Degree in Mathematics

Title: Policy Transfer via Modularity

Author: Ignasi Clavera Gilaberte
Advisor: Pieter Abbeel

Department: University of California Berkeley,
Electrical Engineering and Computer Science

Co-Advisor: Carme Torras

Department: Institut de Robotica i Informatica
Industrial (CSIC-UPC)

Academic year: 2016 - 2017

2.
N
LL]
L
—
v
14
O
-
LL
L
O
<
1

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Facultat de Matematiques i Estadistica

Universitat Politécnica de Catalunya
Facultat de Matematiques i Estadistica

Bachelor’s Degree Thesis

Policy Transfer via Modularity

Ignasi Clavera Gilaberte

Advisor: Pieter Abbeel’
Co-advisor: Carme Torras?

1. University of California Berkeley, Department of Electrical

Engineering and Computer Science
2. Institut de Robotica i Informatica Industrial (CSIC-UPC)

A society that fears knowledge is a society that
fears itself.
— Bernard Beckett, Genesis

Abstract

To have robots that robustly interact with the environment and achieve meaningful
tasks, they must be able to interact with objects. This is why an important challenge
in Robotics is object manipulation. This thesis aims to tackle the specific problem
of non-prehensile manipulation, such as pushing. Which is an important function
for robots to move objects and is sometimes preferred as an alternative to grasping.
However, due to unknown frictional forces, pushing has been proven a difficult task
for robots. We explore the use of deep reinforcement learning to train a robot to
robustly push an object.

In order to deal with the sample complexity of training such a method, we train the
pushing policy in simulation and then transfer this policy to the real world. The
transfer from simulation to real world is also important in terms of safety. During
training the robot can get damaged while exploring new policies, the joints can
worn out or even the people surrounding it are at risk of being hit. In order to
ease the transfer, we propose to use modularity to separate the learned policy from
the raw inputs and outputs; rather than training "end-to-end," we decompose our
system into modules and train only a subset of these modules in simulation. We
further demonstrate that we can incorporate prior knowledge about the task into the
state space and the reward function to speed up convergence. Finally, we introduce
"reward guiding" to modify the reward function and further reduce the training
time. We demonstrate, in both simulation and real-world experiments, that such
an approach can be used to reliably push an object from many initial positions and
orientations.

Acknowledgements

Iam very grateful of having had the opportunity to work with Professor Pieter Abbeel.
His enthusiasm, eagerness to push Artificial Intelligence to its limits and ability to do
so, I sincerely admire. But, even more important than him, has been his incredible
group which I am proud to be part of. I would like to specially thanks David Held,
who has mentored me all this year. And Carlos, who has been an amazing friend,
and without whom this experience would not has been as half as fun and intense.

I'will feel forever be indebted to Professor Carme Torras, who made all of this possible.
Also the CFIS, and all the people and donors behind it, who support students in his
way to excellence, deserve my most sincere gratitude. During all my years in the CFIS
I had the opportunity to meet extraordinary people, but there are two who made a
special impact in my life: Arnau and Carla.

Finally, I would like to mention my family that have always supported my decisions
no matter how many kilometers these decisions put between us. And Anna, for her
strength and love.

Introduction
1.1 Motivation
1.2 Work Overview

Markov Decision Processes
2.1 Value Function and Q-Value Function
2.2 Bellman Equations

