
1

Dynamic Configuration of Partitioning
in Spark Applications

Anastasios Gounaris, Georgia Kougka, Rubèn Tous, Carlos Tripiana, and Jordi Torres

Abstract —Spark has become one of the main options for large-scale analytics running on top of shared-nothing clusters. This work
aims to make a deep dive into the parallelism configuration and shed light on the behavior of parallel spark jobs. It is motivated by the
fact that running a Spark application on all the available processors does not necessarily imply lower running time, while may entail
waste of resources. We first propose analytical models for expressing the running time as a function of the number of machines
employed. We then take another step, namely to present novel algorithms for configuring dynamic partitioning with a view to minimizing
resource consumption without sacrificing running time beyond a user-defined limit. The problem we target is NP-hard. To tackle it, we
propose a greedy approach after introducing the notions of dependency graphs and of the benefit from modifying the degree of
partitioning at a stage; complementarily, we investigate a randomized approach. Our polynomial solutions are capable of judiciously
use the resources that are potentially at user’s disposal and strike interesting trade-offs between running time and resource
consumption. Their efficiency is thoroughly investigated through experiments based on real execution data.

Index Terms —data repartitioning, data flow optimization, data flow profiling, Spark

✦

1 INTRODUCTION

Spark has become one of the main options for end-to-
end processing of large volumes of data. Initially proposed
in [1], [2], it has nowadays evolved as one of the most
active open-source Apache projects with a huge developer
and user community. Its remarkably wide adoption stems
from several characteristics that are of high practical sig-
nificance. Spark provides a common framework for pro-
cessing both batch and streaming data. It is compatible
with other broadly used technologies, such as R, NoSQL
databases, HDFS, YARN and MESOS to name a few. It
tackles several key performance limitations of traditional
MapReduce through the exploitation of the main memory
that is available to the largest possible extent. In addition,
it is bundled with components for processing structured
data in an SQL-like fashion and applying built-in machine
learning algorithms.

Spark abstracts data collections as Resilient Distributed
Datasets (RDDs), which are partitioned across several nodes
so that they can be operated on in parallel. As reported in
several sources, e.g., [3], [4], it can run jobs up to two order
of magnitude faster than Hadoop MapReduce.

Nevertheless, its configuration and fine-tuning remains
a big challenge. The work in [5] has started to scratch the
surface of this issue and, after extensive experimentation
in a high-performance computing (HPC) platform, namely
the Marenostrum III (MN3), the supercomputer at Barcelona
Supercomputing Centre (BSC), and an additional commer-

• A. Gounaris and G. Kougka are with the Aristotle University of Thessa-
loniki, Greece.
Email: gounaria, georkoug@csd.auth.gr

• R. Tous is with the Universitat Politècnica de Catalunya, Spain
Email: rtous@ac.upc.edu

• C. Tripiana and J. Torres are with the Barcelona Supercomputing Centre,
Spain
Email: carlos.tripiana, jordi.torres@bsc.es

cial infrastructure, has reached to two main conclusions:
(i) for each infrastructure, a different setting of number
of cores managed by a single executor yields the highest
performance in terms of execution time, while suboptimal
settings may lead to performance degradation of several
factors despite using exactly the same number of cores; and
(ii) for each application and depending on the intensity of
data shuffling, a different number of data partitions need to
be allocated to each CPU core; this number ranges from 1 to
4 for applications running on MN3 while inn applications
where CPU cost dominates, having a single partition per
core yields lower running times.

Building on these early results and further evidence that
CPU usage is (rather counter-intuitively) the key aspect
in the performance of Spark jobs [6], in this work we
take a deeper look at the issue of data partitioning. Data
partitioning refers to the number of chunks that the datasets
to be processed are split, and strongly relates to the degree
of parallelism of execution, i.e., the number of cores and
machines used for execution.

The motivation behind our effort is the fact that lower
performance due to suboptimal partitioning is inherently
related to resource waste, i.e., resources are commonly used
unnecessarily longer to perform the same tasks. As such, our
main goal is to investigate the relationships and trade-offs
between performance and resource consumption in Spark
applications and propose techniques that modify the data
partitioning dynamically, i.e., during execution.

To this end we make the following contributions:

1) Profiling of Spark programs: we perform profiling of
Spark applications and we explain how we can
describe their behavior as a function of the number
of machines used. The analytical cost models that
we propose are more accurate and improve upon
current models for MapReduce, like the one in [7].

montse aragues
Texto escrito a máquina
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/TPDS.2017.2647939

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

2

2) Proposal of novel algorithms for the selection of the
degree of partitioning taking into account both the re-
source consumption and running time: we present
novel solutions for configuring the level of data
partitioning dynamically, advocating to depart from
the usual usage pattern of either sticking to the level
of partitioning of the source data or employ all the
machines available. Our solutions make judicious
choices regarding the degree of partitioning for dif-
ferent stages in the same Spark application. We in-
vestigate two main approaches, namely greedy tech-
niques based on the notions of dependency graph
and stage benefit, and a randomized technique.
These solutions manage to strike different balances
between the two objectives. Formally, we study
the problem of minimizing resource consumption
under the constraint that running time does not
increase more than a user-defined threshold. No
other solutions for the same problem exist to date.

3) Thorough experiments: we evaluate our proposals us-
ing real data. The results are particularly promising.
We show that we can reach interesting trade-offs
between resource consumption and running time.
We further provide evidence that we can improve
on resource consumption up to more than 6 times at
the expense of 50% higher running time. We show
that “more is less” holds, i.e., it is possible to use
less resources to execute faster, but even if we first
optimize for running time, we can trade a small
amount of performance for significant savings in
resource consumption.

Structure of the remainder of the paper: In Section 2, we
analyze the behavior of Spark applications and we present
the formulas that describe running time as a function of the
machines used. Section 3 formally introduces the problem
of trading performance for resource consumption and dis-
cusses the techniques we propose in detail. In Section 4, we
use real execution data and a wide range of applications
types to evaluate our proposals. We discuss end-to-end
processing issues and related work in Sections 5 and 6,
respectively, and we conclude in Section 7.

2 PROFILING OF SPARK PROGRAMS

In this section, we first provide execution details of Spark
programs and we present our benchmarking applications.
The main part of this section consists of our profiling results,
which explain the behaviour of Spark applications as a
function of the number of the machines used.

2.1 Background

A Spark application consists of two types of operations,
namely transformations and actions. Transformations, such as
map and filter, apply a function on each RDD element and
result in a new RDD. Actions trigger the execution of such
functions and produce meaningful results. Example actions
include reduce, count and collect, which return a value to the
coordinator program, called driver. For each action in the
application, a job is performed, which includes several RDD
transformations.

Spark’s scheduler creates a physical execution plan for
the job based on the directed acyclic graph (DAG) of trans-
formations. The physical plan is divided into stages. A stage
is a sequence of transformations that can be pipelined (exe-
cuted, without data movement, in parallel over all data par-
titions). Pipelining transformations are deliberately grouped
together in a single stage to speed-up performance. The
sequence of computations defined by a stage instantiated
over a single data partition is called a task. A task is the actual
unit of execution of the physical plan. The task scheduler
assigns tasks to workers via the cluster manager The degree
of partitioning at each stage is equal to the number of tasks
for each operation included in that stage.

Data may be repartitioned across RDDs. This may be done
as a result of a specific transformation. For example, group-
ByKey and sortByKey are applied to a key-value pair RDD
and result in a new RDD, where data are partitioned across
machines differently. This data re-distribution is commonly
referred to as data shuffling. Data shuffling is an expensive
operation, but it is important to note that the cost is not only
network-related. Data shuffling serializes data and stores
temporary data on disk if they cannot fit in main memory;
temporary files are kept as long as they are needed for fault
tolerance purposes. As such, the cost is also CPU and disk
I/O related. In the generic case, when data are repartitioned,
the degree of partitioning can change as well.1

2.2 Our setting and the benchmarking applications

We ran our profiling experiments on the MN3 supercom-
puter provided by BSC in the city of Barcelona. With the last
upgrade, MN3 has a peak performance of 1.1 Petaflops. At
June 2013, MareNostrum was positioned at the 29th place
in the TOP500 list of fastest supercomputers in the world,
whereas according to the latest TOP500 list in November
2015, MareNostrum is 93rd. A full technical description of
MN3 and how it supports Spark applications is in [5]. Spark
allows for several cluster managers: standalone, YARN and
MESOS. Spark4MN employs the former, and before each
execution, exclusively reserves the amount of machines
requested by the user, i.e., there are no multi-tenancy issues
during Spark application execution.

