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Abstract

To have robots that robustly interact with the environment and achieve meaningful
tasks, they must be able to interact with objects. This is why an important challenge
in Robotics is object manipulation. This thesis aims to tackle the specific problem
of non-prehensile manipulation, such as pushing. Which is an important function
for robots to move objects and is sometimes preferred as an alternative to grasping.
However, due to unknown frictional forces, pushing has been proven a difficult task
for robots. We explore the use of deep reinforcement learning to train a robot to
robustly push an object.

In order to deal with the sample complexity of training such a method, we train the
pushing policy in simulation and then transfer this policy to the real world. The
transfer from simulation to real world is also important in terms of safety. During
training the robot can get damaged while exploring new policies, the joints can
worn out or even the people surrounding it are at risk of being hit. In order to
ease the transfer, we propose to use modularity to separate the learned policy from
the raw inputs and outputs; rather than training "end-to-end," we decompose our
system into modules and train only a subset of these modules in simulation. We
further demonstrate that we can incorporate prior knowledge about the task into the
state space and the reward function to speed up convergence. Finally, we introduce
"reward guiding" to modify the reward function and further reduce the training
time. We demonstrate, in both simulation and real-world experiments, that such
an approach can be used to reliably push an object from many initial positions and
orientations.
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1
Introduction

1.1 Motivation

Reinforcement learning (RL) is a branch of machine learning that tackles problems
of sequential decision making. It considers the setting where we have an agent in
an environment, who chooses actions from a set of actions, upon which it receives
a reward and an observation of the modified environment. The agent learns from
direct interaction with the environment, without any external supervision nor model
to describe the behaviour of the world. Its objective is to maximize the reward
given along the trajectory. This completely general setup makes RL useful in a lot
of domains, such as robotics, operations research, game play, dialog, and so forth.
Every problemwhere an agent takes an action, which produces a change in theworld,
and later on acts again upon it is a valid framework where to apply reinforcement
learning.

Figure 1.1: Agent-environment interaction in Reinforcement Learning.

Deep Reinforcement Learning (DRL) uses neural networks as function approxima-
tors. Those functions could be, for instance, the policy that the agent follows -its
behaviour- or a parametrization of how good an action is.

The integration of reinforcement learning andneural networks dates back to the 1990s
with Tesauro’s work [1], among others. However, it was not until this decadewith the
explosion of deep learning in computer vision and speech recognition, thanks to the
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increasing computational resources(Moore’s law) and data, that deep reinforcement
learning began to have incredible results in game playing and robotics.

The first impressive result was carried out by Mnih et al, who taught a DRL agent
to play seven different 1980s Atari Games by observing the screen of the game and
receiving the score as reward [2]. More impressive results have followed since then.
In the field of game playing, [3] applied the same model to learn 49 different Atari
games achieving superhuman performance in half of them. Also, Silver et al. [4]
learned to play Go - one of the most challenging games for Artificial Intelligence (AI)
due to the long term planning and huge search space - using supervised learning
combinedwith reinforcement learning, winning the best human experts in theworld.

Deep reinforcement learning has revolutionized the field of robotics as well. Levine
et al. accomplished robotic manipulation using images as input [5]. They learned
the vision and control together in an end-to-end fashion. Silver et al. [6], Lillicrap et
al. [7] developed a policy gradient that allowed them to learn policies in continuous
action space. Schulman et al. [8, 9] got incredible results in robot locomotion, a
high-dimensional continuous control, using policy gradients.

1.2 Work Overview

This thesis intends to be a self-contained work, only expecting from the reader a
mathematical background and someminor knowledge in Deep Learning. It contains
the theory needed to understand the experimental work carried out, which was
submited at the International Conference on Intelligent Robots and Systems (IROS).

Thus, this work it is divided in two parts. The first one is an explanation of all
the theoretical concepts. Starting from MDPs and Bellman equations, followed by
reward shaping. Finally, an introduction of policy gradientmethods is presented and
we explain the policy gradient method used: Trust Region Policy Optimization. In
the second part, we describe our novel work in transfer from simulation to real-world
"Policy Transfer via Modularity".

The work developed aims to tackle object manipulation, specifically non-prehensile
manipulation, such as pushing using just simulation to learn the behaviour. This
ambitious work try to solve important and hard problems in robotics and AI, object
manipulation and transfer sim-to-real. Manipulating objects is inherently hard due
to the unknown frictional forces and discontinuities, which results in errors in the
models seldom negligible. Thus, it is important to learn from the experience (data),
instead of developing a mathematical model of the dynamics of the objects. Deep
reinforcement learning is able to just learn from data while trying to accomplish the
task. The data learned then is meaningful for the task, and does not waste resources
on trying to learn a global model.

We explore how to enhance reinforcement learning for a pushing task, to speed up
the training and improve performance without modifying the true objective. Never-
theless, our key contribution is to develop a way to perform transfer from simulation
to real world with comparable results between both domains. Reinforcement learn-
ing methods tend to be inefficient sampling-wise, leading to incredible results but
needing thousands of trajectories. In real-world robotics this is a constraint not only
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because of time constraints (real-world experiments are expensive to parallelize and
the running time is slow), but also in terms of safety. Robots can be worn out and
damaged while performing experiments, and the people around them can get in-
jured. Therefore, our work is crucial for bringing robotics to industry and day-to-day
life.
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2
Markov Decision

Processes
A Markov Decision Proces (MDP) provides a framework to reason mathematically
about the planning and decision making of an agent in a stochastic environment [10].
An MDPM is defined as 6-tuple (S, ρ,A, P(·, ·|s, a), γ, R) where:

S: A set of states in the environment.

ρ: An initial state s0 state distribution, i.e, s0 ∼ ρ(s).

A: A set of actions that the agent can select at each time step.

P(s′, r|s, a): The transition probability distribution. Given that the agent is state
s and takes action a, P gives the probability that the agent ends up in state s′
and the environment emits a reward r.

γ: It is parameter called the discount factor, γ ∈ [0, 1] .

R: R(s, a, s′) : S ×A × S → R is the reward function.

There are different formulations of anMDP in the literature. For instance, the reward
function can be considered as deterministic with just dependence on the current state
s or it can also depend on the action a taken. Moreover, there are settings in which
there is no need to specify the initial state distribution.

An MDP is called undiscounted if γ is equal to 1, and discounted otherwise. Also the
MDP is infinite if the time horizon T =∞ and finite if T <∞.

The transition probabilities of an MDP satisfy the Markov Property, the current state
retain all the relevant information in order to act optimally. For example, in chess the
current configuration of the figures in the board contain all the necessary information
to play optimally, there is no need to know the history of actions and states that led
to this configuration. More formally:

Definition (Markov Property). Let (Ω,F ,P) be a probability space andX = {Xt : t ∈
N} a stochastic processwhereXt is a randomvariable that takes values in ameasurable
space (S,S). Let Ft denote the σ-algebra of events generated by (Xk : s ≤ t). The
stochastic process X satisfies the Markov property if and only if the following holds:
For each k ≤ t < T , A, xk ∈ S and H ∈ Fk:

P(Xt ∈ A|H,Xk = xk) = P(Xn ∈ An|Xk = xk)
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The setting of an MPD proceeds follows. The episode begins with a sample of an
initial state s0 from the probability distribution ρ. At each timestep t < T, t ∈ Z, the
agent picks an action at which leads him to the next state st+1 and receives a reward
rt according to the probability distribution P(st+1, rt|st, at). The episode is ended
when a terminal state sT is reached. The return of a rollout τ, R(τ), is the total sum of
rewards weighted by the the discount factor: R(τ) =

∑T−1
t=0 rt.

In practice, most of the MDPs are discounted not only because it avoids infinite
returns, but also because the future is often uncertain, and it might not be perfectly
represented. Furthermore, from a human perspective, we tend to prefer immediate
rewards rather than future ones.

As said, our main goal is that the agent’s behaviour maximizes the return, i.e., the
sum of rewards. The behaviour is modelled by a function named policy π that maps
states to actions. There are to types of policies:

Deterministic policy: π(s) = a

Stochastic policy: a ∼ π(a|s)

We will mostly focus on stochastic policies which give us the probability of taking
certain action rather than the action per se. Therefore, wewant to find π∗, the optimal
policy, which correspond to

argmax
π
Eτ[R(τ)] (2.1)

2.1 Value Function and Q-Value Function

The Value function or state-value function is a function of the state that provides an
estimator of the goodness of your policy in a certain state s. The goodness is defined
in terms of reward, themore reward your policy receives the better. Since the rewards
depend on your behaviour the value function depends on the policy as well [11].

Definition. The state-value function of a policy π, Vπ, is defined as

Vπ(s) = Eat∼π[
T−1∑
t=0

γtR(st, at, st+1)|s0 = s] (2.2)

Another important function in reinforcement learning is theQ-value function or action-
value functionwhich quantifies the goodness of taking the action a in the state s under
the policy π.

Definition. The Q-value function of a policy π, Vπ, is defined as

Qπ(s, a) = Eat∼π[
T−1∑
t=0

γtR(st, at, st+1)|s0 = s, a0 = a] (2.3)
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These two functions can be estimated from experience, keeping an average of the
estimate return for each state and action. While we are performing trajectories, the
estimated value V̂π and Q̂π converge to their true value. This estimation methods
are called Monte Carlo Methods. This methods will not be presented here since their
are intractable when the dimensionality of the action space is big or when we are in
a continuous state space. In practice in deep reinforcement learning, we use function
approximation, i.e., we parametrize these functions (using a neural network), and fit
them with the data sampled using supervised learning.

