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Abstract

In this paper we analyze in detail a collection of motivating examples to consider bm-

symplectic forms and folded-type symplectic structures. In particular, we provide models in

Celestial Mechanics for every bm-symplectic structure. At the end of the paper, we introduce

the odd-dimensional analogue to b-symplectic manifolds: b-contact manifolds.

1 Introduction

Symplectic geometry has provided the classical models for problems in physics. However, some-

times the symplectic setting is insufficient for one’s purposes: for instance in parametric-dependent

systems, that of Poisson geometry is more appropriate. In this paper we present a particular class

of Poisson manifolds satisfying some transversality conditions: bm-Poisson manifolds (also called

bm-symplectic manifolds) and we exhibit examples coming from celestial mechanics.

We also explore their natural “duals” which we call m-folded symplectic structures1 via exam-

ples. We call both bm-Poisson manifolds and m-folded symplectic structures, singular symplectic

structures in the sense that a symplectic structure either goes to infinity or drops rank on a subset.

The evolution of a Hamiltonian dynamical system is given by the flow of a vector field defined

typically on the cotangent bundle of a manifold. This vector field is determined by a smooth

function on the phase space and the canonical symplectic form on the cotangent bundle. The

symplectic nature of the system has many important consequences such as preservation of phase

space volume. These systems also come equipped with a well-developed perturbation theory.

Despite the useful structure that Hamiltonian systems exhibit, occasionally this structure is

disregarded, particularly when studying the evolution close to singularities of the system, which

often have difficult and interesting phenomena. Many examples of this occur in systems of celestial

mechanics. The singularities of celestial mechanics fall into two categories: collision singularities,

where two or more bodies occupy the same position in the configuration space; and non-collision

singularities, which include the escape of a body to infinity in finite time. Here, “singular” changes

of coordinates are employed, or the points about the singularity are “blown-up”. Due to the

non-canonical nature of these transformations, the symplectic form and the traditional form of
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Hamilton’s equations are not preserved. Often the symplectic structure is simply discarded, along

with all the useful associated tools. A similar situation occurs for the so called “point transforma-

tions” of physics, which change position coordinates without reference to the usual change to the

conjugate momenta, which would render the change canonical. These changes occur for a variety

of reasons, many times simply out of convenience, e.g. when the corresponding canonical change

to the momenta results in a complicated Hamiltonian. However, recently a useful middle ground

is being investigated. The canonical symplectic form, under these changes of coordinates, is trans-

formed to a form which is symplectic almost everywhere. Systematic investigation of such forms,

which include folded symplectic and bm-symplectic forms is a current active area of research.

In this paper we give an introduction to these singular symplectic structures. We then consider

several Hamiltonian systems, with a preferred eye placed in classical problems of celestial me-

chanics, where classical coordinate transformations result in a singular symplectic structure on the

corresponding “Hamiltonian” system. We attempt to show how freedom in choosing non-canonical

coordinates can be used to produce different insights in the dynamics of the system.

Particularly, we will compare the point Levi-Civita and the canonical Levi-Civita transforma-

tions in the Kepler problem, and the McGehee change and its canonical counterpart in the manifold

at infinity in the restricted three body problem. We will also see in the Kepler problem with gen-

eralized potential how to produce all kinds of bm-symplectic structures and folded structures, and

the possible interplay between them. At the end of the paper, we introduce the odd-dimensional

analogue to b-symplectic manifolds, which turn out to be the b-contact manifolds.

Organization of this paper: After the introduction, we introduce the main objects of this

paper by giving a review on b-symplectic geometry in Section 2. Section 3 exhibits the examples

of the Kepler and the two fixed centre problem, where a non-canonical change of variables induces

a certain degeneracy on the symplectic form. In Section 4, we prove that the manifold at infinity

in the planar restricted three-body problem can be seen as a b3-symplectic manifold. In Section

5, we show that the double collision of two particles in a generalized potential produces examples

of bk-symplectic and k-folded symplectic structures for any k. We end the paper with Section 6,

where we introduce the odd-dimensional analogue of b-symplectic manifolds.