Our benchmarking applications are elementary ones, i.e.,
they can be expressed as a single built-in function in the
context of larger applications:

sort (by key): this application includes data shuffling and
its two main stages between which shuffling takes place are
shown in Figure 1(left).

aggregate (by key): this application also includes data
shuffling. Its distinctive characteristic is that it reduces the
result size on the reducer side.

k-means: this is an example of an iterative CPU-intensive
algorithm, where, in each iteration, local processing is fol-
lowed by transmission of summary information about new
cluster centers. The DAGs of the two main stages in each
iteration are shown in Figure 1(right).

1. In the remainder, when the term repartitioning is used, it will
denote change in both data distribution and the degree of partitioning,
whereas shuffling will denote re-distribution without modifying the
degree of partitioning.

3

naive-bayes: this is a simple machine learning algorithm
with no iterations and less inter-communication between
machines participating in the execution.

shuffling: this benchmarking application just reshuffles
data across machines. Its execution resembles that of sort,
but without performing any meaningful processing.

In our experiments, the number of machines (resp. cores)
used ranges from 8 (resp. 128) to 96 (resp. 1536). This is in
line with reports in [8], [9], [10] that the majority of clusters
are rather small and have fewer than 50 nodes. Also, we
experimented with raw datasets at the orders of hundreds
gigabytes (the corresponding RDDs are 1-5 times larger),
since, this is the typical dataset processed even in companies
that are notorious for their big data application demands
[11]. The Spark version was 1.5.2.

We divide profiling programs into three categories: those
that do not change the degree of partitioning, those that
change the degree of partitioning without performing other
operations, and those that both perform meaningful opera-
tions and change the degree of partitioning.

Degree of partitioning vs. degree of parallelism: In general,
the degree of parallelism, i.e., the number of machines/cores
employed is different from the degree of partitioning. To
avoid imbalanced execution, the degree of partitioning must
be equal to the number of cores multiplied by a small
integer. However, based on (i) the evidence in [5] that,
for CPU-intensive applications on MN3, the most efficient
configuration of the degree of partitioning is to be set equal
to the number of cores, and (ii) the evidence in [6], where
the main performance bottlenecks are the CPU ones, in this
work, we always set the degree of partitioning to the num-
ber of cores. Also, we allow the usage of complete machines,
each consisting of 16 cores. Consequently, configuring the
number of machines defines the degree of partitioning, too,
and vice versa.

2.3 Simple Application Profiling

We first examine Spark programs that do not modify the
degree of partitioning during RDD manipulation. For k-
means, we study 5 variants. The first three operate on

Fig. 1. Example DAGs of part of the stages from the execution of sort
(left) and k-means (right).

8 16 24 32 40 48 56 64 72 80 88 96
10

1

10
2

10
3
Execution times for the k−means benchmarking applications

#nodes

#s
ec

on
ds

k−meansI
k−meansII
k−meansIII
k−meansIV
k−meansV

8 16 24 32 40 48 56 64 72 80 88 96
0

20

40

60

80

100

120

140
Execution times for the remainder benchmarking applications

#nodes

n. nayes
sort
aggregate

Fig. 2. Execution times for the benchmarking applications.

TABLE 1
Fitting errors

Eq. (1,2) Eq. (3)
program R

2 SSE R
2 SSE

k-meansI 0.998 6.967 0.998 6.501
k-meansII 0.992 4.828 0.996 2.313
k-meansIII 0.995 71.881 0.996 50.339
k-meansIV 0.949 67.191 0.961 51.456
k-meansV 0.999 224.155 0.999 59.42
n. bayes 0.914 5.088 0.964 2.512

sort 0.963 486.123 0.97 387.536
aggregate 0.985 79.188 0.986 77.701

shuffle 0.692 16.851 0.922 4.242

Eq. (4) Eq. (5)
program R

2 SSE R
2 SSE

k-meansI 0.999 2.399 0.999 2.49
k-meansII 0.996 2.116 0.996 2.085
k-meansIII 1 0.954 1 3.007
k-meansIV 0.970 39.626 0.969 41.26
k-meansV 1 24.38 1 21.06
n. bayes 0.995 0.326 0.973 1.636

sort 0.97 387.536 0.97 387.536
aggregate 0.986 77.701 0.986 77.701

shuffle 0.967 1.79 0.996 0.23

100-dimensional records, and the sizes are 100M (k-meansI),
50M (k-meansII) and 150M (k-meansIII) records, respectively
(the sizes in bytes are 100GB, 50GB and 150GB, respec-
tively). The two other k-means programs operate on 10M
1000-dimensional (k-meansIV) and 1000M (k-meansV) 10-
dimensional records, respectively. The other datasets are

4

also 100GB in size. The dataset for naive-bayes consists of
100M 100-dimensional records, whereas the datasets for the
last two programs consist of 1B records of 100 bytes each.

Figure 2 shows the plots of runs on MN3. All runs were
repeated 5 times and the median value is presented. From
this figure, two main observations can be drawn. Firstly,
for small degrees of parallelism, i.e., 8-24 nodes, the exe-
cutions times are drastically reduced when increasing the
number of machines employed. Super-linear speed-ups can
be observed as well since increasing the memory available
decreases the possibility to use the disk during shuffling.
For example, for naive bayes, when going from 8 machines
to 16, the execution time is reduced to less than a half.
Secondly, after a saturation point, employing new machines
yields either negligible performance improvements or even
performance degradation.

The main question we try to answer is: can we propose
a formula that can describe the behavior illustrated in Figure
2? More specifically, we ask for a formula T (n), which
can express the execution time of a Spark application as a
function of the number of nodes used n. The starting point
is the formula for the empirical speedup metric encountered
in Hadoop applications as explained in [7]:

T (1)

T (n)
=

n

1 + σn+ κn(n− 1)
(1)

where σ and κ are the contention and data distribution
incoherency coefficients, respectively. The interesting note
about this formula is that, in massively parallel settings, σ
can be negative, thus leading to super-linear scalability for
specific ranges of n values. Simple algebraic manipulation
of Eq. (1) gives the following generic template:

T (n) = a+
b

n
+ cn (2)

where a, b and c are constants.
A weak point of the above equation is that it essentially

ignores the fact that each Spark applications includes some
shuffling phases and the cost of shuffling depends on the
number of pairs of senders and receivers, which is O(n2).
So, an initial improvement on [7] towards more accurate
cost formulas is to add a shuffling coefficient d as follows:

T (n) = a+
b

n
+ cn+ dn2 (3)

In Eq. (3), the coefficients a, b and d correspond to
the non-parallelizable cost, the parallelizable cost and the
overhead due to shuffling communication. As such, they
are expected to be non-negative. Coefficient c captures the
contention factor, similar to σ in Eq. (1). Since adding new
nodes increases the aggregate memory that is available and
thus decreases the possibility to use the disk for intermedi-
ate storage, it is common, if not likely, c to be negative.