2.3 Optimal Policies o0 cv i vh ie e e e e e e

Reward Shaping

Policy gradients
4.1 Finite Differences

4.2 Vanilla Policy Gradient o0 o0 oo e e e e

4.3 Optimal Baselines

4.4 Natural Policy Gradient o0 il o ee e e el .

Trust Region Policy Optimization
5.1 Practical Algorithm

Policy Transfer via Modularity
6.1 Introduction
6.2 Related Work
6.3 Methods

6.3.1 OVEIVIEBW i v tr i e e e e e e e e e

6.3.2 Modularity
6.3.3 Input State
6.3.4 Reward Function

6.3.5 RewardGuiding0 ol el ae e e e el .
6.4 Implementation Details o0 0 oo ol e ol

6.5 Results

6.5.1 Simulation Training o 0 e e e el .
6.5.2 RewardGuiding vv vt v vt v e e e e e

6.5.3 Baseline Comparison
6.5.4 Real-World Pushing

Contents

N

0 N o O

11

17
18
18
21
22

25
28

31
31
33
34
34
34
35
36
37
38
39
39
41
42
45

7 Conclusions
7.1 Evaluation of Results

7.2 Future Work i i e e e e e e e e e e

49
49
49

1

Introduction

1.1 Motivation

Reinforcement learning (RL) is a branch of machine learning that tackles problems
of sequential decision making. It considers the setting where we have an agent in
an environment, who chooses actions from a set of actions, upon which it receives
a reward and an observation of the modified environment. The agent learns from
direct interaction with the environment, without any external supervision nor model
to describe the behaviour of the world. Its objective is to maximize the reward
given along the trajectory. This completely general setup makes RL useful in a lot
of domains, such as robotics, operations research, game play, dialog, and so forth.
Every problem where an agent takes an action, which produces a change in the world,
and later on acts again upon it is a valid framework where to apply reinforcement

learning.
‘j Agent
—

state reward

action
S, R, A,
E RH]
— i —— .
<o Environment |e¢—

Figure 1.1: Agent-environment interaction in Reinforcement Learning.

Deep Reinforcement Learning (DRL) uses neural networks as function approxima-
tors. Those functions could be, for instance, the policy that the agent follows -its
behaviour- or a parametrization of how good an action is.

The integration of reinforcement learning and neural networks dates back to the 1990s
with Tesauro’s work [1], among others. However, it was not until this decade with the
explosion of deep learning in computer vision and speech recognition, thanks to the

2 1. Introduction

increasing computational resources(Moore’s law) and data, that deep reinforcement
learning began to have incredible results in game playing and robotics.

The first impressive result was carried out by Mnih et al, who taught a DRL agent
to play seven different 1980s Atari Games by observing the screen of the game and
receiving the score as reward [2]. More impressive results have followed since then.
In the field of game playing, [3] applied the same model to learn 49 different Atari
games achieving superhuman performance in half of them. Also, Silver et al. [4]
learned to play Go - one of the most challenging games for Artificial Intelligence (Al)
due to the long term planning and huge search space - using supervised learning
combined with reinforcement learning, winning the best human experts in the world.

Deep reinforcement learning has revolutionized the field of robotics as well. Levine
et al. accomplished robotic manipulation using images as input [5]. They learned
the vision and control together in an end-to-end fashion. Silver et al. [6], Lillicrap et
al. [7] developed a policy gradient that allowed them to learn policies in continuous
action space. Schulman et al. [8, 9] got incredible results in robot locomotion, a
high-dimensional continuous control, using policy gradients.

1.2 Work Overview

This thesis intends to be a self-contained work, only expecting from the reader a
mathematical background and some minor knowledge in Deep Learning. It contains
the theory needed to understand the experimental work carried out, which was
submited at the International Conference on Intelligent Robots and Systems (IROS).

Thus, this work it is divided in two parts. The first one is an explanation of all
the theoretical concepts. Starting from MDPs and Bellman equations, followed by
reward shaping. Finally, an introduction of policy gradient methods is presented and
we explain the policy gradient method used: Trust Region Policy Optimization. In
the second part, we describe our novel work in transfer from simulation to real-world
"Policy Transfer via Modularity".

The work developed aims to tackle object manipulation, specifically non-prehensile
manipulation, such as pushing using just simulation to learn the behaviour. This
ambitious work try to solve important and hard problems in robotics and Al, object
manipulation and transfer sim-to-real. Manipulating objects is inherently hard due
to the unknown frictional forces and discontinuities, which results in errors in the
models seldom negligible. Thus, it is important to learn from the experience (data),
instead of developing a mathematical model of the dynamics of the objects. Deep
reinforcement learning is able to just learn from data while trying to accomplish the
task. The data learned then is meaningful for the task, and does not waste resources
on trying to learn a global model.

We explore how to enhance reinforcement learning for a pushing task, to speed up
the training and improve performance without modifying the true objective. Never-
theless, our key contribution is to develop a way to perform transfer from simulation
to real world with comparable results between both domains. Reinforcement learn-
ing methods tend to be inefficient sampling-wise, leading to incredible results but
needing thousands of trajectories. In real-world robotics this is a constraint not only

1.2. Work Overview 3

because of time constraints (real-world experiments are expensive to parallelize and
the running time is slow), but also in terms of safety. Robots can be worn out and
damaged while performing experiments, and the people around them can get in-
jured. Therefore, our work is crucial for bringing robotics to industry and day-to-day
life.

