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Abstract:

Solar-based electricity production has become an essential part of the general energy
production in the recent years with the will to use more renewable sources. The one
issue that appears is the uncertainty of the solar irradiation. It is then more complicated
to predict the energy generated in the future times.

The Energy Management System used on the grid schedules the energy exchanges
between the devices based on the prediction of the state of the system in the next time
interval. The Model Predictive Control forecasts the power produced as well as that of
the energy demand from the load and defines the state of the system. In order to
minimize the corresponding cost function, this forecast should be as accurate as
possible, with the minimum prediction error.

To address these forecasting needs, we will extract some data from a database using an
algorithm directly connected to the server. And we will compute the remaining values
using an accurate forecasting method, the Simple Average. Then, for this information to
be even more precise, we use the Rolling Horizon approach, that enables a regular
updating of the forecast. Simulation results and experiments confirm the influence of
some parameters on the prediction error and hence on the cost function.
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|. Introduction: Application framework
& objectives

[.1 System under study

An energy transition is taking place since the past few years in response to the
challenges regarding climate change and the overuse of sources of energy. A
transformation of the energy management strategies became mandatory. As fossil
resources represent the highest share in the world energy production until now, the
actual energy system is vulnerable. The supply is limited and the demand increasing
tremendously. The impact on global warming is also an issue and many countries and
organizations are working towards more sustainable solutions.

The development of solar-based electricity production, particularly in the
photovoltaics form, has increased significantly in the recent years. Many reasons can
explain this evolution. Yet, many challenges represent obstacles for a total and efficient
solar energy integration. One main challenge is the uncertainty of the solar irradiation,
which makes it harder to predict how much energy can be produced on a smaller scale
such as a day, an hour or a minute. Research is guided towards developing tools and
algorithms that can manage this instability of solar power by bringing better forecasting
methods for example.

This work is based on a real case microgrid taken from the MEDsolar project
(Machrek Energy Development-Solar) initiative [Annex 1]. The project was developed in
some countries of Machrek area: Jordan, Lebanon and Palestine with the objective to
face some problems regarding the quality of their electrical supply. In particular, the
weakness in their electrical generation and distribution systems like the impossibility to
increase the contracted power and the frequent blackouts of the main grid that leads to
the intensive use of the diesel generation with the consequent provisioning-dependence
of diesel fuel from foreign countries. The objective of the MEDsolar project is to reduce
the operation cost of the system and at the same time the use of expensive and pollutant
energy sources, by introducing commercial devices for PV generation and electrical
energy storage.

The figure below shows the configuration of the microgrid under study for the
Lebanon microgrid proposed in [1] [2].

11



UNIVERSITAT POLITECNICA

DE CATALUNYA )

BARCELONATECH telecom
BCN

EMS

PV Field

Genset
controller

{ ) Battery
po,'“r inverter W
switch
-

Genset group

Energy
meter

Gnd

Battery

Figure 1: Microgrid configuration

The microgrid under study considers initial facilities: the main grid and a diesel
generator group that operates as a backup and can be activated by an automatic switch.
With the introduction of the PV generation-batteries, the loads could be supplied by the
mains, the diesel generator or from the battery as voltage sources or by the PV
generator as current source [3][4]. Additionally, a bidirectional converter is needed to
manage the charge and discharge process of batteries and an overall supervisory control
namely EMS (Energy Management System) which can set the power references to the
controllable devices which are the Diesel generator, the bidirectional converter, the
maximum PV power and the power switch.

.2 Description of the EMS

The philosophy of the EMS management is Model Predictive Control (MPC) in
which the design is based on control actions obtained from the optimization of a
criteria[5][7]. This criteria is related with the future system behaviour that is predicted
by a model. It is the objective function included in the optimization model. In this case,
it represents the economic result: cost-incomes of the MG operation during a time
period, that must be minimized [6]. The EMS operation is at the highest level of the
hierarchical control structure detailed in [10].

The typical architecture considers several constraints as physical operating limits
of the energy system, energy balances and the tariff structure of the service-grid. The
forecasted values of demand and PV generation are obtained from the irradiation data

12
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provided by external interfaces. Some measurements on site like the battery SOC and
the energy taken from the grid are needed as it is shown in Figure 2.

oy
Measurements Microgrid model
Actual — -
batte Clon.stralnts. c.np.eratlon Tariff structure of the Objective function:
ry limits, capacities and . . .
soC main supply grid economic result
energy balances
v
Energy PV & l
d df t .
emane forecas EMS Mathematical
OPTIMIZATION solver
|
MG DEVICES
ENERGY PROFILES

SET POINTS to
the controllable
devices

Figure 2: Typical EMS architecture

In a general framework, the time treatment consists on a long prevision time
period (horizon) that is subdivided in smaller time-discrete slots in which all the inputs:
the constraints, the forecast data and the objective function are computed. As a result
of solving the optimization model, an optimal schedule for all the devices (controllable
and not) are obtained but only the information of the first time-interval (t1) is used to
determine the immediate power references for the controllable units while the data for
the subsequent time intervals are discarded. A Rolling Horizon strategy within the MPC
approach is then applied and after a time period equal to the time slot duration, a new
set of microgrid measurements and forecast updates are taken into account for a new
optimization process when new power references are obtained.

The EMS online operation is as follows: the supervisory control receives the
forecasting data of power and loads from one side, and the data of the system itself (the
real grid energy contribution and the state of charge of the battery from the other side).
From this information, and using the cost function we mentioned before, the EMS
performs the optimization and proposes a scenario so that the cost is minimized while
the loads are fully supplied. This scenario is given in the form of instructions for all the
devices. The idea is to schedule in advance where the energy should be taken from and
which devices it should supply (or stored if needed). Then, in the next iteration, the
whole process starts again.

More specifically, before the EMS implementation, when the network is
connected to the public electricity distribution system, it configures by itself the source
of voltage and the corresponding frequency for the best performance functioning. The
idea is that the network can only have two states: Connected to the grid, or isolated
from it.

13
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In the case of connection with the grid, the system is stable, and usually it does
not meet any problem. However, in the case of a black-out, the network is automatically
disconnected from the grid, and connected to the diesel generator instead. The stability
problem occurs here as not enough diesel is provided hence not all loads are supplied.

With the use of this energy management system, the general functioning is
different. As one of the requirements is to avoid the use of diesel generators, both for
environmental and availability reasons, and to focus on renewable sources of energy
(photovoltaic in the scope of this project), the EMS is configured in this way:

The EMS is also responsible for the different elements it is controlling. That is to
say, it verifies constantly that all the restrictions concerning each of the devices, the
loads and the grid are met. This enables a better management of the maintenance, as
the lifetime of the equipment is extended by avoiding useless deterioration. But also
because units availability can be determined ahead of time when the equipment needs
to be replaced or repaired. Furthermore, the EMS can generate the needed energy
profiles for each equipment so that the cost function is minimal.

The microgrid control possesses different hierarchical levels of instructions and
the orders from the EMS are placed in the highest level. In a typical EMS optimization
based problem, the control is done on an hourly or minutal scale, and its main goal is to
set the power of the elements over time.

Due to the EMS functioning, the need to know the future evolution of the
irradiance, and consequently the power from one side, and the demand in power from
the other side becomes natural. Relevant forecasting data is then necessary for the
optimization procedure.

As we described the EMS, it is a real-time operating system, which means that it
receives data in real-time, processes it, outputs the solution and sends it to the
corresponding equipment. Consequently, the EMS is constantly communicating with the
rest of the network, collecting data on a regular basis.

Within the frame of the MEDsolar project, two time scales are used: the daily
horizon with an hourly granularity (HSDH), and the monthly horizon with daily
granularity (DSMH). This will be explained in the thesis proposal. For these two scales,
the EMS will consider a certain number of parameters. We mention the PV energy
prevision to be injected into the microgrid, the energy produced by the diesel generator,
the energy exchanged with the mains, the energy exchanged with the battery banks, the
prevision of the battery State Of Charge (SOC), and the energy to supply the loads.

These parameters will be distributed as inputs and outputs of the EMS.
Concerning the inputs, the EMS will receive the following data: The forecast of the
renewable energy generators output for the given time horizon, the energy demand of
the loads for each granularity, the State Of Charge (SOC) of the ESS, the operational

14
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limits of the non-renewable energy generators, the limitations of the Grid energy supply,
the state of the loads, the operational limits of the PV generators and ESS.

Then, once this data is processed, the EMS has the following outputs: Control
signals to connect or disconnect the loads, the charging and discharging energy profiles
of the battery and the set points for the control system for each manageable source.

Finally, the EMS itself possesses some requirements that need to be met for a
proper functioning. We then consider the market prices, that influence on the choice of
using one energy source or another, the cost function included in a deterministic model
of the microgrid energy management, which, depending on the cost of each element,
will have a different optimized solution. And the battery management algorithm, that
enables to decide when to charge or use the energy of the battery depending on the

actual situation.

Photovoltaic energy
Forecast

Load demand

Operational limits, security
and reliability constrains

Forecast
\, J
ESS
State of charge
\_ J

\, J

A 4

.

(

Centralized EMS

~N

Microgrid model

)

* Market prices

* Cost function

* Battery
management
Algorithm

—

Diesel Generators
Energy scheduling

Controllable Loads
Commands (On/Off)

Source controllers
Set points for next period

J

Battery
Charging and discharging
profiles

Figure 3: Inputs and Outputs of the EMS in the scope of our project

Thesis proposal

The typical MPC approach only considers one time scale. In [11], only a horizon of one
day with 15 minutes intervals is discussed. In [12], a horizon of one day (24 hours) with
a granularity of 10 minutes is preferred. The two times scale is contemplated in [14] but
only in a daily-hourly scale and an hourly-minutal one. This work presents a novel time

structure based in two scales: monthly-daily and daily-hourly. This choice was made

because of the necessity to consider the pricing system existing in Lebanon that is the

Incremental Block Tariff, for which, the more power you consume, the higher the unit

price of the power is. We will develop the characteristics of this system later.
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However, this two time-scales approach presents an issue: considering a month horizon
(30 days) with a time resolution of one hour implies considering 720 variables. As this
situation is high-time computation demanding because of the high volume of variables
involved, the novelty of this proposal is to reduce the quantity of variables to be
processed in the optimization problem resolution for the same time granularity. This
situation leads to consider two different models, one for each horizon-time interval: One
for the Monthly-Daily and another for the Daily-Hourly.

The quantity of variables to be considered becomes now 54 variables, which is
significantly lower and hence the processing time is faster. In the next sections, the
different models are detailed.

16
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II. EMS design with the MPC approach

[I.1 Algebraic representation of the models

As mentioned before, the program takes the data concerning the state of the
system and the forecast values of photovoltaic generation and loads from the demand,
then addresses the Model Predictive Control to analyze policies with a monthly horizon.
It computes the optimal configuration such that the cost function is minimal. We will
use two time scales (daily and hourly) to implement the Model Predictive Control and
the Rolling Horizon. Hence, one model is needed for each scale.