We proceed one step further and we add a new coeffi-
cient. There are two ways to do that. The first is to add a
coefficient e in the denominator of the second component
yielding the following cost model (nmin is the lowest possi-
ble degree of partitioning):

T (n) = a+
b

n− e
+ cn+ dn2, e ∈ [0, nmin − 1] (4)

TABLE 2
Coefficients for Eq. (4) and (5)

Coefficients for Eq. (4)
program a b c d e

k-meansI 33.626 343.61 -0.33 0.0032 3.019
k-meansII 20.896 192.12 -0.097 0.0018 1.664
k-meansIII 53.314 358.17 -0.659 0.0048 4.841
k-meansIV 54.336 52.186 -0.588 0.0066 6.327
k-meansV 36.38 1774 -0.545 0.0000 2.439
n. bayes 1.404 8.861 0.001 0.0000 7

sort 71.586 626.39 -1.335 0.0076 0
aggregate 1.335 716.4 -0.048 0.0009 0

shuffle 30.312 -9.622 -0.6311 0.0057 7

Coefficients for Eq. (5)
program a b b

′
c d

k-meansI 37.581 224.36 2393 -0.384 0.0034
k-meansII 22.232 162.13 569.89 -0.12 0.0019
k-meansIII 60.14 0.000 6821 -0.678 0.0046
k-meansIV 50.167 0.000 2185 -0.445 0.0056
k-meansV 42.84 1503 8004 -0.099 0.0000
n. bayes 0.616 0 600.1 0.022 0.0000

sort 71.586 626.39 0 -1.335 0.0076
aggregate 1.335 716.4 0 -0.048 0.0009

shuffle -19.731 805.533 -4424 0.546 -0.0034

This formula better captures the fact that, for small
degrees of parallelism, the memory shortage, which necessi-
tates the usage of disk, is more intensive, and the decrease in
the running time for small additions of new nodes is steeper.

Another option is to split the parallelizable cost into two
components, one for the cpu and I/O-bound processing,
and another for the shuffling-bound part:

a+
b

n
+

b′

n2
+ cn+ dn2 (5)

In Table 1, we compare the fitting errors of the above for-
mulas. The fitting errors are measured in two ways, namely
R2 and sum of square errors SSE. We can see that our
proposals in Eq. (3)-(5) can significantly reduce the fitting
errors of the proposal in Eq. (1). In addition, the last two
formulas, which employ five coefficients, are significantly
more accurate compared to Eq. (3), which comprises one
coefficient less. The differences in the accuracy between Eq.
(4) and (5) are less significant. Finally, in Table 2, we present
the values of the coefficients of the two last formulas, where
it can be shown that c is typically negative. The coefficients
are computed using standard curve fitting techniques, such
as those in the cftool of Matlab.

2.4 Repartitioning Profiling

Shuffling redistributes data in order to perform meaningful
processing, e.g., to apply an aggregate function of data that
have been previously grouped according to their key. Repar-
titioning simply redistributes data without performing any
processing and, in general, modifies the degree of paral-
lelism. In the following set of experiments, we redistribute
data from ns sender nodes to nr receiver nodes.

Figure 3 shows the repartitioning cost when we reparti-
tion 100M 100-dimensional vectors. The shape of the plots

5

0 20 40 60 80 100
10

0

10
1

10
2

10
3

Execution times for repartitioning

#receiver nodes

#s
ec

on
ds

sender nodes = 8
sender nodes = 16
sender nodes = 32
sender nodes = 64
sender nodes = 96

Fig. 3. Execution times for repartitioning.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80
Execution times for aggregate w/ repartitioning

#reduce nodes

se

co
nd

s

sender nodes = 16
sender nodes = 32
sender nodes = 56

Fig. 4. Execution times for repartitioning within the application.

differs significantly between very low and higher numbers
of sender nodes. In order to express the execution time as a
function of both ns and nr we extend Eq. (4) as follows:

T (n) = a+
b

ns − e
+ csns + crnr + dnsnr (6)

where e ∈ [0, nmin−1]. Of course, it would be possible to
apply the one-variable functions of the previous subsection
assuming either ns or nr fixed, but a two-variable function
better describes the behavior of repartitioning. For the spe-
cific example, R2 is 0.9553, and the values of the parameters
a, b, cs, cr and d are -2.377, 260.6, -0.0001, -0.0001, and
0.001132, respectively.

2.5 Profiling of Applications Coupled with Repartition-
ing

Certain applications can perform repartitioning while per-
forming computations. Such applications typically con-
tain transformations like aggregateByKey, combineByKey, fold-
ByKey, reduceByKey and groupByKey, which all can receive
as an optional parameter the number of the partitions on
the reducer side. In Figure 4, we show three representative
examples about how the aggregate benchmarking applica-
tion behaves when we modify the number of reducer nodes
from 8 to 64. The main observation is that the plots can
be approximated as horizontal lines. This means that the
number of reducers does not have a big impact on the
running time. This, in turn, implies that we can safely

conclude that, in such applications, repartitioning can be
done for free, and the Equations Eq. (3)-(5) still apply.

2.6 Additional Remarks and Open Issues

In the previous subsections, we showed that we can accu-
rately model the execution time of a parallel Spark program
as a function of the nodes it employs. Although the fitting
errors are small, we have observed that they can be further
reduced if we allow the coefficients b and d to be negative.
However, in that case, the meaning of the coefficients would
lack an intuitive interpretation.

In addition, it is unclear how the parameters are mod-
ified when we keep the same applications but we modify
the distribution or the volume of the dataset processed. For
example, k-meansI processes twice as much data as k-meansII,
whereas k-meansIII processes 50% more data than k-meansI.
An open research question is whether, given the coefficients
in the first row of Tables 2 and ?? for k-meansI, one could
estimate the coefficients for k-meansII or k-meansIII without
sacrificing accuracy. Similarly, if the distribution changes,
the behavior changes as well; broadly, skewed distributions
behave as if the effective degree of partitioning is lower, but
there is no straightforward way to tune the coefficients auto-
matically. A more challenging topic is to derive coefficients
for an application based on known coefficients for different
applications provided that they share some characteristics.
We further discuss these issues in Section 5.

3 CONFIGURATION OF THE PARTITIONING DE-
GREE

The results of the previous section reveal (i) that running
an application on all machines available is not necessarily
the most efficient choice in terms of running time, and (ii)
big decreases in the number of machines for some jobs may
not result in significant performance degradation. In this
section, we examine the problem of repartitioning the data
throughout the application execution with a view to saving
resource consumption without sacrificing performance.

A typical real-world Spark program may contain several
elementary applications, like those examined as benchmark-
ing applications. For simplicity, we consider the case where
repartitioning takes place with the help of the repartition
transformation, which is artificially inserted between other
transformations. That is, we do not examine repartitioning
between any pair of connected stages, as shown in Figure 1,
but only between sets of stages (jobs).

3.1 Motivating Example

Consider the simplified example in Figure 5, where we
process an RDD initially partitioned across 96 nodes. Each
vertex in the figure, shows a distinct group of stages within
the whole example application. The degree of partition-
ing/parallelism in each stage group remains the same. The
upper part of the example shows the execution times when
the degree of partitioning stays fixed at 96 nodes throughout
execution. Overall, 96 nodes were occupied for 920 secs.
At the bottom part of the figure, we show the execution
times when we repartition data for some of the stages. The

6

Fig. 5. Example of repartitioning with benefits for resource consumption
at the expense of a slight increase in execution time.

execution time becomes 950 secs, but for 450 secs, only 32
machines were employed.

We informally define resource consumption rc as the
product of the number of machines and the time they were
occupied. In the first case, rc = 920 × 96 = 88320. In
the latter case, the resource consumption drops to rc =
500 × 96 + 450 × 32 = 62400. That is, rc drops by 29.9%
at the expense of 3.3% higher execution time.

As another example from real runs on MN3, consider a
Spark program that consists of the following five phases: it
(i) applies naive bayes to a dataset; (ii) applies k-means; (iii)
filters out the two thirds of the records; (iv) re-apples naive
bayes to the remaining records; and (v) applies k-means
to the filtered records. We experimented in MN3 with the
following three configurations in a scenario where 96 nodes
were at our disposal and the initial dataset was partitioned
across all available node. conf-a: steps (i)-(v) ran on 96 nodes;
conf-b: steps (i)-(iii) ran on 96 nodes and during step (iii)
repartitioning took place so that steps (iv)-(v) continued on
64 nodes; and conf-c: steps (i)-(iii) ran on 96 nodes and steps
(iv)-(v) continued on 32 nodes.

