing the system is highly underactuated, as the normal force the pusher
applies to the slider is non-negative (there cannot be no pulling forces) and the overall contact force lies in
the friction cone. As such, the controller must reason only among the forces that can physically be realized
at every instant.

In a certain way, it can be considered that underactuation distorts the usual metric of the system. The
example in Figure 5 shows a tracking problem where a single point pusher needs to move a square slider
to a configuration situated just behind the current pusher location. Any local pushing control action will
bring the system away from the objective configuration if we use a tradition 2D Euclidean metric. If the
controller takes into account a certain notion of path and future and tries to minimize the overall distance
through the considered control trajectory, it can obtain a solution like the one we show.

Remark 3.2. Stable grasping has some some sources of underactuation, but they are linked with the
situations were the stable grasp property cannot be held. For example, if an object is too heavy to be lifted
or to be kept in a grasp without slipping. These are examples of underactuation, as the gripper cannot
transmit enough force to the object, but they are also examples where stable grasping is not possible.

A common method to consider future paths in control problems is to solve simplified planning problems
at high frequency. The planning problems can usually be expressed as trajectory optimization problems,
where the values of the state and control variables are chosen to minimize a cost function along the
trajectory, while fulfilling the required motion constraints that represent the kinematics of the real world
problem. These optimization problems are usually linearized around the nominal trajectory computed by
a planning problem beforehand. This linearization reduces the computational cost of the control problem
while ensuring that, in a certain region of attraction, the controlled trajectory converges to the nominal
one. It is also common to only consider the control path until a certain finite time horizon (as opposed to
planning problems, that usually consider the trajectory until reaching a certain goal).

Once stated the need to consider trajectories in pushing control problems we will now justify the need
to consider hybridness in the control problems. This justification is threefold:

• Optimality: If we consider all the possible modes in a trajectory optimization problem, there’s a
wider set of possible feasible states and control laws, so we may be able to obtain a better solution.

• Robustness: We need to consider the possible hybrid states and their dynamics so that we can react
to execution errors or model uncertainties. We need to understand the mechanics of slipping to be
able to return to our optimal pushing point after an accidental slip.

• Stability: In section 6.2 we will show that when controlling a hybrid system through its perturbation
motion equations, if the nominal trajectory is not feasible in our formulation we will not be able
to stabilize our control trajectory around it, because the nominal trajectory will not even be an
equilibrium point of our motion equations.
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Figure 5: Control trajectory obtained when trying to bring the slider to a configuration behind the current position
of the pusher. The red slider describes the objective configuration, the blue line describes the trajectory of the slider
center of mass during the control trajectory and the blue sliders represent some of the configurations of the system
during the tracking trajectory. The position of the slider when we stopped the simulation is highlighted with thicker
and more opaque lines.

In the next sections we will introduce formulation techniques to add the hybridness concept into manip-
ulation problems. In particular, we will discuss the limitations of some of the formulations to solve control
problems at enough frequency. This will ultimately lead to Hogan’s FOM formulation as an approximate
method to solve the finite horizon trajectory optimization problem.

3.2 Complementarity Problems

Given a variable z and a function on it g(z), a general complementarity problem consists on finding a value
for z that satisfies:

z ≥ 0 g(z) ≥ 0 g(z) z = 0

This formulation derives from traditional linear programming techniques to encode two mutually ex-
clusive constraints on z (z ≥ 0 and g(z) ≥ 0). The linear complementarity problem (LCP) [7] assumes a
linear g function and takes the following form:

ω = Rz + u

12



ω ≥ 0 z ≥ 0 ωT z = 0

It was first introduced to predict instantaneous acceleration of rigid bodies in 1996 by Pang and Trinkle [25]
and Anitescu and Potra [4], that guaranteed a solution for this formulation on multi-rigid-body Coulomb
friction contact and impact problems. This provided a systematic way to formulate hybrid constraints
for simulation purposes. Soon after the instantaneous formulation introduction, Steward and Trinkle [27]
proposed a time-stepping formulation in the space of impulses and velocities which increased the stability
performance of LCP based forward simulation techniques.

Remark 3.3. It should be noted that the LCP formulation of the multi-rigid-body Coulomb friction problems
used a polyhedral approximation to the friction cone.

There are fast algorithms to solve LCP problems that allow the manipulation community to use them
in simulation, as in Steward and Trinkle’s study [27], or other instantaneous-nature problems as the studies
of Fazeli et al. to identify friction parameters from observed object motions [10] [9].

Figure 6: Figure from [27] with the simulation results obtained when emulating a falling and spinning rod. The
simulation step was h = 0.0025 and the simulation time at each time instant is shown in seconds on one of the bar
ends.

In instantaneous Coulomb contact problems the contact dynamics can be expressed in linear discrete
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form through Steward and Trinkle’s formulation, but many Newtonian motion equations take a non-linear
form in trajectory optimization problems. Then problem becomes non-linear (NCP) and Lemke’s algorithm,
the key idea used to provide the LCP solution, cannot be used. The complementarity constraints are usually
non-convex and can only be solved in a fast way by using the previously mentioned algorithm. In the case
of NCP, it has to be solved with a commercial optimizer and the problem usually cannot be solved fast
enough for neither planning nor control.

Certain trajectory optimization techniques, as Rapidly expanding Random Trees (RRT) can function
solely considering instantaneous dynamics. In these cases LCP can not be generally used as is to solve
the trajectory optimization problems, because they also contain non-complementarity subject variables that
must hold linear constraints and LCP does not suppor them. Luckily, these problems, called mixed LCP
(MLCP) can also be solved with a generalization of Lemke’s algorithm. Nikhil’s work on extrinsic dexterity
[6] is an example of MLCP usage in planning. Unfortunately these trajectory optimization techniques used
in combination with MLCP are too slow to use in most control problems.

3.3 MPC and MIQP

MLCP is usually too slow to be used in trajectory optimization based control problems. Complementarity
constraints are generally non-convex, which makes it difficult to use them in other algorithms than LCP
or MLCP problems. To tackle the computing cost of complementarity constraints, model predictive con-
trol(MPC) can be used. Given an initial state x̄0, an MPC problem consists in defining a discrete set of N
positions (x̄1, ..., x̄N) and control inputs (ū0, ..., ūN−1) to define a trajectory a trajectory. x̄i = x̄(tj), where
tj = t0 + hj for a certain time step h. Similarly, ūi stands for the control input necessary to transition from
x̄i to x̄i+1. Given this notation, MPC optimizes the values of all x̄i and ūi with respect to a certain cost
function:

J(x̄0, ..., x̄N , ū0, ..., ūN−1) = x̄TNQN x̄N +
N−1∑
i=0

(
x̄Ti Qx̄i + ūT

i Rūi

)
(6)

Where terms Q, QN , and R are weights matrices that penalize the error state, final error state, and
control input, respectively. MPC problems consider the hybrid state to be constant during state state
transitions. Under this assumption, a hybrid mode can be defined:

Definition 3.4. A hybrid mode is a ordered set of hybrid states.

In MPC, an N-length mode completely fixes the hybrid states the system is in along the finite horizon
considered trajectory.

Remark 3.5. We use the (̄.) notation because, as will be explained in sections 5.5 and 5.6, we will use the
perturbation of the state and control variables with respect to a nominal trajectory and control inputs as
the MPC variables.

Remark 3.6. MPC problems are based in the linear quadratic regulators (LQR) controllers. These controllers
are used for unconstrained non-hybrid problems described by the motion equation ẋ = A x + B u and use
the same cost functions as MPC. LQR are able to give an analytical control law to minimize the cost
function provided for infinite horizon problems. Their term Qf can be set-up to account for the integral of
the cost function from the last point considered until reaching the destination (if the trajectory is finite)
or until infinite. If the Qf term is chosen to follow the Riccati equation:

Qf = AT Qf A− AT Qf B (BT Qf B + R)−1 BT Qf A + Q
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then the finite horizon LQR controllers will behave as the infinite horizon ones. In MPC problems there’s
no closed expression for this term but there are certain techniques to choose a good value to maximize
the final region of attraction as the one exposed in Ya-Feng’s et al. study [30], but it is generally based
on the LQR technique of solving the Riccati equation . In our model we use a simplification of Ya-Feng’s
approach which simply computes the solution of the Riccati equation presented above using the motion
equation of the last MPC step, that can be expressed as ẋ = AN x + BN u.

If we consider a manipulation problem with convex dynamics, constraints, and cost function, the overall
optimization problem is convex if a hybrid mode that describes the finite horizon is provided. Thus, the
global problem consists in selecting the optimal solution from the finite set of optimal solutions for each
of the fixed-mode sub-problems.

The number of possible modes of length N is hN , where h is the number of possible hybrid states. This
exponential growth generally makes a naive exploration of all the possible sub-problems too computationally
expensive. In order to reduce the algorithmic strain, a mixed integer programming (MIP) strategy is usually
adopted. This will be further explained in chapter 5, but the main idea is that the state space is expanded
by adding h binary variables per MPC step that define whether the step i of the MPC is in a hybrid state
s. The commercial optimizers provide tools to express state the state related constraints with respect to
each of this binary variables so that they only apply when their correspondent variable is activated. Then,
if possible, the optimizer will use internal MIP techniques as branch and bound and cutting planes [1] to
avoid exploring all the possible modes. In our particular case, we will be able to express all the motion
and friction constraints as linear inequalities and the objective cost is a quadratic function on the variables.
This kind of mixed integer problems are called mixed integer quadratic problems (MIQP) and they have
very fast commercial optimizers (as the one we will use, called Gurobi).

The drawback of MIQP is that it doesn’t escalate well with the number of possible hybrid states and,
even with a small number of states, the optimizers aren’t generally fast enough to solve the problem online,
as required in control problems. Furthermore, the performance of MIQP depends on the geometry of the
problem and its execution time can change by orders of magnitude at every control iteration, as will be
further explained in section 6.3.

...

. . .

n = 0

n = 1

n = 2

n = N

Sticking

Sliding up

Sliding down

Figure 7: Figure from [16] that represents the exponential growth of the possible modes tree for a single point finger
pusher-slider system. The root is a dummy node and, for every other tree level i, each node represents a possible
hybrid state for the ith state transition. Each possible mode can be represented by a path from the root to one of
the tree leaves

Using fast iterations of MPC problems to control a hybrid system is a technique used in other robotics
fields, as locomotion, and being able to solve them at a frequency high enough to allow direct implemen-
tation into a feedback controller design is currently a problem of interest for the robotics community. A
proof of this is that in 2016’s Workshop on the Algorithmic Foundations of Robotics (WAFR), held in San
Francisco last December, Tedrake presented it as one of the current algorithmic open problems in robotics
control problems [28].
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3.4 Family of Modes

Responding to the need of obtaining fast solutions to MPC-based control problems Hogan and Rodriguez
[16] proposed an heuristic based procedure to approximately solve them called Family of Modes (FOM). In
their work, they assumed a finite horizon MPC problem as the one described in the previous section. At
every control step the heuristic method explores the optimization problem over only a small set of all the
possible combinations of hybrid states to decide the instantaneous controller policy.