1. Introduction

2

Markov Decision
Processes

A Markov Decision Proces (MDP) provides a framework to reason mathematically
about the planning and decision making of an agent in a stochastic environment [10].
An MDP M is defined as 6-tuple (S, p, A, P(+,[s, a),v, R) where:

m S: A set of states in the environment.
m p: An initial state s¢ state distribution, i.e, sg ~ p(s).
m A: A set of actions that the agent can select at each time step.

m P(s’,rls, a): The transition probability distribution. Given that the agent is state
s and takes action a, P gives the probability that the agent ends up in state s’
and the environment emits a reward r.

m y: It is parameter called the discount factor, y € [0, 1] .

m R: R(s,q,s’): S X A XS — Ris the reward function.

There are different formulations of an MDP in the literature. For instance, the reward
function can be considered as deterministic with just dependence on the current state
s or it can also depend on the action a taken. Moreover, there are settings in which
there is no need to specify the initial state distribution.

An MDP is called undiscounted if vy is equal to 1, and discounted otherwise. Also the
MDP is infinite if the time horizon T = oo and finite if T < co.

The transition probabilities of an MDP satisfy the Markov Property, the current state
retain all the relevant information in order to act optimally. For example, in chess the
current configuration of the figures in the board contain all the necessary information
to play optimally, there is no need to know the history of actions and states that led
to this configuration. More formally:

Definition (Markov Property). Let (Q, ¥, #) be a probability spaceand X ={Xy : t €
N}astochastic process where X is arandom variable that takes values in a measurable
space (S,S). Let ¢ denote the o-algebra of events generated by (X : s < t). The
stochastic process X satisfies the Markov property if and only if the following holds:
Foreachk <t<T,A,xx € Sand H € #:

P(Xe € AlH, Xy = xx) = P(Xn € AnlXic = xx)

6 2. Markov Decision Processes

The setting of an MPD proceeds follows. The episode begins with a sample of an
initial state so from the probability distribution p. At each timestep t < T, t € Z, the
agent picks an action ay which leads him to the next state s4.1 and receives a reward
¢ according to the probability distribution P (s¢41,T¢lst, at). The episode is ended
when a terminal state st is reached. The refurn of a rollout 1, R(7), is the total sum of
rewards weighted by the the discount factor: R(t) = ZI;O] Tt.

In practice, most of the MDPs are discounted not only because it avoids infinite
returns, but also because the future is often uncertain, and it might not be perfectly
represented. Furthermore, from a human perspective, we tend to prefer immediate
rewards rather than future ones.

As said, our main goal is that the agent’s behaviour maximizes the return, i.e., the
sum of rewards. The behaviour is modelled by a function named policy 7t that maps
states to actions. There are to types of policies:

m Deterministic policy: 7t(s) = a

m Stochastic policy: a ~ 7t(als)

We will mostly focus on stochastic policies which give us the probability of taking
certain action rather than the action per se. Therefore, we want to find 7, the optimal
policy, which correspond to

argmax E.[R(T)] 2.1)

2.1 Value Function and Q-Value Function

The Value function or state-value function is a function of the state that provides an
estimator of the goodness of your policy in a certain state s. The goodness is defined
in terms of reward, the more reward your policy receives the better. Since the rewards
depend on your behaviour the value function depends on the policy as well [11].

Definition. The state-value function of a policy 7, V”, is defined as

T-1

V7(s) = Ea-nl) Y'R(st, atyst:1)ls0 = s (22)
t=0

Another important function in reinforcement learning is the Q-value function or action-
value function which quantifies the goodness of taking the action a in the state s under
the policy 7.

Definition. The Q-value function of a policy 7, V™, is defined as

T-—1

Q™(5,a) =Ea, -)| ¥'R(st,at,s¢11)ls0 = 5,00 = al 23)
t=0

2.2. Bellman Equations 7

These two functions can be estimated from experience, keeping an average of the
estimate return for each state and action. While we are performing trajectories, the
estimated value V™ and (7 converge to their true value. This estimation methods
are called Monte Carlo Methods. This methods will not be presented here since their
are intractable when the dimensionality of the action space is big or when we are in
a continuous state space. In practice in deep reinforcement learning, we use function
approximation, i.e., we parametrize these functions (using a neural network), and fit
them with the data sampled using supervised learning.