The running times of the three configurations were 75.8,
76.8, and 87.4 secs, respectively. The corresponding rc values
were 7275, 6598, and 6163. Comparing conf-a to conf-b, we
observe that we can trade 1.3% of running time for 9.3%
less resource consumption. Comparing conf-a to conf-b, we
also observe that we can trade 15% of response time for 15%
less resource consumption. Further, if the initial data was
partitioned across 64 nodes and this partitioning was kept
throughout execution, the running time was 93 secs and rc

dropped to 5952. Moreover, these times include also the cost
of repartitioning, which is not shown in Figure 5. The above
examples make evident that, by configuring the degree of
partitioning (which, in our work, is the same as defining the
degree of parallelism), we can strike a configurable balance
between running time and resource utilization.

3.2 Problem Formulation

Here, we provide the formal definition of the problem of
configuring the degree of partitioning. The prerequisites are
as follows:

1) A DAG of a Spark data flow execution plan denoted
as G(V,E). Each vertex v ∈ V describes a set of stages
executed with the same degree of partitioning nv

and each edge e = (v, v′) ∈ E is a pair of vertices
and denotes data transmission (with or without
repartitioning) as shown in Figure 5.2

2) A predefined range D of possible amounts of nodes
allocated to each vertex, s.t. nv ∈ D, ∀v ∈ V .

3) Profiles for execution times for each vertex of the
DAG as a function of the degree of parallelism,
costv(nv). This cost encapsulates any shuffling tak-
ing place among different tasks within a stage, as
explained in the previous section.

4) Profiles for repartitioning cost for each edge of the
DAG as a function of the degree of parallelism, of
the adjacent vertices cost(v,v′)(nv, nv′). Apparently,
if nv = nv′ then cost(v,v′)(nv, nv′) = 0.

During execution, we assume that the system schedules
as many resources as required to run a single vertex. As
such, the vertices are executed sequentially. This is orthog-
onal to the fact that within a vertex, execution is performed
in a both pipelined and partitioned parallelism manner.
According to the above assumptions, the running time
RunningTime (RT) of a Spark data flow G is given by the
following formula:

RunningT ime(G) =
∑

v∈V

costv(nv)+
∑

(v,v′)∈E

cost(v,v′)(nv, nv′)

(7)
Analogously, we define the resource consumption Re-

sourceConsumption (RC) of G as follows:

ResourceConsumption(G) =∑

v∈V

nvcostv(nv) +
∑

(v,v′)∈E

max{nv, nv′}cost(v,v′)(nv, nv′)

(8)
Goal: find the partitioning of each vertex nv, so that

ResourceConsumption(G) is minimized, while the execution
time does not exceed (1 + ε)RunningT ime(ninitial), where
ninitial is the unmodified degree of partitioning and ε > 0.

3.2.1 Problem Analysis

The problem is NP-hard. A sketch of the proof is as follows.
If we build a solution to the problem of finding the degree
of partitioning for each vertex that minimizes RC under
no constraint on RT , then this solution can be applied
to minimize RT as well, due to the linear relationship
between Equations (8) and (7). Both these unconstrained
problems can be deemed as instances of the Flow Activity
Allocation (FAA) problem, which is proven to be NP-hard
in [12]. Also, according to the analysis in [12], FAA cannot
even be approximated by a polynomial-time algorithm with
approximation error bound less than 8/7. As such, our
problem is NP-hard as well, because, if it could be solved
in polynomial time, then it could be used to solve FAA, by
setting ε→∞. But this cannot happen as explained above.

2. Since the vertices denote sets of stages, these DAGs provide a
higher-level view of the execution than the DAGs, excerpts of which
are shown in Figure 1.

7

Fig. 6. Example of producing the dependency graph.

3.3 Solutions

The main rationale of our solutions is to perform reparti-
tioning in an informed way taking into account overheads.
The tricky point is that changing the partitioning of a vertex
may also benefit its siblings. So, as a first step, to understand
the effects of repartitioning on subsequent vertices, we
introduce the dependency graph.

We assume that each RDD is cached according to its
latest partitioning. As such, changing the degree of parti-
tioning of a specific vertex impacts on both its descendants
in the initial graph and its siblings that have not been pro-
cessed yet. These dependencies can be better understood by
producing a dependency graph DG from G, where a vertex
v′ depends on v, if and only if there is a path from v to v′ in
DG. Producing DG can be performed in linear time through
processing G. The edges that differ are those connecting a
parent node with multiple child nodes: each child vertex
that has a sibling processed earlier is disconnected from its
parent and connected to the sibling that has most recently
processed; Figure 6 shows an example.

Then, we introduce the notion of the vertex benefit, which
captures the positive effect of repartitioning a vertex on
itself and other connected vertices. The exact way the befit
is quantifies is flexible. We propose three distinct greedy
techniques that differ in the way the benefit is calculated.

In addition, motivated by the results of [12], where
randomized solutions performed well, we investigate a
randomized solution in this work as well. The latter ex-
tends the solutions for single-objective resource allocation
in [12] through applying a flavor Iterated Local Search (ILS),
which, as verified by our experiments, is capable of offer-
ing different trade-offs between running time and resource
consumption than the greedy techniques.

In all our techniques, we assume that we can esti-
mate the running time of the initial partitioning, and
as such, we know the threshold RTthreshold = (1 +
ε)RunningT ime(ninitial).

3.3.1 Greedy Techniques

The high-level description of our greedy approach is in
Algorithm 1. The input of the algorithm is: (i) the initial
partitioning of each vertex and (ii) the threshold on the RT .
The output of the algorithm is a new partitioning, optimized
for lower RT . Holding the partitioning information requires
no special data structure, i.e., an array is sufficient.

Algorithm 1 consists of three loops. The two internal
loops iterate over all combinations of a vertex i and a degree
of parallelism j. For each combination (i, j), the benefit is
calculated. When all combinations have been examined, the
combination of vertex and degree of parallelism with the

Algorithm 1 Greedy specification of degree of partitioning

Require: partitioning[], RT threshold

for k ← 1 to |V | do
maxBenefit← 0
best ← (NULL,NULL) //holds the best repartition-
ing
for i← 1 to |V | do

for j ← 1 to |D| do
// check partitioning i by degree j

Calculate benefit(i, j)
Calculate RT of new partitioning
if RT ≤ RTthreshold then

if benefit(i, j) > maxBenefit then
maxBenefit← benefit(i, j)
best← (i, j)

end if
end if

end for
end for
apply best to partitioning[]

end for
return partitioning[]

highest benefit is selected. This procedure is then repeated
k times, where k ≤ |V |.3

In this work, we propose and investigate the behavior
of the following three techniques that differ in the way the
benefit is computed, which also impacts on what kind of
repartitioning are performed in each iteration:

1) G-local: this technique checks the impact on RC if
vertex i is partitioned in j partitions. The potential
cost of repartitioning with other vertices that are
connected to i through an edge is considered. If the
difference of the previous RC with the new one is
positive, this difference denotes benefit(i, j). Oth-
erwise, benefit(i, j) is set to 0. When the most ben-
eficial repartitioning is found, termed as best(i, j)
in the algorithm, partitioning[best.i] = best.j. The
complexity is O(|V |2|D|).

2) G-ext: this technique extends the repartitioning of
vertex i to its descendant vertices in DG, as long as
RC decreases. It starts like G-local. If benefit(i, j) >
0, it inserts all the children vertices of i in DG
into a queue. Then, it recursively applies the same
procedure to each element in the queue. The final
benefit is the sum of all benefits. As such, the benefit
of vertex i may entail changing the partitioning of
several other vertices downstream. Since for each
vertex, up to |V | other vertices are considered, the
complexity is O(|V |3|D|).

3) G-full: this technique resembles G-ext in that it con-
siders the benefits for downstream vertices as well.
However, instead of checking up to which vertex
the repartitioning should be applied, it enforces all
vertices on the paths from vertex i to a sink vertex
in DG (i.e., a vertex with no outgoing edges) to
get degree of parallelism equal to j. This aims to

3. It is important to recalculate the benefits from scratch rather than
selecting the k highest benefits.

8

Algorithm 2 ILS-based specification of degree of partition-
ing

Require: partitioning[], RT threshold

for i← 1 to iter1 do
//tempPart[] holds a temp partitioning
tempPart[]← perturb partitioning[]
for j ← 1 to iter2 do

// try local optimizations
select a random vertex v

select randon degree nv

if repartitioning (v, nv) improves RT then
tempPart[v]← nv

end if
end for
if RC(tempPart) < RC(partitioning) then

if RT (tempPart) < RTthreshold then
partitioning ← tempPart

end if
end if

end for
return partitioning[]

minimize repartitioning costs. As previously, the
complexity is O(|V |3|D|).