For the DSMH, this is done through an algorithm that considers different parameters
and the following equations:

[1.1.1 Daily Scale Monthly Horizon

11.1.1.1 Photovoltaic generators (PVG)
The variable considered is the energy supply from the PV inverter (En_PVi(t)), and the
related equation can be understood as if the equipment is available, the energy injected
into the microgrid cannot exceed the PV generation forecast affected by the efficiency
of the inverters. In other words:

EN_PVi < EN_PVifor(t) x PVi_eff x HAv_PVg(t)

11.1.1.2 Battery Bank (BB)

The variables considered for the Battery bank are: BB energy level (En_level(t)), BB
discharging energy (En_dchg(t)), BB charging energy (En_chg(t)). The equations defining
the general behavior of the battery bank are as follows:

The BB energy level must remain within the present operational limits in each time

interval:
SOC_up x BB _cap x BB_SOH

En_level

n_level(t) < 100

SOC_low x BB_cap x BB_SOH
100

En_level(t) >

Moreover, the variation of the level of charge of the battery depends on the energy

charged and discharged in the first time-interval:
En_dchg(t) En chg(t) = SOC_t0 x BB_cap x BB_SOH En_level(t)
BB off n_chg(t) = n_leve

100

And the variation of the level of charge of the battery depends on the energy charged
and discharged in rest of the time interval

En_dchg(t)

BB_eff En_chg(t) = En_level(t-1) - En_level(t)

17
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Also, the energy level at the end of the horizon must be the present value

SOC_tf x BB_capxBB_SOH
100

En_level(t) =

Finally, the battery charging energy must be equal to the input energy affected by the
BC efficiency:
En_chg(t) = En_MGtBC(t) x BCC_eff

11.1.1.3 Bidirectional converter (BC)

Two parameters are considered for the bidirectional converter: The energy supply to
the BC (En_MGtBC(t)), and the Energy supply from the BC (En_BCtMG(t)).

The equation defining the general working principle is as follows:
The output energy of the BC must be equal to the battery discharge energy affected by
its efficiency:

En_BCtMG(t) = En_dchg(t) x BCI_eff

11.1.1.4 Diesel generator (DG)
The Diesel generator also considers two parameters: The energy supply from the DG
(En_DG(t)), and the Diesel generator operation cost (CstOp_DG(t)).

The equations are defined as follows:

The energy delivered by the DG cannot exceed its daily maximum value set by prime
power:

En_GtMG < En_DGmax x DAv_DG(t)

Two more restrictions are set assuming that in the ETD horizon there is the same
behavior as the annual one:

The energy delivered by the DG in the horizon cannot exceed a percentage of the total
of the prime energy:

Z En_DG(t) <En_DGmaxH
t

The energy delivered by the DG in the horizon cannot be less than a percentage of the
prime energy (recommendation not to obstruct motor):
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z En_DG(t) >En_DGminH
t

11.1.1.5 Grid (G)

The grid considers the energy from the grid to the MicroGrid (En_GtMG(t)), the energy
from the Microgrid to the grid (En_MGtG(t)), the Grid to MicroGrid energy cost on the
current month (Cst_GtMG1), the Grid to MicroGrid energy cost on the next month
(Cst_GtMG2), the grid energy refunds from electricity sale (Rfd_MGtG(t)) and the Grid
energy consumption on the current month (En_cons1).

The equations are defined as follows:

If the MicroGrid (MG) is connected, the energy consumed from the grid cannot exceed
the upper limit:

En_GtMG(t) < En_GtMGmax x DAv_GtMG(t)

And if the MG is connected, the energy injected to the grid energy cannot exceed the
upper limit:

En_GtMG(t) < En_GtMGmax x DAv_MGtG(t)

11.1.1.6 Energy Balance constrains

We consider the following:
The Battery Bank is supplied from any source of energy:
En_DG(t) + En_GtMG(t) + En_PVi(t) - (En_MGtBC(t) + EnMGtG(t)) >0
The power injection to the grid is exclusively of PV origin:
En_PVi(t) - En_MGtG(t) >0
Finally, the demand must be equal to the energy supply:
En_Lfor(t) = En_PVi(t) + En_BCtMG(t) - En_MGtBC(t) + En_DG(t) + En_GtMG(t) - En_MGtG(t)

11.1.1.7 Costs
Concerning the diesel operation, the cost of fuel consumption is linearly related to the
electric energy produced:

CstOp_DG(t) > CstLin_DG x En_DG(t)
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11.1.1.8 Economic result of purchase and sale of energy from the grid
For the current month, the prevision of the energy supply by the grid until the end of
the current month must be inside of any step of the tariff system:

En_const0 + Z En_GtMG(t) < 1000000000 x (1-AV1(v)) + IUEV(v)
t

En_constO + Z En_GtMG(t) > AV1(v+1) + IUEV(V)
t

The sum of all the binary decision variables is 1:

Z AVi(v) = 1

The prevision of the energy consumption in the current month is the actual consumption
plus the time intervals consumption prevision:

En_consl = En_constO + Z En_GtMG(t)
t

The total prevision of the energy consumption in the current month is defined as:

Cst_GtMG1 = Z ((En_cons1 - IUEV(v-1))xBT(v) + ICB(v))xAV1(v)

For the next month, the prevision of the energy supply by the grid during the next month
should be inside any step of the tariff system:

z En_GtMG(t) < 1000000000 x (1-AV2(v))+IUEV(v)
t

Z En_GtMG(t) > AV2(v+1) + IUEV(v)
t

Moreover, the sum of all binary decision variables is 1:

Z AV2(v) = 1

The total prevision of the energy consumption in the current month is defined as:

Cst_GtMG2 = Z((((En_GtMG(t)) — IUEV (v — 1))XBT(v) + ICB(v))XAV2 (1))

The refunds for the energy injected into the main grid:
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Rfd_MGtG(t) = GR_DSPr(t) x En_MGtG(t)

11.1.1.9 Objective function
The equation defining the economic result at each interval is:

EcnRslt(t) > CstOp_DG(t) - Rfd_MGtG(t)

Finally the total economic result is:

EcnRsltH = z EcnRslt(t) + Cst_GtMG1 + Cst_ GtMG2
t

For the HSDH, another set of variables and equations define the general working
principle.

[1.1.2 Hourly Scale Daily Horizon

11.1.2.1 Photovoltaic generators (PVG)

The variable considered is the energy supply from the PV inverter (En_PVi(t)), and the
related equation can be understood the same way as for the DSMH: if the equipment
is available, the energy injected into the microgrid cannot exceed the PV generation
forecast affected by the efficiency of the inverters. In other words:

En_PVi< EN_PVifor(t) x PVi_eff x HAv_PVg(t)xBI_PVg(t)

11.1.2.2 Battery Bank (BB)

The variables considered for the Battery bank are: BB energy level (En_level(t)), BB
discharging energy (En_dchg(t)), BB charging energy (En_chg(t)). The equations defining
the general behavior of the battery bank are as follows:

The BB energy level must remain within the present operational limits in each time

interval:
SOC_up x BB _cap x BB_SOH

En_level

n_level(t) < 100

SOC_low x BB_cap x BB_SOH
100

En_level(t) >

Furthermore, the variation of the level of charge of the battery depends on the energy
charged and discharged in the first time interval:
En_dchg(t) SOC_t0 x BB_cap x BB_SOH
—— — — En_chg(t) =
BB_eff 100
And the variation of the level of charge of the battery depends on the energy charged

and discharged in rest of the time interval
En_dchg(t)

BB_eff

Also, the energy level at the end of the horizon must be at least the present value

— En_level(t)

— En_chg(t) = En_level(t-1) - En_level(t)
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SOC_tf x BB_capxBB_SOH

100
Moreover, the value of the discharge energy is limited by its maximum value that is

modeled as a linear function of the SOC at the start of the discharge interval

En_level(t) >

100xEn_level(t)
En_dchg(t) <-0.62447x + 270992825
BB_capxBB_SOH

And the range for the value of the discharge energy depends on the Bidirectional
Converter
En_BCDminxBCI2(t)

BCI_eff
En_BCDmaxxBCI2(t)

BCI_eff

En_dchg(t) >

En_dchg(t) <

The bulk charging energy range must be within a maximum and minimum
recommended values

En_chg(t) < En_BBCmaxxBCI1(t)

En_chg(t) > En_BBCminxBCl1(t)

Finally, the binary charge indicators of the BB cannot be 1 and 0 at the same time, as in
the hourly scale the battery cannot be charging and discharging on the same time slot:

BCI1(t) + BCI2(t) < 1
11.1.2.3 Bidirectional converter (BC)

Two parameters are considered for the bidirectional converter: The energy supply to
the BC (En_MGtBC(t)), and the Energy supply from the BC (En_BCtMG(t)).

The equation defining the general working principle is as follows:
The output energy of the BC must be equal to the battery discharge energy affected by
its efficiency:

En_BCtMG(t) = En_dchg(t) x BCl_eff

11.1.2.4 Diesel generator (DG)
The Diesel generator also considers two parameters: The energy supply from the DG
(En_DG(t)), and the Diesel generator operation cost (CstOp_DG(t)).

The equations are defined as follows:

The energy delivered by the DG cannot exceed its upper value multiplied by the
availability binary variable:

En_DG(t) < En_DGmax x Bl_DG(t)
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The diesel generation, the hourly generation must be at least a predefined percentage
of the rated capacity:

ChgFct_min

En_DG(t) > — o=

x En_DGmax x Bl_DG(t)

And the time availability determines the value of the binary state variable

Bl_DG(t) < HAv_DG(t)

11.1.2.5 Grid (G)

The grid considers the energy from the grid to the MicroGrid (En_GtMG(t)), the energy
from the Microgrid to the grid (En_MGtG(t)), the Grid to MicroGrid energy cost
(Cst_GtMG), the Grid energy refunds from electricity sale (Rfd_MGtG(t)).

The equations are defined as follows:

If the MicroGrid (MG) is connected, the energy consumed from the grid cannot exceed
the top value:

En_GtMG(t) < En_GtMGmax x BI_GR(t)

And if the MG is connected, the energy injected to the grid energy cannot exceed the
upper limit:

En_GtMG(t) >0.0001x En_GtMGmax x Bl_GR(t)

The availability to receive energy from the grid determines the value of the binary state
variable:

Bl_GR(t) < HAV_GtMG(t)

The energy delivered to and received from the grid over the horizon cannot be higher
than the maximum set at DSMH scale:

z En_GtMG(t) < EnH_GtMGmax
t

Z En_MGtG(t) < EnH_MGtGmax
t

11.1.2.6 Loads

From the loads point of view, 3 variables are considered: The energy supply to the critical
loads (En_CL(t)), the energy supply to the Non-critical Loads (En_NCL(t)) and the non-
critical loads penalization cost (CstPen_NCL(t)).
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And the equations describing the working principle are as follows:
First, if there is enough energy, the critical loads must be supplied:
EN_CL(t) = En_CLfor(t)xHAv_CL(t)
If enough energy is available, non-critical loads can be partially supplied:

EN_NCL(t) = En_NCLfor(t)xHAv_NCL(t)

11.1.2.7 Energy Balance constrains
We consider the following:

The Battery Bank is supplied from any source of energy:

) En_chg(t)
En_DG(t) + En_GtMG(t) + En_PVi(t) - (—————+ EnMGtG(t)) >0
BCC_eff

The energy injection to the grid is exclusively of PV origin:
En_PVi(t) - En_MGtG(t) >0
Finally, the energy demand must be equal to the energy supply:

En_chg(t)
BCC_eff

En_CL(t) + En_NCL(t) = En_PVi(t) - En_MGtG(t) + (En_dchg(t)xBCl_eff)- + En_DG(t) - En_GtMG(t)

Finally, the PVG delivers energy with the other energy sources (GD, grid or ESS):

BI_PVg(t) < BI_DG(t) + BI_GR(t) + BCI1(t) + BCI2(t)

11.1.2.8 Costs
Concerning the diesel operation, the cost of fuel consumption is linearly related to the
electric energy produced:

CstOp_DG(t) > CstLin_DG x En_DG(t) +CstCte_DGxBI_DG(t)
We also consider a cost penality for not supplying the non-critical loads:

CstPen_NCL(t) > PenLin_NCL x (En_NCLfor(t) - En_NCL(t))

11.1.2.9 Economic result of purchase and sale of energy from the grid
The cost of the supply depends on the fixed unitary price set by the DSMH
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Cst_ GtMG(t) = CstFkWh_GR x En_GtMG(t)
We consider as well the refunds for the sale of energy:

Rfd_MGtG(t) = PrkWh_MGtG(t) x En_MGtG(t)

11.1.2.10 Objective function
The equation defining the economic result at each interval is:

EcnRslt(t) > CstOp_DG(t) +Cst_GtMG(t) - Rfd_MGtG(t) + CstPen_NCL(t)

Finally the total economic result is:

EchRsltH = Z EcnRslt(t)
t

II.2 Photovoltaic generator power evaluation

[1.2.1 Definition and working principle

The photovoltaic effect is the phenomenon that enables the conversion of light
energy in electrical energy. It is based on the absorption of the photons of light rays by
the semiconductor crystal, generating a number of free electrons in the crystal.