The approximate MPC is characterized by a family of modes, which is defined as the set of modes to
consider. If the MPC family contains K modes, the MPC will only solve the K optimization sub-problems
resulting when enforcing each mode’s hybrid state schedule. The optimal solution is approximated by the
best solution between the K considered. This solution will consist of the values of x̄i and ūi for the optimal
control trajectory. The controller will then keep executing the first control policy u1 and recomputing the
approximate MPC problem frequently to take into account new information as the finite horizon advances
in time as well as to tackle external interference with the system and errors in the dynamic model.

In his study, Hogan applied FOM to a system consisting on a single finger point pusher and a square
slider and he showed that his method was capable of properly tracking straight line trajectories (and
composition of straight lines) under external perturbations by using only three modes. The three modes
were selected by hand using intuition on the problem structure. They consisted on exploring the three
possible hybrid states (using the notation of section 2.3 they were Sticking, Sliding Right, and Sliding Left)
on the first step of the MPC and constraining the system to be in a Sticking state for the rest of the steps.

In this simple case it is possible to derive a good set of modes intuitively, but for more complex and
higher dimensional problems, this may not be possible. Furthermore, adding more modes to consider into
this heuristic doesn’t generally translate into better results and, in some cases, it may lead to results far
worse than the original one. For some cases, adding new modes to a family that was able to track a line
providing asymptotic convergence could even translate into losing this convergence.

We believe the FOM approach shows promising results and may be able to partially address the current
needs of manipulation research to solve the MPC based hybrid control problem. At the same time, we
consider necessary to show its generality and robustness as well as address some of its limitations for it to
be adopted in the robotics community.

In the next section we introduce key concepts on sequential properties of heuristic based methods, that
will be useful to describe some of the FOM limitations described above. In chapter 4 we will revisit the
main objectives of our study using the concepts presented in previous sections.

3.5 Sequential Properties

On the late 90’s, Bertsekas et al. presented a work on the sequential properties of heuristic algorithms [5].
Two important definitions introduced in their study are sequential consistency and sequential improvement.
They also introduce the concept of a roll-out algorithm, which holds a close resemblance to the FOM
approach to solve MPC problems. At the end of the section we will further discuss this, but we first need
to introduce the main definitions and conclusions of the sequential properties study. We will use the same
introductory example used in their study because it is similar to the problem we try to solve. The main
differences will be mentioned at the end of the section.

Let us consider a graph search problem on a directed graph with node set N and arc set A. For simplicity,
an initial node s is defined. For consistency, we will keep the formulation presented in Bertsekas’ study,
that groups all the search costs in a subset of terminal (with no outgoing arcs) nodes N̄ called destinations.
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In this formulation, each path from the origin to a destination node (s, i1, i2, ..., in, ī) (see remark 3.7) has
an associated cost g (̄i) solely defined by the destination node. We want to find a directed path that starts
at the origin s, ends at one of the destination nodes i ∈ N̄, and is such that the cost g(i) is minimized.

Remark 3.7. In order for a sequence (i1, i2, ..., in) to uniquely define the path created by the composition
of the arcs (i1, i2), (i2, i3), ..., (in−1, in) we need to assume that given an ordered pair of nodes (i, j), there
is at most one arc (i, j) with start node i and end node j. This assumption can always be safely made.

Remark 3.8. We allow the node and arc sets, N and A, to contain an infinite number of elements. We
require, however, that the number of destination nodes be finite.

The search problem can then be formulated as a DP problem with the nodes corresponding to the
states of the DP and the arcs corresponding to the possible state transitions, and the destination nodes
corresponding to the terminal states. An heuristic H is then defined as a path construction algorithm that
construct a path from a non-destination node to a destination one (remark 3.9) and H(i) is defined for
any node i ∈ N as the cost of the destination node of the path constructed by H:

H(i) = g (̄i)

Remark 3.9. Implicit in this assumption is that for every non-destination node, there exists at least one
path starting at that node and ending at some destination node.

Having introduced this definition of heuristic in this search problem, the concept of roll-out algorithm
is introduced. The formal definition of roll-out algorithm escapes the scope of this study, but an intuitive
definition would be:

Definition 3.10. Roll-out Algorithm:

Given a starting node s and a heuristic H, we define the roll-out algorithm based on H (called RH) as
following:

1. We consider all downstream neighbours i (with |i | = n) of s and we apply H at each possible i.

2. We consider the n paths (i , i1, ..., ī) obtained from the previous step, each of which has an associated
cost H(i).

3. We compute the node i∗ which minimizes H(i) and we move to the neighbour i∗1 .

4. The algorithm is then iteratively developed by considering i∗1 the new start node s and repeating the
procedure from step 1 until s is a terminal node.

The nature of the roll-out algorithm and the FOM approach are similar in the sense that use simpler
base heuristics that would not give satisfying solutions by themselves and keep applying them at every new
step, exploring new paths that were not considered when the heuristics were applied to the root node.
This study provided some interesting properties that related the heuristic H with its roll-out RH. Most
of them were properties that guaranteed that RH would eventually stop (a problem we don’t have in our
MPC approach, because |N| and |A| are finite) or variations of the roll-out technique that we will discuss
later. In order to properly explain them we need to first introduce two main concepts that helped us to
understand some of the limitations of the current FOM formulation and that will be discussed on section
6.4.

Definition 3.11. Sequential Consistency:

The heuristic H is said to be sequentially consistent if for every node i, whenever H generates the path
(i , i1, ..., im, ī) starting at i, it also generates the path (i1, ..., im, ī) starting at the node i1.
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Definition 3.12. Sequential Improvement:

Suppose that algorithm H generates, starting at each node i ∈ N, a path (i , i1, ..., im, ī) with the
property H(i) ≥ H(i1). Then the heuristic H is said to be sequentially improving.

Figure 8: Excerpt from Bertsekas’ study. It shows the graph associated with a one dimensional walk problem. The
highlighted path corresponds to the result obtained by applying both the roll-out algorithm RH1 from example 3.13.
A plot of the cost function g(i) is shown on the lower part of the picture.

We are going to borrow two of Bertsekas’ examples (associated with Figure 8) to illustrate this two
concepts.

Example 3.13. One dimensional walk with a sequentially consistent heuristic:

Consider a person who walks on a straight line in a temporal and spatial discrete world. During each
time step, it can move a fixed length unit to the right or to the left (it cannot stay still). At time 0 this
person is at position 0 and it walks for a fixed number of time steps N before ending up in a position
ī ∈ [−N, N]. Each terminal point has an associated cost g (̄i) and the objective is to minimize the cost of
the terminal position. Figure 8 shows a graph representation of the analogue graph search problem, where
each node is defined by a state (k, m) where k is the number of steps taken so far and m is the current
position. Each node (k, m) has two outgoing arcs: to (k + 1, m− 1) for the left step and to (k + 1, m + 1)
for the right one.

Let H1 be an heuristic defined as follows: If H1 applied at node (k , m), it takes N − k successive steps
to the right, terminating at the node (N, m + N − k). Note that H1 clearly is sequentially consistent.
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The algorithm RH1 applied at node (k, m) uses the roll-out algorithm described above and obtains the
path highlighted in Figure 8. In Bertsekas’ study it is further proven that the obtained result is always a
local minimum.

Example 3.14. Consider the set-up of example 3.13, and let H2 be defined as follows: when applied at
node (k , m), H2 compares the cost g(m + N − k) (corresponding to taking all of the remaining N − k
steps to the right) and the cost g(m − N + k) (corresponding to taking all of the remaining N − k steps
to the left). If the first is lower, it takes one step to the right. Otherwise, it takes one step to the left. In
Bertsekas’ work it is mentioned that H2 has no sequential consistency propriety, but has instead sequential
improvement. It is also shown that RH2 obtains the global minimum.

Using these definitions, Bertsekas et al. derive some relations between the base heuristics and their
associate roll-out procedure. In section 6.4 we propose a method to guarantee the sequential improvement
of the FOM method when used with a full horizon instead of a finite one. Our method was inspired in a
modification of the traditional roll-out technique proposed by Bertsekas called optimal roll-out.

Consider that at a given roll-out step, the heuristic H generates the optimal path (i0, i1, ..., im, ī). Then
the fortified roll-out algorithm stores the maximal suffix S0 = (i1, ..., im, ī) and, in the next roll-out iteration,
it will consider the paths generated by H together with the path defined by S0. If the optimal path given
by H is not better than the one provided by S0, the algorithm executes the next step of S0 and stores the
next maximal suffix S1 = (i2, ..., im, ī). If the path provided by H is better, its first step is executed and the
algorithm stores its maximal suffix. This procedure is followed until reaching one of the terminal nodes.

The main idea behind this modified roll-out technique is to simply keep comparing all the possible paths
at a certain step with the best path from the previous step. This way the sequential improvement of the
algorithm is clearly guaranteed.

4. Goal Revisited

To solve MPC problems fast enough to implement them online in a control problem is an open problem of
interest for the robotics manipulation community, as explained in section 3.3. We consider that Hogan’s
work in the FOM technique is a good way to provide an heuristic-based approximate solution to this
problem. The main objective of this study is to bring this method close to the research community by:

1. Improving the properties of FOM: In section 6.2 we will discuss the differences in the formulation
used in Hogan’s study and the one used in this one, as well as why is it fundamental for the proper
execution of the FOM method. In section 6.4 we will discuss some of its sequential weaknesses
and how we addressed them, and in section 7.3 we will present a new FOM-based method to track
complex trajectories.

2. Comparing it to other techniques: In section 6.3 we will discuss some of the difficulties we found
while trying to compare it to MIQP or MIQP approximations.

3. Providing a systematic set-up: In chapter 7 we will present a systematic protocol with an stochastic
approach to choose the modes of the family.

4. Showing the system scalability and robustness: We want to track more complex trajectories, more
complex systems, and use models of a simple system to solve a problem that uses a more complex

19



A learning approach to the FOM problem

one. Some of these goals will be reached in this study and will be discussed through chapters 6 and
7. We will also present our current line of research and experiments we are currently developing for
ISRR in chapter 9.