3.3.2 Iterated Local Search (ILS)

Our ILS algorithm is tailored to the specificities of our bi-
objective problem and the types of Spark profiles presented
in Section 2. It consists of two iterations as shown in the
high-level description of Algorithm 2. The external loop,
repeated iter1 times, directly targets the minimization of
RC. The internal loop, repeated iter2 times, conforms to a
different rationale. First, it is stochastic in that it randomly
perturbs the current partitioning array. More specifically,
m vertices are randomly changed to another degree of
parallelism. Second, it tries to guide the partitioning of
each vertex towards the area of its minimum RT , as a
means to decrease both RC and RT . The latter is important
so that further repartitionings can be investigated. As can
be observed from Figure 2, this area may be towards the
middle of the range |D|. In the following, we set m = 3,
iter1 = 100 and iter2 = 300, while we evaluate the impact
of other values of iter1 as well. The complexity of ILS
is O(iter1iter2). As shown in the evaluation section, ILS
exhibits a different behavior than the greedy techniques and
is capable of trading RT for RC in an interesting manner.

4 EXPERIMENTS

We split the evaluation section in two parts. First, we ex-
amine a real Spark dataflow, which is capable of providing
insights into the real-world benefits of our solutions. Then,
in order to evaluate our solutions more systematically, we
resort to synthetic flows that belong to a wide range of types
and sizes; in these flows, the vertex profiles conform to the
benchmarking applications of Section 2.

4 6 8 10 12 14 16
0

50

100

150

200

#nodes

#s
ec

on
ds

preparation
model build
recommendation
clustering
freq. itemsets

5
10

15

5

10

15
0

2

4

6

senders#receivers

#s
ec

on
ds

Fig. 7. Profiles for the steps (left) and repartitioning (right) of the case
study

4.1 Real case-study

We consider a dataflow, which processes the Audioscrobbler
dataset4 in the following 5-step manner: i) it transforms
the data accordingly in order to apply the next steps; (ii)
it builds a collaborative filtering model; (iii) it produces
recommendations for all users; (iv) it clusters the dataset
in 12 clusters; and (v) it finds the frequent itemsets with
support 0.05.5 The profiles for these five steps and the
potential repartitioning are shown in Figure 7 when the flow
is executed on a cluster from 4 to 16 nodes on MN3.

Using all machines yields RT = 106secs and RC =
1696. Our solutions, for any ε > yield as low running time
as RT = 84.61secs and RC = 845.8. In other words, this
is an example that both running time and consumption are
decreased due to the specific form of the profiles. The former
is decreased by 20% and the latter by more than 50%.

4.2 Synthetic Flows using Real Traces

For more thorough and systematic evaluation, we use a
series of synthetic DAGs, where the behavior of each vertex
is according to the real execution times, as presented in
Section 2. We consider five types of DAGs in three sizes,
as depicted in Figure 8.

The considered DAG types cover a wide range of flow
execution plans. Type (A) refers to a flow in the form
of a chain, thus covering applications that manipulate an
initial dataset in a single way, which consists of several
steps producing a single result dataset. Type (B) generalizes
(A) in that the same dataset is subject to several analyses,
and as such, the desired output comprises more than one
result datasets. Both these types employ unary vertices, i.e.,
vertices with a single input edge. Type (C) extends type (A)
through the support of multiple input datasets, and binary
vertices, i.e., vertices with more than a single input. Type
(B) and (C) have the form of a tree. Type (D) includes stages
with three inputs and mesh graph structures. Finally, type
(E) extends (B) through the consideration of generic DAGs
rather than trees only. In addition, we consider 3 sizes for
each type: small, medium and large, corresponding to DAGs
with 5, 10, and 15 non-source vertices, respectively.

The behavior of each vertex is according to real execution
data. More specifically, the profile of each vertex is a per-
turbed version of one of the profiles in Table 2. For each ver-

4. available from http://www-etud.iro.umontreal.ca/∼bergstrj/
audioscrobbler data.html

5. Example implementation of the first three steps can be found at
https://github.com/sryza/aas/tree/master/ch03-recommender

9

Fig. 8. DAGs considered in the experiments.

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
small − (A)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
small − (B)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
small − (C)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
small − (D)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
small − (E)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
medium − (A)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
medium − (B)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
medium − (C)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
medium − (D)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
medium − (E)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
large − (A)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
large − (B)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
large − (C)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
large − (D)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.5

1

1.5

2

2.5
large − (E)

ILS
G−local
G−ext
G−full

Fig. 9. Average number of times the initial resource consumption is higher than the optimized for ε = 1.1, 1.2 and 1.5.

tex, first, one of the rows in the table is randomly selected,
and then each parameter is randomly perturbed by ±30%.
Similarly, the cost of repartitioning is also based on the
empirical measurements in Section 2, artificially perturbed
by ±30% as well. In all experiments, the range of degree of
parallelism is from 8 to 96 nodes and the initial datasets are

partitioned in all 96 nodes without allowing their degree
of parallelism to be modified. Based on these profiles, we
expect that, in the generic case, resource consumption is
minimized at the expense of an increase in running time
(contrary to the case in the previous section).

10

TABLE 3
The highest improvements on the resource consumption compared to

the initial

best average best maximum
DAG avg stdev techn. max techn.

ε = 1.1

small - (A) 1.77 0.71 G-full 4.13 G-full
small - (B) 1.62 0.57 G-full 3.77 G-full
small - (C) 1.51 0.44 G-full 4.02 G-full
small - (D) 1.44 0.41 G-ext 3.14 G-full
small - (E) 1.73 0.65 G-full 3.73 G-full

medium - (A) 1.77 0.65 G-full 4.49 G-full
medium - (B) 1.64 0.42 G-full 3.18 G-ext
medium - (C) 1.52 0.37 G-full 2.99 G-full
medium - (D) 1.62 0.32 G-full 2.8 G-full
medium - (E) 1.59 0.42 G-full 2.95 G-full

large - (A) 1.69 0.53 G-full 3.32 G-full
large - (B) 1.63 0.37 G-full 3.11 G-full
large - (C) 1.54 0.31 G-full 2.6 G-ext
large - (D) 1.5 0.3 G-full 2.81 G-full
large - (E) 1.68 0.41 G-full 2.89 G-full

ε = 1.2

small - (A) 1.74 0.71 G-full 4.98 G-full
small - (B) 1.81 0.69 G-full 5.23 G-full
small - (C) 1.68 0.74 G-full 5.96 G-full
small - (D) 1.51 0.37 G-full 2.72 G-full
small - (E) 1.74 0.71 G-full 5.18 G-full

medium - (A) 1.75 0.58 G-full 4.28 G-full
medium - (B) 1.81 0.59 G-full 4.03 G-full
medium - (C) 1.58 0.38 G-full 2.95 G-ext
medium - (D) 1.75 0.34 G-full 2.74 G-full
medium - (E) 1.81 0.62 G-full 4.96 G-full

large - (A) 1.81 0.48 G-full 3.17 G-full
large - (B) 1.84 0.47 G-full 3.91 G-full
large - (C) 1.57 0.3 G-full 2.62 G-ext
large - (D) 1.61 0.33 G-full 2.65 G-full
large - (E) 1.78 0.49 G-full 3.6 G-full

ε = 1.5

small - (A) 2.03 0.9 G-full 6.08 G-full
small - (B) 2.05 0.91 G-full 4.95 G-full
small - (C) 1.77 0.68 G-ext 3.25 G-full
small - (D) 1.58 0.4 G-ext 2.98 G-full
small - (E) 1.98 0.8 G-full 5.24 G-full

medium - (A) 1.95 0.7 G-full 5.17 G-full
medium - (B) 2.07 0.64 G-ext 4.0 G-full
medium - (C) 1.74 0.4 G-ext 3.88 G-full
medium - (D) 1.94 0.41 G-ext 3.24 G-ext
medium - (E) 1.97 0.65 G-full 3.81 G-full

large - (A) 2.04 0.78 G-full 6.77 G-full
large - (B) 1.99 0.55 G-full 3.67 G-full
large - (C) 1.86 0.37 G-ext 4.4 G-full
large - (D) 1.77 0.36 G-full 2.67 G-full
large - (E) 1.95 0.5 G-full 3.62 G-full

4.2.1 Results

In the first set of experiments, we initially assess the ef-
ficiency of the techniques when ε=1.1, 1.2, and 1.5. Each
combination of i) DAG type, ii) DAG size and iii) technique
is repeated 100 times. Each time, the vertex and edge costs
are randomly instantiated as explained above.