2 Preliminaries

There is a one to one correspondence between symplectic forms and non-degenerate Poisson struc-

tures on a manifold. This section will focus on an exposition of structures which are the “next

best” case, i.e. manifolds where these structures are non-degenerate away from a hypersurface of

the manifold and behave well on the singular hypersurface. Explicitly:

Definition 1. Let (M2n,Π) be an oriented Poisson manifold such that the map

p ∈ M 7→ (Π(p))n ∈ Λ2n(TM) (1)

is transverse to the zero section, then Z = {p ∈ M |(Π(p))n = 0} is a hypersurface and we say

that Π is a b-Poisson structure on (M2n, Z) and (M2n, Z,Π) is a b-Poisson manifold. The

hypersurface Z is called singular hypersurface.

Definition 2. Let (M2n, ω) be a manifold with ω a closed 2-form such that the map

p ∈ M 7→ (ω(p))n ∈ Λ2n(T ∗M)
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is transverse to the zero section , then Z = {p ∈ M |(ω(p))n = 0} is a hypersurface and we say

that ω defines a folded symplectic structure on (M,Z) if additionally its restriction to Z has

maximal rank. We call the hypersurface Z folding hypersurface and the pair (M,Z) is a folded

symplectic manifold.

b-Poisson structures were originally classified in dimension 2 by Radko [1]. Recently, beginning

with [2, 3], there have been interesting developments in the dynamical and topological aspects of

b-Poisson structures in higher dimensions, see [4, 5, 6, 7, 8, 9, 10].

A Poisson structure of b-type Π on a manifold M2n defines a symplectic structure on a dense set

in M2n. The set of points where the Poisson structure is not symplectic is a hypersurface of M2n.

It is possible to study these structures in the symplectic setting, using the language of b-cotangent

bundles and b-forms, a construction first given in [11] and further used in [12]. To import techniques

from symplectic geometry, we first need some b-geometry.

2.1 b-Geometry

The category of b-manifolds was originally developed by Melrose [11] in the context of manifolds

with boundary. However many of the definitions can be used almost directly, with boundary being

replaced by a chosen hypersurface of the manifold.

Definition 3. A b-manifold (M,Z) is an oriented manifold M together with an oriented hyper-

surface Z. A b-map is a map

f : (M1, Z1) → (M2, Z2) (2)

so that f is transverse to Z2 and f−1(Z2) = Z1.

The notions of b-manifolds and b-maps give a well defined category. The have interesting

structures which are analogues of the usual structures on smooth manifolds. Here we give some

definitions, beginning with:

Definition 4. A b-vector field is a vector field on M , which is everywhere tangent to Z.

The space of b-vector fields is a Lie sub-algebra of the Lie algebra of vector fields on M . The

crux of b-geometry is that these are also the sections of a vector bundle on M , the b-tangent bundle.

Let U be an open neighbourhood about p ∈ Z and f a defining function of Z in U . There is an

(intrinsically defined) vector field, tangent to Z, given by f ∂
∂f

. We can choose a coordinate chart

on U of the form (f, x2, · · · , xn) in which the b-vector fields restricted to U form a free C∞-module

with basis
(

f ∂
∂f

, ∂
∂x2

, · · · , ∂
∂xn

)

.

In this way the space of b-vector fields defines a locally free C∞-module, and so a vector bundle

on M . Away from the critical hypersurface this vector bundle is isomorphic to the usual tangent

bundle on M by a theorem of Serre–Swan [13]. On the critical hypersurface there is a surjective

bundle morphism φ : bTM |Z → TM |Z . The kernel of this surjection is the trivial line bundle

generated by f ∂
∂f

, which we call the normal b-vector field.

One can define the b-cotangent bundle of a b-manifold as the dual of this b-tangent bundle, with

local basis
(

df
f
, dx2, · · · , dxn

)
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where the form df
f

is the well defined one form on the b-tangent bundle dual to the normal b-vector

field.

We can adapt usual constructions on smooth forms to b-forms. In particular we have the concept

of a b-form of degree k, as a section of the vector bundle bΩk(M) = Λk(bT ∗M). Given a defining

function f for the critical hypersurface it is possible to write every b-form of degree k as the sum

ω = α ∧
df

f
+ β, α ∈ Ωk−1(M), β ∈ Ωk(M) (3)

so we can extend the exterior differential operator d as an operator

dω = dα ∧
df

f
+ dβ. (4)

This allows us to define the notions of a closed b-form and exact b-form, and so, of b-de Rham

complex and b-de Rham cohomology. It can be computed in terms of the cohomology of M and Z,

see [3] for details. Explicitly

Theorem 1. (Mazzeo-Melrose) bH∗(M) ∼= H∗(M)⊕H∗−1(Z).