2.2 Bellman Equations

One important aspect of the value and Q function is their recurrent nature and their
interchangeability. The Bellman equation for the value function is defined as

T-1
V7 (s) = Bay-nl) V' R(st, at, sesalso = s]
t=0
T1
= Eatwﬁ[R(SO) ao, S1) +v Z 'YtR(StJr] y At41, St+2)|50 = S]
t=0

T-1
= D mlals) 3 p(s',7ls, @) (7 VEaynl) ¥ R(ster, arrr, ses2)lst = ')
s’/yT t=0

a
= > mlals) Y pls’,rls, a)(r+yV7(s"))
a s’/yT
(2.4)
This equation expresses the relationship between the current state and the next states.

It can also be unrolled to k steps forward in the future. The value function V™ is the
only solution of the Bellman Equation taking the expectation from 7.

We can also define the Bellman Equation for the Q-function

T—1
Qn(s) 0.) = EGtNW[Z YtR(St) Aty St4+1 |SO =S5,00 = Cl]
t=0
T—1
= EatNW[R(SO) Ao, $1) +v Z th(St—H y At41, St+2)|50 =500 = al
=0 2.5)

—ZP s'y7ls,) (T + VEaq,~nl Zv R(st41yate1,st42)ls1 = s'1)
_Zps 7ls, a)(r+vz (a’ls)Q a’))

It is interesting to see how are related the Q-value and the value function. For
instance, we can express the value function in terms of the Q-function as

8 2. Markov Decision Processes

T—1
V7(s) = Eat~n[z Y'R(st, at, st41ls0 = sl
2.6)

=0
= > m(als)Q"(s, a)
a
And we can also express the Q-function in terms of the value function

T—1

Qn(s7 Cl) = Eﬂt“ﬁ[z th(St) Aty St+1 ‘SO =S5,a0 = Cl}
t=0

T—1
= ZP(S’,rls, a)(r +ant~n[Z Y R(st41, Qe g1, 5e42)ls1 =) (2.7)
s’,T t=0
= > pls's1ls,) (T +YV(s"))

s/yr

=E[Ro + vV (s")]

Interestingly, we can recover the value function from the Q-function without knowing
the dynamics of the environment, but no the other way around.

2.3 Optimal Policies

The problem of reinforcement learning is to find the policy that achieves the maxi-
mum return. Therefore, the value function induce an order among the set of policies
TT. We say that pi > 7/, where pi, pi’ € T, if and only if V™(s) > V™ (s) Vs eS. One
can proof that it always exists an optimal policy. We denote it as pi* any policy in the
set of optimal policies. The optimal value function is defined then as

V*(s) = max V"™ (s) (2.8)

7T

V s € §. In the same way, we define the optimal Q-function as

Q(s,a) = max Q" (s, a) (2.9)

Vs € S and a € A. Analogously as shown in the previous section we can rewrite
the optimal Q-function in terms of the optimal value function

Q*(s,a) =E[Ry +vV*(s')|so = s,a0 = a (2.10)

Since V* is the value function of some optimal policy 7" it must satisfy the Bellman
Equations described before. Additionally, since it is the optimal we can re-write the
equations so there is no reference to the optimal policy. This can be done because the

2.3. Optimal Policies 9

optimal value function must pick the action that leads to a maximum reward. Thus,
rewriting the Bellman optimality Equation for the value function we obtain

V*(s) =max Q*(s, a)

T—1
t
= mC?XEatNTE*[Z Y R(St) Aty St+1 |SO =$5,0a0 = al
t=0
T—1
t
= m&aXEatNTﬁ [R(SO) Qao, $1) +v Z Y R(st—H y Qt+1, St+2|50 =S5,0a0 = Cl]
t=0

= mngatw[R(SO, aop,s1) +vVi(s1)lso =s,a0 = a
:mngp(s’,r\s,a)[r—H/V*(s’)]
s’/,T

2.11)

We can perform similar operations to define the Bellman optimality Equation for the
Q-function

Q*(s,a) =Eq,~~[R(s0, ao, s1)Vfrcll&]lx Q*(s1,a1)lso =s,a0 = d]

= ZP(S’,Tls, a)[wrr}la}x Q*(s”,a’)]

’
s’

(2.12)

There is a huge variety of methods focused on solving these equations and finding
the optimal policy, see [11] for a good introduction. In summary, the Q-function is
used for model-free methods because you do not need to know any of the dynamics,
i.e., you do not need a model and you learn just from the data, to choose the optimal
action.