2.2 Bellman Equations

One important aspect of the value and Q function is their recurrent nature and their
interchangeability. The Bellman equation for the value function is defined as

Vπ(s) = Eat∼π[
T−1∑
t=0

γtR(st, at, st+1|s0 = s]

= Eat∼π[R(s0, a0, s1) + γ
T−1∑
t=0

γtR(st+1, at+1, st+2)|s0 = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)( r+ γEat∼π[
T−1∑
t=0

γtR(st+1, at+1, st+2)|s1 = s
′])

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)( r+ γVπ(s′))

(2.4)

This equation expresses the relationship between the current state and the next states.
It can also be unrolled to k steps forward in the future. The value function Vπ is the
only solution of the Bellman Equation taking the expectation from π.

We can also define the Bellman Equation for the Q-function

Qπ(s, a) = Eat∼π[
T−1∑
t=0

γtR(st, at, st+1|s0 = s, a0 = a]

= Eat∼π[R(s0, a0, s1) + γ
T−1∑
t=0

γtR(st+1, at+1, st+2)|s0 = s, a0 = a]

=
∑
s′,r

p(s′, r|s, a)( r+ γEat∼π[
T−1∑
t=0

γtR(st+1, at+1, st+2)|s1 = s
′])

=
∑
s′,r

p(s′, r|s, a)( r+ γ
∑
a′
π(a′|s)Qπ(s′, a′))

(2.5)

It is interesting to see how are related the Q-value and the value function. For
instance, we can express the value function in terms of the Q-function as
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Vπ(s) = Eat∼π[
T−1∑
t=0

γtR(st, at, st+1|s0 = s]

=
∑
a

π(a|s)Qπ(s, a)

(2.6)

And we can also express the Q-function in terms of the value function

Qπ(s, a) = Eat∼π[
T−1∑
t=0

γtR(st, at, st+1|s0 = s, a0 = a]

=
∑
s′,r

p(s′, r|s, a)( r+ γEat∼π[
T−1∑
t=0

γtR(st+1, at+1, st+2)|s1 = s
′])

=
∑
s′,r

p(s′, r|s, a)( r+ γVπ(s′))

= E[R0 + γV
π(s′)]

(2.7)

Interestingly, we can recover the value function from theQ-functionwithout knowing
the dynamics of the environment, but no the other way around.

2.3 Optimal Policies

The problem of reinforcement learning is to find the policy that achieves the maxi-
mum return. Therefore, the value function induce an order among the set of policies
Π. We say that pi ≥ π′, where pi, pi′ ∈ Π, if and only if Vπ(s) ≥ Vπ′(s) ∀ s ∈ S. One
can proof that it always exists an optimal policy. We denote it as pi∗ any policy in the
set of optimal policies. The optimal value function is defined then as

V∗(s) = max
π
Vπ(s) (2.8)

∀ s ∈ S. In the same way, we define the optimal Q-function as

Q∗(s, a) = max
π
Qπ(s, a) (2.9)

∀ s ∈ S and a ∈ A. Analogously as shown in the previous section we can rewrite
the optimal Q-function in terms of the optimal value function

Q∗(s, a) = E[R0 + γV
∗(s′)|s0 = s, a0 = a] (2.10)

Since V∗ is the value function of some optimal policy π∗ it must satisfy the Bellman
Equations described before. Additionally, since it is the optimal we can re-write the
equations so there is no reference to the optimal policy. This can be done because the
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optimal value function must pick the action that leads to a maximum reward. Thus,
rewriting the Bellman optimality Equation for the value function we obtain

V∗(s) = max
a
Q∗(s, a)

= max
a
Eat∼π∗ [

T−1∑
t=0

γtR(st, at, st+1|s0 = s, a0 = a]

= max
a
Eat∼π∗ [R(s0, a0, s1) + γ

T−1∑
t=0

γtR(st+1, at+1, st+2|s0 = s, a0 = a]

= max
a
Eat∼π∗ [R(s0, a0, s1) + γV

∗(s1)|s0 = s, a0 = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r+ γV∗(s′)]

(2.11)

We can perform similar operations to define the Bellman optimality Equation for the
Q-function

Q∗(s, a) = Eat∼π∗ [R(s0, a0, s1)γmax
a1

Q∗(s1, a1)|s0 = s, a0 = a]

=
∑
s′,r

p(s′, r|s, a)[rγmax
a′

Q∗(s′, a′)]
(2.12)

There is a huge variety of methods focused on solving these equations and finding
the optimal policy, see [11] for a good introduction. In summary, the Q-function is
used for model-free methods because you do not need to know any of the dynamics,
i.e., you do not need a model and you learn just from the data, to choose the optimal
action.

The work carried out in this thesis uses a different set of methods, called policy gra-
dients, where the policy is approximated by a function parametrized by a parameter
vector θ and the maximization of the expected return is performed with respect to
those parameters. These methods are presented in Chapter 4.
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3
Reward Shaping

The term reward shaping first appeared in [12] and consists in a modification of the
reward function of theMDP that preserves the optimal policy. Modifying the reward
function is vital in many environments. For instance, in setups where the reward is
sparse, i.e., the agent just receives a reward if he had completed the task (or some hard
sub-task), it is incredibly hard to learn since the agent does not have any feedback
whether the actions taken are good or not. Therefore, a problemwith sparse rewards
can become intractable (it is needed too much exploration). However, a modification
of the reward function leading to an observation of reward at each time-step, makes
the learning easier turning those intractable problem into tractable. Reward shaping
is also important in problems where the task required is complicated and the reward
given not very informative. In our work we will show how reward shaping improves
the learning in terms of performance and speed.

These modifications of the reward function must preserve the optimal policy. Oth-
erwise, one can converge into a policy that does not have the desired behaviour. For
example, suppose that we have an agent that wants to walk to a goal. Initially we
have a reward function that is 1 if the agent reaches the goal, and 0 otherwise. We
could define a reward shaping function which gives reward just if he goes near the
goal (but it does not penalize if he walks away from it). Then the behaviour that
the expert would learn is walk in circles approaching and walking away to the goal,
because this is actually the optimal policy in this setup!

Using the same notation than in the former chapter, we are aiming at the optimal
policy π∗ for someMDPM = (S, ρ,A, P(·, ·|s, a), γ, R). However, we want to modify
the function R adding a shaping reward, such that it leads to a faster convergence
of the optimal policy. Therefore, we will train our agent in a modified MDPM ′ =
(S, ρ,A, P(·, ·|s, a), γ, R′), such that R′ = R + F(s, a, s′). Where F : S × A × S → R
is called the shaping reward function. Since the only difference between both MDPs
is the reward function, the agent and the environment will behave the same but
at each transition instead of observing a reward R(s, a, s′) it will observe a reward
R(s, a, s′) + F(s, a, s′). This fact is important implementation wise, because in most
of the cases we do not know the transition probabilities or even the set of feasible
states, but we can run the same algorithm and pretend we are observing R′ instead
of R.

Hence, the goal of reward shaping is to find what functions F makes the optimal
policy π∗M ′ (optimal policy ofM ′) also an optimal policy ofM. We will consider
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the generic case where we do not know neither P(·, ·|s, a) nor R(s, a, s′). Although
considering the reward unknown may be to restrictive, this is often the case in real
world problems. The following result states the necessary and sufficient conditions
of the function F.

Theorem. Let any S,A and γ and a reward shaping function F : S ×A × S → R be
given. We say that F is a potential-based function if there exists a functionΦ : S → R
such that ∀ a ∈ A, s, s′ ∈ S:

F(s, a, s′) = γΦ(s′) −Φ(s) (3.1)

Then, Fbeing apotential-based function andΦboundedare anecessary and sufficient
condition to guarantee optimal consistency when learning fromM ′ rather thanM
in the following sense:

Sufficiency: If F is a potential based function, then every optimal policy inM ′

will be optimal policy inM, and viceversa.

Necessity: If F is not a potential-based function then exists a proper transition
probabilities and reward function such that no optimal ofM ′ is optimal ofM.

It is worth noticing that the sufficiency condition hold whether we know or not the
transition probabilities and reward function, but the necessity condition explicitly
states to those terms be unknown. Also, it might be the case that there is more than
one optimal policy π∗M ′ or π

∗
M , but this theorem assures that any optimal policy π∗M ′

will be optimal ofM.

An intuitive explanationofwhy it has to be apotential-based function is the following.
Consider that it exists a sequence of states s0, s1, · · · , sn, s0 such that the total gain
of the shaping reward is positive, i.e.,

∑n−1
k=0 F(sk, ak, sk+1) + F(sn, an, s0) > 0 then

the agent will repeatedly do this cycle instead of performing the actual task (like in
the example explained before). On the other hand, if F is a potential-based function
the sum of its values in any cycle is 0 and so the agent cannot exploit this trait. In the
following we prove the sufficiency condition.

Proof. Let F be a potential-based function, with potential Φ. For the original MDP
M a policy is optimal if its Q-function, Q∗M , satisfies the Bellman Equations.