After a brief foray into b-geometry we are now ready to translate b-Poisson manifolds to the

symplectic setting.

2.2 b-Symplectic forms

Definition 5. Let (M2n, Z) be a b-manifold, where Z is the critical hypersurface as in Definition

1. Let ω ∈ bΩ2(M) be a closed b-form. We say that ω is b-symplectic if ωp is of maximal rank

as an element of Λ2( bT ∗

pM) for all p ∈ M .

Using Moser’s trick and adjusting some classical results from symplectic geometry, we get the

corresponding Darboux theorem for the b-symplectic case:

Theorem 2 (b-Darboux theorem, [3]). Let ω be a b-symplectic form on (M2n, Z). Let p ∈ Z.

Then we can find a local coordinate chart (x1, y1, . . . , xn, yn) centered at p such that hypersurface

Z is locally defined by y1 = 0 and ω = dx1 ∧
dy1
y1

+
∑n

i=2 dxi ∧ dyi.

It can be shown that the a two-form on a b-manifold is b-symplectic if and only if its dual

bi-vector field is b-Poisson. The dual of the b-Darboux theorem gives a local normal form of type

Π = y1
∂

∂x1
∧

∂

∂y1
+

n
∑

i=2

∂

∂xi
∧

∂

∂yi
. (5)

Current research in these b-symplectic forms has resulted in topological results, such as cohomo-

logical restrictions on the existence of b-symplectic structures and dynamical results, including an

extension of the notions of action-angle coordinates and a KAM theorem for b-symplectic forms [14].

These results become particularly interesting due to the discovery of these structures in equations

coming from celestial mechanics, most notably arising from singularities of the solutions, where a

traditional symplectic geometric description of the dynamics does not exist. First examples arising

from celestial mechanics are explained in [15].

Another direction of the research has been to generalize these structures and consider more

degenerate singularities of the Poisson structure. This is the case of bm-Poisson structures [16] for
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which ωm has a singularity of Am-type in Arnold’s list of simple singularities [17, 18]. In the same

spirit we may consider other singularities in this list.

As it happens with b-Poisson structures, it is possible and convenient to consider a dual approach

in their study and work with forms. We define:

Definition 6. A symplectic bm-manifold is a pair (M2n, Z) with a closed bm-two form ω which

has maximal rank at every p ∈ M .

Similar to the b-symplectic case, there exists a bm-Darboux proved in [19]

Theorem 3 (bm-Darboux theorem, [19]). Let ω be a bm-symplectic form on (M2n, Z) and p ∈

Z. Then we can find a coordinate chart (x1, y1, . . . , xn, yn) centered at p such that the hypersurface

Z is locally defined by y1 = 0 and

ω = dx1 ∧
dy1
ym1

+
n
∑

i=2

dxi ∧ dyi.

In the same way, dually we obtain a bm-Darboux form for bm-Poisson bivector fields,

Π = ym1
∂

∂x1
∧

∂

∂y1
+

n
∑

i=2

∂

∂xi
∧

∂

∂yi
. (6)

We refer the reader to [16] and [19] for details on the construction and properties of these

structures.

2.3 Folded symplectic forms

A second class of important geometrical structures that model some problems in celestial mechanics

are folded symplectic structures. These are closed 2-forms on even dimensional manifolds which are

non-degenerate on a dense set thanks to the following transversality condition.

Definition 7. Let (M2n, ω) be a manifold with ω a closed 2-form such that the map

p ∈ M 7→ (ω(p))n ∈ Λ2n(T ∗M)

is transverse to the zero section , then Z = {p ∈ M |(ω(p))n = 0} is a hypersurface and we say

that ω defines a folded symplectic structure on (M,Z) if additionally its restriction to Z has

maximal rank. We call the hypersurface Z folding hypersurface and the pair (M,Z) is a folded

symplectic manifold.

The normal form of folded symplectic structures was studied by Martinet [20].