The work carried out in this thesis uses a different set of methods, called policy gra-
dients, where the policy is approximated by a function parametrized by a parameter
vector 6 and the maximization of the expected return is performed with respect to
those parameters. These methods are presented in Chapter 4.

10

2. Markov Decision Processes

3
Reward Shaping

The term reward shaping first appeared in [12] and consists in a modification of the
reward function of the MDP that preserves the optimal policy. Modifying the reward
function is vital in many environments. For instance, in setups where the reward is
sparse, i.e., the agent just receives a reward if he had completed the task (or some hard
sub-task), it is incredibly hard to learn since the agent does not have any feedback
whether the actions taken are good or not. Therefore, a problem with sparse rewards
can become intractable (it is needed too much exploration). However, a modification
of the reward function leading to an observation of reward at each time-step, makes
the learning easier turning those intractable problem into tractable. Reward shaping
is also important in problems where the task required is complicated and the reward
given not very informative. In our work we will show how reward shaping improves
the learning in terms of performance and speed.

These modifications of the reward function must preserve the optimal policy. Oth-
erwise, one can converge into a policy that does not have the desired behaviour. For
example, suppose that we have an agent that wants to walk to a goal. Initially we
have a reward function that is 1 if the agent reaches the goal, and 0 otherwise. We
could define a reward shaping function which gives reward just if he goes near the
goal (but it does not penalize if he walks away from it). Then the behaviour that
the expert would learn is walk in circles approaching and walking away to the goal,
because this is actually the optimal policy in this setup!

Using the same notation than in the former chapter, we are aiming at the optimal
policy 7* for some MDP M = (S, p, A, P(+,[s, a), v, R). However, we want to modify
the function R adding a shaping reward, such that it leads to a faster convergence
of the optimal policy. Therefore, we will train our agent in a modified MDP M’ =
(S, p,A,P(+-|s,a),y,R’), such that R”” = R+ F(s,a,s’). Where F: SXA XS - R
is called the shaping reward function. Since the only difference between both MDPs
is the reward function, the agent and the environment will behave the same but
at each transition instead of observing a reward R(s, a, s’) it will observe a reward
R(s,a,s’) + F(s,a,s’). This fact is important implementation wise, because in most
of the cases we do not know the transition probabilities or even the set of feasible
states, but we can run the same algorithm and pretend we are observing R’ instead
of R.

Hence, the goal of reward shaping is to find what functions F makes the optimal
policy 7}, (optimal policy of M’) also an optimal policy of M. We will consider

12 3. Reward Shaping

the generic case where we do not know neither P(-,-|s, a) nor R(s, a,s’). Although
considering the reward unknown may be to restrictive, this is often the case in real
world problems. The following result states the necessary and sufficient conditions
of the function F.

Theorem. Let any S, A and ¥ and a reward shaping function F: S X A X S — Rbe
given. We say that F is a potential-based function if there exists a function ® : S - R
such thatV a e A, s,s’ € S:

F(s,a,8") =y®(s) — O(s) 3.1)

Then, Fbeing a potential-based function and ® bounded are a necessary and sufficient
condition to guarantee optimal consistency when learning from M’ rather than M
in the following sense:

m Sufficiency: If F is a potential based function, then every optimal policy in M’
will be optimal policy in M, and viceversa.

m Necessity: If T is not a potential-based function then exists a proper transition
probabilities and reward function such that no optimal of M’ is optimal of M.

It is worth noticing that the sufficiency condition hold whether we know or not the
transition probabilities and reward function, but the necessity condition explicitly
states to those terms be unknown. Also, it might be the case that there is more than
one optimal policy 7t} , or 7 ;, but this theorem assures that any optimal policy 77,
will be optimal of M.

