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 Adaptive control reduced the boiler operation costs and ensured the building’s 

thermal comfort 

Abstract 

Most existing commercial building energy management systems (BEMS) are reactive 

rule-based. This means that an action is produced when an event occurs. In 

consequence, these systems cannot predict future scenarios and anticipate events to 

optimize building operation. This paper presents the procedure of implementing a 

predictive control strategy in a commercial BEMS for boilers in buildings, and 

describes the results achieved. The proposed control is based on a neural network that 

turns on the boiler each day at the optimum time, according to the surrounding 

environment, to achieve thermal comfort levels at the beginning of the working day. 

The control strategy presented in this paper is compared with the current control 

strategy implemented in BEMS that is based on scheduled on/off control. The control 

strategy was tested during one heating season and a set of key performance indicators 

were used to assess the benefits of the proposed control strategy. The results showed 

that the implementation of predictive control in a BEMS for building boilers can reduce 

the energy required to heat the building by around 20% without compromising the 

user’s comfort. 

Keywords 

Building energy management system; energy savings; boiler management; neural 

networks 
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1 Introduction 

Most of the literature states that the global contribution from buildings towards energy 

consumption is around 20–40% in developed countries [1]. In Europe, buildings are 

responsible for 40% of energy consumption and 36% of CO2 emissions [2], consuming 

more energy than the industry and transportation sectors [3]. Buildings consume energy 

in their entire life cycle, but 80–90% of their lifecycle energy use is consumed during 

the operational stage [4–7]. As a consequence, recent EU directives have focused on 

reducing operational building energy consumption [8]. 

One challenge in the building sector is to optimise heating, ventilation, and air-

conditioning (HVAC) systems because they consume half of the operational energy 

used in a building [9]. Moreover, HVAC systems often work inefficiently [10]. Building 

energy management systems (BEMS) play an important role in this area [11]. BEMS 

contribute to continuous building energy management [11], enabling buildings to be 

more intelligent through real-time automatic monitoring and control [12], and 

optimizing their energy use [13]. According to Lee and Cheng [14], the implementation 

of a BEMS to manage HVAC systems leads to savings of around 14%. The savings are 

directly correlated with the functions used by the BEMS to optimise energy demand. 

Generally, commercial BEMS adopt demand-driven control strategies, and usually the 

demand is not measured and the control strategy is simply schedule-based [15]. In 

addition, BEMS generate a tremendous amount of data that is rarely fully interpreted 

and utilized [12]. These data could be used to optimize building maintenance activities 

and building energy usage [16]. 

The aim of this research was to demonstrate how predictive control could be 

implemented in a commercial BEMS for the heating system, and to present the benefits 
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of the proposed approach in comparison with the traditional schedule-based on/off 

control strategy currently used in commercial BEMS. In particular, this paper addresses 

how much time is needed to condition a tertiary building to achieve thermal comfort 

levels at the beginning of the working day. 

The paper is structured as follows. Section 2 describes the problem statement and the 

research goal. Section 3 presents the building in which predictive control was 

implemented, and describes how the boiler was managed before this implementation. 

Section 4 describes the methodology used to define the control strategy, and the key 

performance indicators (KPIs) for assessing the proposed control strategy. Finally, 

Section 5 presents and discusses the results, and Section 6 details the conclusions and 

future work. 

2 Problem statement and research goal 

In the non-residential HVAC domain, central heating systems using water circulation 

are commonly used. Generally, a boiler heats water through combustion of gas, among 

other fuels. Then, the heated water is distributed to the emission elements such as 

radiators or fan-coils using pumps, and the water returns to the boiler [10]. Buildings 

with radiators tend to need more time to achieve thermal comfort, due to thermal inertia. 

Such buildings generally require an extra effort to manage discontinuities during 

operation time. 

Many control methods have been developed or proposed in the literature for HVAC 

systems (see [14] and [17] for a summary). According to Afram and Janabi-Sharifi [17], 

control methods for HVAC systems are divided into classical control (on/off, P, PI, and 

PID control), hard control (gain scheduling, nonlinear, robust and optimal control and 

model predictive control), soft control (fuzzy logic and neural network control), and 
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hybrid control (fusion of hard and soft control techniques). Even so, a classical control 

approach based on an on/off, P, PI or PID control with a schedule is still used in many 

HVAC systems [15]. This approach cannot optimize energy use as it does not take into 

account the uncertainty that affects the surrounding environment due to weather 

conditions, internal loads caused by occupancy dynamics, or external factors such as 

energy grid dynamics [15]. As a result, the performance of these systems is low. 