Theorem 4 (folded-Darboux theorem, [20]). Let ω be a folded symplectic form on (M2n, Z)

and p ∈ Z. Then we can find a local coordinate chart (x1, y1, . . . , xn, yn) centered at p such that

the hypersurface Z is locally defined by y1 = 0 and

ω = y1dx1 ∧ dy1 +

n
∑

i=2

dxi ∧ dyi.

In analogy to the case of bm-symplectic structures we define a new class of folded structures,

namely m-folded symplectic structures for which ωn has singularities of Am-type in Arnold’s

list of simple singularities [18], i.e. the top wedge power of ω has a local normal form of type

ωn = ym1 dx1 ∧ · · · ∧ dyn.
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2.4 Desingularization of bm-symplectic forms

An immediate natural question to ask is whether we can associate a honest symplectic structure on

a bm-symplectic manifolds. If the answer to this question is positive and we have a explicit control

on this construction, then bm-symplectic geometry is not far from actual symplectic manifolds. In

[19] this question is answered obtaining a surprising result: given a b2k-symplectic form we can

associate a family of symplectic structures that converge to the initial b2k-symplectic form, in the

sense that these sympletic forms agree with the b2k outside an increasingly smaller neighbourhood

of the critical set. This is called the “desingularization” of the b2k-sympletic form. In [19] the odd

counterpart is also considered, replacing the symplectic structure by a folded symplectic structure.

This result connects bm-symplectic geometry with symplectic and folded symplectic geometry.

We now briefly recall how the desingularization is defined and the main result in [19] for b2k-

symplectic forms.

Any b2k-form can be expressed as:

ω =
dx

x2k
∧

(

2k−1
∑

i=0

xiαi

)

+ β.

Definition 8. The fǫ-desingularization ωǫ form associated to the b2k-form ω is

ωǫ = dfǫ ∧

(

2k−1
∑

i=0

xiαi

)

+ β.

where fǫ(x) is defined as ǫ−(2k−1)f(x/ǫ) and f ∈ C∞(R) is an odd smooth function satisfying

f ′(x) > 0 for all x ∈ [−1, 1] and

f(x) =







−1
(2k−1)x2k−1 − 2 for x < −1,

−1
(2k−1)x2k−1 + 2 for x > 1.

(7)

Theorem 5 (Desingularization, [19]). The fǫ-desingularized form ωǫ is symplectic. The family

ωǫ coincides with the b2k-form ω outside an ǫ-neighbourhood of Z. The family of bivector fields ω−1
ǫ

converges to the structure ω−1 in the C2k−1-topology as ǫ → 0.

An immediate consequence of this result is that a manifold admitting b2k-symplectic structure

also admits a symplectic form. In the case where m is odd, we get a family of folded symplectic

structures.

3 Point transformations and Singular Symplectic Forms

Structures which are symplectic almost everywhere can arise as the result of a non-canonical changes

of coordinates. Given configuration space R
2 and phase space T ∗

R
2 as is seen, for example, in the

Kepler problem, the traditional (canonical) Levi-Civita transformation is the following: identify

R
2 ∼= C so that T ∗

R
2 ∼= T ∗

C ∼= C
2 and treat (q, p) as complex variables (q1+ iq2 := u, p1+ ip2 := v)

. Take the following change of coordinates (q, p) = (u2/2, v/ū), where ū denotes the complex

conjugation of u. The resulting coordinate change can easily be seen to be canonical. However this

canonical change of coordinates can result in more difficult equations of motion, or a more difficult

Hamiltonian, which can both obscure certain aspects of the dynamics of the system.
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3.1 The Kepler Problem

In suitable coordinates in T ∗
(

R
2 \ {0}

)

, the Kepler problem has Hamiltonian

H(q, p) =
‖p‖2

2
−

1

‖q‖
. (8)

With the canonical Levi-Civita transformation (q, p) = (u2/2, v/ū), this becomes

H(u, v) =
‖v‖2

2‖ū‖2
−

1

‖u‖2
. (9)

Sometimes, as in this case, canonical changes lead to a more difficult system, so it may be desir-

able to leave the momentum unchanged and examine instead the transformation (q, p) = (u2/2, p)

which can result in a simpler Hamiltonian. Now the transformation is not a symplectomorphism

and the symplectic form on T ∗
R
2 pulls back under the transformation to a two-form symplectic

almost everywhere, but degenerate on a hypersurface of T ∗
R
2.