The total solar irradiance is defined as the amount of radiant energy emitted by
the sun over all wavelengths, falling each second on a 1 square meter perpendicular
plane outside earth at a given distance from the sun. In reality, the actual solar energy
that passes through the atmosphere on earth differs from this value and depends on the
position on earth (Latitude, Longitude), the moment of the year (summer, winter...), and
of course the weather. This amount is called the insolation (incident solar radiation).
There exist different ways to capture the solar energy, we can name the thermal systems
for example, and the photovoltaic systems.

We will focus on the photovoltaic systems as these are the ones involved in our
project. Photovoltaic systems capture the sun’s higher frequency radiation and convert
it into electrical energy. The figure below is an example of the energy captured by an

array [15]:
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Solar Energy Capture vs Array Orientation and Tilt
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Figure 4: Evolution of an example of Solar energy capture with
array positioning

In this example, the array is located at a latitude of 352 North, the optimum array
orientation is pointing South and the optimum tilt is 352, similar to the latitude. If the
array system were to be mounted on a roof with a pitch of 452 on a building pointing
South West, it will only receive a maximum of about 90% of the available solar energy.

The idea being to maximize the amount of energy captured, a solar tracking
system can be implemented. It enables the array to “follow” the sun in its movement to
catch most of the sun rays. The array is then always perpendicular to the direction of
the sun. These tracking systems are automatically measuring both the azimuth and the
elevation of the sun.

Zenith

Solar
Collector

Summer inter W
Elevation (Tlit) Angle Azimuth rotation about the polar axis
Follows seasonal changes Follows the sun during the day
in the tilt of the earth’s axis from east to west

Solar Tracking
Figure 5: Representation of the Solar tracking [7]
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In this figure, the general working principle of the Solar tracking is represented.
We can observe both the Azimuth rotation and the Tilt Angle shown as well. This is the
type of photovoltaic arrays used in the frame of the MEDsolar project. Next, we will
discuss the particularities of these solar panels in terms of technical aspects.

[1.2.2 Our particular case: Lebanon case

In the case of the MEDsolar project, an infrastructure is already existing and
Photovoltaic panels are set. The Model used is a SunTech 300-24/Ve. Consequently, a
certain number of constants and electrical characteristics are defined from the
datasheet of the solar panels [Annex 2]:

Electrical Characteristics

STC STP305- | STP300- | STP295- | STP290-
24/Ve 24/Ve 24/Ve 24/Ve

Maximum Power at STC (Pmax)

Power Tolerance

STC: Irradiance 1000W/m?, module temperature 25 °C, AM=1.5;
Best in Class AAA solar simulator (|EC 60904-9) used, power measurement uncertainty is within +/-3%

Figure 6: Extraction from the datasheet of the solar panels used in Lebanon for the MEDsolar project

We can point out some relevant data that is useful for the computation of the power
generated from the irradiation received by the panels.

First, the maximum power at STC (Standard Temperature Conditions), Psr = 300Wp
(Watt peak).

Another extraction from the datasheet gives us the following information:

Temperature Characteristics

Nominal Operating Cell Temperature (NOCT) 45+2°C
Temperature Coefficient of Pmax | - 043%°C
Temperature Coefficientof Voo |- 033%C
Temperature Coefficientoflsc | 0067%°C

Figure 7: Extraction from the datasheet of the Temperature Characteristics

We can highlight some data such as the NOCT (Nominal Operating Cell Temperature):
NOCT = 45 + 2°C
But also the Temperature Coefficient of Pmax, which is denominated by k = 0.43%/°C.
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We also need some more data such as n,;;, = 100% as it represents the losses and we
will consider that there are no losses and ny,ppr Which represents the correction of the
angle of the panel following the sun direction. As in our case the panels are fixed,
nyppr = 100%.

Finally, in this location in Lebanon the number of panels used is NgXN,, = 357.

In the next section, we will present the formulation to define the power generated from
the solar radiation by the photovoltaic panels.

Objectives:

This work will consist in obtaining the forecast values of the photovoltaic generation and
the demand from the loads. The forecast will be done using two different sources: A
direct extraction from a database using a programmed algorithm for the daily scale
photovoltaic generation data [Annex 3], and a computation of the forecast values for
the monthly scale photovoltaic generation and the energy demand [Annex 4]. The
method used for the computation of the forecast values will be chosen among accurate
methods depending on the nature of our time series.

Then, we will consider other additional techniques to improve the accuracy of the
forecast for a better optimization of the cost function generated by the Energy
Management System. This technique, called Rolling Horizon, will enable a smaller
prediction error and hence a better organisation of the schedule for the different
equipment of the network. [8][9][10

This work will have the following structure: Chapter 3 will define the different databases,
and explain how to have access to them. Then, an analysis of the times series and
computations of errors will enable the choice of the most accurate forecasting method.
Chapter 4 will define the Rolling Horizon approach and show how it improves the Model
Predictive Control with the optimization of the cost function goal. Chapter 5 summarizes
the parametric analysis done on the system. Chapter 6 presents the exploitation of this
tool on some specific cases to evaluate the effect of some parameters on the cost
function. Finally, section 7 details the conclusions of this work and suggests further
research paths for the future.
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Ill. Forecasting of data

I11.1 Databases and Extraction

[11.1.1 Definition and Extraction methods

To use the energy participation of the photovoltaic array, it is needed to consider
the solar radiation and the ambient air temperature. These two elements enable the
definition of the total power production by an array. The following formula expresses
the power production: [19]

G
Pmod = PSTCXG_CX(1 +k- (Tc - Tstc))

STC
Where
=T, + NOCT — 20 «G
800 ¢
Finally,
Ppy = NpXNsXProa X [l ppr X
Where

Pgrc : Rated output generated by the module under Standard Test Conditions
(W)

Pnoa: Output power of the photovoltaic module (W)
Gsrc: Solar irradiance (W /m?)

G,: Irradiance of operating point (W /m?)

k: Power temperature coefficient

T,: Ambient temperature (2C)

NOCT: Normal Operating Cell Temperature (2C)

We already defined and given the constants corresponding to our case for the
Photovoltaic panels in Lebanon.
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We hence need the information about the total irradiance and temperature in
the region we want to consider. There exist a certain number of databases that provide
this kind of data. However, these databases will provide data with different scales, and
under different conditions. The table below summarizes the irradiance and temperature
data from a Forecast and Historical point of view. We will discuss the use of historical

data in the next section.

Forecast Historical values

Irradiance Temperature Cloud cover Irradiance Temperature

Soda Soda (NCEP) Soda (NCEP) NREL Intellicast

(Helioclim) 3 locations 3 locations 3 locations 3 locations

3 locations Every 3 hours Every 3 hours 1min to daily Hourly  (Tripoli) or
1min to daily Horizon: 3 days | Horizon: 3 days | No limit of records | 30min(BCN &Aalborg)
Horizon: 1 day Freq: 3 hours Freq: 3 hours Access with C code

Freq: 1/day

MeteoGalicia

MeteoGalicia

MeteoGalicia

Only BCN Only BCN Only BCN
Hourly (To | Hourly (To | Hourly (To
Check) Check) Check)

Horizon: 4 days | Horizon: 4 days | Horizon: 4 days
Freq: 2/day Freq: 2/day Freq: 2/day

Table 1: Databases of Irradiance, temperature and Cloud cover

Finally, depending on the source of the data, the extraction method differs. For SODA
[20] Helioclim (Irradiance) for example, a Matlab code can extract a CSV file directly from
the database. Of course, the extraction is not free, but we implemented a Matlab code
for the free trial on the city of Carpentras in France [21][Annex 3]. The same procedure
could be used for our case in Lebanon once a license is purchased.

The soda Helioclim database provides irradiance forecasting data with a horizon of 1
day, and with different granularities from 1 min to 1 day. Another database,
MeteoGalicia [22], provides data with a 4-days horizon, but does not cover the Lebanon
area as it is focused on the region around Spain only.

From a temperature point of view, the SODA website gives access to a database NCEP
that provides with a temperature forecast every 3 hours for a horizon of 3 days in all
locations. As seen from the formula of the power generated by the Photovoltaic array,
the temperature effect is very small (Since k = 0.0044). Consequently, having
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temperature data every 3 hours is acceptable, as having a more accurate database won't
change much the value of the forecasted power.

Hence, we decide to use the SODA Helioclim for irradiance forecasting, and SODA
NCEP for temperature forecasting. These forecasts will of course concern the 1-day
horizon as this is the limit of the database. Regarding the other time horizon (1-month
horizon and 1-day granularity), a computed forecast is proposed.

[11.1.2 SODA service

SODA (SOlar radiation DAta) is a common laboratory of MINES ParisTech and ARMINES.
It offers access to a wide set of information concerning solar radiation and its use for
various countries around the world.

It is an Intelligent System (IS) that generates links with other sources of information
located in these countries and outputs the answer to a certain request. It uses
algorithms based on data processing, data assimilation in numerical models and data
fusion. The web services are provided by six different providers.

Users
i'lil.
~

The SO0 Service

ISAC -7 N . —
ZSEWTEEI I / \ 2 services ——

MINES ParisTech ENTPE I I
44 services . I 3 services
METEOTEST NCEP =
5 services 1 service

Figure 8: Providers of the SODA web service

Within the framework of our project, we will use HelioClim database (HC3 version 4
Similarity Forecast), to extract forecast irradiance data. Combining it with NCEP
database (National Centers for Environmental Prediction), as it provides temperature
forecasts on a long-term period (3 days).

[Il.2 Forecasting methods

[11.2.1 Definition

Forecastingirradiance can be considered as the tool that reduces the uncertainty
of the future [24] [25]. Different forecasting methods exist and can depend on different
parameters. We can consider for example the forecast horizon (Long, Intermediate or
Short-term forecasting), the type of data we consider...
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In our case, we will work with Time series data, which assumes that data points
over time have an internal structure, which should be accounted for in the analysis. We
will discuss the nature of the data in the next section.