Q∗M(s, a) = Es′ [R(s, a, s
′) + γmax

a′∈A
Q∗M(s′, a′)]

If we subtract Φ(s) in both sides of the equation and add and subtract γΦ(s′) inside
the expectation we end up with

Q∗M(s, a) −Φ(s) = Es′ [R(s, a, s
′) + γΦ(s′) −Φ(s) + γmax

a′∈A
(Q∗M(s′, a′) −Φ(s′)]

We know define Q̂M ′(s, a) = Q∗M(s, a) − Φ(s) and substitute γΦ(s′) − Φ(s) by
F(s, a, s′).
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Q̂M ′(s, a) = Es′ [R(s, a, s
′) + F(s, a, s′) + γmax

a′∈A
(Q̂M ′(s

′, a′)]

This result gives us the Bellman Equation for M ′, so Q̂M ′(s, a) is the optimal Q-
function of Q̂M ′(s, a). Hence, Q∗M ′(s, a) = Q̂M ′(s, a) = Q∗M(s, a) − Φ(s) and the
optimal policy forM ′ exists. Then, we just have to prove that the actions taken by
the policy following the Q-value Q∗M ′(s, a) are the same than Q∗M ′(s, a).

π∗M ′(s) ∈ argmax
a∈A

Q∗M ′(s, a)

= argmax
a∈A

Q∗M(s, a) −Φ(s)

= argmax
a∈A

Q∗M(s, a)

So the exact same policy that is optimal inM ′ is optimal inM. To show that every
optimal policy inM is optimal inM ′ the same argument is used:

π∗M(s) ∈ argmax
a∈A

Q∗M(s, a)

= argmax
a∈A

Q∗M ′(s, a) +Φ(s)

= argmax
a∈A

Q∗M ′(s, a)

Now we prove the necessity of the Theorem. In this proof we will consider the case
where |A| = 2, the general proof follows the same fashion. First we will state a
Lemma which shows that the reward shaping function cannot depend of the action.

Lemma: If there exists s, s′ ∈ S and a, a′ ∈ A such that F(s, a, s′) , F(s, a′, s′) then
there exists a set of transitions probabilities P(·|s, a) and a reward function R such
that no optimal policy inM ′ is an optimal policy ofM.

ProofWeassumewithout loss of generality that F(s, a, s′) > F(s, a′, s′) andwe define
∆ = F(s, a, s′) − F(s, a′, s′). Then we construct the MDP as:

P(s′|s, a) = P(s′|s, a′) = 1

R(s, a, s′) = 0 and R(s, a′, s′) = ∆
2

The obviously the optimal policy in state s is choosing action a′, a′ = argmaxπ∗M(s).

However, if we consider the MDP given byM ′ we have that R′(s, a, s′) = F(s, a, s′)
and R′(s, a′, s′) = ∆

2 + F(s, a′, s′) = −∆2 + F(s, a′, s). Since ∆ > 0 we have that
R(s, a, s′) > R(s, a′, s′). Therefore the optimal policy inM ′ has a = argmaxπ∗M ′(s).
Thus, π∗M(s) , π∗M ′(s)

Proof We assume that F is not a potential-based function and by the former Lemma
we can assume that F(s, a, s′) = F(s, s′). Then we consider the following MDP
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Figure 3.1: MDP. All the edges have probability 1.

Since if we shift all the rewards by a constant offset theMDP remains invariantwe can
consider without loss of generality that F(ŝ0, ŝ0) = 0. Let us defineΦ(s) = −F(s, ŝ0).
Since F is not a potential-based function then γΦ(s2) − Φ(s1)! = F(s1, s2). We
consider the MDP M the one given by 3.1.In the MDP of the Figure 3.1 we consider
that all the edges have 0 reward except the edge (s1, a, ŝ0) that has a reward of ∆/2,
where ∆ = F(s1, s2) + γF(s2, ŝ0) − F(s1, ŝ0). Then

Where he have considered that V∗
M
(ŝ0) = V∗

M′(ŝ0) = 0. Then the optimal
policy in this the MDP given by M and the one given by M’ differ because

π∗M(s1) =

{
a if ∆ > 0

a′ Otherwise

π∗M′(s1) =

{
a′ if ∆ > 0

a Otherwise

It is also proven that for every policy π, QπM ′(s, a) = QπM(s, a) − Φ(s) and
VπM ′(s) = V

π
M(s) −Φ(s). This is interesting because it means that near-optimal

policies are preserved, i.e., if ‖VπM ′(s)−V
∗
M ′(s)‖ < ε ⇐⇒ ‖VπM(s)−V∗M(s)‖ <

ε. Which makes the learned policy under reward shaping robust. Another
important remark is the invariance of the potential-based functions in the re-
inforcement learning paradigm. Interestingly, if one has a potential-based
function as unique reward then all policies are optimal in this MDP. Finally,
the sufficiency result is proven for the discounted case, γ < 1. For the undis-
counted case one needs to assume that it exists an absorbing state or final state
sT such that there is no more rewards after this state is visited and that all the
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policies end up visiting the absorbing state (this condition is often referred as
all policies are proper). Then the proof follows exactly the one presented using
that the optimal policy is invariant with respect adding constants to the reward
function and defining Φ = Φ(s) −Φ(sT ).
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4
Policy gradients

In this chapter wewill present themethods currently used reinforcement learn-
ing for determining the optimal policy [13, ?]. The policy, which determines
the probability of each action, is parametrized by a set of parameters θ. Our
objective then is tomaximize the expected returnwith respect those parameters:

max
θ
J(θ) = Eτ[ R(τ)]

Where τ is a trajectory and π = π(a|s; θ), which for ease of notation we will
denote as πθ(a|s).

So the main goal of policy optimization is to find the parameters θ ∈ Θ ⊆
Rm such that the return J(θ) (we make the abuse of notation J(θ) = J(πθ))
is maximal. Policy gradient methods compute the gradient of the expected
performance and take a small steep in the steepest direction. These methods
have special importance in robotics, since we require that any change on the
policy to be smooth. A significant step could jeopardize the integrity of the
robot and the safety of the people around it. These methods also have strong
theoretical guarantees, which other methods such as greedy value function
based methods do not posses. Finally, one of the fundamental traits that has
lead policy gradientmethods to its current popularity is that they can be used in
model-free reinforcement learning, i.e, they do not need any underlying model
of the dynamics as we will see.

Policy gradient methods follow the update rule:

θn+1 = ΠΘ(θn + αn∇̂θJ|θ=θn) (4.1)

whereαn ∈ R+ denotes the learning rate andΠΘ is the projection to the feasible
region Θ . An important property of these methods is that if the gradient is
unbiased, and if the learning rate satisfies

∞∑
n=0

αn =∞ and
∞∑
n=0

α2n <∞ (4.2)
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then the algorithm is guaranteed to converge almost surely to at least a local
minimum. Nevertheless, in practise it is used a fixed the step size to a suffi-
ciently small value. If ∇̂θJ is an unbiased estimator it is referred as being of
the Robbins-Monro type. Then it has a asymptotic convergence rate of n−12 .
However, the main difficulty of these methods is to compute a good estimator
of the gradient. There traditional approaches to compute the gradient of J(θ)
can be divided into finite differences and vanilla policy gradients.

4.1 Finite Differences

This method estimates the gradient of the expect reward J(θ) by simply using
finite differences. This "naive" approach perturbs each component of θ while
holding the other components to its reference value. However, since the output
is stochastic if the perturbance is too small the estimation of the gradient could
be very noisy. Therefore, there is a trade-off between bias and variance.

The differences can be one-sided or central. Central difference gives a more
accurate gradient but there is the necessity of estimating the function 2m times,
which can be a burden in high-dimensional systems or when the simulation
is very costly. On the other hand, one-side differences just have the need to
evaluatem+ 1 times our function. The ith component of the central difference
estimator is given by

Ĵ(θ+ δiei) − Ĵ(θ− δiei)

2δi
(4.3)

where δi is the perturbation applied to the unit vector in the ith direction, ei.

The advantage of this approach is that it does not require any knowledge about
the of the policy or its differentiability.

This method is not applied in deep reinforcement learning setups due to the
rewards functions are parametrized with neural networks, which have a huge
number of parameters. Also, in order to estimate the expected reward we have
to perform roll-outs of the agent and can be costly, especially in real-world
applications. The convergence rate of this method highly depends on the
uncertainties. In real systems the uncertainties tend to be high, which results
in convergence rates between O(n−14 ) and (O(n−25 ).

4.2 Vanilla Policy Gradient

In the following, and as before, we will denote as τ the trajectory of the agent,
that is a sequence of states and actions τ = {s0, a0, s1, a1, · · · , sT }. The trajectory
is generated by a roll-out, τ ∼ p(τ|θ). Let R(τ) be the return of the trajectory
τ, and T the set of all trajectories. Therefore, the total expected reward of our
policy is
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J(θ) = Eτ[R(τ)] =

∫
T
p(τ|θ)R(τ)dτ (4.4)

And the gradient can be written as

∇θJ(θ) = ∇θEτ[R(τ)] = ∇θ
∫
T
p(τ|θ)R(τ)dτ =

∫
T
∇θp(τ|θ)R(τ)dτ =

∫
T

p(τ|θ)

p(τ|θ)
∇θp(τ|θ)R(τ)dτ =

∫
T
p(τ|θ)∇θlog( p(τ|θ)) R(τ)dτ = Eτ[ ∇θlog( p(τ|θ)) R(τ)] (4.5)

Thus we can obtain the LHS of the equation above bymaking use of the Central
Limit Theorem in the RHS. This trick is known as the likelihood ratio trick.
More importantly, the p(τ|θ) can be written as

p(τ|θ) = ρ(s0)Π
T−1
t=0

p(st+1|at, st)πθ(at|st) (4.6)

then

∇θlog(p(τ|θ)) =
T−1∑
t=0

∇θlog(πθ(at|st)) (4.7)

All the derivatives with respect the dynamics of the environment drop out as
well as ρ(s0) (the initial state distribution). Which incredibly results in being
able tomaximize our rewardwithout needing anyknowledge of how the system
behaves. Intuitively, what the gradient is just increasing the log-likelihood of
the trajectories which led to higher rewards.