The main cause of the extended use of the classical approach is that nowadays most 

BEMS available on the market are reactive rule-based [18]; this means that when an 

event occurs an action is produced. In terms of analysis, existing BEMS are only 

capable of carrying out simple data analysis and visualization functions [12]. Hence, 

they cannot learn over time [19] or predict future events or scenarios. In addition, the 

interoperability of the BEMS available on the market is very low, and this makes it 

difficult to implement external control modules [20]. As a consequence, it is difficult to 

implement proactive control strategies. 

Another relevant aspect is that data recorded by BEMS are usually underused [10]. Data 

stored in BEMS are rarely interpreted and utilized to obtain knowledge for improving 

building operational performance [12]. According to Domínguez et al. [10], this is due 

to the fact that operators do not have the skills to exploit the large amount of data 

available in BEMS, and only create basic graphs of independent variables. However, it 

is undeniable that the building automation industry needs to implement tools to analyse 

the captured information, to help to analyse data and provide actions to optimize the 

building operational performance [12]. 

One common energy efficiency measure is adjustment of the temperature set point 

according to occupancy [21–23]. Conventional HVAC control systems relax the thermal 
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set points when the building is presumed to be unoccupied, for example at night [9]. 

Temperature setbacks have been well-studied in the literature, with reports of good 

energy saving results [24,25]. However, the challenge in implementing the setback 

approach is to ensure thermal comfort during occupied times [24]. Temperature set 

points should be changed with enough time to start conditioning the building or room to 

ensure thermal comfort when the occupants arrive. The time required for conditioning a 

building or room depends on the HVAC system, building characteristics and weather 

conditions [25]. Usually, the building energy manager’s experience is used to determine 

the time needed to condition the building, and it is scheduled in the BEMS. 

This paper addresses the issue about how to implement predictive control in a 

commercial BEMS. More precisely, it focuses on how to determine the optimal time to 

turn on the boiler each day to achieve the target temperature at 8.00 am, the time when 

the building starts operation. To solve this problem, the historic data of two heating 

seasons were used to develop predictive control. The proposed control system was 

based on a neural network that determined the optimum time to turn on the boiler each 

day to achieve comfort levels at the beginning of the day. 

3 Building description and operation 

The proposed control strategy was implemented in the Universitat Politècnica de 

Catalunya’s (UPC) building TR8. This is an academic building constructed in 1992, 

with 3 floors and 5,333.03 m2, located in Terrassa (Barcelona, Spain). Table 1 presents 

the main characteristics of the building. 

The building heating system was comprised of a boiler with a nominal power of 360 

kW fuelled by natural gas. The hot water produced in the boiler was distributed through 
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4 pumps to the radiators that were located in the different zones of the building, and 

then the water returned to the boiler. 

The boiler was managed by a BEMS using a scheduled on/off control strategy. The 

building BEMS enabled the building energy manager to schedule the time when the 

boiler should be turned on and off each day from his computer. Every two or three days, 

the building energy manager analysed the internal temperature curve through the BEMS 

and adjusted the time when the boiler had to be turned on to achieve an average internal 

temperature of 20 degrees at 8.00 am. Throughout the rest of the day, the system was 

regulated automatically with proportional regulation to achieve an average internal 

temperature of 22ºC. One hour before the end of the working day, the boiler was turned 

off. During the coldest months, usually from mid-November until the first week of 

March, the building energy manager did not turn off the boiler at all. The boiler worked 

24 hours a day, 7 days a week. It was considered that the effort required to change the 

boiler schedule each day was higher than the energy savings produced. In addition, 

before the proposed control was implemented, the building energy manager did not 

have any tools to assess the time needed to condition the building. As a consequence, it 

was difficult to manage the boiler schedule without compromising the users’ thermal 

comfort. Therefore, the control policy applied before the implementation of predictive 

control was based on maximizing the users’ comfort and avoiding user claims. 

The existing BEMS had a set of 22 temperature sensors located in the building. 