Anintuitive explanation of why it has to be a potential-based function is the following.
Consider that it exists a sequence of states sg,s1,- -, sn, so such that the total gain
of the shaping reward is positive, i.e., ZL‘;& F(sk, ax, Sk+1) + F(sn, an,so) > 0 then
the agent will repeatedly do this cycle instead of performing the actual task (like in
the example explained before). On the other hand, if F is a potential-based function
the sum of its values in any cycle is 0 and so the agent cannot exploit this trait. In the
following we prove the sufficiency condition.

Proof. Let F be a potential-based function, with potential ®. For the original MDP
M a policy is optimal if its Q-function, Q’,, satisfies the Bellman Equations.

Q*M(S) Cl) = Es’[R(S) a, S/) +v Iz‘lr’lea\;([Q*M(S/) al)]

If we subtract ®(s) in both sides of the equation and add and subtract y®(s’) inside
the expectation we end up with

Q(s,a) — @(s) = Es [R(s, a,s") +yD(s") — D(s) +Y£r}g;<{(Qj\4(S', a’) = ®(s")]

We know define QM/(s,a) = ij(s,a) — O@(s) and substitute yO(s’) — ®(s) by
F(s,a,s’).

13

Quw(s,@) = By [R(s, a,8") + F(s, a,87) +y max(Qae (',)]
a

This result gives us the Bellman Equation for M’, so Qat (s, a) is the optimal Q-
function of QMr(s, a). Hence, ij(s, a) = QM/(S, a) = ij(s, a) — @(s) and the
optimal policy for M’ exists. Then, we just have to prove that the actions taken by
the policy following the Q-value Qi (s, a) are the same than Qe (s,a).

Ty (8) € arg max Qe (s, a)
= * — d)
arg max Q(s,a) (s)

= argmax Q% (s, a
gmax Q) (s, a)

So the exact same policy that is optimal in M’ is optimal in M. To show that every
optimal policy in M is optimal in M’ the same argument is used:

Ty, (s) € arg max Qs a)
= * ’ (D
argmax Qj, (s,a) + @(s)

= argmax Q% ,, (s, a
9aeﬂQM(’)

Now we prove the necessity of the Theorem. In this proof we will consider the case
where |A| = 2, the general proof follows the same fashion. First we will state a
Lemma which shows that the reward shaping function cannot depend of the action.

Lemma: If there exists s,s” € S and a, a’ € A such that F(s,a,s”) # F(s,a’,s’) then
there exists a set of transitions probabilities P(:|s,a) and a reward function R such
that no optimal policy in M’ is an optimal policy of M.

Proof We assume without loss of generality that F(s, a,s’) > F(s, a’,s’) and we define
A =F(s,a,s’) —F(s,a’ys’). Then we construct the MDP as:

m P(s’|s,a) =P(s’|s,a’) =1

m R(s,a,s’) =0and R(s,a’,s’) = %

The obviously the optimal policy in state s is choosing action a’, a’ = arg max 7 (s).

However, if we consider the MDP given by M’ we have that R’(s, a,s’) = F(s, a,s’)
and R’(s,a’,s’) = % + F(s,a’,s’) = —% + F(s,a’ys). Since A > 0 we have that
R(s,a,s’) > R(s,a’,s’). Therefore the optimal policy in M’ has a = argmaxrt, ,(s).
Thus, 7} ((s) # 7}, (s)

Proof We assume that F is not a potential-based function and by the former Lemma
we can assume that F(s, a,s’) = F(s, s’). Then we consider the following MDP

14 3. Reward Shaping

51

Figure 3.1: MDP. All the edges have probability 1.

Since if we shift all the rewards by a constant offset the MDP remains invariant we can
consider without loss of generality that F(§y,80) = 0. Let us define ®(s) = —F(s, $o).
Since F is not a potential-based function then y®(s2) — ®(s1)! = F(s1,s2). We
consider the MDP M the one given by 3.1.In the MDP of the Figure 3.1 we consider
that all the edges have 0 reward except the edge (s1, a, o) that has a reward of A/2,
where A = F(s1,s2) +YF(s2,80) — F(s1,80). Then