In order to achieve this goals, we provided quantitative tools to evaluate the obtained trajectories that
will be presented in section 6.1 and we implemented a general simulation interface (presented in chapter
6) that allowed us to easily formulate and solve general trajectories and hybrid systems.

The formulation used in our study will be presented in the next chapter, together with all its required
theoretic concepts.

5. Pusher-Slider Formulation

In this section we are going to show all the necessary steps to formulate the FOM problem for the case of
a rectangular pusher slider-system with a single finger point pusher.

5.1 Nomenclature Summary

Property Symbol Value

Coeff. friction (Pusher-Slider) µp 0.3
Coeff. friction (Slider-Ground) µg 0.35
Mass of the slider (Kg) m 1.05
Length of the slider (m) a 0.09
Width of the slider (m) b 0.09

Table 1: Properties of the slider and the support surface

Property Symbol

Length of the finite horizon N
Time step h
State cost matrix Q
Control input cost matrix R
Final state cost matrix Qf

Table 2: MPC variable summary
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Property Symbol

Position of the slider’s CM (x , y)T

Slider orientation θ
Slider inertial frame F
Pusher position in F (px , py )T

Pusher velocity in F (vx , vy )T

Trajectory state x = (x , y , θ, py )T

Control input u = (vx , vy )T

Table 3: Pusher-Slider system variable summary

To derive the motion equations and define the MPC state and controller variables, we are going to use
the notation used in [16]. We will first define an inertial reference frame F centred on the slider center of
mass that will move and with it. The pose q of the slider’s center of mass will be defined in a fixed world
frame q = (x , y , θ)T and the pose p of the pusher will be defined relative to the slider center of mass
p = (px , py )T as shown in Figure 9. The state variable used to define a trajectory is x = (x , y , θ, py )T and
the control input is the velocity of the pusher defined in the center of mass frame u = vp = (vx , vy )T .

Figure 9: Figure from [16] that shows the inertial frame used to define some of the state variables

When talking about hybrid states and modes, we will usually use the following naming convention:

• S : Sticking State.

• R: Sliding Right State.

• L: Sliding Left State.
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• SN : Mode defined by N S states (S ,
N· · ·, S).

• RN
i : Mode defined by N − 1 states S and one state R in position i . For example, R3

1 = (R, S , S).

• LN
i : Analogue to RN

i . Mode defined by N − 1 states S and one state L in position i .

5.2 Quasistatic Pushing Formulation

Quasistatic analysis consists in assuming balance among contact wrenches, gravitation and other applied
forces, while neglecting inertial wrenches. This analysis is often taken in manipulation problems, where the
trajectory tracking speed changes don’t incur into high inertial forces.

The slider of our pusher-slider system with a single finger point pusher is affected by two wrenches: the
wrench the pusher applies on the slider (fp) and the wrench the support surface applies to it (fg ). Under
the quasistatic assumption fp = −fg .

This assumption will reduce the dimension of the state variables in the motion equations derived
in section 5.5 and will allow as to ignore considering a separation hybrid state in our hybrid model of
the pusher slider system (if inertial forces were non-negligible the slider could separate away from the
pusher while tracking complex trajectories with points of high curvatures). Furthermore, combining the
quasistatic assumption with the limit surface of the slider-ground contact, we can derive velocity based
motion equations and friction constraints, as will be shown in section 5.5. The robot arms we had available
for this study are velocity-controlled, so this formulation simplifies the experimental implementation of the
controller.

5.3 Ellipsoidal Approximation Of The Limit Surface

Given a pressure distribution, the associated surface distribution can be numerically computed. Unluckily,
the pressure distribution is usually not known exactly and changes over time. For our this study we
will assume that the slider and the supporting surface are completely flat, providing a uniform pressure

distribution, so fn =
gm

A
, where fn is the magnitude of the normal support force the ground exerts on the

slider and m and A are the slider mass and area, respectively. Furthermore, we will use an approximation
to the actual limit surface proposed by Lee and Cutkosky on 1991 [18] based on a study made on 1988 by
Howe, Kao, and Cutkosky that showed the suitability of using an elliptic approximation for dry Coulomb
friction [17]. We will add further simplifications to their ellipsoid derivation. For a single contact point,
their derivation can be simplified, as the limit surface will already be oriented in the ellipsoid major axis.
Assuming uniform pressure distribution also simplifies their computation of the maximum momentum
around the instantaneous center of rotation. The final procedure to obtain the LS ellipsoid is as follows:

1. Compute the maximum momentum value. This occurs when the object is in pure rotation, so we
can use equation 4 considering rIC to be the center of mass (CM) of the slider:

nmax =

∣∣∣∣−µ sign(θ̇)

∫
F

r
r− rCM
|r− rCM |

p(r)dA

∣∣∣∣ = µ
gm

A

∫
F
||̄r||dA (7)

where r̄ is the vector from rCM to r. This gives us the value of the moment semi-axis (the maximum
and minimum values of m in the ellipse are going to be ±nmax).
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2. Similarly, to obtain the force semi-axes, we need the maximum force in the x and y directions, which
is going to be fmax = fn.

3. The final expression for the ellipsoid is:(
fx

fmax

)2

+

(
fy

fmax

)2

+

(
n

nmax

)2

= 1 (8)

Figure 10: Figure from [18] that shows the experimental limit surface for different contact assumptions (that
result in different pressure distributions). For the uniform pressure distribution the ellipsoidal approximation describes
accurately the LS

5.4 Motion Cone

In Hogan’s study, a velocity controlled pusher was used. For this reason the motion equations for the MPC
problem were formulated in the velocity space. For the case of a single point finger pushing, we can obtain
an expression for the friction cone in the velocity space called motion cone (MC) [22] that will be useful
to formulate the motion equations and the friction constraints.

As opposed to friction cone, the motion cone is not symmetric with respect to the normal of the contact
surface at the point of contact. The cone can be determined by using two angles γt(p) and γb(p). Using
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the ellipsoidal approximation of the LS, the expression of the motion cone for flat sliders can be given as:

γt =
µpc2 − pxpy + µpp2

x

c2 + p2
y − µppxpy

(9)

γb =
−µpc2 − pxpy − µpp2

x

c2 + p2
y + µppxpy

(10)

where px and py have been defined in section 5.1 and c =
fmax

nmax
.

atan(γb)

−→v MC
t

−→v MC
b

atan(γt)

p

Figure 11: Figure from [16] with a representation of the motion cone

We will define γ :=
vy
vx

. If the velocity vector lies inside the motion cone, the pusher will stick. If

γ > γt the slider will slip to the right with respect to the pusher. Finally, if γ < γb the slider will slip to
the left with respect to the pusher. In summary the friction constraints can be expressed for each hybrid
state as:

Sticking: u ∈ MC :

{
vy ≤ γtvx
vy ≥ γbvx

(11)

Sliding Right: u > MC : vy > γtvx (12)

Sliding Left: u < MC : vy < γbvx (13)

In our single finger point pusher system the three possible hybrid states of the system will be these. The
quasistatic assumption guarantees that the slider doesn’t move away from the pusher by virtual inertial
forces and we will impose constraints on the pusher to prevent it to move away from the slider: the
normal velocity of the pusher with respect to the contact surface will be non-negative and the tangential
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displacement from the contact surface center (py ) will be constrained to prevent the pusher from slipping
through the slider sides.

5.5 Motion Equations

The motion equations are adapted from the ones used in Hogan’s work. They were originally inspired in a
pusher-slider system study by Lynch et al. [19] and can be expressed as follows:

ẋ =


f1(x, u) if u ∈ MC

f2(x, u) if u > MC

f3(x, u) if u < MC

(14)

fi (x, u) =

CQPi

bi

ci

u := B̂j(x) u (15)

where C =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
and Q =

1

c2 + p2
x + p2

y

(
c2 + p2

x pxpy

pxpy c2 + p2
y

)
.

Pi , bi and ci are mode-dependant matrices and take the following values:

b1 =
1

c2 + p2
x + p2

y

(
−py px

)
, b2 =

1

c2 + p2
x + p2

y

(
−py + γtpx 0

)
, b3 =

1

c2 + p2
x + p2

y

(
−py + γbpx 0

)
c1 =

(
0 0

)
, c2 =

(
−γt 1

)
, c3 =

(
−γb 1

)
P1 =

(
1 0
0 1

)
, P2 =

(
1 0
γt 0

)
, P3 =

(
1 0
γb 0

)
where i = 1, 2, 3 correspond to the states of Sticking, Sliding Right and Sliding Left respectively. For sim-
plicity, we do not consider a state where the pusher is separated from the slider for the controller modelling.
In the controller we impose constraints that forbid the pusher to move outside of the slider side borders
and the under the quasistatic assumption, the slider will not separate from the pusher by it inertia.

On the other hand the possibility of separation is included in the simulator, in order to represent the
experimental set-up more accurately and to detect possible errors in the controller design.

The motion equations are going to be used to define constraints in the MPC problem and, in turn,
the MPC formulation is going to be fed into a commercial optimizer to obtain the optimal values of x
and u that fulfil all the constraints. The fact that the motion equations are nonlinear would require using
a nonlinear optimizer, which would represent too much computational cost to solve the problem online
at every control iteration. In order to obtain a more tractable formulation the motion equations will be
linearized around a nominal trajectory x∗(t) and control input u∗(t). We will use (.)∗ to denote elements
of the nominal problem and (̄.) to denote perturbations around the nominal value. Using this notation, the
linearization of the motion equation 14 is:

˙̄x = Ai (x∗, u∗) x̄ + Bi (x∗, u∗) ū + fi (x∗, u∗)− ẋ∗ (16)

Ai (x’, u’) =
∂fi (x, u)

∂x

∣∣∣∣
x’,u’

, Bi (x’, u’) =
∂fi (x, u)

∂u

∣∣∣∣
x’,u’

= B̂i (x’) ,with x̄ = x− x∗ and ū = u− u∗
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It should be noted that equation 16 is different from the linearized motion equation presented in Hogan’s
work. This fact will be discussed further in section 6.2 but the main idea is that the term fi (x∗, u∗) − ẋ∗

cannot generally be cancelled as in other traditional control problems because fi (x∗, u∗) will not describe
the instantaneous motion of the nominal trajectory if the nominal trajectory is in a hybrid state different
from the one defined by i .