Figure 9 shows how many times the initial RC is higher
than the optimized on average. The initial RC is the one
when no repartitioning takes place throughout execution.

The information in the figure is complemented by Table
3, where, for each combination of DAG type and size, the
number of times the initial RC is higher than the RC of
best performing technique is presented. For the latter, both
the average best performance and the best performance in
isolated runs is considered.

The main observations can be summarized as follows:

1) The improvements on RC due to the proposed tech-
niques are significant. Even for small values of ε,
such as ε = 1.1, the average RC of the initial execu-
tion is at least 1.44 times higher than the RC of our
solutions and it can reach up to 1.77 times. For larger
values of ε, ε = 1.5 the initial RC can more than
2 times higher, which means that our techniques
are capable of dropping the resource consumption
to the half. The improvements in isolated cases, as
shown in the second column of Table 3 from right,
are even more significant. In certain cases, e.g., for
DAGs of type “large - (A)”, the improvements of
RC are by a factor of more than 6 times.

2) G-full and G-ext fully dominate the randomized
solution ILS and G-local in terms of RC. The low
efficiency of ILS is somewhat of a surprise, given the
good behavior of similar solutions to the problems
that tackle a single objective as in [12].

3) On average, G-full is more efficient than G-ext. As
shown in the figure, G-ext is superior in DAG types
(C) and (D) of large size, but by a small margin com-
pared to G-full. To the contrary, in the cases where
G-full is superior, which are far more frequent, the
margin is wider.

4) Counter-intuitively, the size of the DAG seems to
play a minor role in the efficiency of the techniques.
This is more evident with the help of Figure 10,
where the behavior of G-full is shown with a dif-
ferent grouping than the one in Figure 9. From the
figure, we can also observe that the type of the DAG
significantly impacts on the RC improvement

We close the discussion of this experiment with a look
at the RT (see Figure 11). Combining the results about
the increase of RT and RC reveals a distinctive feature
of the ILS technique: ILS is capable of decreasing the RC

by at least 30% on average at the expense of small, if not
negligible, increase in RT . In other words, the trade-off
between RC and RT achieved by ILS is of a very different
nature than that of G-full. More specifically, the highest
average increase in RT is for type (E) of medium and large
size and is approximately 5%. For the remainder DAGs it
is even less, and in certain cases, such as medium-(D) and
small-(C) ILS manages to decrease both RT and RC. For
the G-local, G-ext and G-full techniques, the increase in RT

is closely defined by ε, as expected (with an exception for
small-(C), where all techniques improve RT as well).

In light of the above analysis, we do not consider that
G-full and G-ext dominate ILS in general, since the latter ex-
hibits a different type of behavior with an interesting trade-
off between RC and RT . Finally, this analysis explains why
the ILS bars in Figure 9 are similar for a given combination
of DAG type and size regardless of the value of ε.

11

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
small − (A)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
small − (B)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
small − (C)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
small − (D)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
small − (E)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
medium − (A)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
medium − (B)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
medium − (C)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
medium − (D)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
medium − (E)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
large − (A)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
large − (B)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
large − (C)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
large − (D)

ILS
G−local
G−ext
G−full

1.1 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
large − (E)

ILS
G−local
G−ext
G−full

Fig. 11. Actual increase factor of running time for ε = 1.1, 1.2 and 1.5.

(A) (B) (C) (D) (E)
0

0.5

1

1.5

2

2.5

small
medium
large

(A) (B) (C) (D) (E)
0

0.5

1

1.5

2

2.5

small
medium
large

(A) (B) (C) (D) (E)
0

0.5

1

1.5

2

2.5

small
medium
large

Fig. 10. The behavior of G-full for ε = 1.1(top left), 1.2 (top right) and
1.5(bottom).

4.2.2 Results After Optimizing for RT

In the second set of experiments, we extend the problem
statement and we assume that we first find the partitioning
of each vertex so that RT is minimized, before trying to
minimize RC under a bounded increase in RT . To this
end, we combine the rationale of [12] with the techniques
in Section 3. The expectation is that both the initial RT

and RC will improve. The improvements on RT are due to
the concave shape of the vertex profiles, which imply that
executing on the maximum number of nodes available does

TABLE 4
The highest improvements on the resource consumption compared to

the flow with optimized RT

best average vs. best maximum vs.
DAG initial best RT initial best RT

ε = 1.1

small - (A) 1.77 1.24 4.13 1.56
small - (C) 1.51 1.21 4.02 1.58

medium - (A) 1.77 1.18 4.49 1.46
medium - (C) 1.52 1.19 2.99 1.43

large - (A) 1.69 1.18 3.32 1.36
large - (C) 1.54 1.18 2.6 1.39

ε = 1.2

small - (A) 1.74 1.36 4.98 1.94
small - (C) 1.68 1.25 5.96 1.71

medium - (A) 1.75 1.28 4.28 1.68
medium - (C) 1.58 1.25 2.95 1.57

large - (A) 1.81 1.26 3.17 1.75
large - (C) 1.57 1.25 2.62 1.54

ε = 1.5

small - (A) 2.03 1.46 6.08 2.66
small - (C) 1.77 1.4 3.25 2.12

medium - (A) 1.95 1.47 5.17 2.46
medium - (C) 1.74 1.38 3.88 1.72

large - (A) 2.04 1.44 6.77 1.95
large - (C) 1.86 1.42 4.4 1.79

not necessarily imply faster execution. For many cases, this
benefit outweighs the overhead of repartitioning, so over-
all, the average RT decreases. In addition, RC decreases
because not all nodes are used.

In order to minimize RT , we employ the dynamic pro-
gramming algorithm and the heuristics in [12]. Moreover,
on top of their initial solutions, as a meta-optimization

12

step, we run a modified version of the ILS technique. The
modifications are such so that the aim is to minimize RT

rather than RC under a constraint on RT . As expected,
RT and RC both decrease. For example, for the (A) type
of DAG, regardless of the size, RT drops by approximately
5% and RC drops by 20-25%. For type C, the decrease in RT

is similar, but the decrease in RC is slightly less, 18-20%.
The important notice is that our techniques are capable

of yielding significant improvements on RC even when
applied to these optimized partitionings. The general trend
of each technique remains the same as in the previous exper-
iment. Table 4 summarizes the results of the best performing
technique, which in almost all cases is G-full (for brevity,
only DAG types (A) and (C) are presented).

From the table, we can see that when allowing up to 10%
increase in RT the benefits of RC are 18-24% for type (A)
and 18-21 for type (C). For ε = 1.2, these benefits increase to
26-36% and 25%, respectively. When ε = 1.5, they become
44-48% and 38-42%, respectively. Table 4 also presents the
maximum observed improvements in any of the 100 repeats
of each combination of technique and DAG type and size.

4.2.3 Impact of Profile Inaccuracy

Given that our techniques require detailed profiling infor-
mation, a question may arise as to whether our techniques
are sensitive to metadata inaccuracies. To investigate this is-
sue, we run a new set of experiments, where the actual pro-
file parameters are further perturbed by a factor of ±30%.
These perturbed values are unknown to the optimization
techniques, and they are used only for the computation of
the RT and RC values of the final solution. According to
the results, there are negligible changes in all the numbers
presented above. The maximum deviations observed do
not exceed ±1.2%. The reason is that the perturbations are
of such a magnitude that the relative differences between
the coefficients, which differ by orders of magnitude, are
affected to a small extent only.