SODA proposes a forecast based on two different methods:

111.2.1.1 Similarity Model

— | —

¢ 2 % S 3 R T X2 : -

Today: day “d" L Tomorrow: day “d+1”

Detect the 10 similar days in the - Then, average the irradiation values of the days following
past based on square distance the 10 selected days to produce the prediction

Figure 9: Illustration of the principle of the HC3v4 Similarity Forecast

The Similarity Model is based on the comparison of today’s GHI (Global
Horizontal Irradiance) to the past 4 years irradiance database. This model performs
better in slowly varying weather areas. [Annex 4

I11.2.1.2 Persistence Model

The Persistence Model is based on satellite images, it is defined in the illustration
below. It presents an example of 15min weather slots until 11:25 am. The last
information we have is a half-cloudy half-sunny weather. The main assumption will be
that the weather will be of the same type. Then, the next image acquired shows a nicer
weather than what was planned 15min ago. The prevision is hence adjusted. This
process keeps adjusting the forecast every 15min until the end of the day. [23]

ok JanHanHanH “H""H“H“H“H“H J“H“H“H“H“H“H
R A Rk S S A S S LR G
ER=R- ER=E 223

Figure 10: lllustration of the principle of the HC3v4 real-time and short-term Persistence forecast service
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Experiment:
In order to verify the accuracy of these methods, we followed an experiment.

The idea is to analyse the data from a two-days extraction of irradiance and
temperature. We will use SODA database Helioclim to extract the information. Choosing
the “Similarity forecast” option, the system will use the Persistence model for the actual
day (d), and the Similarity model for the next day (d+1).

Consequently, the process will be as follows:

The first extraction will be at t; = 04: 00 a.m of day d and will give us the
forecast values of the irradiance for d and d+1 using the Persistence model for day d,
and the Similarity model for day d+1.

The next extraction will be at the end of day d at t; = 09: 00 p.m. We will then
extract the measured irradiance values for day d, as it is the past ones and hence
completely known. And the forecast of day d+1 using the Persistence model again.

Finally, the last extraction will be at the end of day d+1 d at t, = 09: 00 p.m. We
will then extract the real measured irradiance values for day d+1.

These extractions will be done for hourly scale and 5-minutal scale that is
averaged into hourly data. And we will compare forecast and real data using SODA
database.

Comparison Real and Forecast Power
Hourly scale

90.00 e
80.00 / n
70.00 / S / \,
= 60.00 \ \
4 {
= 50.00 / Q
v /
2 40.00 \ j
@) o ‘ {
8- 30.00 | r Q
20.00

10.00 ; D ‘X

0.00 » 9 -
-1 4 9 14 19 24 29 34 39 44 49
Hours for days 14/04 and 15/04

—@— Forecast Avg Power Real Avg Power

Figure 11: Evolution of Real and Forecast power on an hourly scale for 2 days
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This case here is interesting, as during the 14/04/2017 and 15/04/2017

the

weather conditions were unstable. Which explains the important difference between

forecast and reality for the second day(d+1). However, we can notice how accurate the

fore

cast is for day d.

Moreover, we are interested in the comparison of the hourly scale and the 5-

minutal one. We hence compute the average hourly scale based on a 5-minutal one and

we plot both results on the same graph:

Comparison between hourly and averaged hourly from 5-
minutal scales

90.00 ~\
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70.00
= 60.00
=
4
= 50.00
(0]
2 40.00
a.
30.00
20.00
10.00
0.00 /
-1 4 9 14 19 24 29 34 39 44 49
Hours for days 14/04 and 15/04
Hourly Hourly from 5-minutal
Figure 12: Evolution of power on an hourly scale and averaged hourly for 2 days
We observe that both curves superimpose, even in case of unstable weather.
Furthermore, the values themselves are not totally equal as we can notice on the table
below. Which means that both scales are measured separately, but are both just as
accurate.
Hours
14/04 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Hourly | 0 | 2.53 | 16.99 | 36.83 | 55.86 | 73.35 | 84.36 | 90.33 | 89.77 | 82.17 | 70.04 | 52.57 | 32.53 | 1259 [ 1.03 | O
Hourly
from5- | 0 | 2.45 | 16.98 | 36.78 | 55.81 | 73.31 | 84.35 | 90.25 | 89.65 | 82.16 | 69.95 | 52.46 | 32.45 | 12.54 | 096 | O
minutal

Table 2: Power on an hourly scale and averaged hourly for 14/04. We notice that the values are not equal
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When considering forecasting on a 1-day horizon, the models above, used by the
SODA website on the Helioclim database, is more than enough. However, to use a 1-
month horizon with 1-day granularity, a direct computation of the forecast irradiance is
needed. Many techniques are used in practice. Two distinct groups of smoothing
methods can be considered: Averaging methods and Exponential Smoothing methods.

[11.2.2 Simple Average forecasting technique

The Simple Average technique actually computes the average of all historical
data until t and uses this value as the forecast data for t+1. Which means [26]:

1 t
Ft+l = EZ Yi
i=1

Where F;, is the forecast data and y; is the i-th historical data.

This method is only useful when the time series presents no trends as Averaging
methods are more suitable for time series data where the series is in equilibrium around
a constant value (i.e. the mean). Also, Averaging methods are very useful when the time
series data can be subject to random errors, as it will smooth out these errors.

[11.2.3 Exponential Smoothing forecasting technique

111.2.3.1 Definition of the Exponential Smoothing

The Exponential Smoothing [26] [27] is based on the unequal weights given to
the past data to define the forecast. The weights decay exponentially giving more
importance to the most recent data and less to the furthest ones in time. There exist 3
different Exponential Smoothing methods: The Single Smoothing method, Holt’s
method and the Holt-Winters’ method.

The Single Smoothing is a method where only one parameter needs to be
estimated. Hence, the forecast is considered as the old value plus an adjustment for the
error from the past forecast. However, Single Smoothing is not appropriate when the
considered data has a trend.

To improve this situation, Holt’s method was introduced, adding a new equation
and a second constant. Hence Holt’s method, also called Double Exponential Smoothing,
enabled the forecast of data presenting a trend using 2 equations:
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The first one adjusts the actual smoothed value directly for the trend of the
previous period, by adding it to the previous smoothed value, hence eliminating
the lag.
The second equation, updates the trend, i.e the difference between the two last
values.

Finally, in the case our data shows trend AND seasonality, Double Exponential

Smoothing does not provide an accurate forecasting anymore. A third method is
proposed: Holt-Winters’ method, also known as Triple Exponential Smoothing.

This method introduces another equation, and hence it is defined as:

Overall Smoothing:

y
Se = ar—+ (1= a)(Sem1 +be-s)
t-L
Trend Smoothing
by = y(St — Se—1) + (1 —¥)be—q

Seasonal Smoothing
YVt
Iy = :35_"' 1 =B,
t

Forecast
Feom =St +m-b)l_pym

Where:

Y is the observation

S is the smoothed observation

b is the trend factor

| is the seasonal index

F is the forecast at m periods ahead

tis an index denoting a time period

o, B and y are constants that need to be estimated such that the error between
the real and forecast data is minimized.

Once the equations for the forecast are established, we also need to initialize the

method. To do so, we need at least one complete season’s data to determine
the initial estimates of the seasonal indices I;_;.

111.2.3.2 Initialization of the method

We hence initialize the method with the following:

36



UNIVERSITAT POLITECNICA

DE CATALUNYA /3 .

BARCELONATECH telecom
BCN

- Initial values of the trend factor: The slope is set to be the average of the slopes
for each period:
1 yiy1 =0 n Vi+z2 — V2 4. Vi+r — VL

=1 .ttt )

- Initial values for the Seasonal Index:
We consider we have historical data for N years of L irradiance data.
This initialization is done following this algorithm:
= First, we compute the average of each of the N years
L
i=1Yi
L
= Then, we divide the observations by their respective mean, i.e

values from y; to Y345, Will be divided by A;. From Y346 t0 V730,
will be divided by A,... And from yi,(v_1)x t0 Ynxr, Will be
divided by Ay .

= Finally, the Seasonal Indices Iy are computed as the average of

AN:

each year. In other words:

+

Y1 Yi+ixiL y1+(N—1)xL) 1
Io = [Z2X o g ZHNZDXLY 2
N (A1+ A, * Ay

N
1 _
Iy =_Xzy1+(1v 1)XL
N ¢ - Ay
1=

Once all forecasting methods are defined and understood, we should analyse our
Time Series data to decide which methods could be used.

[11.3 Analysis of a time series
[11.3.1 Definition

A time series [28] is a succession of observations of a same variable associated
to a phenomenon, regularly spaced in time. This discrete nature of the data results from
the phenomenon itself: either the information is only available at precise moments, or
we submit a continuous phenomenon to a discretization or a sampling. Choosing the
sampling interval has an important influence in the data and on the final results.

A time series can hence be discrete or continuous depending on the observations
made. If we can predict exactly the values, we say that the series is deterministic.
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If the future can only be determined partially using the past observations and
cannot be forecasted precisely, we consider that the future values have a probability
distribution that depend strongly on past values: The series is then considered
stochastic.

A time series analysis is based on a number of properties that describe each set
of observations. The first step is to plot the data and consider the following:

- If the data presents an increasing shape (Trend)
- If there exist an influence of certain periods of any time unit (Stationarity)
- If the data possesses Outliers (Discordant observations)

[11.3.2 Parameters of a time series

Descriptive time series analysis is based on the idea that the variation of a series
can be decomposed in a certain number of basic components. This assumption does not
always lead to the most accurate results, but it is interesting if the series presents a
certain trend or periodicity. Naturally, this decomposition is not unique. The parameters
that we take into account when analysing a time series are the following:

111.3.2.1 Trend

It corresponds to the regular evolution during a long period of time. It can be
recognized with the smooth movement of the series on a large scale, either increasing
or decreasing. We usually represent this evolution with either a linear or exponential
form.

Trend expresses the general movement of data over time. It mainly describes if
the data has a gradual upward or downward general slope.

111.3.2.2 Seasonality

Many time series present a certain periodicity, let it be annual, monthly or
weekly... We will apply this analysis to our case and deduce the general variations of
data. These elements of seasonality are easy to detect and can be determined explicitly,
but can also be eliminated from the data so to de-seasonalize the series.

111.3.2.3 Random component

Once the previous components are identified, and after having eliminated them,
some values are left. The latter are random values. We can analyse these values to
determine what type of random behaviour they show, following certain pre-existing
models.
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[11.3.3 Analysis of the Irradiance time series

In the case of our time series, in order to decide which forecasting method
should be implemented, we will first analyse the past data. First step is to plot the past
12 years of daily data on a graph:

Irradiation 2004-2016 in Lebanon

AP H iy
SNV W W\ V)

14/01/04 28/05/05 10/10/06 22/02/08 06/07/09 18/11/10 01/04/12 14/08/13 27/12/14
Time (Days)

Figure 13: Evolution of the irradiation with time on a two-months range

We can then verify the parameters described before. We observe that this time series
doesn’t present any trend as the irradiation stays between 0 and 9000 Wh/m2.
Moreover, we can notice a certain seasonality of one year. Which means that a same
pattern will be repeated every year. This hypothesis makes perfect sense, as the
irradiance must have about the same value depending on the seasons: a higher
irradiance value for summer, a lower value for winter, and an intermediate one for
spring and autumn. We also notice that summer is the moment when there are less
variations in the irradiance, compared to winter where very high variations exist.