Temperature sensors were placed in representative rooms and corridors covering the 

entire building area and distributed evenly. The mean of the sensors was used to carry 

out the proportional regulation. In addition, every quarter of an hour the mean of all 

temperature sensors was stored in the BEMS. The external temperature was also 

measured with one temperature sensor and one value every quarter of an hour was 
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stored in the BEMS. Finally, the building BEMS also monitored the performance of the 

boiler via a temperature sensor in the water circuit located after the boiler, and a gas 

meter that measured the cumulative gas consumption. Both boiler performance 

measurements were stored every quarter of an hour.  

The BEMS implemented in the building was a commercial BEMS that could take inputs 

from the system, carry out a set of basic logic functions, and provide an output. In 

addition, the system enabled the configuration of schedules to turn on and off elements, 

or change temperature set points. Therefore, the installed BEMS could not execute 

iterative processes. The challenge of this research was to develop and implement 

predictive control in this existing BEMS. 

4 Methodology 

This section describes the methodology used to develop and test the proposed predictive 

control based on a neural network. First, experimental data from two heating seasons 

were used to obtain the training patterns. Then, various neural network structures were 

tested and the best one was used to develop and implement the predictive control 

strategy in the existing BEMS. Finally, a set of KPIs were used to assess the benefits of 

the control strategy (Fig. 1). 

4.1 Predictive control using a BEMS 

The proposed control strategy was designed to predict when the boiler should be turned 

on every day to achieve 20ºC at 8.00 am without human intervention. The prediction 

was based on a neural network with: (i) one output, the time required in quarters of an 

hour for conditioning the building at 20ºC; (ii) one hidden layer, with n neurons; and 

(iii) 3 inputs, the average internal temperature, the external temperature and the water 

heating system temperature. This section details how the training patterns were 
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obtained, how the neural network was developed, which control algorithm was 

proposed, and how it was implemented in the BEMS. 

4.1.1 Training patterns 

Data stored in the existing BEMS were used to obtain the training patterns for the neural 

network. The input in the training patterns were the internal temperature (Ti), the 

external temperature (Te) and the temperature of the water circuit (Tw). The output of 

the training patterns was the time in quarters of an hour required to condition the 

building at 20ºC (tm). 

A total of 145 training patterns were obtained from two heating seasons stored in the 

BEMS. 

4.1.2 Neural network structure 

The success of using neural networks to carry out predictions depends on the design of 

the neural network structure [26]. The choice of input data and the number of neurons 

used in the hidden layer are critical aspects. However, there is no science for this; it is a 

matter of trial and error [27]. 

Two empirical formulas are used in the literature to determine the optimal number of 

hidden neurons (Eq.1 and Eq.2) [28,29]. 

[Eq. 1] 

𝑁ℎ = 2 × 𝑁𝑖 + 1 

[Eq. 2] 

𝑁ℎ = 1/2 × (𝑁𝑖 + 𝑁𝑜) + √𝑁𝑇𝑃 
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Where 𝑁ℎ is the number of hidden neurons, 𝑁𝑖 is the number of inputs, 𝑁𝑜 is the 

number of outputs, and 𝑁𝑇𝑃 is the number of training patterns. 

Various neural network structures were tested with different numbers of neurons in the 

hidden layer. Eq. 1 and Eq. 2 were used to determine the minimum and maximum 

number of neurons in the hidden layer, according to the number of inputs and the 

number of training patterns. When we used Eq. 1, the minimum number of neurons in 

the hidden layer was 7, and when we used Eq. 2, the maximum number of neurons in 

the hidden layer was 14. 

The activation function generally used in the literature for neurons in the hidden layer is 

sigmoid or hyperbolic tangent [30]. For the output layer neurons, the best solution is to 

use a linear function [31]. In this research, the hyperbolic tangent was used in the 

hidden layer and a linear function was used for the output layer. 

The software used to calculate the weights and assess the performance of the neural 

network was the Neural Network Toolbox from Matlab R2014b. The training algorithm 

used in this research was the Levenberg-Marquardt algorithm. 

The structure with the best performance was a neural network with 10 neurons in the 

hidden layer. The root mean square error reported for the best model was 2.38 quarters 

of an hour, and the correlation between the actual and predicted data was 0.96. These 

values were considered acceptable and the model was implemented in the BEMS to test 

the proposed predictive control strategy. 