4.3 Optimization Overhead

The optimization overhead of our solutions is low. For
example, optimizing the large DAG of type (C) on a machine
with i7-4770 CPU at 3.4GHz with 16GB of RAM using the
Greedy techniques takes less than 0.2 secs. ILS is slower
and takes 2.55 secs on average. Increasing the number of
iterations in ILS 3 times results in time overhead of 8.18
secs. Based on the above overhead information, it can be
concluded that the number of external iterations of ILS has
a tangible impact on optimization time. In Figure 12, we
show 5 example runs for ILS. We can observe that, after 100
external iterations, the decrease rate in RC is significantly
lower than in the first iterations.

5 DISCUSSION ON THE PROVISION OF END-TO-
END SOLUTIONS

Thus far, we have explained what is the type of the profiles
of Spark applications in terms of analytical cost models
(Section 2) and we provided solutions for deciding on the
degree of partitioning (Section 3) along with experimental
evidence regarding their efficiency (Section 4). These two

0 50 100 150 200 250 300
0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

0 50 100 150 200 250 300
2

2.5

3

3.5

4

4.5

5
x 10

4

Fig. 12. Resource consumption as a function of the number of ILS ex-
ternal iterations in 5 example runs for small-(A)(left) and large-(C)(right).

20 40 60 80
20

40

60

80

100

120

140

160

180

#nodes

#s
ec

on
ds

100M, actual
150M, actual
100M, estimated
150M, estimated

Fig. 13. Sampling-based profile estimation.

modules are essential for building practical end-to-end solu-
tions, but arguably need to be coupled with techniques that
are capable of deriving the profiles in an efficient manner.

A natural choice to this end is to employ sampling, e.g.,
as in [13], [14]. However, sampling-based automated profile
generation seems to be a particularly challenging task in
Spark. Consider the case in Figure 13, where we profile k-
means using exactly the same type of data in three sizes. The
sample is 50M records, and we want to use it to estimate the
profiles for datasets 2 and 3 times larger (i.e., the sample is
relatively large). Although this seems to be an easy thing to
do, the results are poor. In the figure, we show how much
the estimates deviate from the actual profiles if we employ
the template in Eq. (4) and we multiply the coefficients b, c
and d of the sample, accordingly. The deviation can reach
several factors. We have investigated several ways to tune
the coefficients. The one shown in the figure is the following:
for a dataset n times larger, the multiplication factors are
n, n and nlog(n), respectively. Other tuning ways behave
even worse. The main lesson learnt is that the problem of
inexpensively deriving the necessary profiles is challenging
and there seems to be no trivial way to transfer the results
of smaller datasets (i.e., samples) and/or applications to
larger or different datasets and applications. This constitutes
a main direction for future work.

6 RELATED WORK

The closest work to us is the work in the context of the Cu-
mulon system [15]. Cumulon extends Hadoop MapReduce
and focuses on matrix-based analyses, which are common in
many scientific problems. It tries to minimize the monetary
cost when renting cloud virtual machines while respecting
a constraint on execution time. Micro-benchmarking is used
to obtain performance profiles for each task. However, the

13

main differences, which do not allow us to transfer their
techniques to our problem, are that the degree of partition-
ing is exhaustively searched for each vertex, which incurs
unacceptably high overhead, and no repartitioning cost
is considered. Enumerating over all combinations is also
employed in [16]. The proposal in [17] targets a MapReduce
environment and derives cost formulas for each vertex as
a function of map and reduce slots. It then finds the min-
imum number of slots that are required to meet a running
time constraint using Lagrange multipliers. Extensions have
appeared in [18], where trade-off curves between running
time and monetary cost are provided to the user, who makes
the final choice, and in [19], where the number of map and
reduce slots are optimally decided. All these techniques are
specific to a MapReduce setting running on cloud machines
and assume an analytical cost model that is even simpler
than the one in [7], which is extended by our work.

A shortened single-objective version of our problem has
been investigated in the past under several descriptions.
In [12], [20], the problem of changing the type of the
execution engine for each task while taking into account
engine switching costs is tackled. Even if we treat different
execution engines as different degrees of partitioning, the
solutions in [12], [20] are inadequate for our bi-objective
problem, while also the solutions in [20] cannot scale. Also,
there are several techniques that try to allocate a DAG to the
appropriate number of resources, but, typically, they do not
consider any aspect that can correspond to repartitioning
overhead, e.g., [21], [22]. Bi-objective allocation in cloud
settings have been considered in several other works, but
making different assumptions, e.g., when clients are poten-
tially antagonistic to the provider and jobs consist of stand-
alone tasks as in [23], or when there are multiple candidate
cloud infrastructures, as in [24].

Regarding profiling, the work in [6], provides evidence
about the importance of mitigating CPU bottlenecks in
Spark applications and proposes a methodology to detect
them. An analytic model for MapReduce tasks to compute
latencies is presented in [25]. [26] proposes a stochastic cost
model for generic workflow tasks but does not consider
different degrees of parallelism. Finally, [27] proposes a tech-
nique to predict the number of resources in scientific work-
flows in order to obtain a desirable level of performance.
However, all these cost modeling and profiling techniques
do not cover specific phenomena in Spark execution, such as
super-linear speed-ups for small degrees of parallelism and
performance degradation for large ones. The proposals in
[13], [14] present a sampling-based approach to estimate the
profile of a single embarrassingly parallel task, based on the
behavior of some of its partitions. However, they assume
that partitions are scheduled in multiple waves, whereas
we have adopted a configuration, where all partitions are
scheduled in a single wave but there are multiple inter-
dependent tasks. In [28], MapReduce profiles are transferred
from one cluster to another, but still, extensive benchmark-
ing on both clusters and detailed profiles on one cluster are
required. [16] leverages past traces to estimate the profiles
of new jobs based on the similarity of job profiles. The
techniques in [29], [30], [31] estimate the behavior of reduce
tasks when changing the degree of parallelism with the help
of a FIFO scheduler; however, this approach cannot reflect

the execution complex Spark jobs with internal shuffling at
a reasonable accuracy. In general, advances in profiling and
instantiating the cost models of spark applications at run-
time are orthogonal to our dynamic partitioning techniques.

7 CONCLUSIONS AND FUTURE RESEARCH

In this work, we investigate the problem of resource waste
when executing a Spark application on all the machines
available. To solve this, we propose solutions that modify
the degree of data partitioning and parallelism during exe-
cution, so that we decrease the amount of time resources are
occupied while bounding any increase in execution time. We
also perform a detail analysis of the running time of simple
spark applications under different degrees of parallelism
and we derive analytical formulas that describe the applica-
tion performance. Using real data from the profiling activity,
we evaluate our dynamic partitioning solutions. The results
show that we can trade small amounts of running time for
big reductions in resource consumption, e.g., by a factor
more than 6X.

This work can also be extended in several directions,
which call for further research. It assumes a standalone
setting of Spark cluster manager, as the one in the Barcelona
Supercomputing Center. The impact of additional cluster
managers, such as YARN and MESOS, needs to be in-
vestigated as well. Also, the trend in Spark program de-
velopment is to depart from RDDs and work on top of
Dataframes and Datasets (as from Spark v.1.6). Repartition-
ing and scalability behavior on top of these interfaces needs
to be explored.6 However, the main problem according to
our view is the need of application profiles in order to run
our dynamic partitioning techniques. Deriving reasonably
accurate profiles with as few test runs as possible is an
important avenue for future work.

Acknowledgment. We would like to thank Mrs E. Katsiantoni,
student at the Aristotle Univ. of Thessaloniki, for helping with
initial versions of the ILS algorithm code. Also, this work is
partially supported by the Spanish Ministry of Economy and
Competitivity under contract TIN2015-65316-P and by the SGR
programme (2014-SGR-1051) of the Catalan Government.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” ser.
HotCloud’10.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” in NSDI, 2012, pp. 15–28.

[3] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and
I. Stoica, “Shark: Sql and rich analytics at scale,” in SIGMOD, 2013,
pp. 13–24.

[4] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia,
“Spark SQL: relational data processing in spark,” in SIGMOD,
2015, pp. 1383–1394.