We can also see some random points that do not follow the general shape of the data.
Which is normal, and we should not suppress this data as it will give us this randomness
in our future forecasting process.

Naturally, as our time series presents no trends and is subject to some random errors,
we can use the Simple Average forecasting method to predict the future values.

To be able to have two distinct forecasts and compare them, we can also consider an
Exponential forecasting method to use the strength of the last recorded data compared
with the past one. And as our time series does not present any trend, but have a very
strong seasonality, the Triple Exponential Smoothing is the method that fits the best our
time series.
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I11.4 Needs for each scale

In the framework of this thesis, we will be considering two scales: Daily Scale
Monthly Horizon (DSMH) and Hourly Scale Daily Horizon (HSDH). In each one of the
scales, in order to run the Energy Management System optimizing the cost function, a
certain number of parameters should be defined.

Concerning the DSMH, the two main data are needed: 1-month ahead forecast
for the power generated by the photovoltaic generator, and temperature.

As for the HSDH scale, we will need 1-day ahead forecast for the power
generated by the photovoltaic generator, and temperature.

SODA database Helioclim provides us with the Irradiance and Temperature
forecast for the HSDH scale. Unfortunately, this data is not provided for the DSMH scale.
In this case, we will do our own computation of the Irradiance forecast using both the
Simple Average and the Triple Exponential methods and use a yearly Temperature
forecast that is provided by the database.

[11.5 Results, Errors and comparison

[11.5.1 Types of errors

Once we will use both forecasting methods, we have to decide which one will be
most accurate. To do so, we need a criterion to evaluate the exactitude of each method.
By exactitude we mean how well does the forecast correspond to the actual real values.
For a time series, a common method is to use past data to forecast a more recent past
data.

The difference between a forecast value and the reality is called a forecast error.
We usually use the following equations to compute these errors [29]:

e Mean error
?:1 €j

ME =

n
e Mean absolute Deviation
MAD — Z?:lleil
n

e Mean square error
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n 2

MSE = 2=L5
n

e Standard deviation of the errors

n g2
SDE = |=:=1 1L
n—-1
e Percent Error
PE, = X2t %100

T X
e Mean Percent Error
MpE = Zalle
n
e Mean Absolute Percent Error

n
MAPE = 2=

We are going to consider all these errors in order to compare the two methods
we are using.

[11.5.2 Simple Average Method

The Simple Average method, as discussed before consists in computation of the
unweighted average of the values of the past data, and to assign this value to the
forecast data. In our case, we averaged the irradiation from 2004 to 2016 to determine
the values for 2017.

41



UNIVERSITAT POLITECNICA

DE CATALUNYA )

BARCELONATECH telecom
BCN

We can plot both forecast and real data in a graphic and compare the
general shape:

Comparison Real and Forecasted data Simple Average Method
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8000.00 N k.’" i W’ *\." -

7000.00 o"il.“" : = | ‘\
W'y )

6000.00 5 b'\
|']
5000.00
4000.00

3000.00 1l ”b‘
| | Wik

2000.00

Irradiation (Wh/m2)

1000.00

0.00
21/03/2016 10/05/2016 29/06/2016 18/08/2016 07/10/2016 26/11/2016 15/01/2017

—@— Average Irradiance Forecast Real data 01/05/2016 - 01/05/2017
Figure 14: Comparison of the real and forecasted data using the Simple Average method

The first observation is that the forecast follows the real data shape very
accurately. Obviously, as the forecast uses an average method, the forecast curve is
smoother, and does not present random errors as the real data does.

We also compute the different errors, and we obtain the following results:

Errors

Mean Error 53.19

Mean Absolute Deviation 782.26

Mean Square Error 1021878.79

Standard deviation of the errors 7.30

Mean Percent Error -9.35 %
Mean Absolute Percent Error 26.33 %

Table 3: Errors generated by the Simple Average method

These values will make more sense once we compare them with the errors from the
second forecasting method.
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[11.5.3 Triple Exponential Smoothing Method

The Exponential Smoothing Method considers that the recent data has more weight in
the computation of the future data than the past one. This weight is applied
exponentially in this method. We wrote a Matlab code that computes the forecast
values based on the past ones from 2004 [Annex 5].

Concerning the Triple Exponential Smoothing Method, after the algorithm initialization,
3 parameters have to be initialized as well: @, § and y. Using the literature [26] [30] [31],
we have the following conditions on these constants:

e arepresents the level, it should range in ae[0.01 ; 0.30]

e [ represents the trend, it usually ranges B€[0.01; 0.176]. In our case, as
there is almost no trend, B should be close to zero

e yrepresents the seasonality, it usually ranges ye[0.05; 0.50].

We had to run a certain amount of experiments in order to find the values of o, f and y
that minimizes the errors. The final values that gave us the minimum prevision error

were:
a = 0.150
B = 0.005
y = 0.050

The same errors are calculated, so we can compare them with the Simple Average
Method errors.

Errors

Mean Error 4.79

Mean Absolute Deviation 799.31

Mean Square Error 1097547.67
Standard deviation of the errors 2.19

Mean Percent Error -10.03 %
Mean Absolute Percent Error 26.76 %

Table 4: Errors generated by the Triple Exponential Smoothing method
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We also need to check the error generated by each method. We then plot these values
as well as the real data.

Comparison Real and Forecasted data ETS Method
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Figure 15: Comparison of the real and forecasted data using the ETS method

The final comparison of the errors can be described as follows:

Mean Error 53.19 4.79

Mean Absolute Deviation 782.26 799.31

Mean Square Error 1021878.79 1097547.67
Standard deviation of the errors 7.3 2.19

Mean Percent Error -9.35 % -10.03 %
Mean Absolute Percent Error 26.33 % 26.76 %

Table 5: Comparison between Simple Average and Triple Exponential Smoothing using different errors definitions
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I11.6 Final decision

To compare both methods, we verify the different types of errors and we notice that
both methods have more or less the same accuracy. The difference lies in some values
that differ slightly. However, we can observe that the Simple Average method seems to
be a little more accurate. Which makes sense, because as we mentioned before, the
Simple Average method implies that the values of the series are in equilibrium around a
constant value (the mean of the series), when the series is subject to random errors.
This is exactly the case of the data series of weather forecast.

Finally, the Simple Average method is a faster method in the execution process than the
Triple Exponential. The time parameter also gives the preference to the Simple Average
method over the Triple Exponential Smoothing. Consequently, we will use the Simple
Average method for the rest of our forecasting calculations.
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IV. Rolling Horizon Method

IV.1 Definition and motivation

The Rolling Horizon approach is a reactive scheduling method [8][9][16], that
solves iteratively the deterministic problem of the forecast by moving forward the
forecasting horizon in every iteration. Once one value of a parameter to be forecasted
is known, the status of the system is updated, and the optimal schedule for the new
resulting scenario is decided. This approach considers two elements: A prediction
horizon, during which the value of the parameter is known considering a possible error,
and a control horizon, which decides to change the actual values of the parameter on
the next prediction horizon in the case these values are to be changed.

The iterative aspect of this approach allows to update the forecasted value in order to
minimized the error considered depending on the current data available. The main goal
of the Rolling Horizon approach is that it solves the uncertainty concerning the values
needed and hence decreases the errors related to them [18].

The following figure explains this approach: each step, we roll the time horizon by one
discretization time interval. Moreover, the values of the parameters to be forecasted
are determined through a procedure that minimizes the errors between the predicted
output and the reference real value. The procedure is repeated successively.

Predicted outputs y(7+k|t)

{ —r—‘—,_l\‘/l;{i;Etcd u(t+k)

Inputs

.
>

It t+1 t+m (+p
input horizon

'
output horizon

Figure 16: A typical Rolling Horizon approach [9]
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In our case, we will use the Rolling Horizon to forecast the Photovoltaic generation and
the Load demand, for both time scales.

For the DSMH, the prediction horizon will be a month, and the discretization time is one
day. As for the HSDH, the prediction horizon is one day and the discretization time is one
hour. Moreover, our Rolling Horizon will function as follows: We will first launch 23
iterations of the rolling of the HSDH, then the 24th iteration will be a DSMH rolling. The
scheme below describes the whole procedure:

S0Cryp
ENGMGry,

$0Cro,
ENGMGrq,

,,,,,,,,, Billing periods

Initialize process

¥ Actualization
Measurements:
SOC battery DSMH Tl = lp4 HSDH
Energy from grid

Measurements:

SOC battery
Save output

Rolling Horizon
PV gen & demand

Actualization Forecast
PV gen & demand

Rolling Horizon
PV gen & demand

Figure 17: Rolling Horizon Procedure for the Forecast of PV generation and Energy demand

IV.2 Implementation

The figure above describes the general working procedure of the Rolling Horizon
approach applied to our case. We will first explain the process on the HSDH scale: the
HSDH system receives as input the State Of Charge (SOC) of the battery. We mention
that for the DSMH, another data is introduced too, which is the Energy from the grid.

Once the SOC data is introduced in the system, it generates and saves the output. From
one side, it will be used to graphically represent this information, but we will also use it
to define the forecast values for Photovoltaic generation and demand.
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The process goes as follow: First, the forecast data is actualized. In the case of the HSDH
scale, this data comes from the SODA database Helioclim that we presented before. We
then possess € 1, 20, t24,0- We represented the forecast values using £ .

The indexes have the following meaning: The first index represents the order of the data,
and the second index represents the number of the iteration. 51,1 is the first forecast
value of the first Rolling Horizon iteration, £ 2,1 1s the second forecast value of the first
Rolling Horizon iteration, fl’z represents the first forecast value of the second Rolling
Horizon iteration.

The “first forecast value” means that it is the value that will actually be used in the cost
optimization algorithm. All the other forecast values can be subject to a change (increase
or decrease), depending on the future iterations forecast values. In the case of SODA
database Helioclim, the actualization of the data is done every 15min. Hence, using the
Rolling Horizon approach will enable us to take advantage of this fast time of
actualization. Which we couldn’t if we did not use this method.

Next step is the Rolling Horizon itself, as we can see on the scheme (represented in red),
the value of the forecasting named  , , becomes the new value of the next forecast, i.e

t 1,1-

In a nutshell, every time we actualize the forecast for the next 24 hours (in the HSDH
scale), and the value of the next hour h is stored on the first cell of the row of forecast
values. Then, this first value will be the one used in the algorithm. Finally, we actualize
the forecast again, and the forecast value of h+1 is stored on that first cell.

Of course, the row is composed of 24 cells, and the 24 cells are always full as everytime
we empty the first cell to put the value of the next hour, all the values climb up and the
last cell contains the first hour of the next day, etc...

The following scheme represents how the Rolling Horizon functions from the row of cells
point of view:
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Actualization Forecast Rolling Horizon Rolling Horizon
PV gen & demand PV gen & demand PV gen & demand

t1,0 t20 t11 t30 U2
L0 . tso ta1 Lap t 22
tz3,0 t 24,0 231 t 10 t23p
ta4,0 t10 t a1 tao t 242

Actualization Forecast
PV gen & demand

Figure 18: Representation of the succession of Actualization of Forecast and Rolling Horizon

The large blue arrow represents the Actualization of Forecast every discretization time,
while the large red one represents the Rolling Horizon process on this forecast values.