Similarly to the linearization of the motion equation, the friction constraint equations from 11 to 13
can also be linearized with respect to x̄. For consistency with the variables used for the motion equations
(x̄ and ū) vx and vy are expressed as v∗x + v̄x and v∗y + v̄y respectively:

Sticking:

{
(v∗y + v̄y ) ≤ (γt(x∗) + Ct(x∗) x̄) (v∗x + v̄x)

(v∗y + v̄y ) ≥ (γb(x∗) + Cb(x∗) x̄) (v∗x + v̄x)
(17)

Sliding Right: (v∗y + v̄y ) > (γt(x∗) + Ct(x∗) x̄) (v∗x + v̄x) (18)

Sliding Left: (v∗y + v̄y ) < (γb(x∗) + Cb(x∗) x̄) (v∗x + v̄x) (19)

where Ct(x’) =
∂γt
∂x̄

∣∣∣∣
x’

and Cb(x’) =
∂γb
∂x̄

∣∣∣∣
x’

This notation allows us to write all the linearized motion cone constraints in a condensed form suitable
for a linear programming optimizer, as equation 16:

Ei (x∗, u∗) x̄ + Di (x∗) ū ≤ gi (x∗, u∗) (20)

E1(x’, u’) = v ′y

(
−Ct(x’)
Cb(x’)

)
, E2(x’, u’) = v ′yCt(x’), E3(x’, u’) = −v ′yCb(x’)

D1(x’) =

(
−γt(x’) 1
γb(x’) −1

)
, D2(x’) =

(
−γt(x’) −1

)
, D3(x’) =

(
−γb(x’) 1

)
g1(x’, u’) =

(−v ′y + γt(x’)v ′x
v ′y − γb(x’)v ′x

)
, g2(x’, u’) = v ′y−γt(x’)v ′x−ε, g3(x’, u’) = −v ′y +γb(x’)v ′x−ε

Remark 5.1. ε is just a small positive scalar used to express strict inequalities, as the optimizer we used
only supported non-strict ones.

5.6 MPC And MIQP Formulation

As explained in section 3.3, each MPC mode fixed sub-problem will compute the optimal values for the
state and control variables for a discrete finite horizon of N steps, a time step h, and a given initial position
x̄0 to minimize the cost equation provided in equation 6, subject to motion and cone constraints. We will
use the perturbation dynamics, so the state and control variables will be (x̄1, ..., x̄N) and (ū0, ..., ūN−1);
and the initial state will be x0. As MPC considers a discrete framework, we need to discretize the motion
equations from previous section. After a first order discretization, the MPC constraints at step j are:

if j = 0 :

{
x̄1 = x̄0 + hBi0(x0) ū0 + hfi0 + x∗0 − x∗1
Di0 ū0 ≤ gi0

(21)
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if j > 0 :

{
x̄j+1 = (I + hAij) x̄j + hBij ūj + hfij + x∗j − x∗j+1

Eij x̄j + Dij ūj ≤ gij

(22)

where Aij = Ai (x∗j , u∗j ), and Eij = Ei (x∗j , u∗j ), using the notation from section 5.5. fij is defined differently
depending on the iteration step:

fij =

{
fi (xj , u∗j ), (if j = 0)

fi (x∗j , u∗j ), (if j > 0)

Bij , Dij , Eij , and gij are defined in an analogue way, evaluating their section 5.5 counterparts on xj for
the first step and on x∗j for the following ones.

Remark 5.2. For the case j = 0, x̄0 is known value, so the first order discrete version of equation 14
becomes:

x1 = x̄1 + x∗1 = hfi (x0, u0) + x0 = hB̂i (x0)(ū0 + u∗0) + x̄0 + x∗0 (23)

and by isolating x̄1 we can obtain the linear motion equation in expression 21 without having to apply a
linearization step. In a similar way, the friction constraints can also be expressed as linear constraints with
respect to ū0

Let m = (s0, ..., sN) denote the hybrid mode where at step j of the fixed mode MPC sub-problem the
system is in the hybrid state sj . Then, the sub-problem constraints are formulated by substituting i with sj
in equations 21 and 22. Then the optimization problem is fed into the commercial optimizer Gurobi [2] to
obtain the optimal values of (x̄1, ..., x̄N) and (ū0, ..., ūN−1), together with the optimal cost function. The
full MPC problem solution is then approximated to be the best sub-problem solution.

As will be explained in section 6.3, we also implemented an MIQP solver to compare our FOM against.
The formulation we have presented in this section has already linear constraints and quadratic cost func-
tion, so we can apply quadratic programming solvers to them. Gurobi allowed us to formulate the mode
dependent constraints by using binary decision variables and a big-M notation. The resulting formulation
for the motion and friction constraints is as follows:

if j = 0 :


x1 ≤ (x̄0 + hBi0(x0) ū0 + hfi0 + x∗0 − x∗1) + M(1− zi0)

−x1 ≤ −(x̄0 + hBi0(x0) ū0 + hfi0 + x∗0 − x∗1) + M(1− zi0)

Di0ū0 ≤ gi0 + 12×1M(1− zi0)

(24)

if j > 0 :


x̄j+1 ≤ [(I + hAij) x̄j + hBij ūj + hfij + x∗j − x∗j+1] + M(1− zij)

−x̄j+1 ≤ −[(I + hAij) x̄j + hBij ūj + hfij + x∗j − x∗j+1] + M(1− zij)

Eij x̄j + Dij ūj ≤ gij + 12×1M(1− zij)

(25)

z1j + z2j + z3j = 1 (26)

The equality constraints a = b (where a and u are functions of x and u) have been broken into two
inequality ones a ≤ b and −a ≤ −b and each mode independent constraint a ≤ b has been modified
into a ≤ b + M(1 − zij) for an appropriate binary variable zij . If the sub-problem is in state i at step j,
zij = 1 and the term M(1 − zij) is zero and the original inequality constrains applies. If the sub-problem
is not in that state at step j, zij = 0 and the inequality becomes a ≤ b + M. If the value of M is high
enough (specifically, if it is higher than any possible value of the expression a - b) the inequality becomes
redundant. Equation 26 enforces that the MPC sub-problems are in one and only one hybrid state at each
step.
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6. Simulation Interface

The simulations of Hogan’s study were mainly designed for an specific choice of modes and a specific
trajectory to follow. In this study, we wanted to study general properties of the FOM problem, to generalize
the results to more complex pusher-slider systems and trajectories, and to compare our different FOM
strategies to solve the MPC problem with other conventional methods as MIQP. In order to satisfy this
needs, we decided to implement a general simulation tool. The code main structure can be described as
follows:

An abstract state interface is implemented to provide the dynamics and cone constraints of the state
as well as their linearized versions at a certain objective state space and control input. To define a certain
experimental problem, the dynamics function and constraint equations are derived depending on a general
state space variable x and controller action u and the necessary state instances are implemented and a
mode is then defined by a vector of state handles. An MPC solver class is also implemented to get an
initial condition and an objective trajectory and return a control input. Each MPC solver implementation
can include its own member states or modes (as well as other optimization set-up variables) and internally
decides how to handle them.

At the same time, an Euler integration simulator is implemented. This simulator uses its own state
classes to describe the dynamics of the pusher slider system. These states are independent from the
optimization ones so that discrepancies between model and reality can be simulated (for example the MPC
solver can use linearized dynamics or cone constraints while the Euler integrator uses the non-linearized
version, which is more similar to the real experimental set-up than using linearized dynamics in both places).
The Euler integration class also holds a member MPC solver that returns the control input to be applied.
The integrator then computes the value of the state variable derivative ẋ and uses a simple quadrature to
approximate the next state variable value.

The controller (MPC solver) and simulator are decoupled, so they can consider different hybrid states.
This allows us to consider more realistic models for the euler integration step of the simulation (we always
use non-linearized motion equations for the integration step), to use different parameters in their states
(to test controllers designed for a certain slider shape, µg , and µp together with a simulator set-up with
different parameters, to show the robustness of the controller to uncertainties in the models).

6.1 Local, Global and MPC Costs

During the previous work at MCubelab, there was no systematic and objective way to evaluate the global
trajectory resulting from the FOM control law, the exit or failure of an experiment was mainly determined
in a subjective binary way. If the pusher slider didnt show appreciable divergence (at the naked eye) from
the planned trajectory it was considered a success, otherwise it was a failure. In a similar fashion if the
system was perturbed (by an external interaction), the success lied in recovering the original trajectory in
a reasonable time determined subjectively. The main goal of the study was just to demonstrate that FOM
could effectively control the pusher slider system to track previously planned trajectories, and that all this
process could be done online. Because of this proof-of-concept nature, this approach was sufficient.

For this thesis we wanted a more objective way to evaluate how good a control trajectory was and this
required a certain notion of metric or score for the global trajectory. We tried to keep coherence between
the global and local cost functions, but removed the x̄TNQf x̄N term of the cost function. As presented in
section 3.3, this term is used to account for the information missing because of the finite horizon. When
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scoring the final trajectory, we have the full horizon information, so this term is no longer required. The

obtained cost function is S =
M∑
i=0

(x̄Ti Qx̄i + ūT
i Rūi ), where M is the number of euler integration steps. We

will denote by local cost over time each of the x̄Ti Qx̄i + ūT
i Rūi values.

It is important to note that even if this global cost function is used score how close the obtained
trajectory was from the desired one, it is not a direct indicator of the MPC solving performance. We will
denote the cost function provided in section 3.3 as MPC cost. Then optimizing the MPC cost at each
iteration could incur in a larger optimal cost for the global trajectory. If we are currently at the state xi
and we consider two modes M1 and M2 with local costs c1 and c2, with c1 < c2 there’s no guarantee that
executing the first step of the trajectory obtained from mode M1 will translate in a smaller global cost
function. Some causes for this effect are exposed and fixed in 6.4 but, even after fixing them and considering
an ideal world scenario (where the models are completely accurate and there’s no sensor noise), the fact
that the receding finite horizon adds new information to the problem at every control iteration implies that
the optimal state and control pair (xi+1, ui ) computed at the control iteration i could technically lose their
optimal property when the information from control iteration i + 1 is introduced.

This effect is common in all receding finite horizon problems and there’s usually no way to completely
solve it. In order to evaluate the MPC solving performance of our method, some of the simulation results
we expose in the following sections show a plot of the local MPC cost over time in addition to a graphical
representation of the trajectory and its global or local cost. It will be shown that, when extending a family
F1 into a family F2 by adding more modes, the local cost of F2 descends with respect ot F1 in the first
bifurcation of the local MPC cost over time plot. This will be further discussed in section 6.5.