Where he have considered that V3},(80) = V},,(80) = 0. Then the optimal

policy in this the MDP given by M and the one given by M’ differ because

. a if A>0
7'[)\/[(51):

a’ Otherwise

< (s1) a’ if A>0
T, (81) =
M a Otherwise

It is also proven that for every policy m, Qj\‘/[,(s, a) = Qj\‘A(s, a) — ®(s) and
V/C(, (s) = V/T\‘A (s) — ©(s). This is interesting because it means that near-optimal
policies are preserved, i.e., if | VT, (s) —ij(s)H <e & ||V/7‘T4(s) —V/*M(SJH <
€. Which makes the learned policy under reward shaping robust. Another
important remark is the invariance of the potential-based functions in the re-
inforcement learning paradigm. Interestingly, if one has a potential-based
function as unique reward then all policies are optimal in this MDP. Finally,
the sufficiency result is proven for the discounted case, v < 1. For the undis-
counted case one needs to assume that it exists an absorbing state or final state
sT such that there is no more rewards after this state is visited and that all the

15

policies end up visiting the absorbing state (this condition is often referred as
all policies are proper). Then the proof follows exactly the one presented using
that the optimal policy is invariant with respect adding constants to the reward
function and defining ® = ®(s) — O(sT).

16

3. Reward Shaping

a4

Policy gradients

In this chapter we will present the methods currently used reinforcement learn-
ing for determining the optimal policy [13, ?]. The policy, which determines
the probability of each action, is parametrized by a set of parameters 6. Our
objective then is to maximize the expected return with respect those parameters:

max J (6) = B<[R(v)]

Where T is a trajectory and 7 = 7t(als; 0), which for ease of notation we will
denote as g (als).

So the main goal of policy optimization is to find the parameters 6 € © C
R™ such that the return J(0) (we make the abuse of notation J(0) = J(mg))
is maximal. Policy gradient methods compute the gradient of the expected
performance and take a small steep in the steepest direction. These methods
have special importance in robotics, since we require that any change on the
policy to be smooth. A significant step could jeopardize the integrity of the
robot and the safety of the people around it. These methods also have strong
theoretical guarantees, which other methods such as greedy value function
based methods do not posses. Finally, one of the fundamental traits that has
lead policy gradient methods to its current popularity is that they can be used in
model-free reinforcement learning, i.e, they do not need any underlying model
of the dynamics as we will see.

Policy gradient methods follow the update rule:

Oni1 =To(On + xnVello=o,) (4.1)

where «, € R* denotes the learning rate and ITg is the projection to the feasible
region © . An important property of these methods is that if the gradient is
unbiased, and if the learning rate satisfies

(o] o0
Z Xp = 00 and Z ocf1 < oo (4.2)
n=0 n=0

18 4. Policy gradients

then the algorithm is guaranteed to converge almost surely to at least a local
minimum. Nevertheless, in practise it is used a fixed the step size to a suffi-
ciently small value. If Vo] is an unbiased estimator it is referred as being of
the Robbins-Monro type. Then it has a asymptotic convergence rate of n-z.
However, the main difficulty of these methods is to compute a good estimator
of the gradient. There traditional approaches to compute the gradient of J(0)
can be divided into finite differences and vanilla policy gradients.

4.1 Finite Differences

This method estimates the gradient of the expect reward J(0) by simply using
finite differences. This "naive" approach perturbs each component of 8 while
holding the other components to its reference value. However, since the output
is stochastic if the perturbance is too small the estimation of the gradient could
be very noisy. Therefore, there is a trade-off between bias and variance.

The differences can be one-sided or central. Central difference gives a more
accurate gradient but there is the necessity of estimating the function 2m times,
which can be a burden in high-dimensional systems or when the simulation
is very costly. On the other hand, one-side differences just have the need to
evaluate m + 1 times our function. The ith component of the central difference
estimator is given by

7(0 + diei) —J(0 — Siei)

%, 4.3)

where 8; is the perturbation applied to the unit vector in the ith direction, e;.

The advantage of this approach is that it does not require any knowledge about
the of the policy or its differentiability.

This method is not applied in deep reinforcement learning setups due to the
rewards functions are parametrized with neural networks, which have a huge
number of parameters. Also, in order to estimate the expected reward we have
to perform roll-outs of the agent and can be costly, especially in real-world
applications. The convergence rate of this method highly depends on the
uncertainties. In real systems the uncertainties tend to be high, which results

in convergence rates between O (n*%) and (O (nfé).