4.1.3 Predictive control implementation in the existing BEMS 

The algorithm implemented in the BEMS to carry out predictive control is presented in 

Fig. 2. When the boiler was turned off and the building internal temperature was lower 
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than 20ºC, the BEMS was assessed every quarter of an hour, which was the time needed 

to achieve 20ºC through the implemented neural network. The predicted time (tp) was 

calculated using the internal temperature (Ti), the external temperature (Te) and the 

water heating system temperature (Tw). The prediction was compared with the time 

until the start of the next working day (tw). When the predicted time was higher than the 

time until the start of the next working day, the BEMS turned on the boiler. During the 

rest of the day, the system was regulated automatically with proportional regulation to 

achieve thermal comfort with the same setup as before predictive control 

implementation. One hour before the end of the working day, the boiler was turned off. 

The predicted time (tp) was calculated using the neural network defined in the previous 

section. The mathematical formulation of the neural network was implemented in the 

BEMS. It was not possible to implement the learning algorithm, because the BEMS 

could not do the required calculations. Hence, the implemented neural network was 

static: the weights of the neural network did not change during the time. 

Fig. 3 presents the block diagram of the implemented neural network in the BEMS. 

Input boxes normalize the values of Ti, Te and Tw. For example, the formula introduced 

in Input 1 is: 

[Eq. 3] 

𝐼𝑛𝑝𝑢𝑡 1 =
(𝑇𝑖𝑐𝑢𝑟

− 𝑇𝑖𝑚𝑖𝑛
) × 2

(𝑇𝑖𝑚𝑎𝑥
− 𝑇𝑖𝑚𝑖𝑛

)
− 1 

Where 𝑇𝑖𝑐𝑢𝑟
 is the current value of 𝑇𝑖 provided by the BEMS, 𝑇𝑖𝑚𝑖𝑛

 is the minimum 

value of 𝑇𝑖 in the training patterns, and 𝑇𝑖𝑚𝑎𝑥
 is the maximum value of 𝑇𝑖 in the training 

patterns. 
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NHi boxes are the weighted sum of the three inputs and the bias. Each NHi box has its 

own weights (𝑤𝑁𝐻𝑖,𝑗 ) and bias (𝑏𝑁𝐻𝑖
) (Eq. 3). Then, the hyperbolic tangent of each NHi 

is calculated (Eq. 4). Subsequently the output is calculated as the weighted sum of the 

10 neurons of the hidden layer and the bias (Eq. 5). The weight of each neuron is 

denoted as 𝐿𝑤𝑖 , and the bias as 𝑏𝑜𝑢𝑡𝑝𝑢𝑡. Finally, the predicted time is calculated using 

Eq. 6, where 𝑡𝑚𝑚𝑎𝑥
 is the maximum value of 𝑡𝑚 in the training patterns, and 𝑡𝑚𝑚𝑖𝑛

 is 

the minimum value of 𝑡𝑚 in the training patterns. 

[Eq. 3] 

𝑁𝐻𝑖 = ∑(𝐼𝑛𝑝𝑢𝑡𝑗 × 𝑤𝑁𝐻𝑖,𝑗 )

3

𝑗=1

+ 𝑏𝑁𝐻𝑖
 

[Eq. 4] 

𝑡𝑎𝑛ℎ𝑖 =
𝑒𝑁𝐻𝑖 − 𝑒−𝑁𝐻𝑖

𝑒𝑁𝐻𝑖 + 𝑒−𝑁𝐻𝑖
 

[Eq. 5] 

𝑜𝑢𝑡𝑝𝑢𝑡 = ∑(𝑡𝑎𝑛ℎ𝑖 × 𝐿𝑤𝑖 )

10

𝑖=1

+ 𝑏𝑜𝑢𝑡𝑝𝑢𝑡 

[Eq. 6] 

𝑡𝑝 =
(𝑜𝑢𝑡𝑝𝑢𝑡 + 1) × (𝑡𝑚𝑚𝑎𝑥

− 𝑡𝑚𝑚𝑖𝑛
)

2
+ 1 

To assess the performance of the proposed control strategy, the neural network was 

tested during one heating season. In this study, the heating season was considered to be 

from November to April. 
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4.2 Assessment of the control algorithms’ performance 

To assess the benefits of each implementation, a set of 3 key performance indicators 

(KPIs) were used: energy savings, interior building temperature at the beginning of the 

working days, and energy manager hours to manage the system. These KPIs were 

selected because they cover all aspects of the heating system operation: the supply costs 

due to gas consumption, the users’ thermal comfort, and the operational costs due to the 

maintenance and management of the boiler. 