As for the thin arrows, they have the following meaning:

The blue one shows the change in the value taking place at the n-position of the column
of data. As explained before, the 1%t cell for example will always be filled with the value
of the forecast that will be used in the next iteration, i.e at h+1 in the case of the HSDH.
The next cells contain the rest of the forecast values that will have as a purpose to have
an idea about the future variations of the data.

The thin red arrow represents the Rolling Horizon method. The first one, for example,
shows that the forecast value t , o -that is the forecast value of the second hour of the
day and first iteration of the Rolling Horizon-, will take the first position in the row of the
forecast values. In other words, in the next iteration, the value £ ,, will be used to
represent the second hour of the day.

Then, the next step is represented by the second large blue arrow. The new forecast
values, given by the SODA database Helioclim in the HSDH scale, are stored in this
Forecast column (Blue). Of course, the first and second hours having passed already, no
forecast exists for these values, we hence start at £ 3.

Again, the Rolling Horizon operates, it is represented by the large red arrow. As it can be
seen, in the position 1 of the column, for the iteration 2 of the Rolling Horizon (£ 12), we
fill in the latest forecast value of the 3™ hour. This is represented with the thin red arrow.
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The procedure continues again and again until the end of the day (hour 23), after which,
the larger loop will be followed: The 24% loop will be on the DSMH scale.

As mentioned before, the forecast for the photovoltaic generation and demand
for the DSMH scale are handled differently. We will be computing directly using the
method described in the previous section. However, the general working principle of the
Rolling Horizon does not change depending on the source of the data as this forecast
values are only inputs. The only step we should not miss is to make sure we have
actualized the forecast every discretization time interval. Which will enable a smooth
rolling of the data.

Concerning the 24™ iteration, the process is very similar, the new actualized data is
stored on the first cell of the Actualized Forecast DSMH column named here T 2,0 » then
it will be stored for the first iteration of the Rolling Horizon in the T 1,1- -We used capital
T to distinguish the DSMH scale from the HSDH-.

In the case of Lebanon, we also have to take into consideration the tariffs applied for
the energy used from the grid. The system is based on a graded monthly tariff. Which
means that the energy price is constant for a consumption below a certain level, and
each level has a different price. Hence one should consider the consumption day by day
to make sure not to surpass the necessary consumption to stay in the wanted grade for
the month. It is represented in the scheme by the “Billing periods” output.

This fact influences the DSMH scale: We have two main inputs to the system: The SOC
of the battery but also the Energy taken from the grid.

The SOC of the battery is represented as follows:

71%
70% —\
69%
68%
67%

66%

SOC value

65%
64%
63%

62%
T1 T3 T5 T7 T9 Ti11 T13 T15 T17 T19 T21 T23 T25 T27 T29

Days of the month

Figure 19: Variations of the SOC value
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Its value (which ranges between 0 and 1 in theory), is assumed to be initialized at 70%
(0.7), we also define that the upper limit is 70%. Then, with time, this value will vary
around this value in a certain interval. We hence defined the SOC error, which
represents the percentage of the SOC with which the value of the SOC varies.

In order to test the ability of the EMS to manage the variations of the SOC, this SOC value
will be randomly simulated using different values of SOC error so to analyze its influence.

For a SOC error of 1% for example, we define the SOC value as follow:
S0C(T;) = SOC(T))*x(1 + ((R — 0.5) x0.02))
Where:
SOC(T;) is the value of the SOC at a time T;
SOC(T,) is the value of the SOC at the initial time T;
R is a random number in the range [0;1]

This definition makes sense when knowing our objective: obtaining a value of the SOC
with an error from the initial value of 1% in our example.

By definition,
0<R<1
Hence
—05<R-05<05
—0.01 < (R-0.5)x0.02 <£0.01
Finally,

—1% < (R — 0.5)x0.02 < 1%

Naturally, we can represent a SOC error of any percentage using a similar equation.

IV.3 Results, comparison with no Rolling Horizon
We finally apply the Rolling Horizon to our system and we track the evolution of the
Photovoltaics generated. We measured this data using the Rolling Horizon and plotted
it from 07:40 to 12:28. This is the period where the information is the most critical for
our needs.

Our extractions, actualization of the forecast and RH method are done hourly in the
HSDH scale as the discretization time is one hour. We plot some of these data with the
purpose of comparison between the first and last extractions of the day.
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Obviously the first extraction of the day will represent the forecast with the highest error
as we still don’t know much about how the weather is going to be. The more we go
through the day, the more information we have concerning the possible evolution of
the weather and hence the photovoltaic generation. Consequently, the errors are
minimized by the end of the day.

The main point from this information is that the last forecast values of the day represent
the reality: In fact, at 11:00 for example, all the irradiation data given by the database
after 11:00 is a forecast. However, the data given before 11:00 is a measurement. Which
means the real data.

Now, we can analyse our plot:

Application of the Rolling Horizon for the PV generation

Vo)
o

]

Phgtovolgaics kiWh
wv o

07:40 08:52 10:04 11:16 12:28

Hour of the day
14 16 ——18 —e—19 —e—20 —0—22 —0—24

Figure 20: Example of the application of the Rolling Horizon on a sample

The red curve corresponds to the last Photovoltaic generation of the day, which also
means the real photovoltaic generation. The other curves represent other extractions
at different moments (14:00, 16:00, 18:00 and so on). We can see the evolution of the
forecasts with time: Photovoltaics values vary randomly around the final value.

In addition, one can verify the benefits of using the Rolling Horizon and compare the
photovoltaic generation forecast with and without Rolling Horizon. We plot the two
results in the following graph:
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Photovoltaic generation
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Figure 21: Comparison of photovoltaic generation with and without the Rolling Horizon approach

We notice that for the first hours of the day, the two methods show the same results.
Which seems accurate, as the error of prediction of the first hours of the day are very
low even without the Rolling Horizon. However, on the second part of the day, we see
that the values differ more. We hence understand the importance of the Rolling Horizon

that is keeping track of the newly updated forecast and consequently reducing the error

of prediction. The use of this method will give us more accurate results.

We also plot the error between the two methods. We observe again that the error is
more present on the second part of the day, which corresponds to the information we

gathered from the first graph.

Absolute Percent Error
35.00
30.00
25.00
20.00

15.00

Percent error %

10.00

5.00 /\
0.00
00:00 04:48 09:36 14:24
Hour of the day

19:12 00:00

Figure 22: Evolution of the absolute percent error without Rolling Horizon

53



UNIVERSITAT POLITECNICA
DE CATALUNYA

BARCELONATECH

i D

V. Forecasting errors — Parametric Analysis

V.1 Influence of the SOC error on the cost function

The goal main of the EMS is to provide enough energy for all the demand while
minimizing the cost function. It is an optimization problem, and many parameters should
be taken into account to determine how this cost function evolves.

One of the main parameters is the SOC of the battery. In fact, the behaviour of the
battery affects the storage particularity of the system and consequently the cost
function itself.

In order to understand better the influence of the SOC error on the cost function, we
performed a parametric analysis. For a range of values of the SOC error, we exploit the
optimized cost function computed by the algorithm of the EMS on GAMS (General
Algebraic Modelling System) [17].

We obtain the following data:

SOC error

Cost ft1

Cost ft2

Cost ft3

1%

35324006.26

35324006.26

35324006.26

5%

34863096.72

35028922.86

34922068.7

10%

35264068.09

35578533.33

35458366.52

20%

35856768.12

36226612.33

36461225.65

Table 6: Evolution of the cost function with the SOC error of the battery
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Figure 23: Evolution of the cost functions for 4 different values of the SOC error

We notice that the values have a same general behaviour, but we also notice that for
lower values of the SOC error, the values of the cost function are close to a same value.
On the other hand, as the values of the SOC error are higher, the values of the cost
function are dispersed. The small SOC error represents a stable moment of the year -
around summer- when, as we mentioned before, the prediction error if the smallest. On
the opposite, a high SOC error represents the non-stable moment of the year -around
winter- when the difference between the real and the forecast value is higher, which
means the prediction error is higher.

From this experiment, we conclude that when the forecasting is done during a stable
period, the cost function has a constant value and when the period is less stable, the
cost function very dispersed values. Which makes sense as the more stable the moment
is, the less the error in prediction there is and the better the scheduling for the next
period will be. Consequently, the more stable the value of the cost function will be.

We also compute the average of all the repeated experiments with these 4 values of the
SOC error in order to smooth the data. We obtain the following:

SOC error Average
1% 35324006
5% 34938029
10% 35433656
20% 36181535

Table 7: Evolution of the average cost function with the SOC error of the battery
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We also plot the graph:

Average of the cost function

4000

3500 Co— —C— e = ®

x 10000

3000
2500
2000
1500
1000

Optimized Cost function

500

0% 5% 10% 15% 20%
SOC error

Figure 24: Evolution of the average of the cost function for 4 different values of the SOC error

We notice that the value of the cost function is constant in average. Hence, even with
high variations of the SOC error, i.e. variations of the moments of the year during which
the prediction is done, the cost function does not vary much. We can then conclude
about the robustness of our system, since with a highly dispersed input (SOC error), the
output is almost constant.

V.2 Influence of the demand on the cost function

Another parameter that should be taken into account is the demand. Naturally, as the
demand varies, the energy generation must vary and consequently, the cost function
varies. We perform a parametric analysis on the demand for different values, and
retrieve data concerning the corresponding cost function from the EMS simulated by
the GAMS algorithm [17].
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We take the daily energy consumption profile in Lebanon that has the following overall
shape:

100 1

20 0g
=] 0.8
40 o7
20 o8

$OC Bat [%]

= Load demand

Energia [kWh]

-100 o

Figure 25: Energy profile for a weekday in Lebanon

This state of the consumption the standard situation of the demand. Then, we define
the fraction of the energy demand, the coefficient that multiplies each one of the values
of the profile.

We then compute the cost function related to each consumption profile. We obtain the
following:

Fraction of  Cost
energy function
demand

0.5 1582.36

1 35324006.26
1.2 1471301390
1.3 2128302897
1.5 9992120310

Table 8: Evolution of the cost function with the demand
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We also plot the evolution of the cost function with respect to the energy demand. We
observe that the cost function increases with an increasing demand. We also notice a
peak: The saturation point.

We can supply more or less loads with higher and higher increments, but at the
saturation point, the devices in the grid cannot supply anymore because they reached
their limit. There is a penalty fee when loads are not supplied. And the more non-
supplied loads there are, the higher the penalty is. Until the point when the cost
becomes really high.

When the limit capability to increase the demand is reached, the system needs to be re-
dimensioned.

In this case, the saturation point lies at a demand factor of 1.3.

Cost function with varying demand

1.2E+10
1E+10
8E+09
6E+09

4E+09

Cost function value

2E+09

0
0.5 1 1.2 1.3 1.5

Factor of increase of energy demand (base 1000kWh)

=@=_Cost function

Figure 26: Influence of the demand on the cost function
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VI. Exploitation of the tool: Cases of study

Once we defined the influence of different parameters on the cost function of this
system, we can test it on some situations and understand the behaviour depending on
some parameters. Two main variables can be varied: The monthly blackouts and the grid
tariff ranges.

V1.1 Grid energy Tariffs

As mentioned before, the grid tariffs in Lebanon have a special policy based on a graded
monthly tariff, where depending on the quantity of energy consumed, the price depends
on the energy levels defined beforehand.