[5] R. Tous, A. Gounaris, C. Tripiana, J. Torres, S. Girona, E. Ayguade,
J. Labarta, Y. Becerra, D. Carrera, and M. Valero, “Spark deploy-
ment and performance evaluation on the marenostrum supercom-
puter,” in IEEE BigData, 2015, pp. 299–306.

6. At the time of writing, these interfaces suffer from certain technical
limitations regarding the support for dynamic partitioning, e.g., https:
//issues.apache.org/jira/browse/SPARK-9872.

14

[6] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B. Chun,
“Making sense of performance in data analytics frameworks,” in
12th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI, 2015, pp. 293–307.

[7] N. J. Gunther, P. Puglia, and K. Tomasette, “Hadoop superlinear
scalability,” Commun. ACM, vol. 58, no. 4, pp. 46–55, 2015.

[8] K. Ren, Y. Kwon, M. Balazinska, and B. Howe, “Hadoop’s adoles-
cence,” PVLDB, vol. 6, no. 10, pp. 853–864, 2013.

[9] B. Graham and M. R. Rangaswami, “Do you hadoop? a survey of
big data practitioners,” Tech. Rep., 2013.

[10] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig,
U. Çetintemel, and S. Zdonik, “An architecture for compiling udf-
centric workflows,” PVLDB, vol. 8, no. 12, pp. 1466–1477, 2015.

[11] A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and A. Dou-
glas, “Nobody ever got fired for using hadoop on a cluster,” in
Proceedings of the 1st International Workshop on Hot Topics in Cloud
Data Processing, ser. HotCDP ’12, 2012, pp. 2:1–2:5.

[12] G. Kougka, A. Gounaris, and K. Tsichlas, “Practical algorithms
for execution engine selection in data flows,” Future Generation
Computer Systems, vol. 45, no. 0, pp. 133 – 148, 2015.

[13] M. Sahli, E. Mansour, T. Alturkestani, and P. Kalnis, “Automatic
tuning of bag-of-tasks applications,” in 31st IEEE International
Conference on Data Engineering, ICDE, 2015, pp. 843–854.

[14] M. Sahli, E. Mansour, and P. Kalnis, “ACME: A scalable par-
allel system for extracting frequent patterns from a very long
sequence,” VLDB J., vol. 23, no. 6, pp. 871–893, 2014.

[15] B. Huang, S. Babu, and J. Yang, “Cumulon: optimizing statistical
data analysis in the cloud,” in SIGMOD Conference, 2013, pp. 1–12.

[16] J. Shi, J. Zou, J. Lu, Z. Cao, S. Li, and C. Wang, “MRTuner: A toolkit
to enable holistic optimization for mapreduce jobs,” PVLDB, vol. 7,
no. 13, pp. 1319–1330, 2014.

[17] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: automatic
resource inference and allocation for mapreduce environments,”
in Proc. of the 8th International Conference on Autonomic Computing,
ICAC, 2011, pp. 235–244.

[18] Z. Zhang, L. Cherkasova, and B. T. Loo, “Optimizing cost and per-
formance trade-offs for mapreduce job processing in the cloud,” in
2014 IEEE Network Operations and Management Symposium, NOMS,
2014, pp. 1–8.

[19] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo, “Automated
profiling and resource management of pig programs for meeting
service level objectives,” in 9th International Conference on Auto-
nomic Computing, ICAC’12, 2012, pp. 53–62.

[20] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal, “Op-
timizing analytic data flows for multiple execution engines,” in
SIGMOD Conference, 2012, pp. 829–840.

[21] M. Rahman, M. R. Hassan, R. Ranjan, and R. Buyya, “Adaptive
workflow scheduling for dynamic grid and cloud computing en-
vironment,” Concurrency and Computation: Practice and Experience,
vol. 25, no. 13, pp. 1816–1842, 2013.

[22] R. Duan, R. Prodan, and T. Fahringer, “Performance and cost
optimization for multiple large-scale grid workflow applications,”
in Proc. of the ACM/IEEE Conf. on Supercomputing, 2007, pp. 1–12.

[23] J. Simao and L. Veiga, “Partial utility-driven scheduling for flexible
sla and pricing arbitration in clouds,” IEEE Transactions on Cloud
Computing, vol. PP, no. 99, pp. 1–1, 2016.

[24] L. Sharifi, L. Cerdà-Alabern, F. Freitag, and L. Veiga, “Energy effi-
cient cloud service provisioning: Keeping data center granularity
in perspective,” J. Grid Comput., vol. 14, no. 2, pp. 299–325, 2016.

[25] B. Li, Y. Diao, and P. J. Shenoy, “Supporting scalable analytics with
latency constraints,” PVLDB, vol. 8, no. 11, pp. 1166–1177, 2015.

[26] A. M. Chirkin, A. Belloum, S. V. Kovalchuk, and M. X. Makkes,
“Execution time estimation for workflow scheduling,” in Proceed-
ings of the 9th Workshop on Workflows in Support of Large-Scale
Science. IEEE Press, 2014, pp. 1–10.

[27] I. Pietri, G. Juve, E. Deelman, and R. Sakellariou, “A performance
model to estimate execution time of scientific workflows on the
cloud,” in Proceedings of the 9th Workshop on Workflows in Support of
Large-Scale Science. IEEE Press, 2014, pp. 11–19.

[28] A. Verma, L. Cherkasova, and R. H. Campbell, “Profiling and
evaluating hardware choices for mapreduce environments: An
application-aware approach,” Perform. Eval., vol. 79, pp. 328–344,
2014.

[29] H. Herodotou and S. Babu, “Profiling, what-if analysis, and cost-
based optimization of mapreduce programs,” PVLDB, vol. 4,
no. 11, pp. 1111–1122, 2011.

[30] H. Herodotou, F. Dong, and S. Babu, “No one (cluster) size
fits all: automatic cluster sizing for data-intensive analytics,” in
Proceedings of the 2nd ACM Symposium on Cloud Computing, ser.
SOCC ’11, 2011, pp. 18:1–18:14.

[31] H. Lim, H. Herodotou, and S. Babu, “Stubby: A transformation-
based optimizer for mapreduce workflows,” PVLDB, vol. 5, no. 11,
pp. 1196–1207, 2012.

Anastasios Gounaris is an assistant profes-
sor at the Dept. of Informatics of the Aristotle
University of Thessaloniki, Greece. A. Gounaris
received his PhD from the University of Manch-
ester (UK) in 2005. His research interests are in
the areas of autonomic, adaptive and wide-area
data management, massive parallelism, flow and
query optimization, data mining and resource
scheduling. More details can be found at http:
//delab.csd.auth.gr/∼gounaris/.

Georgia Kougka is a PhD candidate in the
Informatics Dept. of the Aristotle University of
Thessaloniki since 2012. Her Ph.D. project has
been partially funded by the Thales Research
Funding Program of the Hellenic General Sec-
retariat for Research and Technology. Her re-
search interests lie in the field of data flow opti-
mization, flow task allocation and multi-objective
flow optimization. More details can be found at
http://delab.csd.auth.gr/∼georkoug/.

Rubèn Tous is an associate professor at the
Dept. of Computer Architecture of UPC. He has
also been participating as spanish delegate in
ISO/MPEG and ISO/JPEG. He is editor of Part
12 of the MPEG-7 standard and Parts 1, 3 and 6
of the JPEG’s JPSearch standard. His main re-
search interests are multimedia big data comput-
ing, multimedia information retrieval, knowledge
representation, machine learning and computer
vision.

Carlos Tripiana Montes holds a MSc in Com-
puter Science working as permanent staff in the
HPC User Support Group of the Operations De-
partment at the Barcelona Supercomputing Cen-
ter since 2010. His expertise comprises Com-
puter Graphics, Data Processing, Visualization,
and Big Data, all focused on HPC ecosystems.

Jordi Torres holds a PhD from UPC (Best UPC
Computer Science Thesis Award, 1993). Cur-
rently he is a full professor in the Computer
Architecture Department at UPC. He has more
than twenty years of experience in research and
development of advanced distributed and paral-
lel systems in the High Performance Computing
Group at UPC. More details can be found at
http://www.jorditorres.org/.