The first KPI, energy savings, was calculated using the International Performance 

Measurement and Verification Protocol [32]. IPMVP establishes that energy savings 

can be determined by comparing measured energy use before (at baseline) and after 

implementation of energy savings measures. The protocol proposes adjusting the 

baseline to take into account changes due to weather conditions, occupation or building 

physical changes. Adjustments can be divided into routine adjustments and non-routine 

adjustments. Routine adjustments are parameters that can be expected to happen during 

the reporting period and for which a relationship with energy consumption can be 

identified. Non-routine adjustments are known changes in the facility during the 

reporting period, such as increments of building surface or increments in building time 

use [32]. 

[Eq. 7] 

𝐸𝑠 = 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝐸𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 ± 𝐴𝑟𝑜𝑢𝑡𝑖𝑛𝑒 ± 𝐴𝑛𝑜𝑛𝑟𝑜𝑢𝑡𝑖𝑛𝑒 

Where Ebaseline is the building energy consumption during the baseline period, Ereporting is 

the building energy consumption during the implementation, and the adjustments are 

Aroutine and Anonroutine. The literature agrees that gas energy consumption is linearly 

correlated with heating degree days (HDD) [33,34]. According to the literature, the 
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routine adjustment is considered a linear function in which the variable is the HDD. The 

base year gas energy consumption data were analysed through a linear regression 

performed on monthly energy consumption and HDD (denoted in the following as 

𝐻𝐷𝐷𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜,   𝑖), in order to obtain the coefficients m and b of the linear equation. The 

analysed period was one heating season with monthly granularity. 

[Eq. 8] 

𝐴𝑟𝑜𝑢𝑡𝑖𝑛𝑒 = (𝑚 ∙ 𝐻𝐷𝐷𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜,   𝑖 + 𝑏) − 𝐸𝑏𝑎𝑠𝑒 𝑦𝑒𝑎𝑟,   𝑖 

HDDs are defined as simple subtractions of the external temperature (Te) from the base 

temperature (Tbase), considering only positive values [35]. The base temperature is the 

external temperature above which the building does not have thermal demand [36]. To 

determine the daily gas energy consumption, the daily external average temperature was 

used. A regression was performed and the independent parameter was set as the base 

temperature. In order to calculate the HDD for month i, the daily HDD were aggregated. 

[Eq. 9] 

𝐻𝐷𝐷𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜,   𝑖 = ∑(𝑇𝑏𝑎𝑠𝑒 − 𝑇𝑒,   𝑛)

𝑘𝑖

𝑛=1

 𝑖𝑓 𝑇𝑒,   𝑛 < 𝑇𝑏𝑎𝑠𝑒 

Where k is the number of days of the month i, Tbase is the baseline temperature and Te, n 

is the average external daily temperature. Tbase is determined by a linear regression 

between daily gas energy consumption and daily mean external average temperature. 

Non-routine adjustments were discarded, because no physical changes occurred during 

the reporting periods. 
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In order to calculate the monthly energy savings, Eq. 7 and Eq. 8 were combined. The 

resulting equation used to calculate the savings of each month is presented below: 

[Eq. 10] 

𝐸𝑠,   𝑖 = 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,   𝑖 − 𝐸𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔,   𝑖 + (𝑚 ∙ 𝐻𝐷𝐷𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜,   𝑖 + 𝑏) − 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,   𝑖 

Where Ebaseline, i is the building energy consumption during month i from the baseline 

period, and Ereporting, i is the building energy consumption during month i from the 

implementation period. Simplifying Equation 11, we obtain the formula to calculate 

monthly savings. 

[Eq. 11] 

𝐸𝑠,   𝑖 = (𝑚 ∙ 𝐻𝐷𝐷𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜,   𝑖 + 𝑏) − 𝐸𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔,   𝑖 

To calculate the energy savings of the entire heating season, all monthly energy savings 

were aggregated. 

[Eq. 12] 

𝐸𝑠 = ∑ 𝐸𝑠,   𝑖

𝑡

𝑖=1

 

Where Es are the savings for the entire heating season, and Es, i represents the savings 

for month i. 