In this experiment, we run simulations with different Grid tariffs. The table below
summarizes the Grid tariffs considered:

Interval upper energy level
100 300 400 500 >500
Tariff range 1 7 11 16 24 40
Tariff range 2 35 55 80 120 200
Tariff range 3 70 110 160 240 400
Tariff range 4 140 220 320 480 800

Table 9: Daily Tariff of Grid energy depending on the upper energy level interval

We then compute the cost function associated to each tariff range, and compare them.
The plot is in the figure below:

Evolution of the cost function with different energy tariff ranges from grid

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0

x 10000

Cost function

Tariff range 1 Tariff range 2 Tariff range 3 Tariff range 4

Tariff ranges

Figure 27: Evolution of the cost function value depending on the tariff ranges mentioned before
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Corresponding to the following values:

Tariff Range Cost
function
Tariff range 1 7128922

Tariff range 2 35324006
Tariff range 3 65624052

Tariff range 4 86937825
Table 10: Evolution of the cost function with the different Tariff ranges

We notice an increasing evolution of the cost function, which makes sense as the higher
the tariff range, the higher the final cost function for a same energy consumption.

Moreover, we can point out the difference in the slopes of evolution between the
different tariff ranges. In fact, the first two points correspond to a very low-priced
consumption, hence the cost function is very low. The third point have a higher slope. It
corresponds to the normal consumption tariff range and the cost function varies
between different values. Finally, the last point corresponds to a very high-priced tariff
range, and consequently the cost function is much higher.

The cost function is then influenced by the energy tariff ranges.

V1.2 Monthly Blackouts

Another parameter that can be tested is the blackouts. In the case of Lebanon, the grid
blackouts are programmed in advance on a month horizon. The EMS, with this
information provided, can take it into consideration in the scheduling of the next
operation of the devices.

We implement the following example to visualize the impact of the blackouts on the
system. We will consider a situation where two blackouts are programmed during the
day. One from 07:00 to 09:00, and the other one from 19:00 to 20:00.

The Model Predictive Control coupled with the Rolling Horizon method gives us the
following outputs:
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Figure 28: Evolution of the energy exchanges and SOC of the battery for a programmed
blackout

On this figure, we can see the evolution of 5 parameters: The Photovoltaic generation
(Yellow), the Diesel generation (Red), the Red input (Blue), the demand from the loads
(Bordeaux) and the SOC of the battery (Brown).

At 05:00, the prediction is as follows: it is expected that from 06:00, the network will use
the battery energy, we then notice a drop in the SOC from 06:00 to 07:00. Then, the
Photovoltaic generation is available from 07:00 to 08:00 for a slightly increased
consumption (Bordeaux curve), and a constant SOC as we don’t use the battery at that
moment. From 08:00 to 11:00, the system keeps using the Photovoltaic energy as it is
available and sufficient for the demand. From 11:00 to 12:00, there is an increased
production of the Photovoltaic energy that is used to charge the battery (SOC increases).

From 12:00 to 13:00, the PV generation and the demand drop, so the battery cannot be
charged anymore. Another peak of PV generation associated with a very low demand
enables the full charging of the battery.

From 16:00, there is an important drop of the PV generation and consequently a use of
the battery. Then, a peak of the PV generation that coincides with a high demand from
the loads from 16:00 to 19:00. We observe a small use of the grid energy from 17:00 to
18:00 to help the system with supplying all the demand. After that, the blackout from
19:00 to 20:00 appears with an important demand that is compensated by the PV
generation.
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Once the PV generation is not enough, by 20:00, the grid input is used then, later on the

diesel generation is used (from 23:00) with the battery supply.

We can then notice that with this system, the blackout is foreseen and handled
beforehand. And with a monthly horizon blackout data, all shortages can be avoided
with this MPC coupled with the Rolling Horizon.
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VIIl. Conclusions and future development

The challenge presented by this work suggested the use of a Model Predictive Control
(MPC) on an Energy Management algorithm with the goal to minimize the cost function
of a renewable-based microgrid network for an extended horizon of one month. This
MPC provides an online real-time scheduling of the generation units considering the
forecast of the renewable resources (Photovoltaic generation). A Rolling Horizon
approach has also been introduced to reduce the prediction error.

The novelty of this approach is to consider two time scales: daily scale with monthly
horizon and hourly scale with daily horizon. This method enables a faster and less
consuming process for the energy management. For each scale, a model is defined, and
the forecast data for the photovoltaic generation and the load demand is needed.

The access to this data is done differently: The hourly forecast of photovoltaic
generation will be extracted automatically from an online database. The daily forecast
has been computed directly comparing Exponential Smoothing and Simple Average
methods, being this last one that gave a more accurate forecasting for our time series.

The implementation of the MPC combined with the Rolling Horizon proved to be a
feasible approach to run the Energy Management System correctly according to the
simulation results.

In the next steps of this work, the proposed EMS can consider lower scales to implement
the MPC, such as the 15-minutal or 5-minutal scale, as it will provide even more accurate
results. Future research can also focus on the management of the battery lifetime during
its operating time.
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Appendices

[Annex 1] MEDsolar Project presentation

£akEy
Machrek Energy Development - Solar hiod
Project 00087030 U l N
D|P
General Information Contact Information
. Project N/A
Short Title: MED-Solar Manager:
UNDP Programme/Portfolio: Environment & Energy UNDP Portfolio Jihan Seoud
Geographic Coverage: Lebanon Manager:
Project Status: Ongoing Address: E:iil’;ia:gsgse?eg, -
Start Date: 01 January 2013 floor Beirut, Lebanon
Expected End Date: 30 September 2016 Phone: +961 1981 944
Implementing Agency: UNDP (Direct Execution) (UNDP) Fax: +961 1981 944
Last Updated: 01 March 2017 Website: www.undp-cedro.org
Email: info@cedro-undp.org

Classification Working Hours: 9:00 am to 5:00 pm

MDG Goal: 7. Ensure environmental sustainability Donors & Budget
EC $1,016,405.00
Total $1,016,405.00

Target Groups /Beneficiaries

- Industries

Project Details

Background

The ENPI regional energy project aims at the promotion and implementation of innovative technologies and know-how
transfer in the field of solar energy, particularly PV systems. In the target countries; Lebanon, Jordan and Palestinian, the
weakness of the grid, in terms of blackouts and brownouts, undermines security of supply in critical facilities and in small and
medium size industries. For these institutions, existing expensive diesel generators make up for the times that the grid is not
present. The introduction of a novel photovoltaic (PV) - national grid - diesel grid architecture is important to be set up so
that the commercial sector in the country can begin the integration of PV systems, saving on grid and diesel costs.

Achi ts & Expected Resutls

The capacity building and implementation of the projects in Lebanon are completed as follows:

- EMKAN, Rene Mouad Foundation, Tahrir and the American University of Beirut were selected as adequated sites after the
development of site selection criteria, reviewing applications and properly commissioned to Beneficiaries.

- Installation and setup of systems.

- Inauguration event for AUB site was held in July 2016.

Issues & Difficulties

Page 1 of 1
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[Annex 2] SunTech 300-24/Ve PV panel datasheet

STP305 - 24/Ve
STP300 - 24/Ve
STP295 - 24/Ve

STP290 - 24/Ve

Trust Suntech to Deliver Reliable Performance Over Time

« Tested for harsh environments (salt mist, ammonia corrosion and sand

305 Watt

/:3) telecom

BCN

% SUNTECH

POLYCRYSTALLINE SOLAR MODULE

advanced cell technolog;

Positive tolerance

reliablity

load tests
Module certified to
withstand extreme win

loads (5400 Pascal) *

Features
High module conversion
@d efficiency
157% Module efficiency up to
- 15.7%achieved through

Positive tolerance of up to
5% delivers higher outputs

Extended wind and snow

&

Weak light

y and

manufacturing capabilities

fyt

2%

eniaiert
d

(3800 Pascal) and snow

Excellent weak light
performance

Excellent performance
under low light conditions

Suntech current sorting
process

System output maximized by
reducing mismatch losses up
to 2% with modules sorted &
packaged by amperage

Withstanding harsh
environment

Reliable quality leadsto a
better sustainability even in
harsh environment like desert,
farm and coastline

Certifications and standards:
1EC61215, IEC61730, conformity to CE

L

@ Ce

e [0

World-class manufacturer of crystalline silicon photovoltaic modules
Unrivaled manufacturing capacity and world-class technology
Rigorous quality control meeting the highest international standards:
1SO 9001: 2008, ISO 14001: 2004 and ISO17025: 2005

Regular independently checked production process from international
accredited institute/company

blowing testing: IEC61701, DIN 50916:1985 T2, DIN EN 60068-2-68)***

Compactand Durable Frame
Design

The new compact frame means
more modules per package,
soit saves your shipping and
inventory cost. The rigid and
durable hollow chamber
guarantees the same long-term
and reliable performance.

Warmnted Power Output

* Please refer to Suntech Standard Module Installation Manual for details.
*** Please refer to Suntech Product Near-coast Installation Manual for details.

©Copyright 2013 Suntech Power

Industry-leading Warranty based on nominal power

+ 97%in the first year, thereafter, for
years two (2) through twenty-five
(25), 0.7% maximum decrease from
MODULE's nominal power output
per year, ending with the 80.2%
in the 25th year after the defined
WARRANTY STARTING DATE ****

+ 10-year material and workmanship
warranty

Industry lea din

9 lineg, War,

e

0w

25

**pV Cycle only for EU market.
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IP67 Rated Junction Box
Supports installations in
multiple orientations. High
reliable performance, low
resistance connectors ensure
maximum output for the
highest energy production.

**** Please refer to Suntech Product Warranty for details.

www.suntech-power.com IEC-STD-Ve-NO1.01-Rev 2013
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STP305 - 24/Ve
STP300-24/Ve
STP295 - 24/Ve
STP290 - 24/Ve

Electrical Characteristics

telecom
BCN

)

% SUNTECH

:: STC STP305- STP300- STP295- STP290-
et boa 24/Ve 24/Ve 24/Ne 24/Ve
Oraegn hoee < =X Maximum Power at STC (Pmax) 305W 300W 295 W 290W
Optimum Operating Voltage (Vmp) 362V 359V 356V 354V
Optimum Operating Current (Imp) 843 A 836 A 829A 820A
|2 Open Circuit Voltage (Voc) 447V 445V 443V 441V
g {Back Yiew) HEge
st | | Short Circuit Current (Isc) 8.89 A 883A 8.74A 8.65A
Sooarumoer —_| i Module Efficiency 15.7% 15.5% 15.2% 14,9%
Operating Module Temperature -40°C to +85 °C
o | [T :
Maximum System Voltage 1000V DC (IEC)
i E Maximum Series Fuse Rating 20A
i N Power Tolerance 0/+5 %
STC: rradiance 1000 W/m?, module temperature 25 °C, AM=1.5;
Bestin Class AAA solar simulator (IEC 60904-9) used, power measurement uncertainty is within +/- 3%
_—
NOCT STP305- STP300- STP295- STP290-
- 24/Ve 24/Ve 24/Ve 24/Ve
:"“’“*" T Maximum Power at NOCT (Pmax) 222W 219W 216 W 212W
. Optimum Operating Voltage (Vmp) 326V 324V 322V 321V
. 2 \ﬁ‘ Optimum Operating Current (Imp) 6.80 A 6.75A 6.70 A 6.60 A
FrontView) \I\]T\ Open Circuit Voltage (Voc) 208V 206V 405V 203V
Nokax mm{lnch] | Short Circuit Current (Isc) 7.19A 714 A 707 A 6.99 A
NOCT: Irradiance 800 W/m?, ambient temperature 20°C, AM=1.5, wind speed | m/s;
Bestin Class AAA solar simulator (IEC 60904-9) used, power measurement uncertainty is within +/- 3%
Current-Voltage & Power-Voltage Curve (300-24) Temperature Characteristics
Nominal Operating Cell Temperature (NOCT) 45+2°C
7 I Temperature Coefficient of Pmax -0.43 %/°C
: i s Temperature Coefficient of Voc -0.33 %/°C
g {93 Temperature Coefficient of Isc 0.067 %/°C
3 8
3
™