The gradient estimator is defined by

gRF = Eτ[ (
T−1∑
t=0

∇θlog(πθ(at|st)))(
T−1∑
t′=0

γt
′
rt′)] (4.8)

where R(τ) =
∑l=T−1
l=0 γlrl and γ is the discount factor, is known as REIN-

FORCE. This method is guaranteed to converge to the true gradient estimator

in O(n
−
1

2 ), where n is the number of samples. Also, just a single roll-out
makes the gradient estimation unbiased, which reduces the number of roll-
outs needed for performing a good update step.

The REINFORCE estimator, despite its fast convergence, has a high variance
which is very troublesome in practice. Modifications in this formula are made
to reduce the variance.

The policy gradient theorem (PGT) is based upon the fact that future actions
does not affect past rewards, which can be formalized as:
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Est+1:l [ ∇θlog( πθ(al|sl)) rt′ ] = 0 (4.9)

Then we can write ∇θJ as

gPGT = Eτ[
T−1∑
t=0

(∇θlog(πθ(at|st)))(
t′=T−1∑
t′=t

γt
′−trt′)] (4.10)

This gradient estimator is known as the policy gradient theorem. Reordening
the summations we can write the G(PO)MDP estimator

gGMDP = Eτ[
T−1∑
t′=0

(

t=t′∑
t=0

∇θlog(πθ(at|st))) (γt
′
rt′)] (4.11)

Wewillworkwith the former, as it ismore convenientnumerically implementation-
wise.

To further reduce the variance of the gradient estimator we will use a baseline
b(st). A baseline is a term subtracted to the returns which leave the estimator
unbiased and have the function to reduce its variance. Therefore, we will write
the gradient estimator gPGT as

gPGT = Eτ[
T−1∑
t=0

(∇θlog(πθ(at|st)))(
t′=T−1∑
t′=t

γt
′−trt′ − b(st))] (4.12)

This equality is for any arbitrary function b(st) that just depend on the state st.
One advantage of using the policy gradient estimator in front of G(PO)MDP
and is that the baseline in the former can be dependent on the state while the
latter it is just time dependent. Nowwe prove that adding a baseline leaves the
estimator unbiased.

Proof

gPGT = Eτ[ (∇θlog(πθ(at|st)))b(st))]
Es0:t,a0:(t−1) [ Es(t+1):T ,at:(T−1)

[ (∇θlog(πθ(at|st)))b(st)] ]
Es0:t,a0:(t−1) [ b(st)Es(t+1):T ,at:(T−1)

[ (∇θlog(πθ(at|st)))] ]
Es0:t,a0:(t−1) [ b(st)Eat [ (∇θlog(πθ(at|st)))] ]

Es0:t,a0:(t−1) [ b(st)

∫
A
∇θlog(πθ(at|st))πθ(at|st)]

Es0:t,a0:(t−1) [ b(st)

∫
A
∇θπθ(at|st)]

Es0:t,a0:(t−1) [ b(st)∇θ
∫
A
πθ(at|st)]

Es0:t,a0:(t−1) [ b(st)∇θ(1)]
Es0:t,a0:(t−1) [ b(st) · 0] = 0
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Which proves that adding a baseline which just depends on the state does not
modify the estimate of the gradient.

4.3 Optimal Baselines

Once presented the concept of baseline for variance reduction, it is interesting to
see which are the baselines that lead to a minimum variance. An optimal base-
line is the one that minimizes the variance of each component of the gradient
gj σ

2
j
= Var(gj) without biasing it.

Here we derive the optimal baseline for G(PO)MDP, recall that the baseline in
the G(PO)MDP is time dependent. Therefore, we want b(s) that satisfies

min
{b
j
k
}T
k=0

σ2j s.t.Eτ[ g
2
j ] = ∇θjJ (4.13)

Where bj
k
denotes the baseline for the jth component of the gradient and for

the kth time step. We can express the variance as σ2
j
= E[ g2

j
] − E[ g2

j
] 2, and

since E[ gj] 2 does not depend on the choice of the baseline the minimization
problem can be expressed as

min
{b
j
k
}T
k=0

Eτ[ g
2
j ] ≥ Eτ[ min

{b
j
k
}T
k=0

g2j ] (4.14)

Where the inequality is due to the Jensen Inequality. Deriving with respect bj
k

and forcing the derivative equal to 0, we end up with:

b
j

k
=
Eτ[ (

∑T−1
t=0 ∇θjlog(πθ(at|st)))2γtrt]

Eτ[ (
∑T−1
t=0 ∇θjlog(πθ(at|st)))2]

(4.15)

For computing the baselines the expectations are approximated with data from
the roll-outs. Even thought, G(PO)MDP and PGT are numerically equivalent
people in practice use PGT. This estimate of the algorithm allows the baseline
to be state dependent. The drawback is that there is not an analytic solution
for the optimal state dependent baseline. Conversely, it is used a near-optimal
baseline, the Value function Vπ(st),

Vπ(s) = Eτ[
T∑
t′=t

rt′ |st = s, at′ ∼ π(·|st)]

So we will choose a baseline that approximates the Value function in practice,
which usually is either a linear combination of features or a neural network.
Using the Value function as baseline is a very intuitive and natural choice:
suppose we perform a roll-out of the trajectory and collect a noisy estimate
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ĝ =

T−1∑
t=0

(∇θlog(πθ(at|st)))(
t′=T−1∑
t′=t

γt
′−trt′) (4.16)

which we will use to update our policy with the rule θ ← θ − αĝ. If we were
using PGT without a baseline then this update rule increases the probability
of the action proportionally to (

∑t′=T−1
t′=t γt

′−trt′ , which are all the rewards re-
ceived following the action. However, this update will increase the probability
of all actions, which makes the update rule noisy. Using the Value function as
baseline we get an estimate of how much better the action was than expected.
Therefore, we increase the log-likelihood of the actions that lead to better re-
sults than we expect and decrease the log-likelihood of those that lead to worse
sum of rewards. The difference

∑t′=T−1
t′=t γt

′−trt′ − V
π(st) is called Advantage

and is an estimate of the goodness of the action at with respect the other ones
at state st.

It is common to consider that the true MDP that you want to solve is the
undiscounted MDP, i.e., γ = 1. However, the undiscounted case leads to
gradient estimates with excessive variance in long episodes (T big). Then γ is
introduced as variance reduction parameter. Even though, doing so has the cost
of biasing your gradient estimate – trade-off bias-variance – the bias introduced
is not very harmful. Intuitively, it considers that the current action at has no
effect in distant rewards. This assumption is completely valid in episodes were
there is no delay on the rewards (it can be harmful in sparse settings where you
get the rewards just if you complete a task). By adding the terms 1, γ, γ2, · · ·

we have an effective time horizon of 1− γ
T+1

1− γ
.

Algorithm 1 ’Vanilla’ Policy gradient
Initialize policy parameters θ and baseline b0
for i=0,1,· · ·
Perform a set of roll-outs with N trajectories
for t = 0, . . . , T

Compute the return R(st) =
∑T
t′=t γ

t′−trt
Compute the advantage Â(st) = R(st) − b(st)

Fit the baseline minimizing: 1
N

∑N
n=0

∑T
t=0 R(st) − b(st)

2

Compute the gradient estimate ĝ =
1

N

∑N
n=0

∑T−1
t=0 (∇θlog(πθ(at|st)))Â

θ← θ+ αĝ

4.4 Natural Policy Gradient

The standard gradient rule presented in the previous section is nonconvariant,
does not have consistent dimensions. The update rule θj + α∂J∂θj is dimen-
sionally inconsistent, since ∂J∂θj has units of 1

θj
and all θj does not need to

have the same dimensions [14].
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We need to compute the steepest ascent direction, dθ, which maximizes J(θ)
under the constraint that dθ2 is small, so the linear approximation is still valid.
The norm is defined in a differential manifold that has a first fundamental form
G(θ), dθ2 = dθTG(θ)dθ. Then the steepest descent direction in this manifold is
given by G(θ)−1∇J(θ). The method presented in the former section considers
that the manifold of the parameters is Rm, and therefore the first fundamental
form is the identity matrix. However, this is not a sensible choice and it is better
to use the coordinates of the manifold that θ parametrize.

The natural gradient uses the Fisher information matrix (FIM) as first funda-
mental form. The distribution πtheta(·|s) defines a manifold for each state s
that has coordinates θ ( πtheta(a|s) is a point on this manifold). Then the
Fisher information matrix of the distribution πtheta(·|s) is written as

Fs(θ)ij = Eπθ(·|s)[
∂log(πθ(a|s))

∂θi

∂log(πθ(a|s))

∂θj
] (4.17)

Under certain regularity conditions the FIM can also be computed by

Fs(θ)ij = Eπθ(·|s)[
∂2log(πθ(a|s))

∂θ2
] (4.18)

However, this last form is not usually used in practice due to the excessive cost
of computing second derivatives. The FIM defines the same distance between
two points regardless the choice of coordinates used. This invariance on the
metric is defined up to a scale. Obviously, if our manifold is parametrized
by the same parametrization times a scalar λ the fundamental form will be λ2
times the original, but the surface will remain the same. This property does not
hold if we use G = I since the manifold changes with the choice of coordinates
θ.