In order to ensure that the boiler efficiency do not varies before and after the 

implementation, a Testo 330-2 LL was used to measure the boiler’s efficiency. The 

boiler efficiency was measured at the beginning of the baseline period and at the 

beginning of the report period. 
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The second KPI used was the interior building temperature at the beginning of the 

working days. A boxplot was used to display the aforementioned temperature, because 

it enables easy characterization and comparison of distributions. The beginning of the 

working days was considered 8 am, because this was when users started to arrive in the 

building. 

Finally, to assess the costs of boiler operation and maintenance, the third KPI was the 

number of hours required by the building energy manager to operate the system. The 

number of hours per heating season that the building energy manager spent managing 

the system was recorded. 

5 Results and discussion 

The control strategy was tested during the period October 2015 to April 2016. In this 

section, the results of the KPIs used to assess the benefits of the implementation are 

presented and discussed. 

5.1 Energy baseline analysis 

The linear analysis of the daily gas energy consumption and the daily external average 

temperature reported that the base temperature for the building used in this research was 

17ºC. This value was used to calculate the daily HDD and the monthly HDD. 

The linear analysis of the baseline data revealed a reasonable correlation between the 

HDD and the gas energy consumption. The resulting values of the linear regression are 

41.0 m3/HDD for parameter m, and 2,349.8 m3 for parameter b (Eq. 8). The variance 

showed by the linear model compared to the total variance of the sample was 90%; 

consequently 90% of the gas energy consumption variance could be explained by the 
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HDD. As a result, the assumption related with the routine adjustment can be used to 

calculate the energy savings. 

5.2 Assessment of the proposed control strategy 

The monitored gas energy consumption during the baseline period was 32,299.40 m3, 

the adjusted gas energy consumption baseline was 28,779.82 m3, and the monitored gas 

energy consumption during the reporting period was 22,418.19 m3 (Fig. 4). As a result, 

the control approach proposed in this research allowed 19.69% gas energy consumption 

savings (Table 2). Usually, savings achieved by implementing a BEMS are 14.07% on 

average [14]. Consequently, the approach followed in this research gives better results 

than other approaches presented in similar studies. 

 

The boiler efficiency at the beginning of the baseline period was 92.2%. In the other 

hand, the boiler efficiency at the beginning of the reporting period was 90.6%. The 

boiler efficiency at the beginning of the reporting period was slightly lower than at the 

beginning of the baseline period. As a consequence, reported savings are slightly 

underestimated and can be attributable to the proposed approach. 

Reported savings are correlated with external temperature (Fig. 5). The proposed 

predictive control reported highest savings during November, March and April (Fig. 6). 

The external mean temperature of these months is closer to the building’s base 

temperature than in the other months. In addition, during the aforementioned months the 

difference between the highest temperature and lowest temperature is slightly greater 

than in the rest of the months. During the coldest months (December, January and 

February), savings were lower. Although December and January were colder months 

than February, savings reported in December and January were higher than in February. 
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This is because there are usually more holidays in December and January than in 

February, due to the Christmas break. During the baseline period, the building energy 

manager did not have any tools to determine the optimal time to turn on the boiler in 

order to ensure thermal comfort at the beginning of the working day. During official 

holidays in the coldest months, the boiler was not turned off in order to ensure the users’ 

thermal comfort at the beginning of the next working day. After implementing the 

predictive control one hour before the end of the working day, the boiler was turned off 

each day, including the days in the coldest months. The predictive control determined 

the optimal time to turn on the boiler in order to achieve the expected thermal comfort at 

the beginning of the next working day. 

In this way, the proposed predictive control could reduce the energy consumption and 

maintain the thermal comfort levels (Fig. 7). The control policy applied during the 

baseline period was based on maximizing the users’ comfort. In contrast, predictive 

control was based on achieving a compromise between energy savings and users’ 

thermal comfort. 