Explicitly, the Liouville one-form p1dq1 + p2dq2 = ℜ(pdq̄) pulls back to

θ = ℜ

(

pd

(

ū2

2

))

= ℜ (pūdū)

= p1(u1du1 − u2du2) + p2(u2du1 + u1du2)

and computing −dθ we get the almost everywhere symplectic form

ω = u1du1 ∧ dp1 − u2du1 ∧ dp2 + u2du2 ∧ dp1 + u1du2 ∧ dp2.

Wedging this form with itself we find

ω ∧ ω = (u21 − u22)du1 ∧ dp1 ∧ du2 ∧ dp2

which is degenerate along the hypersurface given by u1 = ±u2.

3.2 The Problem of Two Fixed Centers

Related to the folded symplectic form found in the Levi-Civita transformation is the folded form

associated with elliptic coordinates, employed while regularizing the problem of two fixed centers.

This describes the motion of a satellite moving in a gravitational potential generated by two fixed

massive bodies. We assume also that the motion of the satellite is restricted to the plane in R
3

containing the two massive bodies. The Hamiltonian in suitable coordinates is given by

H =
p2

2m
−

µ

r1
−

1− µ

r2
(10)

where µ is the mass ratio of the two bodies (i.e. µ = m1

m1+m2
).

Euler first showed the integrability of this problem using elliptic coordinates, where the coor-

dinate lines are confocal ellipses and hyperbola. Explicitly, consider a coordinate system in which

the two centers are placed at (±1, 0), in which the (Cartesian) coordinates are given by (q1, q2).

Then the elliptic coordinates of the system are given by

q1 = sinhλ cos ν (11)

q2 = coshλ sin ν (12)

7



m1 = 1− µ

m2 = µ

q1

q2

Satellite

r2 = q − q2

r1 = q − q1

Center of mass

r

Figure 1: Squeme of the three body problem.

for (λ, ν) ∈ R× S1. Thus lines of λ = c and ν = c are given by confocal hyperbola and ellipses in

the plane, respectively. Similar to the Levi-Civita transformation this results in a double branched

covering with branch points at the centers of attraction.

Pulling back the canonical symplectic structure ω = dq ∧ dp we find

ω = coshλ cos ν(dλ ∧ dp1 + dν ∧ dp2)− sinhλ sin ν(dν ∧ dp1 + dλ ∧ dp2) (13)

which is degenerate along the hypersurface (λ, ν) satisfying coshλ cos ν = sinhλ sinλ.

4 Escape Singularities and b-symplectic forms

The restricted elliptic 3-body problem describes the behavior of a massless object in the gravita-

tional field of two massive bodies, orbiting in elliptic Keplerian motion. The planar version assumes

that all motion occurs in a plane. The associated Hamiltonian of the particle is given by

H(q, p) =
‖p‖2

2
+

1− µ

‖q − q1‖
+

µ

‖q − q2‖
= T + U (14)

where µ is the reduced mass of the system.

After making a change to polar coordinates (q1, q2) = (r cosα, r sinα) and the corresponding

canonical change of momenta we find the Hamiltonian

H(r, α, Pr , Pα) =
P 2
r

2
+

P 2
α

2r2
+ U(r cosα, r sinα) (15)

where Pr, Pα are the associated canonical momenta and U(r cosα, r sinα) is the potential energy

of the system in the new coordinates.

The McGehee change of coordinates is traditionally employed to study the behavior of orbits

near infinity, see also [21]. This non-canonical change of coordinates is given by

r =
2

x2
. (16)

The corresponding change for the canonical momenta is easily seen to be

Pr = −
x3

4
Px. (17)

8



The Hamiltonian is then transformed to

H(r, α, Pr , Pα) =
x6P 2

x

32
+

x4P 2
α

8
+ U(x, α). (18)

By dropping the condition that the change is canonical and simply transforming the position

coordinate (16), we are left with a simpler Hamiltonian, however the pull-back of the symplectic

form under the non-canonical transformation is no longer symplectic, but rather b3-symplectic:

ω =
4

x3
dx ∧ dPr + dα ∧ dPα. (19)

5 b
m-Symplectic models for any m: McGehee coordinates in dou-

ble collision

The system of two particles moving under the influence of the generalized potential U(x) = −|x|−α,

α > 0, where |x| is the distance between the two particles, is studied by McGehee in [22]. We fix

the center of mass at the origin and hence can simplify the problem to the one of a single particle

moving in a central force field.