Lets now assume that every policy πθ is ergodic, meaning that it has a well
defined stationary distribution over the states µπ(s). Then we can define our
metric in the manifold as the expectation of the FIM over all the states given by
this distribution Âą

G(θ) = Eµπ(s)[Fs(θ)] (4.19)

Themetric givenbyEquation 4.18defines adistance on theprobabilitymanifold
for each state s and F(θ) is the average of all these distances. It is worth noticing
that even thought Fs(θ) does not depend on the transitions probability of the
MDP, F(θ) does. Since µπ(s) is defined by

µπ0 (s) = ρ(s)

µπt (s) =

∫
st∈S

∫
at∈A

p(s|at, st)πθ(at|st)µ
π
t−1(s)datdst

µπ(s) =

T∑
t=0

(4.20)
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where ρ(s) is the initial state probability distribution of the MDP with time
horizon T . The steepest descent direction of the natural policy gradient is

g(θ) = F(θ)−1∇J(θ) (4.21)

The natural gradient is the key ingredient for the results that policy gradient
methods have develop in the recent years. In particular, the next method we
explain (the one used in our work) is based upon the natural gradient.
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Trust Region Policy

Optimization
Trust Region Policy Optimization (TRPO) is an iterative algorithm that guaran-
teesmonotonic improvement of the policy over iterations [15, 8]. This algorithm
is derived from the policy gradients explained in the former section applying a
hard constraint on the KL-divergence between the current policy and the new
one. The algorithm is suitable for policies parametrized with a huge num-
ber of parameters (such as neural networks). Our experiments are carried out
using TRPO, due to it has proven impressive results in many complex environ-
ments such as walking humanoid and Atari. In the following we describe the
derivation of the algorithm.

We define the advantage function Aπ(s, a) as

Aπ(s, a) = Qπ(s, a) − Vπ(s) (5.1)

The advantage function tell us the goodness of an action compared with the
mean of all possible ones in that specific state. The identity given by [16] let
us express the total return of another policy π̃ in terms of the policy π and its
advantage function.

J(π̃) = J(π) + Eπ̃[
T∑
t=0

γtAπ(st, at)] (5.2)

Proof First we note that

Aπ(s, a) = Es′∼P(s′|s,a)[R+ γVπ(s′) − Vπ(s)]

Hence, we can rewrite the expected sum of advantage functions as
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Eπ̃[
T∑
t=0

γtAπ(st, at)] = Eπ̃[
∞∑
t=0

γt(Rt + γV
π(st+1) − V

π(st))]

= Eπ̃[−V
π(s0) +

∞∑
t=0

γtRt]

= −Es0 [V
π(s0)] + Eπ̃[

∞∑
t=0

γtRt]

= −J(π̃) + J(π)

We define µπ(s) as the unnormalized discounted visitation frequency

ρπ(s) =

∞∑
t=0

γtP(s = st) (5.3)

where s0 ∼ ρ0 and the actions are sampled according to π . Then rewriting the
former equation

J(π̃) = J(π) +
∑
s

ρπ̃

∑
a

π̃(a|s)Aπ(s, a) (5.4)

Hence, an update of the policy π to π̃ which has non-negative advantage
function almost everywhere in every state s will improve the expected total
return. This makes the classical result of deterministic policy optimization
π̃ = argmaxaAπ(s, a) a valid algorithm that converge to the optimal policy
when there is no positive advantage function in an state where the visitation
frequency is positive. However, this equation is intractable due to the complex
dependency on the visiting frequency.A linear approximation is used instead

Lπ(π̃) = J(π) +
∑
s

ρπ

∑
a

π̃(a|s)Aπ(s, a) (5.5)

Instead of using the visitation frequency of the updated policy π̃ we are using
π. Since 5.5 is a linear approximation of J(π̃) (when the policy is a differentiable
function of a parameter vector θ) if a small step improves L it will also improve
J. However, we do not know which is the maximum step-size where this
approximation is valid and an improvement on L leads to an improvement on
J.

[16] proved that if we set as updated policy as the mixture

π̃ = (1− α)π+ απ′ (5.6)

being π′ = argminπ′ Lπ(π′), then the following inequality is satisfied

J(π̃) ≥ Lπ(π̃) −
2εγ

(1− γ(1− α))(1− γ)
α2 (5.7)
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ε is defined as ε = maxs |Eπ′ [Aπ(s, a)]. Note that this bound is only valid when
the updated policy is a mixture, which is not desirable in many cases since it
is restrictive and intractable (such as when computing the KL-divergence). It
would be convenient to have a similar updated scheme where we could use a
more general class of stochastic policies.

Theorem Let α = Dmax
TV

(π̃, π) then Equation 5.7 holds.

DTV is the total variation distance that is defined as DTV (p, q) = 1
2

∑
i |qi − pi|

for discrete distributions and DTV (p, q) = 1
2

∫
|q(x) − p(x)|dx for continuous

ones. We define Dmax
TV

(π, π̃) = maxsDTV (π(·|s), π̃(·|s)

Interestingly we can use the KL-divergence (more tractable) instead of the total
variation distance to constrain the distance from the two distributions. It is
known that DKL(p, q) ≥ DTV (p, q)2. Then if Dmax

KL
(π, π̃) = maxsDKL(π, π̃)

we have the following inequality

J(π̃) ≥ Lπ(π̃) −
2εγ

(1− γ)2
DmaxKL (π, π̃) (5.8)

This is a slightly softer constrain than the one presented in 5.7. It follows
immediately from the fact that α, γ ∈ [0, 1]. This bound is weaker when α ≈ 1.

Maximizing iteratively the term Lπ(π̃)−CD
max
KL

(π, π̃), whereC = 2εγ

(1−γ)2
gives

an algorithm that improves monotonically the total expected return J(π). This
is easily proven. Let’s denoteMi(πi+1) = Lπ(πi+1)−CD

max
KL

(πi, πi+1). Then,

J(πi+1) ≥Mi(πi+1)

J(πi) =Mi(πi)

J(πi+1) − J(π) ≥Mi(πi+1) −Mi(πi)

So maximizingMi induces the maximization of the true objective function J.

However, this algorithm is not practical since it implies the computation of the
exact advantage functions. Also, the steps performed while maximizingM are
often too small leading to slow convergence. We can take bigger steps if we
instead impose a constraint on the KL-divergence between the policies, hence
a trust region constraint:

max
θ̃
Lπθ(πθ̃)

subject to: DmaxKL (πθ, πθ̃) ≤ δ
(5.9)

It is implied that the policies π are parametrized by the vector θ. This maxi-
mization problem is sounded given the theory, but it is very hard in practice
since it bounds every point in the state space. We modify it using an heuristic
approximation on the KL-constraint
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D
ρ

KL
(θ, θ̃) = Es∼ρ[DKL(πθ(·|s), πθ̃(·|s))] (5.10)

Then Trust Region Policy Optimization solves the following optimization prob-
lem

max
θ̃
Lπθ(πθ̃)

subject to: Dρθ
KL

(θ, θ̃) ≤ δ
(5.11)

5.1 Practical Algorithm

We desire to solve the optimization problem presented in equation 5.11. Ex-
panding its terms we obtain

max
θ̃

∑
s

ρθ(s)
∑
a

πθ̃(s|a)Aθ(s, a)

subject to: Dρθ
KL

(θ, θ̃) ≤ δ
(5.12)

In order to solve it, we replace the term
∑
s ρ(s) by an expectation – where

the samples are taken from ρ(s). Also, the advantage function is replaced
by the Q-values given by Qθ, which differs from the original function just
by a constant. Finally, the term

∑
a πθ(s|a) is modified using an importance

sampling estimator, where we sample the actions from a distribution q(a|s)
instead of πθ(s|a) to compute the expectation.

The result is we actually solve the optimization problem given by

maxθ̃Es∼ρθ,a∼q[
πθ̃(s|a)

q(s|a)
Qθ(s, a)]

subject to: Es∼ρθ [DKL(θ, θ̃)] ≤ δ
(5.13)

The expectation is computed averaging the samples and the Q-values with an
empirical estimate. Usually we parametrize the Q-function as a neural network
and fit it with the Monte-Carlo estimates. And, in order to solve the constraint
term of the optimization problem, we use the conjugate gradient algorithm and
later on a line search.

We use as a gradient the natural gradient, so it is needed to solve the linear
system Fg = ∇L, where F is the Fisher Information Matrix. In large scale
problems (such as neural networks, that have millions of parameters) it is
intractable to invert this matrix. Thus, thanks to a cheap computation of the
hessian-vector product (see [8] Appendix C.1) it is used conjugate gradients to
solve the linear system.
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Once the gradient direction is computed, we need to ensure that the KL-
divergence constraint is satisfied, i.e, we need β such asDρθ

KL
(θ, θ+βg) ≤ δ. We

approximate the KL-divergence with its quadratically form, Dρθ
KL

(θ, θ + βg) ≈
1
2β
2gTFg and force this termequal to δ. Hence,we endupobtainingβ =

√
2δ
gTFg

Sincewe have used a quadratic approximation of theKL-divergence to compute
β it is not guaranteed that the original constraint is fully satisfied, and also,
perhaps, the step given by δ is too big and results in a worsened expected
total return. Therefore, a line-search is applied in order to not only ensure the
constraint is fulfilled, but also ensure policy improvement. Starting from the
parameter β obtained we shrink it exponentially until the policy has improved
and the constraint is satisfied.
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6
Policy Transfer via

Modularity
6.1 Introduction

Non-prehensile manipulation, such as pushing, can be used by robots to move
or to rearrange objects. Compared to grasping, pushing may be easier or even
necessary in certain cases. For example, pushing is especially important for
moving objects that are too big or too heavy to grasp [17]. Pushing can also
be used to move multiple objects at once, such as when clearing space on a
cluttered table, in which the robot can sweep multiple objects out of the way
in a single stroke [18]. Additionally, if a robot needs to grasp an object, it
may need to first push the object to a more ideal position or orientation before
grasping [19, 20, 21].