6.2 Nominal Mode

In section 5.5 we noted that, as opposed to the previous study, we do not simplify the term fi (x∗, u∗) + ẋ∗

in equation 16. x∗ can be described by the same motion equations as x using the hybrid state friction
constraints to determine the hybrid state, but it is important to realize that, once we constrain out system
to be in a state i at a time instant tj , the specific motion equation that describes this instant-state system
fi (xj , uj) may not describe the instantaneous motion of the nominal trajectory. The nominal trajectory
will clearly be described by fi ′(x∗j , u∗j ), but there’s no guarantee that i = i ′. The error introduced by
assuming fi (x∗, u∗) + ẋ∗ = 0 can be critical for the performance of the controller. In Figure 12 we can
see the behaviour of the FOM approach when trying to track a circle using a family of modes learned
using the procedure described in section 7.2. The red slider follows the nominal trajectory. The trajectory
followed by its center of mass trajectory is represented with the black line. The blue slider follows the
simulated trajectory and its center of mass follows the blue line. The last position of the simulated slider
is highlighted and the other snapshots are faded away. The considered optimal paths the MPC considers
are shown at the center of each simulated slider. The chosen path is the yellow one. As can be seen the
obtained trajectory diverges from the nominal one. Furthermore, it can be seen how the optimal finite
horizon trajectory computed in the MPC problem is completely different from the realized trajectory. In
Figure 13 the correspondent local cost over time is shown.

The possibility of the hybrid states associated the nominal trajectory to be different from the ones
associated with the real trajectory has another important implication. The perturbation state motion
equation 16 has the nominal trajectory as an equilibrium point only when i = i ′. Otherwise, if we consider
x = x∗ and u = u∗, we obtain x̄ = Ai · 0 + Bi · 0 + fi (x∗, u∗)− ẋ∗ = fi (x∗, u∗)− fi ′(x∗, u∗). If none of the
MPC modes is the one that the nominal trajectory follows, the solution x̄j = ūj = 0 will never be feasible,
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Figure 12: Snapshot from the video simulating the trajectory obtained when tracking a circular trajectory provided
by equation , with d = 0.0249. with the 8 best modes obtained using the procedure presented in section 7.2.

and we will never be able to stabilize the planned trajectory on the nominal one, even if the initial state
is on the nominal trajectory (x0 = 0). In order to force the MPC to consider the nominal mode, we can
simply compute it at every MPC step (it can be easily determined applying the friction constraints to each
pair x∗j , u∗j ) and add it as one of the modes of the family.

6.3 MIQP and Clustered MIQP

We wanted to compare the solutions provided by FOM with traditional MPC solving techniques. In order
to do that we decided to implement the MIQP technique using the commercial solver Gurobi. This solver
was already used in Hogan’s work in a force-based formulation prior to the final velocity-based one. This
formulation was not presented in the final paper, but it allowed to formulate an MIQP problem that was
able to run in an average of 3Hz. It should be mentioned that the execution time at every control iteration
could range between few milliseconds to 10 seconds depending on the initial condition of the MPC. This
is not a problem for simulation, but in a real control environment the frequency at which you can update
the controller is not bounded by the average frequency at which you can solve the MPC, but by the worst
case scenario one. Otherwise the controller may try to update the control input before it is computed by
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Figure 13: Local cost over time associated to the trajectory in Figure 12

the optimizer. There may be solutions to this effect in other formulations, but for the one used in Hogan’s
work the MIQP controller could run at more than 0.1Hz.

We were expecting a similar behaviour in the velocity-based formulation, but it took several orders
of magnitude more time to solve each iteration. In order to simulate 500 simulation steps with a finite
horizon of 7 steps it took an average of 6 hours of execution time, which implies that the maximum control
frequency we could apply would probably not surpass 0.02Hz. We were expecting to have an ”ideal”
MIQP result to compare FOM with but, as will be shown in section 6.5, the results obtained with a small
finite horizon for the MIQP did not track properly many of the non-trivial nominal trajectories and initial
perturbations we fed into it.

We looked at techniques to speed up the MIQP execution in the Gurobi website and we found out
that our current big-M formulation worked better (both in execution time and in quality of the obtained
trajectory) as smaller the M parameter was. As explained in 5.6 each M parameter used in a scalar inequality
Ax ≤ b + M(1− z) must be greater than max

x∈D
(Ax − b) (where D is the domain of possible values of the x)

so that the inequality is rendered redundant when z = 0. We implemented a version of MIQP that given a
vectorial constraint as the ones used in Hogan’s formulation A~x ≤ ~b + M(1− z) · (1, ..., 1)T replaces the
arbitrary constant M by a vector ~M where each component’s value is Mi = max

xi∈D
(Aixi − bi ). We were not

able to improve the execution time, but we were able to obtain better results for the MIQP. The results
showed in the next section for the MIQP will use this optimized big-M formulation.

In order to compare FOM to other methods using a longer time horizon, we implemented another MPC
solving method based on MIQP that we called Clustered MIQP. Given a standard MPC formulation, this
method works in the following way:

• Consider a clustering factor c, a finite horizon N · c and a set of h hybrid states {H1, ..., Hh}.
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• The finite horizon is then divided into N clusters of c steps: (C1, ..., CN).

• The state space is extended in a similar way as in section 5.6 with 3 binary variables per cluster for
a total of 3N variables.

• Each variable z1i z2i , and z3i is then associated with the hybrid state of the cluster Ci (sticking,
sliding down and sliding up respectively).

• The constraint z1i + z2i + z3i = 1 is enforced for all i .

• The problem constraints are formulated with big M notation as in section 5.6 and the problem is fed
into a Gurobi MIQP solver.

As we exposed in section 3.3, the MIQP formulation doesn’t escalate well with the number of binary
variables added and clustered MIQP allows us to reduce the binary variable dimensionality of the optimiza-
tion problem by keeping the same state during all the steps of the same cluster. The execution time of this
new problem is similar to the execution time of a MIQP problem of N steps but the controller inputs can
be different at each of the Nc steps, providing a more flexible trajectory than the one given by the MIQP
problem of N steps.

We intended to use this method to approximate MIQP problems with long horizons by using few clusters
and we expected to obtain a better trajectory than the ones obtained with FOM. As will be discussed later,
the results of this MIQP approximation were usually worse than the ones obtained in the FOM with the
original modes from Hogan’s study. In section 6.5 we discuss the implications of these results.

6.4 Chameleon Mode

In the previous FOM study there was no guarantee of improvement in the obtained trajectory by considering
new modes in a previously used family. It needs to be clarified that, even if in the previous study there
was no global score function implemented, this effect could be so big that it could be observed with the
naked eye. An illustrative example would be the following. A family containing only the sticking mode

F1 = S would greatly outperform the extended family F2 = S ∪ (L, R, S ,
N−2· · · , S). On the other side a

further extension F3 = F2 ∪ R1 would outperform the two previous families. This behaviour can be shown
in Figure 14.

The performance decrease experienced in F2 can be explained by the fact that the FOM optimizer can
choose optimal trajectories that will never be able to be applied. For example, the optimal control solution
at a certain optimization iteration can be to choose the second mode of F2: start with an L state for the
first time step to then choose a R step and finally choose an S step for the rest of the finite time horizon
prediction. The capability of sliding left and right should allow the pusher to take more aggressive turns by
sliding to one of the slider edges and then slide back to the center to properly track the straight line. The
main problem is that the control law for the controller is to execute the only th first step of the optimal
trajectory, so the system will be in an L state for one time step and then the control law will be recomputed.
As no mode starts with a sliding right state the slider can never go back to the central position.

The conclusion these experiences led us to was that, using Bersekas’ terminology, some families did not
have the sequential improvement property. What’s more, the results seemed to indicate that composition
or expansion of families that apparently had sequential improvement could lead to losing the property.

Solving the MPC using the FOM approach has similarities with the roll-out algorithm presented in their
study: Each of the modes can be considered a heuristic and the strategy of recomputing the control policy
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Figure 14: Local cost over time for families F1, F2, and F3 obtained following a straight line on the x axis and using

an initial condition x0 = (0, 0.05,−π
6

, 0)T .

at a certain frequency by using the same heuristics can be viewed as a roll-out-like technique. In fact,
we could easily reformulate any family of our FOM approach to behave as their roll-out by increasing the
finite horizon by one step and substitute each of the original modes by a triplet of copies preceded with an
S, L, and R state respectively. We decided not to use an exact roll-out because, as we will show in this
section, we were able to find a strategy to guarantee a sense of improvement without having to increase
the number of MPC sub-problems to solve by a multiples of the number of possible states.

It is important to note that the concepts of sequential consistency or optimality cannot be applied to
our case without some previous modifications, because of the existence of a receding finite time horizon,
but for every FOM problem we can formulate an associated Full Horizon Family of Modes (FFOM) problem
as follows:

Definition 6.1. FFOM:
Given a FOM problem defined by a finite horizon of N steps, a set H of possible hybrid states, a cost function

J, and a family F (0) = {M(0)
1 , ..., M

(0)
k } containing k modes, where M

(0)
i is a general mode described as

M
(0)
i = (si ,1, si ,2, ..., si ,N), with sij ∈ H. Furthermore, consider a cost function Jk =

N∑
i=k

(
x̄Ti Qx̄i + ūT

i Rūi

)
(defined using the Q and R matrices from the FOM cost function J) and the prefixes of each of the modes

of the family M
(j)
i = (si ,1, ..., si ,N−j). Then the associated FFOM problem is defined iteratively as follows:

1. Solve the FOM-based MPC problem defined by F = F (0) and J = J0, using x0 as the initial condition.

2. Use the controller ū0 from the optimal solution of the problem solved in the previous step to compute
the value of x̄1. Under an ideal world assumption (that is, assuming that our motion equations model
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is accurate) the value of x̄1 will correspond to the same value obtained in the optimal trajectory of
the MPC.

3. Replace F by F (1) = {M(1)
1 , ..., M

(1)
k }, J by J1, and the initial condition by x̄1 and go to step 1,

solving this time an MPC problem of N − 1 steps.

4. Repeat until the horizon has only one step.

This formulation represents how the FOM problem would behave be if we had enough computation
power to cover a finite horizon that reaches the desired final time step. Using it, we can study the FFOM
problem associated to the example families presented at the beginning of this section. For simplicity, we
will consider the realized states and control inputs to describe the considered trajectories.