In this section we prove

Theorem 6. The McGehee change of coordinates used to study collisions provides bm-symplectic

and m-folded symplectic forms for any m in the problem of a particle moving in a central force field

with general potential depending on m.

The equation of motion writes down as

ẍ = −∇U(x) = −α|x|−α−2x (20)

where the dot represents the derivative with respect to time. In the Hamiltonian formalism, this

equation becomes
ẋ = y,

ẏ = −α|x|−α−2x.
(21)

To study the behavior of this system, the following change of coordinates is suggested in [22]:

x = rγeiθ,

y = r−βγ(v + iw)eiθ
(22)

where the parameters β and γ are related with α in the following way:

β = α/2,

γ = 1/(1 + β).
(23)

Identifying once more the plane R2 with the complex plane C, we can write the symplectic form of

this problem as ω = ℜ(dx ∧ dy).

Proposition 1. Under the coordinate change (22), the symplectic form ω is sent to

1. a symplectic structure for α = 2/3,

2. a b-symplectic structure for α = 2,
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3. a b2-symplectic structure for α = 6 and

4. a b3-symplectic structure for α → ∞.

Proof. The proof of this proposition is a straightforward computation. In the new coordinates, we

obtain
ω = ℜ(dx ∧ dȳ) = γr−βγ+γ−1dr ∧ dv − γ(1− β)r−βγ+γ−1wdr ∧ dθ

− r−βγ+γdw ∧ dθ.
(24)

Wedging this form, we obtain

ω ∧ ω = −γr−2βγ+2γ−1dr ∧ dv ∧ dθ ∧ dw

= −γr
2−3α

2+α dr ∧ dv ∧ dθ ∧ dw.
(25)

where we use (23). Let us set f(α) = 2−3α
2+α

. We see that this function does not take values lower

than −3 or higher than 1. We easily see that we obtain

1. a symplectic structure for α = 2/3,

2. a b-symplectic structre for α = 2,

3. a b2-symplectic structure for α = 6 and

4. a b3-symplectic structure for α → ∞.

Note that ω tends not to a folded-symplectic form when α → 0, since the pullback of ω to the

critical set vanishes.

The relations given by Eqs. (23) are imposed in order simplify the equations, but dropping the

second relation gives us enough freedom on the choice of parameters to obtain any bk-symplectic

structure or to a k-folded-symplectic for any k.

Proposition 2. Under the change given by Eqs. (22) and the relations α = 2β and γ = − k+1
(α+2) ,

the symplectic form ω is sent to a bk-symplectic form for k positive, and for any value of α. For k

negative the symplectic form ω is sent to a (−k)-folded-symplectic for k negative only if k = −1 or

α = 2.

Proof. Substituting the change of variables at the form ω, we arrived at Eq. (24). The equations of

the motion in the new coordinates are given by ιXH
ω = −dH where H = 1

2r
−2βγ(v2 +w2)− r−αγ .

By substituting and simplifying we obtain

θ̇ = wr−βγ−γ ,

ṙ = 1
γ
vr−βγ−γ+1,

ẇ = (β − 1)wvr−βγ−γ ,

v̇ = −βv2r−βγ−γ − w2r−βγ−γ + αrγ(β−α)−γ .

(26)

We further simplify this equations by doing the following change in time:

dτ = rβγ+γdt, (27)

10



which gives rise to the equations

θ′ = w,

r′ = 1
γ
vr,

w′ = (β − 1)wv,

v′ = −βv2 −w2 + αrγ(2β−α),

(28)

where the ′ denotes the derivative with respect the new time τ . In order to integrate those equations,

we want the last two equations to be independent of the two first, which only involve v and w.

Hence we impose that β = α
2 and obtain

θ′ = w,

r′ = 1
γ
vr,

w′ = (β − 1)wv,

v′ = −β(v2 − 2)− w2.

(29)

The last two equations can be solved using that |w||v2+w2−2|1−β is an integral for this equations

as in [22].

Recall that ω∧ω = −γr−αγ+2γ−1dr∧dv∧dw∧dθ. Hence choosing γ such that −αγ+2γ−1 = k

for a given k ∈ Z
+ finishes the proof. This is done by taking γ = k+1

2−α
.