However, pushing is a challenging task for robots due to frictional forces that are
difficult to model [22, 23, 24, 25]. Many of the assumptions that are commonly
made for analyzing pushing motions have been shown to not always hold in
practice. For example, the frictional forces involved can be non-uniform, time-
varying, anisotropic, and deviating in other ways from the assumptions that
are usually made in pushing models [26].

In this work, we explore the use of reinforcement learning for robot pushing
tasks. Reinforcement learning has shown to be a powerful technique for en-
vironments with unknown dynamics or for tasks with complex dynamics that
are difficult to explicitly optimize over. Reinforcement learning has been used
for tasks such as learning to dress, swing a bat, perform locomotion, stand up
from a sitting position, drive a car, and many other tasks [27, 28, 8, 9, 29, 30, 31].

However, reinforcement learning methods, especially those using a neural net-
work to represent the policy, can often be difficult to use in the real world
due to the large number of samples required for learning. Some approaches
have been to reduce the dimensionality of the exploration space and explore
more significant directions [32]. This problem is especially important for deep
policy gradient methods; such methods have demonstrated impressive results
in simulation, but their use in the real world is limited by their large sample
complexity [33, 8, 9, 30]. Based on the impressive results that these methods
have demonstrated in simulation, we are motivated to explore whether such
methods can also be made to work in the real world.
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Figure 6.1: After training a policy to perform a pushing task in the simulator,
we transfer the policy directly to the real world. We decompose the system
into the modules of a pose estimator, a policy, and a position controller. This
decomposition leads to a robust transfer of the policy from simulation to the
real world.

We propose an approach for dealing with the sampling complexity by training
a policy in simulation, where many training samples can be quickly generated.
We then transfer the trained policy into the real world, without further training.
However, such an approach is challenging due to mismatch between the simu-
lation and the real world: images in simulation differ from images in the real
world, and the system dynamics in simulation can differ from the dynamics in
the real world.

We show that deep reinforcement learningmethods canbe trained in simulation
and then transferred to the real world by using the principle of modularity. In
contrast to most deep reinforcement learning approaches which they train the
system end-to-end (e.g. frompixels to torques) [8, 30, 34], we break the problem
into multiple separate pieces. Our system has a module that maps from image
inputs to object pose, from object pose to target joint positions, and from target
joint positions to motor torques. As shown in Figure 6.1, we train only the
middle module in simulation and then transfer this module to the real-world.
The surrounding modules are designed to enable ease of transfer, and are
different in simulation and in real world.

Further, we show that we can incorporate our prior knowledge about the task into
the system throughmodifications to the state space and to the reward function.
This is again in contrast to the traditional deep reinforcement learning approach
in which minimal prior knowledge of the robot task is incorporated into the
learning procedure [8, 9, 29, 30].

Finally, we formulate a new approach for varying the reward function over
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iterations of the optimizationwith asymptotic convergence to the originalMDP,
which we refer to as "reward guiding". We show that our approach leads to
faster convergence (compared to other approaches such as reward shaping)
without modifying the optimal policy asymptotically. Our simulation and real-
world experiments illustrate the success of our approach for robot pushing
tasks.

6.2 Related Work

Non-prehensile Manipulation. Pushing, a form of non-prehensile manipula-
tion, has been studied in robotics formany years. An early analysis showed that
one can compute the direction of rotation of the pushed object, based on the
direction of the friction cone and the pushing force compared to the location
of the center of friction [19]. Others have modeled frictional forces using the
notion of a limit surface [22, 23, 24, 25].

However, all these approachesmake a number of assumptions about the friction
that recent experiments have shown do not always hold in practice [26]. For
example, a recent study has shown that, for certain materials, the friction of
an object can vary greatly over the object surface. The friction can also vary
over time (it becomes lower as the object is repeatedly pushed and the surface
is smoothed) and it can vary based on the object speed and the direction of
pushing [26]. This study showed thatmost of themodels that are normally used
for estimating friction, such as the principle of maximum-power inequality [22]
and the ellipsoidal approximation of a limit surface [24], do not always hold in
practice, resulting in pushing motions that differ from those predicted by these
models.

Learning a Dynamics Model. Some previous efforts have been made to deal
with the uncertainties in friction by learning how to push objects [35, 36, 37, 38,
39, 34]. These approaches typically involve first learning a dynamics model for
how an object will respond when pushed, and then choosing actions based on
this dynamics model. However, as discussed above, the dynamics model for
pushing can itself be fairly complex, sometimes involving anon-uniform friction
distribution over the object surface [26]. Thus, learning an accurate dynamics
model is itself a challenge, and once the dynamics model is learned, finding
an optimal policy for pushing can be similarly complex. In practice, a number
of approximations are usually made to the dynamics model to make it easier
to learn and to optimize over (such as assuming linear-Gaussian dynamics as
a function of the state [34]), but these approximations might lead to a reduced
task accuracy [40]. In contrast, we explore whether we can directly learn a
policy for pushing using reinforcement learning.

Policy Transfer. Due to the long training times required to learn complex
policies using reinforcement learning algorithms, we explore whether we can
train such policies in simulation and then transfer the trained policies to the real
world. Most of previous work for policy transfer involves policies that do not
involve object interaction [41, 42, 43, 44]. We explore whether we can transfer
policies that use non-prehensile manipulation (i.e. pushing).
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Furthermore, many transfer learning techniques require further training in the
real-world to adapt the policy to the real-world dynamics [45]. However, such
an approach does not work well when training complex policies represented
by neural networks trained using policy gradient reinforcement learning algo-
rithms, which require many samples for the policy to converge. We explore
whether we can train policies in simulation and transfer them to the real-world
directly, without further time-consuming fine-tuning required.

6.3 Methods

6.3.1 Overview

Our approach to object pushing aims at training a policy in simulation and
transferring it to the real-world. The task that the robot has to perform consists
of pushing a block placed on a table, starting from any initial position and
orientation, to a certain goal position (for this work, we are not concerned with
the final orientation of the block).

In order to train the policy quickly in simulation, we explore how we can
incorporate prior knowledge into the learning algorithmbymodifying the input
state and the reward function. This is in contrast to many current approaches
for deep reinforcement learning which attempt to train the system end-to-end,
from pixels to torques, without any prior knowledge of the task. Additionally,
we explore using the idea of modularity to enable the policy to easily transfer
from simulation to the real-world. These ideas will be discussed in further
detail below.

6.3.2 Modularity

Rather than learn a policy end-to-end, from pixels to torques, we use the idea of
modularity todecompose thepolicy intomultiple pieces, as shown inFigure 6.2.
Each piece can be designed separately and then composed together to obtain
the entire system. We show that decomposing the policy in this manner allows
us to easily transfer a policy trained in simulation to the real world.

Image to Object Pose

The input to our system is an image containing the object to be pushed. In order
to push this object correctly, we need to obtain the object position. To achieve
this, we use AR tags, which can be easily identified and used to determine the
object pose. An alternative approach would be to train an object pose detector,
using one of various image algorithms for such tasks [46, 47, 48, 49]. When we
train the policy in simulation, we directly use the ground-truth object position,
obtained via our simulator.
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Figure 6.2: Our system for robot pushing. The centermodule (“Trained Policy")
is trained in simulation and transferred to the real world. The other modules
are designed to create the desired inputs and outputs for ease of transfer.

Separating the pose estimation from the rest of the system is crucial for trans-
ferring policies from simulation to the real world. The images rendered in
simulation have a very different appearance than the images from the real
world. Although some efforts have been made to increase the appearance vari-
ation of the simulated images [50], such an approach is still somewhat fragile,
as differences between the simulated and real-world images can still lead to
unexpected behavior.

Object Pose to Robot Joint Angles

Next, we learn a policy that maps from the object pose to the target robot
position. We learn this policy entirely in simulation. The policy is trained using
a reinforcement learning algorithm (TRPO with GAE) [8, 9], which allows the
robot to learn a fairly complex policy for object pushing. However, because
this policy is separated from the raw image inputs and the raw torque outputs
by the surrounding modules (see Figure 6.2), the policy easily transfers from
simulation to the real-world without any fine-tuning required.

Robot Joint Angles to Robot Torque

Rather than outputting the raw torques, the policy that we train in simulation
outputs the target robot joint angles. We then use a PD controller to map
from the target position to the robot torques. A similar approach has been
used for reaching, leaning, balancing, and other tasks that do not involve object
interaction [41, 42, 43, 44]. We demonstrate that such an approach can also
be used for tasks that involve object manipulation, specifically non-prehensile
manipulation (pushing).

6.3.3 Input State

A common approach for deep reinforcement learning is to train a policy using
the minimal information necessary to perform the task. For example, the
minimal information required for the robot pushing task is the robot joint



36 6. Policy Transfer via Modularity

Figure 6.3: We add additional inputs to our observation based on the vector
from the end-effector to the object, oee−object, and the vector from the object
to the goal, oobject−goal.

angles and velocities; the object position, orientation, and velocity; and the goal
position (i.e. the location to which the robot must push the object). Using only
this information and sufficient training time, the robot is able to learn a policy
to successively achieve the task.