Example 6.2. F1 is sequentially consistent in its FFOM version and assuming an ideal world:

Consider that at a certain control iteration there’s a full horizon of N steps to reach the end of the
trajectory. The only considered mode, S, get the optimal path to reach the goal while keeping the sticking
contact at all times, obtaining a sequence of position states xS(x0) = (x1,1, x1,2, ..., x1,N) and control inputs
uS(x0) = (u0,1, u1,1, ...u1,N−1) for the optimal path from the initial position to the goal. Then, the controller
will execute u0 for one control step and the pusher slider system will move to x1. The only heuristic it
considers in the next optimization step is to stick until reaching the goal, so the optimal trajectory obtained
will be xS(x1) = (x1,2, ..., x1,N) and uS(x1) = (u1,1, ...u1,N−1), being sequentially consistent.

Example 6.3. On the same conditions, F2 is not sequentially consistent nor improving:

Let’s call the second mode of family LR1. If this mode is chosen at a certain time step, giving an
optimal trajectory xLR1(x0) and control uLR1(x0). In the next step, a mode R1 is required in the family
to consider the continuation of the previous optimal trajectory, which consists in sliding right and then
sticking until the end of the trajectory. As it is not the case, the new FFOM step will not consider the
previously optimal trajectory and, if no relation can be proven between the trajectories considered in the
current step and the ones considered in the previous step, neither consistency nor improvement cannot be
guaranteed.

Consider that, at a given step of a FFOM problem, the initial position is given by x0 and the optimal

trajectory is determined by the mode M
(0)
1 = (s1,1, s1,2, ..., s1,N). If the family contains a mode whose

maximal prefix corresponds to the maximal suffix of M
(0)
1 , M

(0)
2 = (s1,2, ..., s1,N , s2,N+1) then sequential

improvement will be guaranteed at the next iteration step. That is, if the trajectory provided by M1 at the

first step is xM
(0)
1 (x0) = (x1, x2, ..., xN) and uM

(0)
1 (x0) = (u0, u1, ..., uN−1) and the one provided by M2 at

the second step is xM
(1)
2 (x1) = (x’2, ..., x’N) and uM

(1)
2 (x1) = (u’1, ..., u’N−1), then

Lemma 6.4. J1(xM
(1)
2 (x1), uM

(1)
2 (x1)) = J1(xM

(1)
1 (x1), uM

(1)
1 (x1)):

As M
(1)
2 is the maximal suffix of M

(0)
1 the continuation of the trajectory provided by M1 on the first

step is feasible in the mode M2 during the second step so, as the trajectory given by M2 is optimal,

J1(xM
(1)
2 (x1), uM

(1)
2 (x1)) ≤ J1(xM

(1)
1 (x1), uM

(1)
1 (x1))

If we assume J1(xM
(1)
2 (x1), uM

(1)
2 (x1)) < J1(xM

(1)
1 (x1), uM

(1)
1 (x1)) we can easily reach a contradiction.

Let’s define x∗ = (x1, x’2, ..., x’N) and u∗ = (u0, u’1, ..., u’N−1). This is a feasible trajectory in M
(0)
1 but

J0(x∗, u∗) can be expressed as:

J0(x∗, u∗) = xT0 Qx0 + uT
0 Ru0 + J1(xM

(1)
2 (x1), uM

(1)
2 (x1))
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and we can conclude that J0(x∗, u∗) < xT0 Qx0+uT
0 Ru0+J1(xM

(1)
1 (x1), uM

(1)
1 (x1)) = J0(xM

(0)
1 (x0), uM

(0)
1 (x0)),

reaching a contradiction.

Let’s now consider an extension state E. That is, a default state to apply mode extensions. We can
then define a mode suffix operation as follows.

Definition 6.5. Mode Suffix Operation:

Given a default extension state E, applying the suffix operation to mode M1 = (s1, s2, ..., sN) results in
M2 = suff (M1) = (s2, ..., sN , E )

This definition allows us to announce the following corollary from lemma 6.4.

Corollary 6.6. A family F closed by a suffix operation is sequentially improving in the FFOM problem:

At any step i of the approximated MPC, a certain mode M will provide the optimal trajectory. As
suff (M) ∈ F we can use lemma 6.4 to guarantee that the trajectory provided by suff (M) in step i + 1 is
as good as the one currently provided by M. As the approximated MPC considers the optimal trajectory
between all the considered modes, the computed trajectory at i + 1 will be at least as good as the one
computed in i .

Example 6.7. On the same conditions, F3 is sequentially improving:

F3 is closed by the suffix operation defined using S as the extension state, so we can use corollary 6.6
to guarantee sequential improvement in the FFOM.

We considered important to guarantee sequential improvement for the FFOM problem even taking
into account that our problem is not in the ideal world (modelling errors and different frequencies for the
optimization problem and the controller can lead the state obtained when applying u0 to x̄0 to be different
from x1) and that we don’t have a full horizon. As we showed in the examples above, the simulation
results were in agreement with these theoretic results as the families that implicitly guaranteed sequential
improvement in their FFOM version tended to outperform the ones that did not.

In order to guarantee it we decided first decided to only use families that were closed by the suffix
operation obtained using S as the extension mode. The problem with this approach is that for any mode
M = (s1, ..., sN) you add to a family F you need to include all of its possible S-extended suffixes. Different
modes required adding a different number of suffix modes. For example, an S mode required no extra
modes (as it is itself closed by the suffix operation) and for a Rn one you only need to extend the family
with an S mode and all the Ri modes for i < n. Even taking this into account, we considered adopting this
strategy constrained the problem of family design more than we wanted to and added more extra nodes
that was strictly necessary, so we decided to adopt another strategy. This translated into changing from
static families to dynamical ones.

The strategy we used consisted in including a dynamic mode that we called chameleon mode. If, at a
certain step i , the optimal FOM mode is mode M, the chameleon mode is defined in step i + 1 as suff (M)
(using, as before, S as the extension state). This guaranteed sequential improvement by applying lemma
6.4 in an analogue way as in corollary 6.6.

The chameleon mode functionality was added in the simulation interface and its performance was tested
in simulation. As we will show in section 6.5, implementing this functionality resulted in an improvement
of the sequential behaviour of the FOM algorithm. Being able to safely add arbitrary new modes to the
FOM family without fear of losing its sequential properties allowed us to develop an strategy to learn a
good family set-up for a general trajectory tracking problem, as will be shown in chapter 7.
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Given the good properties of the chameleon mode, we decided to include it in the FOM formulation
so, from now on,we will use FOM to refer to the family of modes with chameleon mode implementation,
unless specified otherwise.

6.5 Simulation Results

In order to compare FOM and MIQP we considered necessary to use the same finite horizon length in
both formulations to have a fair comparison. As explained in section 6.3, the computational cost was
much higher than we expected. The maximum finite horizon length we could afford to run simulations in
a reasonable time was 5. This value of the finite horizon was too short to control most of the non-trivial
trajectories properly. Figure 15 shows the trajectory obtained from MIQP while trying to follow a circular
trajectory and it can be seen that it clearly diverges.
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Figure 15: Trajectory obtained when tracking circular trajectory defined by pushing perpendicularly to the slider
with py = 0.0249. Initial position x0 = (0.0,−0.05,−0.1, py )T .

Figure 16: Trajectory obtained while tracking the same nominal trajectory as Figure 15 starting at the
same initial condition and using a clustered MIQP solver consisting in 5 clusters of 7 steps.

We tried to track the same trajectories using our implementation of MIQP with 5 clusters of 7 steps.
This allowed us to compare it with a FOM problem of 35 steps. Using the original family from Hogan’s
work (formed bye the modes S, R1, and L1) we can observe that, for non-trivial trajectories, the FOM
approach outperforms the clustered MIQP one. As can be seen in Figure 18 the clustered MIQP does not
even converge to the nominal trajectory.

The results obtained with MIQP and clustered MIQP imply that we will not be able to compare the
FOM solvers with an ideal solution. As will be seen in future sections, the original modes from Hogan’s
study are specially versatile and can track a wide range of trajectories. Because of that, in chapter 7 we
will use them as a comparison model to strive for.

37



A learning approach to the FOM problem

Figure 17: Trajectory obtained while tracking the same nominal trajectory as Figure 15 starting at the
same initial condition and using a FOM solver with a finite horizon of 35 steps and the original modes from
Hogan’s study.

Figure 18: Local cost over time for the trajectories shown in Figures 16 and 17.

Finally, we tested our chameleon mode implementation by comparing the performance of families of
modes that are not sequentially consistent in their full horizon formulation with and without the chameleon
mode with satisfactory results. In Figure 19 we show the example presented in section 6.4. All the simulation
parameters are kept the same except for the usage of the chameleon mode. As can be observed, the results
correspond with our expectations: for the family F2 the chameleon mode implementation successfully tracks
the trajectory while the implementation without it failed to do it, as we showed previously.
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Figure 19: Local cost over time for families F1, F2, and F3 obtained following a straight line on the x axis and using

an initial condition x0 = (0, 0.05,−π
6

, 0)T .

7. Mode Selection Protocol

In the previous sections we explained how we addressed some of the limitations or mistakes in the FOM
formulation. We also tried to provide an ideal solution to strive for and we concluded that it was com-
putationally intractable. At this point of our study, focused on adressing our next objective: to provide a
selection protocol for the modes used in the FOM formulation.

Our main goal was to obtain a simple and general procedure to select modes that would track a wide
variety of trajectories. We were specially interested in keeping the protocol simple because our ultimate
goal was to expand the FOM usage into the research community, so we needed an out-of-the-box general
method that would not require much extra set-up steps depending on the particular manipulation system
studied. In order to formalize the mode selection, we decided to represent it as an optimization problem.

We considered multiple optimization criteria and relations to study and we had to adopt a set of
assumptions to be able to obtain some initial results. We first tried to learn the modes to follow a single
fixed trajectory. Each optimization problem was parametrized by a fixed finite time horizon (characterized
by a number of steps N) and each family had a fixed number of modes K . The initial condition x̄0 was
assumed to be a random variable following a certain probability distribution. The cost of the control
trajectory C was thus also a random variable of unknown distribution parametrized by the optimization
problem parameters. Specifically, given a set of K modes {m1, ..., mk}, C ∼ D(m1, ..., mk) for a given
distribution law D. Ideally, we would like to choose the the set of modes that minimizes C̄ . We considered
that this stochastic approach would provide us versatile modes that would work under a wide variety of
initial conditions, rather than over-fitting a specific set of them.
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We made three main assumptions:

Assumption 7.1. Local Cost Sufficiency: Optimizing the modes to reduce the local costs obtained while
solving each MPC iteration would be sufficient to obtain a low global cost.