Observe that for k ∈ Z
− we would obtain a k-folded-symplectic form if and only if the pullback

of the form to the critical set does not vanish. The pullback of ω to de critical set is −r−βγ+γdw∧dθ.

This is either 0 or not well-defined unless −βγ+γ = 0. This is equivalent to asking − k+1
α+2(1−β) = 0.

This happens only if α = 2 or k = −1. This concludes the proof.

6 b-Contact Geometry

We finish the article by giving some insight in one of our subsequent papers [23]. Contact geometry

is often considered to be the “odd-dimensional analogue of symplectic geometry”.

Definition 9. Let (M,Z) be a (2n+1)-dimensional b-manifold. A b-contact structure is the Stefan–

Sussmann distribution given by the kernel of a one b-form ξ = kerα ⊂ bTM , α ∈ bΩ1(M), that

satisfies α∧ (dα)n 6= 0 as a section of Λ2(bT ∗M). We say that α is a b-contact form and the triplet

(M,Z, ξ) a b-contact manifold.

Away from the critical set Z, the definition of b-contact coincides with the one of usual contact

geometry. Hence, on M \ Z, the distribution is non-integrable, whereas on the critical set, due to

the definition of the b-tangent bundle, the distribution is everywhere tangent to Z.

Example 1. Let (M,Z) be a b-manifold of dimension n. Let z, yi, i = 2, . . . , n be the local coordi-

nates for the manifold M on a neighbourhood at a point in Z, with Z defined locally by z = 0 and

xi, i = 1, . . . , n be the fiber coordinates on bT ∗M . Then the canonical one b-form is given in these

coordinates by

λ = x1
dz

z
+

n
∑

i=2

xidyi.

The bundle R× bT ∗M is a b-contact manifold with b-contact structure defined as the kernel of the

one b-form

dt+ x1
dz

z
+

n
∑

i=2

xidyi,
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where t is the coordinate on R. The critical set is given by Z̃ = Z × R. Direct computations yield

that α ∧ (dα)n 6= 0. Away from Z̃, ξ = kerα is a non-integrable hyperplane field distribution, as

in usual contact geometry. On the critical set however, ξ is tangent to Z̃. This comes from the

definition of b-vector fields. Since the rank of ξ can drop by one on Z̃, we cannot say that ξ is a

hyperplane field.

To a b-contact form, one can associate a b-vector field Rα, the Reeb vector field, defined by the

equations
{

ιRα
α = 1

ιRα
dα = 0.

Those equations uniquely define a vector field: dα is a bilinear, skew-symmetric 2-form on the

space of b-vector fields bTM , hence the rank is an even number. As α∧ (dα)n is non-vanishing and

of maximum degree, the rank of dα must be 2n. Its kernel is 1-dimensional and α is non-trivial on

that line field. So a unique global vector field is defined by the normalization condition.

Symplectic and contact manifolds are closely related. Indeed, it is well-known that to every con-

tact manifold (M,α), one can associate a symplectic manifold M×R by considering the symplectic

form d(etα).

Going from symplectic to contact is also possible by the following construction. Let (W,ω) be

a symplectic manifold. Recall that a Liouville vector field X is defined by LXω = ω, where L

denotes the Lie derivative. We say that a hypersurface H of (W,ω) is of contact type if there exists

a Liouville vector field X transverse to H. Indeed, it is easy to check that the one-form iXω is a

contact form on H.

This remains true in b-geometry, as we will prove in one of our subsequent papers [23]. This

will generate further examples of b-contact manifolds.

Example 2. The unit cotangent bundle of a b-manifold have a natural b-contact structure. Let

(M,Z) be a b-manifold of dimension n with coordinates z, xi, i = 2, . . . , n as in Example 1. The

cotangent bundle has a natural b-symplectic structure defined by the b-form given by the exterior

derivative of the Liouville one-form λ. The unit b-cotangent bundle is given by bT ∗

1M = {(q, p) ∈

T ∗M | ‖p‖ = 1}, where ‖ · ‖ is the usual Euclidean norm. The vector field
∑n

i=1 pi∂pi defined on

the b-cotangent bundle bT ∗M is a Liouville vector field, and is tranverse to the unit b-cotangent

bundle, and hence induces a b-contact structure on it.