The variability of the average internal temperature at the beginning of the working day 

was also reduced with the implementation of predictive control (Fig. 7). During the 

baseline period, the variability in average internal temperature at the beginning of the 

working day was 4.91ºC. During the testing period, this variability was 2.76ºC. The 

interquartile range was also reduced, from 1.77ºC in the baseline period to 0.85ºC in the 

testing period. The top whisker was increased slightly; however the bottom whisker was 

reduced significantly. The median was also reduced from 20.63ºC to 20.00ºC. Both 

boxplots were slightly skewed down and the average value was not equal to the median 

value. During the baseline period, this value was 20.36ºC, and during the testing period 
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it was 19.86ºC. The standard deviation was reduced from 1.18ºC to 0.63ºC, and the 

coefficient of variation was reduced from 5.80% to 3.17%. 

 

The variability in average internal temperature at the beginning of the working day 

during the baseline period was due to the boiler being turned on without considering 

environmental factors. In the other hand, during the testing period the variability in 

temperature was produced due to the error in the estimation generated by the neural 

network. The error in the time estimation was greater on Mondays. Mondays did not 

have the same performance as the rest of the days of the working week because the 

boiler was turned off during the weekend. As a consequence, it took considerably longer 

to condition the building on Mondays than on the other days of the working week. The 

reduced number of these singularities in training patterns led to a reduction in the 

accuracy of the trained neural network for Mondays. The neural network learns from 

past experiences and the more data it has, the more accurate the predictions are. 

The predictive control also reduced the costs of boiler operation because the system was 

completely autonomous. The proposed control strategy did not require any action from 

the building energy manager. 

6 Conclusions 

This paper presented a predictive control strategy, based on neural networks, which can 

be implemented in most commercial BEMS. The proposed strategy assesses the time 

required to condition the building, and compares this value with the time until the start 

of the working day.  

In this study, the boiler was turned off when the building was supposed to be 

unoccupied; basically at night and during weekends and holidays. Before the start of a 
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working day, the system predicts the time required to condition the building. This time 

is compared with the time until the start of the working day. When the time required to 

condition the building is equal or higher than the time until the start of the working day, 

the boiler is turned on.  

The results of the testing period revealed that the proposed control strategy reduced gas 

energy consumption by 19.69%, without compromising the building users’ thermal 

comfort. Savings increased in the months in which the external temperature was closest 

to the base temperature. In addition, the proposed system was automatic, and did not 

require any action by the energy manager to optimize energy consumption. The reported 

savings were higher than those in similar studies that proposed control strategies based 

on commercial BEMS. 

Further research is needed to reduce the amount of data required to configure the 

predictive algorithm. The configuration of the proposed control algorithm required two 

heating seasons to train the neural network. This is a limitation, because the system can 

only be implemented in buildings with historical data. One solution could be to use 

building simulation tools to generate the data required to train the neural network. 

Although the coefficient of variation of the temperature at the beginning of the working 

day is low (3.17%) and the average temperature is close to the target value, simulation 

tools can also be used to generate data in order to improve the accuracy of the 

predictions. This variability could also be improved by introducing other inputs in the 

neural network. The neural network topology used in this research was only based on 

the external temperature, the internal temperature and the heating system temperature. 

However, in the future, other input related with minimum external temperature or the 

decrease in internal temperature should be assessed. 
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Fig. 1. Research methodology 
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Fig. 2. Proposed control strategy flow chart 
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Fig. 3. Block diagram of the implemented neural network in the BEMS 
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Fig 4. Measured gas energy consumption during the baseline period and the reporting 

period, and the adjusted gas energy consumption baseline 

Fig 5. Correlation between energy savings and climatology of the daily maximum, 

mean and average temperature from 1965 to 2015 
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Fig 6. Reported monthly energy savings (primary y-axis), and monthly climatology of 

the daily maximum, mean and average temperature from 1965 to 2015 (secondary y-

axis) 

 
Fig. 7. Average internal temperatures at the beginning of the working day 
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Table 1. Building characteristics 

 Surface (m2) 

Thermal transmittance 

(W/m2·K) 

Façade 2,987.16 1.20 

Roof 2,005.30 0.82 

Windows 961.19 5.76 
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Table 2. Summary of KPIs to assess different implementations 

 Baseline Reporting 

Energy savings during the entire heating season (%) - 19.69 

Energy savings in the period February-March-April (%) - 24.79 

Boiler efficiency (%) 92.2 90.6 

Average interior building temperature at the beginning of 

the working days (ºC) 

20.36 19.86 

Standard deviation (ºC) 1.18 0.63 

Coefficient of variation (%) 5.80 3.17 

Energy manager hours to manage the system (h) 44 0 
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