Assumption 7.2. Locally Invariant Trajectories: Given a local inertial frame F centered on the slider
center of mass moving and rotating with it and given an infinite objective trajectory C (t) for t ∈ (−∞,∞),
then the C (t) would be time invariant in frame F (for example an infinite circle loop or an infinite straight
line).

Assumption 7.3. Single Step Sufficiency: A single control iteration of the trajectory tracking problem
was sufficient to learn which modes where optimal, if the appropriate distribution for x̄0 was chosen.

The motivation and justification for these assumptions will be explained in 7.1, as well as some other
implicit assumptions contained in it. In 9 we will discuss some of the studies we would have conducted and
how we would have modified these assumptions if we disposed of more time.

7.1 Structure Study And Systematic Approach

Given a finite horizon of N steps and H states and considering M the set of possible modes obtained by
concatenating N of these hybrid states, then |M| = HN . Let the set of possible families containing K of

these modes be F . Then |F | =
(|M|
K

)
= HN !

K !(HN−K)!
. Even with a low number of states this number grows

quickly as N and K increase.

A brute force approach to the optimization problem would prove to be computationally intractable and,
without any further assumption or knowledge of the structure of the problem, we would have to take this
brute force approach. There were some correlation effects between modes that we wanted to capture.
For example, a mode L1 usually needs some other mode in the family that allows to slide right, as R1.
Otherwise if the slider slides to the left at a certain time step, the pusher will never be able to recover
its initial position. In section 6.5 we will show that, as expected, once a pusher-slider system reaches a
configuration with the pusher near one of the slider edges it is very difficult that the controller moves
the pusher the other side of the slider as a result of the FOM optimization. This configuration allows to
track steep turns in one direction, but will probably fail to control at all trajectories that turn in the other
direction. As we will explain below, the combination of the assumptions mentioned in the previous section
provided a way to capture this correlations considering the modes individually.

The local cost sufficiency assumption was listed as a new assumption, but it was already implicitly
taken when deciding to use a finite horizon MPC formulation to control the pusher-slider system. The
mode selection will determine the performance of our local FOM solver and the relation between local
MPC performance and overall performance and the validity of this assumption was already discussed in
6.1.

The locally invariant trajectories assumption motivation will be used in combination with section 7.3,
where we will use them to approximate general trajectories. It should be noted that for a trajectory to
be locally invariant, it has to be defined by the same hybrid state at every instant. Furthermore, the only
state which allows infinite locally invariant trajectories is the sticking state (in the other two the pusher
would keep slipping until losing contact with the slider). So, the only trajectories we will consider are the
ones which keep the sticking state at every instant. In the next section we will characterize the considered
trajectories.
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Remark 7.4. Note that in all the considered trajectories, the nominal mode is S. We will use this fact at
the end of this section.

The main motivation for the single step sufficiency assumption has to be understood in combination
with the previous assumption. The locally invariant property implies that the only difference between an
MPC step and another is their initial condition random variable x̄i . Consider a distribution law X that
focusses more on covering a wide range of possible values of any x̄i rather than on their frequency as,
for example an appropriate uniform distribution. We can then optimize the modes to reduce the expected
value of C (x̄0) of a single controlling step tracking problem, where x̄0 ∼ X. Optimizing the mode selection
this will simultaneously reduce the local costs expected value for all x̄i implicitly assuming that each of
these values are equally distributed.

This implicit assumption is clearly false. The fact that some trajectories converge is already a coun-
terexample of it. We consider assuming a uniform to describe all x̄i is a conservative approach, as will
consider rare big disturbances (that can usually only happen with an external perturbation or a bad initial
position) to be equally likely to appear at any time step as small disturbances characteristic of proper
control around the objective trajectory. We expected this approach would be sufficient to provide a mode
selection robust enough to track a wide range of trajectories and initial conditions.

These assumptions result in a great cost reduction and simplification of the learning algorithm because
the optimization problem can be now be easily approximated as a function of samples of x̄0:

Corollary 7.5. The optimization problem to select the FOM modes can be expressed as:

min
m1,...,mK∈M

E(C (x̄0; m1, ..., mK )) = min
m1,...,mK∈M

E(
K

min
i=0

Cmi (x̄0)) ≈ min
m1,...,mK∈M

E∑
j=0

(
K

min
i=0

Cmi (x̄j))

E

Where E is the number of samples of x̄0 we consider.

Where Ci is the cost associated to mode mi in the MPC optimization. This further implies that solving
the MPC problem for all the possible sets of K modes is no longer necessary, as we announced at the
beginning of this section because, if Ci (x̄0) is computed for every mode mi ∈ M, then C (x̄0; m1, ..., mK ) is
defined for any set of K modes by corollary 7.5.

We were concerned that the initial condition would probably have a lot of effect in the overall cost of
the mode-condition pair, because higher or smaller disturbances would lead to higher or smaller overall cost
(independently of the mode chosen) and the simulation results from section 6.5 confirmed it, as can be seen
in Figure 20. We wanted to reduce the impact of the initial condition in the range of possible values of the
local costs to obtain comparable experiments, so we decided to standardize the results obtained within each
experiment. Consider a specific sample x̄j of the random variable x̄0, then we can compute the statistical

mean of the local costs over all the modes C̄ (j) =

K∑
i=0

Ci (x̄j)

K
and σ(j) =

√
K∑
i=0

(Ci (x̄j)− C̄ (j))2

K − 1
and we can

use them to compute the normalize costs Ĉi (x̄j) =
Ci (x̄j)− C̄ (j)

σ(j)
. Figure 21 shows the distribution of the

local costs over modes after the normalization. As this values were more comparable, we minimized the
normalized costs instead of the original ones.

The algorithmic cost reduction obtained from corollary 7.5 was not enough to face the full optimization
problem. We no longer had to study the full space of families F , but we still had no alternative to explore
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Figure 20: Example histogram of Ci (x̄j) of the local costs obtained while tracking a circle for 1000 initial conditions
and 253 possible modes. The histogram is taken by fixing an initial condition x̄j and evaluating the values of Ci (x̄j)
for all possible i . Each color represents a different initial condition. The costs are clearly non-comparable

Figure 21: Example histogram of Ĉi (x̄j) for the same simulation set-up as in Figure 20. The costs are now
comparable
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the full space of modes M, which grows exponentially with the length of the finite horizon. Inspiring
ourselves in the original modes from Hogan’s study, that concentrate all their variability on the first step,
we devised the following protocol:

1. Consider short horizons that allow to compute Ĉi for all the possible modes fast.

2. Gather a number samples of Ĉi relatively big compared to the number of possible modes.

3. Select the modes that minimize the cost function in the small horizon environment.

4. Extend the families to a longer horizon with simple S state tails.

As we will show in section 7.3, this approach is sufficient in our pusher-slider system to track complex
trajectories, but in section 9 we discuss an iterative procedure to extend the considered finite horizon.

Choosing the set of K modes that minimizes the desired expression can depend exponentially on K, so
we used a greedy upper bound approximation to compute it. The greedy approach was defined iteratively
as follows:

1. Consider m1 = S (it is the nominal mode, so we always need to include it in the family) and
C1(x̄j) = Cm1(x̄j)

2. Select mi+1 to be the one that minimizes

E∑
j=0

min(Ci (x̄j), Cmi+1(x̄j))

E

3. Let Ci+1(x̄j) = min(Ci (x̄j), Cmi+1(x̄j))

This algorithm provides an upper bound for min
m1,...,mK∈M

E∑
j=0

(
K

min
i=0

Cmi (x̄j))

E
we implemented the algorithm

and we determined the lower bound of C̄ (x̄0; m1, ..., mK ) by computing the statistical mean over the

minimum of all the modes:

E∑
j=0

(
|M|
min
i=0

Cmi (x̄j))

E
. Figure 22 shows the evolution of the cost provided by our

greedy algorithm as more modes are added to the family. It can be seen that the upper bound quickly
converges to the lower one.

In the following section we will apply this procedure to linear and circular trajectories.

7.2 Simulation Results. Simple trajectory learning

For our initial study, we tried to learn the best modes for single locally invariant trajectories. As proposed
in the previous section, we started by obtaining 1000 samples of x̄ from a uniform distribution in a cube in
R4. The x̄ and ȳ disturbances on the x and y position of the slider center of mass were bounded between

0.5 and 0.5 meters. The slider angle disturbance θ̄ was bound between -
π

4
and

π

4
and the value of py could

lay in any point on the slider surface. For each initial condition, the tracking problem was solved for all the
possible modes with a small finite horizon of 5 steps. The number of possible modes was then 243 and
each pair mode-sample had an associated single step FOM tracking problem. The cost functions Ci (x̄j)
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Figure 22: Plot of our greedy approximation to the minimum value of C̄ (x̄; m1, ...mK ) obtained by using families
with K modes. The horizontal bar shows the optimal lower bound obtained when all the families are used. Its exact
value is -1.5819.

Figure 23: Comparison between the original FOM from Hogan’s study and the families obtained by applying
the learning algorithm to a the linear trajectory x∗ = (vt, 0, 0, 0)T u∗(t) = (v , 0)T . The initial condition is x̄0 =

(0, .05,
π

6
, 0)T . The vertical axis correspond to the optimal value of the finite horizon MPC over time.

were computed for each mode-initial condition pair and were normalized following the procedure described
in the previous section.
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Figure 24: Trajectory obtained when tracking the system described in Figure 23 with a family containing the best
4 line modes learned using this section’s procedure.

We then used the greedy algorithm we developed to compute and store our approximate ordering of
modes and we extend them to a longer horizon of 35 steps and we used the k best modes to track base
trajectories.

We applied this procedure to several circular trajectories and a horizontal line trajectory defined by
x∗ = (vt, 0, 0, 0)T u∗(t) = (v , 0)T for a certain pusher velocity v . The results for linear trajectories are
shown in Figures 23 and 24. All the learned families properly converge approximately at the same time and
have a similar behaviour.