7 Acknowledgments

We are indebted to Andreas Knauf for enlightening conversations during the visit of Eva Miranda

to Erlangen in December 2016 and in particular for directing our attention to the paper Double

collisions for a classical particle system with nongravitational interactions by McGehee [22] to

construct physical models for any bm-symplectic and m-folded symplectic structure.

Eva Miranda thanks the Scientific Committee of the XXV International Fall Workshop on Ge-

ometry and Physics for inviting her as speaker to the conference and for the invitation to contribute

to this volume. She also thanks the organizing committee for such a great conference. The results

contained in this paper address several questions posed in her talk in particular that of providing

physical examples for any bm-symplectic structure.

12



References

[1] O. Radko, A classification of topologically stable Poisson structures on a compact oriented surface, J.

Symplectic Geom. 1 No. 3 (2002), 523–542.

[2] V. Guillemin, E. Miranda, A.R. Pires, Codimension one symplectic foliations and regular Poisson struc-

tures, Bulletin of the Brazilian Mathematical Society, New Series 42 (4), 2011, pp. 1–17.

[3] V. Guillemin, E. Miranda, A.R. Pires, Symplectic and Poisson geometry on b-manifolds, Adv. Math. 264,

pp. 864-896 (2014).

[4] P. Frejlich, D. Mart́ınez, E. Miranda, A note on the symplectic topology of b-symplectic manifolds,

arXiv:1312.7329, to appear in Journal of Symplectic Geometry.

[5] A. Kiesenhofer, E. Miranda, Cotangent models for integrable systems, Comm. Math. Phys. 350 (2017),

no. 3, 1123–1145.

[6] G. Cavalcanti, Examples and counter-examples of log-symplectic manifolds., preprint 2013, arxiv

1303.6420.

[7] I. Marcut, B. Osorno, Deformations of log-symplectic structures , J. Lond. Math. Soc. (2) 90 (2014),

no. 1, 197–212.

[8] M. Gualtieri and S. Li Symplectic groupoids of log symplectic manifolds, Int. Math. Res. Notices, First

published online March 1, 2013 doi:10.1093/imrn/rnt024.

[9] M. Gualtieri, S. Li, A. Pelayo, T. Ratiu, The tropical momentum map: a classification of toric log

symplectic manifolds, Math. Ann. (2016). doi:10.1007/s00208-016-1427-9.

[10] V. Guillemin, E. Miranda, A. R. Pires and G. Scott, Toric actions on b-symplectic manifolds, Int

Math Res Notices (2015) 2015 (14): 5818-5848. doi: 10.1093/imrn/rnu108.

[11] R. Melrose, Atiyah-Patodi-Singer Index Theorem (book), Research Notices in Mathematics, A.K. Peters,

Wellesley, 1993.

[12] R. Nest, B. Tsygan, Formal deformations of symplectic manifolds with boundary, J. Reine Angew. Math.

481, 1996, pp. 27–54.

[13] R. Swan, Vector Bundles and Projective Modules, Transactions of the American Mathematical Society

105, (2), 264–277, (1962).

[14] A. Kiesenhofer, E. Miranda, G. Scott, Action-angle variables and a KAM theorem for b-Poisson

manifolds, J. Math. Pures Appl. (9) 105 (2016), no. 1, 66–85.

[15] A. Delshams, A. Kiesenhofer, E. Miranda, Examples of integrable and non-integrable systems on

singular symplectic manifolds, J. Geom. Phys. 115 (2017), 89–97.

[16] G. Scott, The Geometry of bk-Manifolds, J. Symplectic Geom. 14 (2016), no. 1, 71–95.

[17] Arnold, V. I.Remarks on Poisson structures on a plane and on other powers of volume elements, (Rus-

sian) Trudy Sem. Petrovsk. No. 12 (1987), 37–46, 242; translation in J. Soviet Math. 47 (1989), no. 3,

2509–2516.

[18] Arnold, V.I Critical point of smooth functions, Vancouver Intern. Congr. of Math., 1974, vol.1, 19–39.

[19] V. Guillemin, E. Miranda, J. Weitsman, Desingularizing bm-symplectic structures, arXiv:1512.05303.

[20] J. Martinet, Sur les singularités des formes différentielles. Ann. Inst. Fourier (Grenoble) 20 1970 fasc.
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