However, for many robotics tasks, the algorithm designer might have prior
knowledge about how the task should be performed. For example, in the case
of object pushing, it is clear that the robot must first move its arm towards the
object, and then it must move the object towards the goal. We thus simplify
the task faced by the learning algorithm by adding additional features to our
state-space: the three-dimensional vector from the robot end-effector to the
object, and the three-dimensional vector from the object to the goal position,
for a total of six additional features (See Figure 6.3). We show that adding
these additional features significantly speeds up the time required to learn an
optimal policy.

6.3.4 Reward Function

The goal of the robot is to push the object to the goal location. Thus, theminimal
reward function necessary to complete this task is the negative distance from
the object to the goal. However, the robot will have a difficult time learning
a policy under this reward function, since most random actions that the robot
takeswill not have any affect on this reward (sincemost random actionswill not
cause the robot to interact with the object, and hence will not affect the distance
between the object and the goal).

Thus, in order to decrease the training time, we add additional terms to the
reward function to guide the policy in a direction tomaximize the objective. For
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example, we add a term to the reward corresponding to the negative distance
from the robot end-effector to the object, to encourage the robot to move its
end-effector near to the object. We also add a term based on the angle between
the end-effector, the object, and the goal, to encourage the robot to move its
end-effector such that these three points lie on a straight line; specifically, we
add cos(oee−object, oobject−goal), where oee−object is the vector from the
robot end-effector to the object and oobject−goal is the vector from the object
to the goal.

6.3.5 Reward Guiding

Modifying the reward function by adding additional terms can help to decrease
the time to convergence, but it has thedownsideofmodifying the learnedpolicy.
It has been shown that, in order for the optimal policy to be unchanged, then
the reward function can only be modified in the following way:

r(s, a, s′) = r0(s, a, s
′) + γφ(s′) − φ(s) (6.1)

where r(s, a, s′) is the new reward function when transitioning from state s to
state s′ after taking action a, r0(s, a, s′) is the original reward function, γ is the
discount factor, and φ(s) is a real-valued function over states [12].

Although such a modification has been shown to not affect the optimal policy,
unfortunately it also does not always speed up the training time as much as one
would like. The reason for this is simple: the effect of modifying the reward
function in this way is equivalent to simply subtracting a baseline [51]. We
can see this if we accumulate the reward function to compute the return. The
original, unmodified return is given by

R0 =

∞∑
k=0

γkr0,k (6.2)

where r0,k is the unmodified reward r0 received on the kth timestep. Then the
modified return is given by [51]

R′ =
∞∑
k=0

γk(r0,k + γφ(sk+1) − φ(sk)) (6.3)

=

∞∑
k=0

γir0,k +

∞∑
k=0

γk+1φ(sk+1) −

∞∑
k=0

γkφ(sk)) (6.4)

= R0 +

∞∑
i=1

γkφ(sk) −
(
φ(s0) +

∞∑
k=1

γkφ(sk)
)

(6.5)

= R0 − φ(s0) (6.6)
(6.7)

where sk is the state encountered at the kth timestep. Thus the return is only
changedby subtracting a baselinewhich is a function of the initial state s0. It has
been shown that subtracting a baseline, especially an optimal baseline, can help
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reduce the variance of the estimator [52, 28]. However, this is unfortunately a
somewhat restricted way to modify the reward and we show that this can lead
to slower convergence than might be possible.

Instead, we set the reward-shaping discount factor from Equation 6.1 to γ =

γ(i), in which the discount factor can vary over the iterations of the opti-
mization. Let γM be the discount factor from the MDP. We then increase the
reward-shaping discount factor over later iterations of the optimization as:

γ(i) = γM(1− exp(−i/τ)) (6.8)

where γ(0) = 0 and γ(i) → γM as i → ∞. Thus, at convergence, γ(i) → γM
and our time-varying reward shaping method approaches the original reward
shaping formulation from Eq. 6.1, and thus the optimal policy at convergence
is unchanged (the proof from the original reward shaping formulation [12]
applies at convergence). However, by varying γ(i) we are able to achieve a
more flexible form of reward shaping that leads to faster convergence. We
name this approach “reward guiding".

In this formulation, the discount factor γ(i) can be viewed as a variance reduc-
tion parameter. A similar perspective of the discount factor is taken in previous
work [9], in which the discount factor of the MDP is viewed as a variance
reduction parameter compared to the undiscounted MDP.

6.4 Implementation Details

Our neural network maps from the input state to target robot joint positions,
which are defined as changes in angle from the current joint positions. The
network is defined by 3 hidden layers followed by the output layer. Each
hidden layer has 64 nodes, with tanh non-linearities between each hidden
layer. The network is implemented in Theano [53]. For the reinforcement
learning algorithm, we use TRPO [8] and Generalized Advantage Estimation
(GAE) [9] with a linear baseline using the implementation from rllab [33]. We
use the default parameters from TRPO in rllab for our optimization, and we
train the policy for 15,000 iterationswith a batch size of 50,000 timesteps and 150
timesteps per episode. We use a discount factor of γ = 0.95, a KL-divergence
constraint of δKL = 0.01, and a λ = 0.98 from GAE. We train the policy in
simulation using the Mujoco [54] simulator.

Weuse a position controller tomap the target joint angles output by the network
to motor torques. For ensuring good transfer from simulation to reality, we
found that it is important that the controller gains are set low enough such
that the controller does not overshoot. In simulation, we allow enough time
between actions to allow the controller reach the target position with an error
smaller than 0.01 radians.

On the real PR2, we detect the position of the object using the Robot Op-
erating System (ROS) package ar_track_alvar. For the position controller,
we use the integrated position controller of the PR2, from the ROS package
pr2_controller_manager.
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6.5 Results

The experiments were designed to evaluate the impact of our contributions,
both of how to learn the policy learning in simulation and how to transfer the
policy from simulation to reality. In particular we seek to answer the following
questions:

Can we incorporate prior task knowledge into the observation space or
reward function to increase the sampling efficiency or improve task per-
formance?

Can reward guiding improve the learning time without asymptotically
modifying the MDP?

How does a learning-based approach to non-prehensile manipulation
compare to that of a hard-coded baseline?

Can modularity be used to transfer a policy from simulation to the real-
world while maintaining a similar level of performance?

We analyze our method on simulation in Sections 6.5.1, 6.5.2, and 6.5.3. And
We show the results on real world in Section 6.5.4. In addition to the below
experiments, videos of our results are also available online1.

6.5.1 Simulation Training

Prior knowledge in the state space

We analyze the effect of modifying the state space on the training time. In a
typical deep reinforcement learning setup, the systemonly receives theminimal
state space as input. In this case, that would include the robot joint angles and
velocities; the object position, orientation, and velocity; and the goal position to
which the robot must push the object. We call this minimal observation obase.

However, we show that we can augment the state space to improve the con-
vergence rate. We define oee−object as the 3-dimensional vector pointing
from the robot end-effector to the object, and we define oobject−goal as the
3-dimensional vector pointing from the object to the goal. Figure 6.4 shows
that adding these terms to the state space reduces the training time needed for
the robot to learn to perform the task.

Prior knowledge in the reward function

Next, we analyze the effect of modifying the reward function has on training
time. We explore the contribution of each of the following reward terms:

(i) robj,goal = −d(obj, goal)

1https://goo.gl/fehPWw
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Figure 6.4: We use prior knowledge about the task to modify the state space.
Our results shown that adding prior knowledge can lead to faster convergence
compared to just using the original state space.

(ii) rangle = cos(oee−object, oobject−goal)

(iii) ree,obj = −d(ee, obj)

Thefirst term,−d(obj, goal), measures the negative distance between the object
and the goal (the position to which the object must be pushed). This termmust
be included in order to encourage the robot to push the object towards the goal.

The second term, cos(oee−object, oobject−goal), encourages the robot’s end-
effector to approach the object from the appropriate angle. The term oee−object
is the vector from the robot end-effector to the object, and oobject−goal is the
vector from the object to the goal. By measuring the cosine between these
vectors, we encourage the end-effector, the object, and the goal to lie along
a straight line. However, the weight on this term is relatively small because
this term is only intended to guide the robot end-effector to the approximately
correct position. For accurate pushing, the robotmay occasionally need tomove
its end-effector to a different location that deviates from this line.

The third term, −d(ee, obj), measures the negative distance from the robot
end-effector to the object. This term will encourage the robot end-effector to
move near the object. If the robot is not given this term, then it will initially
perform actions that do not interact with the object. The robot would then not
see any change to the distance between the block and the goal, and the robot
would not receive any feedback that allows it to discover whether its actions
are useful. By adding this term, the robot’s initial actions are guided towards
the object. However, the weight on this term is again small because this is
not the primary objective; the robot has to move the end-effector around, and
occasionally away from the block, in order to re-position and push the block in
different directions.

We explore the effect of each of these terms by investigating the following
reward functions:

(i) r1 = robj,goal
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(ii) r2 = robj,goal +w1 rangle

(iii) r3 = robj,goal +w2 ree,obj

(iv) r4 = robj,goal +w1 rangle +w2 ree,obj

where w1 and w2 are weighting factors on each of the reward terms.