Mechanical Characteristics

valsge ) Solar Cell Polycrystalline silicon 156 x 156 mm (6 inches)
No. of Cells 72(6x12)
[t s ot s s i e 2] Dimensions 1956 x 992 x 40mm (77.0 X 39.1 X 1.6 inches)
Excellent performance under weak light conditions: at an irradiation intensity of 200 W/m? Weight 22 kgs (48.4 Ibs.)
{AM 1.5, 25 °C), 95.5% or higher of the STC efficiency (1000 W/m® } is achieved Front Glass Tempe[ed glass
Frame Anodized aluminium alloy

Dealerinformation

Junction Box

IP67 rated (3 bypass diodes)

Output Cables TUV (2Pfg1169:2007)
4.0 mm? (0.006 inches?), symmetrical lengths (-) 1100mm
(43.3 inches) and (+) 1100 mm (43.3 inches)

Connectors H4 connectors

Packing Configuration

Container 40" HC
Pieces per pallet 25
Pallets per container 22
Pieces per container 550

Information on how to install and operate this product is availablein the installation instruction. All values indicated in this data sheet are subject to change without prior announcement. The <pecifications may vary slightly. All specifications are in
accordance with standard EN 50380. Color differences of the modules relative to the figures aswell as discoloations of/in the modules which do nat impair their proper functioning are possible and do not constitute a deviation from the specification.

E-mail: sales@suntech-power.com

www.suntech-power.com
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[Annex 3] Code extraction from SODA for hourly granularity daily horizon

%%Parameters definition
Time ='04120000";
Time2 ='04110000"
Time3 ='04130000";
Year ='2017";

Dure ='5';

%%Saving of data
i =10000;
while i <11500
Name = num2str(i)
D = str2double(Dure)

%Creation of the .BAT file
file = 'CarpentrasGranu.bat'; %Name of the .BAT file
fid = fopen(file,'wt'); %0Open the .BAT file and allow editing

%Text inside the .BAT file

linel = ['wget -O Forecast1' Dure'_CarpentrasGRANU0000000000000' Name '.csv --header="soda-
user: guest" --header="soda-passwd: guest" "http://www.soda-
is.com/pub/hc3va_similarity_forecast.php?geopoint=44.083,5.059&elevation=-999&firstday=' Year '-'
Time(1:2) '-' Time(3:4) '&lastday="Year '-' Time3(1:2) '-' Time3(3:4) '&duration="'Dure
'&time=TU&slope=25&azimuth=180&albedo=0.2&horizon=1""];

line2 = ['wget -O Realtimel' Dure 'CarpentrasGRANU000000000000' Name '.csv --header="soda-user:
guest" --header="soda-passwd: guest" "http://www.soda-
is.com/pub/hc3v4_forecast.php?geopoint=44.083,5.059&elevation=-999&firstday=' Year '-' Time2(1:2)
' Time2(3:4) '&lastday="' Year '-' Time(1:2) '-' Time(3:4) '&duration="'Dure
'&time=TU&slope=25&azimuth=180&albedo=0.2&horizon=1""];

%Stick all text together
auto = {linel, line2};

%Print the text in the .BAT file
fprintf (fid, '%s\n', auto{:});

%End of the process
fclose (fid);

%0pen the .BAT file to execute program and create .csv file
command = file;
status = system(command);

% end

pause(900); %Time waited between two consecutive extractions of .csv files
i=i+25; %Go to the next extraction process

end
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[Annex 4] SODA similarity model

Partners

ol

Bl

solar radiation data

* http://www.soda-pro.com ***

Photovoltaic plant owners are more and more urged to predict what they will produce to ensure the load
balancing of the electricity network. A new solar forecast algorithm, named Solar Forecast Similarity
Method, has been developed to predict irradiance for the next day based on a statistical analysis of the long
term HelioClim-3 version 4 (HC3v4) irradiation database.

Method

B Compare today’s Global Horizontal Irradiance (GHI) to the past 4 years (optimal learning period) HC3v4

irradiance database, and then:

/ R I
W — /
% / \ A
MINES i b # e
ParisTech R S R R
/_\ Today: day “d” Tomorrow: day “d+1"
i Y R e e T T
ARMINE

Authors - speaker

Alexandre Boilley

Detect the 10 similar days in the
past based on square distance

B More information on: http:/Avww.soda-pro.com/soda-|

Then, average the irradiation values of the days following
the 10 selected days to produce the prediction

ducts/hc3-similarity-forecast

B Use the online interface:

Validation protocol and results

http://iwww. soda-pro.com/web-services/radiation/helioclim-3-forecast

Ex. of 2-D histogram

BSRN station of Carpentras, 1 hour

ThRANSYALOR Validation protocol BSRN data quality check ~ summarization
Claire Thomas X o . . Ry
TRANSVALOR B Comparison of t.he Similarity forecast ~® Remove night and non plausible
) GHI values against the measurements data i
Etienne Wey of Baseline Solar Radiation Network B Missing values: sum the available
TRANSVALOR (BSRN) stations 15 min data to generate partial o
Mathilde Marchand B Compute: bias, Root Mean Square hourly, daily and monthly values s
TRANSVALOR Error (RMSE), and correlation ® 14 BSRN stations in the HC3v4 .
Philipe Blanc coefficient (_CC? for each coverage, but only 9 stations with i
. summarization: 15 min, 1h (see table at least 4 years of data available
MINES ParisTech '
below), 1 day, 1 month . .y | -
Gomei
Special off 1 HOUR
pecial orter ICOMPARISON Number| Mean | BiasHC3v4 |Bias Forecast| RMSE HC3v4 [RMSE Forecast| Correl. | Correl
RESULTS of values| - BSRN - | (Whim?) (Wh/m?) (Whim?) (Whim?) coeff. | coeff.
o (Whim?) |(relative in %) (relative in %)| (relative in %) | (relative in %) | HC3v4 |Forecast
Free and unlimited access IStation
f° this service Toravere 18095 | 221.9 | -6.0(-27%) | -3.3(-1.5%) | 60.3(27.2%) | 126.5(57.0%) | 0.958 | 0.800
until the end of 2015 ICabauw 20886 | 2496 | 0.0 (-36%) | -10.8 (43%)| 567 (22.7%) | 126.9(50.8%) | 0968 | 0821
Palaiseau 19680 | 2851 | 9.3(33%) | 6.6(23%) | 51.4(18.0%) | 134.1(47.1%)| 0.978 | 0.830
Contact us: Payeme 10167 | 306.7 | -24.3(-7.9%) [-31.6 (-10.3%)| 67.3(22.0%) | 144.3(47.1%) | 0970 | 0.839
support-sales@soda-is.com Carpentras 21959 | 3623 35(1.0%) | -1.9(-05%) | 47.2(13.0%) | 133.7(36.9%) | 0986 | 0.878
ISede Boger 14417 | 5056 |-35.3(-7.0%) | -39.0 (-7.7%) | 69.2(13.7%) | 98.0(19.4%) | 0982 | 0957
Tamanrasset 20096 | 4792 | 0.7(0.1%) | 0.4(0.1%) | 71.7(150%) | 120.6(252%) | 0974 | 0.926
Brasilia 9428 | 4171 | 16.4(3.9%) | 24.2(5.8%) | 110.4(26.5%) | 154.2(37.0%) | 0933 | 0.860
|Sao Martinho da Serra | 11567 | 3963 | -58(-15%) | -13.0(-33%) | 73.3(185%) | 190.6(48.1%) | 0971 | 0787

SHC

CONFERENCE

Conclusion and perspectives

B The bias of the forecast is close to the HC3v4 bias
B RMSE can be up to 57% in cloudy areas, but correlation coefficients are almost always above 0.8

B This method performs better in slowly varying weather areas; in cloudy areas, numerical weather predictions
at “d+1” will be used to constrain the choice of the nearest days in the HC3v4 database

www.soda-pro.com
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[Annex 5] Matlab code computation ETS

% Initialization
% Constants to choose
L=365;
i=1
alpha =0.15;
beta = 0.005;
delta = 0.05;
filename = 'C:/Users/Cami/Desktop/20170511Test/Data20042016.xIsx';

% Initial Values
% Initialization of the factors from
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc435.htm
Y = xIsread(filename, 'Data’, 'C2:C4385");
obs =size(Y,1); % Length of the observations vector
| = zeros(L,1); % Stationnarity initial values
E = zeros(L,1); % Exponential smoothing final values
T = zeros(L,1); % Trend final values
S = zeros(L,1); % Stationnarity final values
F = zeros(L+j,1); % Forecasted final values

%fore = zeros(L,1);

Nseasons = floor(obs/L); % Number of seasons considered

seasonavg = zeros(Nseasons,1); % Empty vector to store the avg values for each season
averageobs = zeros(Nseasons,1); % Empty vector to store the avg of "each row"

% Initialization the Exponential value
E1=Y(1,1);

% Initialization of the Trend factor

TO=0;
fori=1:L

TO =TO + Y(L+i) - Y(i);
end

T1 = ((1/L)A2)*TO;

% Initialization of the Seasonal factors
% Computation of the average of each period

for i = 1:Nseasons % We go through all the seasons
for j=1:L % For each period considered
seasonavg(i,1) = seasonavg(i,1) + Y((i-1)*L+j); % We compute the sum of the values of Y for this
period
end
seasonavg(i,1) = seasonavg(i,1)/L; % We average each of these sums
end

% We devide the observation by their appropriate mean
for i=1:Nseasons
forj=1:L
averageobs((i-1)*L+j) = Y((i-1)*L+j)/seasonavg(i,1);
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end
end

% We compute the seasonal factors by computing the average of
% each row
fori=1:L
for j = 1:Nseasons
1(i,1) = I(i,1)+averageobs((j-1) *L+i);
end
I(i,1) = I(i,1)/Nseasons;
end

% Forecast Computation
% Initialization
E(1,1) = E1;
T(1,1)=T1,;

fori=1:L
S(i,1) = 1(i,1);
end

for k = 2:0bs

% Exponential smoothing
if (k-1>=L)

E(k,1) = alpha * (Y(k,1) - S(k-L,1)) + (1-alpha) * (E(k-1,1) + T(k-1,1));
else

E(k,1) = alpha * (Y(k,1)) + (1-alpha) * (E(k-1,1) + T(k-1,1));
end

% Trend smoothing

T(k,1) = beta * (E(k,1) - E(k-1,1)) + (1-beta) * T(k-1,1);

% Seasonal smoothing

if (k-L>0)

S(k,1) = delta * (Y(k,1) - E(k,1)) + (1-delta) * S(k-L,1);
end

% Forecast smoothing
if (k+j-1>=L)
F(k+j,1) = E(k,1)+]*T(k,1)+S(k-L+j);
end
end
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