The circular trajectories were imposed by continuously pushing perpendicular to the slider side (u∗(t) =
(v , 0)T ) at a distance d of the center of the slider side (py (t) = d . Applying the motion equations derived in
section 5.5 and using the following definitions allows us to nicely compute the analytical nominal trajectory:

Let A =
v

c2 + p2
x + d2

, B = (c2 + p2
x), and C = pxd . Then θ̇(t) = −A so, assuming θ(0) = 0, then

θ(t) = −At. Then: (
ẋ(t)
ẏ(t)

)
=

A

d

(
cos(θ(t))B − sin(θ(t))C
sin(θ(t))B + cos(θ(t))C

)
(27)

Which can be integrated to obtain:

(
x(t)
y(t)

)
=

(
x(0)
y(0)

)
+

A

d θ̇

T∫
0

θ̇

(
cos(θ(t))B − sin(θ(t))C
sin(θ(t))B + cos(θ(t))C

)
dt
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considering x(0) = y(0) = 0, we obtain:(
x(t)
y(t)

)
=
−1

d

(
sin(θ(t))B + cos(θ(t))C − C
−cos(θ(t))B + sin(θ(t))C + B

)
(28)

Also, from this expression we can easily compute the curvature associated with this curve, that we will use
in the next section:

k = −sign(d)
1

R
= −sign(d)

d√
B2 + C 2

(29)

Remark 7.6. We will use the common mathematical notation for the curvature sign. That is, a positive
curvature means that the unit tangent vector rotates counter-clockwise as a function of the parameter
along the curve.

Figures 25 and 26 show the results of tracking one of the learned circular trajectories. As in the case of
the linear trajectory, all the modes have similar behaviour. This is consistent with the properties shown in
Figure 22. The normalized cost the modes are minimizing quickly approaches the optimal in few iterations
of the greedy algorithm and afterwards there’s minimal improvement until reaching the optimal value.

Figure 25: Analogue to Figure 23 for a circle trajectory with a internal disturbance. The circular trajectory
corresponds to the one obtained by setting d = 0.0249. The initial condition is x̄0 = (0.0,−0.05,−0.1, 0.0249)T
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Figure 26: Trajectory obtained while tracking the system described in Figure 25 with the family formed by the 4
best modes learned for this circle.

7.3 Dynamic FOM. Theory and results

The assumption of local invariance for the objective trajectories limited the range of application of the
FOM approach as it was presented until now. In section 7.1 we mentioned that we had a motivation to
use locally invariant trajectories before obtaining the simulation results from the previous section. This
motivation was to train the FOM method on several base locally invariant trajectories that could describe
most of the situations the tracking problem would face (For the simple contact pusher-slider system this
consisted in a straight line and several circular trajectories of different curvatures). Then we wanted to
learn the best k modes for every base trajectory and then approximate complex trajectories them as a
piece-wise compositions of base ones. At each controller step we would use the best modes for each base
trajectory depending on the base trajectory approximation of the current step.

For simplicity, we decided to approximate the motion of the finite horizon by the local geometry of the
instantaneous position in the nominal trajectory. We expected that a sufficient control frequency would
allow the system to properly track the general trajectory even if its local properties undertook steep temporal
changes. For the pusher-slider system mentioned before, the base trajectory was chosen by numerically
computing the curvature of the objective trajectory at every control step and using the base trajectory with
the most similar curvature value.

We would then introduce dynamic families to the FOM problem. At each control step, the family used
to track the trajectory would consist on the k best modes for the base trajectory that approximates the local
geometry of the objective trajectory (together with the chameleon mode) to solve the MPC problem on
that instant. The chameleon mode was shared between the dynamical families to ensure that the sequential
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Figure 27: DFOM with 20 curvatures using the 4 best modes for each base
trajectory. Finite horizon of 35 steps.

Figure 28: DFOM with 20 curvatures using the 4 best modes for each base
trajectory. Finite horizon of 15 steps.
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consistency property was not lost.

The main motivation for this method was to reduce the online cost of the FOM approach at the expense
of more offline computations. We expected that choosing the best family dynamically would reduce the
number of modes per family required to obtain good results in a broad range of trajectories. Having n
modes in a family implies solving n convex optimization problems at every control step, so we wanted to
keep it as low as possible.

The learning algorithm was executed on 10 pairs of curvatures (for each curvature k , we considered the

complementary curvature −k) generated by setting the d parameter uniformly from −3b

4
to

3b

4
, where b

is the length of the side of the slider. Using equation 29, the associated curvatures were obtained.

Generating general feasible trajectories for the controller to stabilize is a complex problem in itself. We
could use MPC to compute an optimal path to a certain destination using the distance to the destination
as the cost function but this would have two important drawbacks. The first is that it would probably
follow straight lines whenever possible, providing simple trajectories to stabilize. The second is that with
MPC we can only obtain a discrete trajectory. We could approximate the obtained trajectory using splines,
but we would not be able to guarantee feasibility of the trajectory defined by the state variable and the
controller in the interpolated regions between control points.

The planning problem escaped the scope of this study and, in order to both simplify it and to check the
robustness of the controller, we decided to create trajectories by simple concatenation of linear and circular
trajectories. This simplified the planning problem and created punctual discontinuities in the position
of the pusher (for the straight lines the pusher was constantly at the center of the slider side, and for
the circular trajectories the pusher was constantly at the distance py associated to the circle and there
were discontinuities at the changes between trajectories). We considered important to study whether the
controller was capable to react to these temporally localized points of uncertainty were there was no feasible
trajectory to immediately change from one trajectory to the next.

Remark 7.7. The circular trajectories used in the simulations of the DFOM had curvatures different than
the ones used for the learning protocol, so the DFOM algorithm had to determine the base circle which
was more similar to the nominal trajectory one.

With this formulation we were able to successfully track the general trajectory and we were able to
reduce the required finite horizon to track properly the trajectory to 15 steps, as can be seen in Figure 28

8. Discussion and Conclusion

In the previous sections we obtained several positive results regarding the FOM algorithm. In this section
we will expose them following the order in which they were presented in the thesis:

1. The results obtained in sections 6.2 and 6.4 are fundamental to approach FOM to the research
community. The change in formulation that ultimately lead to the presentation of the nominal mode
is fundamental to obtain the good results showed along chapter 7. We want to emphasize that,
without it, all the controllers we tested on circular trajectories diverged as the one showed in Figure
12.

2. We would have liked to be able to compare the trajectories obtained by MIQP or by the clustered
MIQP implementation we developed. In any case, showing the huge computational cost of MIQP in

49



A learning approach to the FOM problem

our velocity based formulation is useful to get an idea of the urge of the manipulation community to
find fast solutions to it, even if they are approximated, as FOM. While implementing it, we realized
that its drawbacks are not only the lack of scalability as the number of variables increases. Even
if the same number of variables is uses, if the geometry of the optimization problem changes the
computational cost of the problem can increase several orders of magnitude, as we explained in
sections 6.3 and 6.5.

3. The sequential study of the FOM families that ultimately led to the chameleon mode has proven to
be critical towards increasing the understanding of the FOM mode and towards keeping it simple. If
we had not studied and addressed the sequential weaknesses of FOM, we could not have ultimately
devised the mode selection procedure, as adding modes to families would generally imply loss of
sequential properties and, thus, worse performance. If we had decided to constraint our families
to be sequentially improving (by, for example, enforcing closure with respect to a suffix operation)
the size of the FOM families would probably have increased a lot in order to keep the sequential
improvement.

4. While implementing the mode selection protocol we were able to better understand why the fast and
exact MPC solving is still an open problem. In order to be able to compute the best modes for a
certain trajectory in a reasonable time we had to take several layers of assumptions. Fortunately,
we were finally able to automatically provide minimal families of around 4 modes that successfully
tracked the trajectories they were designed for.

5. Showing that the DFOM is capable to track trajectories with punctual discontinuity is a great result
toward proving the robustness and generality of the FOM approach, but we should be able to track
other trajectories than compositions of circles and lines if we want to convince the manipulation
community that the FOM can be a general controller.

If we look at these results as related to the objectives we presented in chapter 4, we can conclude that:

1. The properties and formulation of the FOM have been clearly improved thanks to the concepts of
chameleon and nominal modes and all their related theoretical background.

2. We have not been able to compare the results of FOM with those of MIQP. We successfully compared
FOM with clustered MIQP, but the fact that the second was worse doesn’t allow us to have any ideal
control trajectory to strive for.

3. We successfully provided a simple set-up for the FOM method that is capable to track base trajectories
described by straight lines, circles or a combination of both.

4. Being able to track all these new trajectories also accounts to partially show the generality and
robustness of the method, but we consider

In conclusion, we consider that all the results we obtained will bring the FOM method closer to the
robotics manipulation community. However, we will continue this study to improve the FOM method
further before presenting it to ISRR. In the next chapter we will expose the main lines of research we are
currently studying and the list of studies/experiments we want to do before the symposium.
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t y = f (x)p

Figure 29: Graphical representation of a pusher-slider system following a general trajectory. The osculating
circle has been computed on the current trajectory state point.

9. Current and Future Lines of Research

We want to further study the generality and robustness of the method, as we feel that our current results
would not completely convince the manipulation community.

We are currently trying to expand the general trajectory tracking of the DFOM method by using a
similar approach as in Hogan’s work [14] [15]. Given a nominal trajectory y∗ = f (x∗) with x∗(t) = t for
simplicity, then the local curvature of the trajectory can be computed by:

k =
f ′′(x)

(1 + f ′(x)2)3/2
, (30)

Given the parametrization of the trajectory, we can assume x(t) and y(t) to be the ones defined by the
trajectory, θ(t) to be θ(t) = f ′(x) and we then assume that the trajectory is defined instantaneously by
the osculating circle, so the value of d can be computed numerically so that equation 29 holds. As in the
trajectory from section 7.3, the resulting equation has punctual discontinuities, so we cannot guarantee that
the DFOM will be robust enough to track it until we finish the implementation and run the simulations.

At the same time, we extended the formulation of the single point pusher to define the motion equations
of a line pusher. We are currently trying to reproduce the learning protocol used for the single point pusher
with this new system. We will try to analyse the robustness of the FOM approach by using a single point
pusher FOM controller to control a line pusher and vice versa.

On the learning protocol side, we will soon try an iterative method to learn the best modes for long
horizons. The method starts as the procedure we presented in section 7.1. That is by learning the best k
modes for a horizon of 5 steps. We then extend these k modes to a horizon of 10 steps by adding all the
possible 35 tails to each of the best modes of the first iteration. We would then apply the same learning
procedure to the new 253k modes, selecting again the k best.

This procedure could be repeated iteratively until reaching a long horizon of around 35 steps.

51



A learning approach to the FOM problem

References

[1] Gurobi - mixed-integer programming (mip) - a primer on the basics. https://www.gurobi.com/

resources/getting-started/mip-basics. Accessed: 2017-04-24.

[2] Gurobi optimizer description. http://www.gurobi.com/products/gurobi-optimizer. Accessed:
2017-04-24.

[3] G. Amontons. De la résistance causée dans les machines. Mémoires de lAcadémie royale des Sciences,
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