The results are shown in Figure 6.5. In the plot, we have named r1 = baseline,
r2 = baseline + angle, r3 = baseline + ee-distance, and r4 = baseline + angle +
ee-distance. We can see that, if only the minimum reward function is specified,
as in r1, then the robotmakesvery little progress in learning, since asmentioned,
the robot’s initial random actions will not usually affect the distance from the
block to the goal. Adding in only the angle term (as in r2) also does not have
much effect. If we encourage the robot to move its end-effector towards the
object (as in r3), then we see a significant improvement in the training time.
Combining all three terms leads to the best convergence; once the robot is
encouraged to move towards the block, encouraging the robot to move and
place its end-effector at the correct angle further helps guide the robot towards
the correct pushing behavior.

Baseline	+	angle	
Baseline	

Baseline	+	ee-distance	
Baseline	+	angle	+		
				ee-distance	

Final	distance	from	
block	to	goal	(m)	

Number	of	training	itera:ons	

Figure 6.5: We use prior knowledge about the task to modify the reward func-
tion. Our results show that adding prior knowledge can lead to significantly
faster convergence compared to just using the original reward function.

6.5.2 Reward Guiding

Finally, we analyze the increase in sample efficiency of using our proposed
annealing reward shaping, which we refer to as “reward guiding," instead of
the conventional reward shaping method from Ng, et. al. [12].

For guiding we use the reward robj,goal, and φ(s) = w1 rangle + w2 ree,obj
as potential function. This results in a faster learning (as show in section 6.5.1),
and at the same timewe optimize the original objective function asymptotically.
Then our reward can be written as:

rguiding = robj,goal(s
′) + γ(i)[w1 rangle +w2 ree,obj](s

′)

−[w1 rangle +w2 ree,obj](s)
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Figure 6.6: We measure the performance over iterations of reward guiding,
shaping, [12] and learning without shaping (i.e. just adding extra reward
terms). Our results show that reward guiding can lead to faster convergence
compared to just using reward shaping or learning without shaping.

Figure 6.6 shows the comparison between using reward guiding, reward shap-
ing, and modifying the reward without proper shaping by adding additional
reward terms (as in r4 from the previous section).

The results show that reward guiding has the best performance. Reward guid-
ing accomplishes the same final distance from the block to the goal as shaping
after 40% of the total number iterations. Ng, et. al. [12] proved that reward
shaping does not affect the optimal policy. Similarly, reward guiding is guar-
anteed to have the same final optimal policy, but simply adding extra reward
terms (as in r4) would not.

6.5.3 Baseline Comparison

In this section,we show theneed for learning-basedmethods for non-prehensile
manipulation, especially in domains where the robot needs to push objects
from arbitrary initial positions and orientations. To demonstrate the need
for learning in such scenarios, we compared our performance to that of a
non-learning based (“hard-coded") baseline procedure. In our “hard-coded
baseline", at the beginning of each episode, a gripper is placed on the opposite
side of the object from the goal. The gripper then pushes the object along the
vector that goes from the center of the object to the goal until the distance from
the object to the goal stops decreasing.

We compare the performance of our learning-based approach to that of the
baseline, testing both methods in simulation (the real-world experiments of
our method are desribed in Section 6.5.4). In these experiments, the goal is
fixed, and the object is placed in every point of a grid of size 0.4 m × 0.25 m,
with a resolution of 0.01m, and the object orientation is sampled from a random
uniform distribution on [−π, π].

Figure 6.7 shows the final distance between the object and the goal from each
starting position. In it we can see that our method is robust to varying initial
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Figure 6.7: Heatmap of the final distance between the object and the goal. The
axes denote the relative initial position of the object with respect the goal. The
final distance is thresholded to a maximum value of 0.1 m. Red indicates that
the final distance from the object to the goal is higher than 0.1m,whereas purple
indicates a 0 distance. Left: Our method. Right: Baseline. (Best viewed in
color).

Figure 6.8: Histogram of the final distance between the object and the goal.
Thresholded to amaximumvalueof 0.25m. Left: Ourmethod. Right: Baseline.

positions. On the other hand, the hard-codedbaseline hasmuchworse accuracy
for some initial object positions. A histogram of the final distances between the
block and the goal can be found in Figure 6.8. The poor performance displayed
by the baseline is due to the variability in the environment, specifically in the
orientation of the object relative to the goal position.

Figure 6.9 shows the final distance between the block and the goal as a function
of the initial orientation of the object. The orientation is defined as the angle
between longest side of the block and the x-axis.

The baseline fails to push the object for some initial orientations since the
gripper slides off the side of the block instead of pushing it closer to goal. In
contrast to our learning-based approach, the baseline is unable to recover from
such situations. The sharp decrease in the final distance around 1.1 radians is
due to the orientation at which the gripper starts pushing against the corner or
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Figure 6.9: Final distance between the object and the goal with respect the
orientation of the object in the plane of the table. Left: Our method. Right:
Baseline.

against the shortest side of the block. To view some examples of the baseline
failure cases, see the online video2.

Figure 6.10: Trajectories of the center of the object while being pushed. The
axes denote the relative position of the object with respect to the goal. The red
square identifies the goal, which is located at the origin. Left: Our method.
Right: Baseline. (Best viewed in color).

In contrast, our learned policy is robust to changes of orientation, as seen
in Figure 6.9 (left). The learned policy is able to perform complex pushing
trajectories, correcting the trajectory and recovering the object if it has pushed
the block too far. A visualization of the pushing trajectories produced by our
method, compared to those of the baseline, are shown in Figure 6.10.

2https://goo.gl/fehPWw
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6.5.4 Real-World Pushing

In this section we show how modularity leads to a good performance when
transferring the policy from simulation to real world.

The experiments with the real PR2 were implemented with the same set up as
described in the former section: the goal is placed in a fixed position and the
object is randomly sampled on the table within a 1000 cm2 area. Each episode
is terminated after 300 timesteps or when the distance from the object to the
goal is less than 2 cm (whichever happens first). We sampled 20 initial object
positions to test the performance of our approach.

Figure 6.11: Trajectories of the center of the object while being pushed in the
realworld. The axes denote the relative initial position of the objectwith respect
the goal (located at the origin). The red square identifies the goal. (Best viewed
in color).

The block in simulation and real-world are similar in size; but the mass distri-
bution is different, the simulated block is solid, whereas the real one is hollow.
The friction between the block and the table and between the block and the
gripper are also different between simulation and the real world. This leads
to different dynamics of the object and different resulting block trajectories, as
shown in Figure 6.11. Nevertheless, our method is capable of performing the
task (defined as at the final time step being within 2cm of the goal) in 70% of
the episodes, as shown in Figure 6.12. Figure 6.13 shows the final distance of
the object for each of the 20 sampled initial positions, demonstrating that our
method succeeds from varying initial block positions.
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Figure 6.12: Histogram of the final distance between the object and the goal.
Thresholded to a maximum value of 0.25 m.

The failing cases, in which the block does not reach within 2 cm of the goal,
were due to a poor estimation of the object position or orientation. The AR tags
were detected from a single kinect camera attached to the robot’s head. In some
cases the robot arm occludes the AR tags, which led to an incorrect estimate
of the object position. We mitigate this problem by estimating the position of
the object using the Mujoco simulator whenever the AR tags are not visible.
Moreover, the small differences between controllers lead to different motions of
the armmaking it hard to achieve fine grain precision. This can be fully viewed
in the more erratic trajectory of the real world object in Figure 6.11.
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Figure 6.13: Scatter plot of the final distance between the object and the goal.
The axis denote the relative initial position of the object with respect the goal.
Thresholded to a maximum value of 0.1 m. Red indicates that the final distance
from the object to the goal is higher than 0.1m, whereas purple indicates a 0
distance. (Best viewed in color).
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7
Conclusions

7.1 Evaluation of Results

Transferring from simulation to real-world in non-prehensile manipulation
with comparable performance has been achieved. Decoupling the policy from
the visual inputs and torque outputs we alleviate the mismatch problem be-
tween simulation and real-world, thus making the policy more robust. This
work has been extended by showing how to incorporate prior knowledge in the
MDP by modifying of the observation space and the reward function.

Furthermore, we present the concept of "reward guiding" which does not mod-
ify the asymptotic optimal policy and leads to a faster learning than reward
shaping [12] or adding a linear combination of other reward terms.

7.2 Future Work

This work aims to shed new light into the problem of transfer from a simulated
environment to the real world. A problem that, when fully solved in all their
aspects, will revolutionize the field of Robotics andArtificial Intelligence. There
is still muchwork to do in this problem, and sincewe submitted the paper some
new exciting advances have been published.

The main difficulty to tackle in sim-to-real is the changing dynamics between
both environments. The friction coefficients, masses, inertias, and so on may
differ from one environment to the other. So the question is, how do we make
policies robust to such changes? There have been some works which have
contributed to this question [55, 56, 57, 41]. The work presented here deals with
it by imposing a quasi-stationary environment and using a controller that does
not overshoot. However, in dynamic tasks this approach becomes infeasible.
An immediate extension of ourworkwould be to use a recurrent neural network
as a policy, and train it with auxiliary tasks to predict the new dynamics. Then
the recurrent neural network could adapt to those changes and act accordingly.
Using a recurrent neural network may end up with a policy robust against
occlusions, as well.
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Further limitations of ourwork come from the use ofAR tags for the detection of
the objects. This could be solved using an object detection algorithm. However,
in more complex tasks that involve cluttered scenes, fine grain position or an
unknown number of objects, it would be desirable to train the policy using the
entire image as input. Some recent work by Tobin et al. [58] deals with the
differences between real images and simulated ones by using a large number of
simulated scenes with different colors, scenes, camera positions, etc... Hence,
treating the real image just as some random image from simulation. This opens
the door to the use of "cheap" data to solve transfer and enhance generalization.
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