4.2 Vanilla Policy Gradient

In the following, and as before, we will denote as T the trajectory of the agent,
that is a sequence of states and actions T = {s¢, ao, s1, a1, -, st}. The trajectory
is generated by a roll-out, T ~ p(7/8). Let R(T) be the return of the trajectory
7, and T the set of all trajectories. Therefore, the total expected reward of our
policy is

4.2. Vanilla Policy Gradient 19

(8) = B[R(1)] = ijme)Rde (4.4)

And the gradient can be written as

- - - [plo)
VoJ(0) = VeE-[R(1)] — Ve JTp(r\eJRm dr — LF Vop(t0)R(t)dt — Lr D Vop(TORT)dr
JTpme)vetog(p(1/6)) R(t)dr = B[Volog(p(t0)) R(x)] (45)

Thus we can obtain the LHS of the equation above by making use of the Central
Limit Theorem in the RHS. This trick is known as the likelihood ratio trick.
More importantly, the p(t|0) can be written as

p(tl0) = p(so)TT{) p(str1lar, se)mo(atlse) (4.6)
then
T—1
Volog(p(tio)) = " Volog(mo(ailsi)) 7)
t=0

All the derivatives with respect the dynamics of the environment drop out as
well as p(so) (the initial state distribution). Which incredibly results in being
able to maximize our reward without needing any knowledge of how the system
behaves. Intuitively, what the gradient is just increasing the log-likelihood of
the trajectories which led to higher rewards.

The gradient estimator is defined by

T—1
gRF = Z Velog(mg(atlst)) Z yre) (4.8)
where R(T) = {qu v'ri and v is the discount factor, is known as REIN-

FORCE. This method is guaranteed to converge to the true gradient estimator
1

in O(n 2), where n is the number of samples. Also, just a single roll-out

makes the gradient estimation unbiased, which reduces the number of roll-

outs needed for performing a good update step.

The REINFORCE estimator, despite its fast convergence, has a high variance
which is very troublesome in practice. Modifications in this formula are made
to reduce the variance.

The policy gradient theorem (PGT) is based upon the fact that future actions
does not affect past rewards, which can be formalized as:

20 4. Policy gradients

Es, 1. Velog(me(ails1)) /] =0 (4.9)
Then we can write VgJ as

_ t/=T-1
grGT =E Z Volog(mo(ads)))(>, v o)l (4.10)

t’'=t

This gradient estimator is known as the policy gradient theorem. Reordening
the summations we can write the G(PO)MDP estimator

T—1 t=t’

gampr =E[) ()" Velog(mo(aclst))) (v*'re)] (4.11)
t'=0 t=0

We will work with the former, as it is more convenient numerically implementation-
wise.

To further reduce the variance of the gradient estimator we will use a baseline
b(st). A baseline is a term subtracted to the returns which leave the estimator
unbiased and have the function to reduce its variance. Therefore, we will write
the gradient estimator gpGT as

greT =B Z Volog(mo(ads))(>, v 're—bl(s))l (412)

This equality is for any arbitrary function b(s) that just depend on the state s;.
One advantage of using the policy gradient estimator in front of G(PO)MDP
and is that the baseline in the former can be dependent on the state while the
latter it is just time dependent. Now we prove that adding a baseline leaves the
estimator unbiased.

Proof

graT = E<[(Volog(me(atlst)))b(st))]
Eso;t,a0:(t,1) [Es(tﬂ) TH Qe (T—1) [(Velog(me(atlst)))b(s¢)]]
Eso.ea0e 1, [DSOEs o 1)maeir 1, [(Volog(me(adse)))]]
Eso.,a0.(c 1) [b(st)Ea, [(Volog(me(atlst)))]]

Eso;t,ao:(t,1) [b(s¢) L‘{ VBIOQ(WG(at|5t))7'(e((1t|5tﬂ
Eao.ra00 [b(st) Jﬂ Voro (aglst)]

Eaguerao. e 1) [b(st)Vo Jﬂ to(adlse)]

Eso:tvaO:(Lfl)[b(st)ve(])]
ESO:tyaO:(t—‘l) [b(st) : 0] =0

4.3. Optimal Baselines 21

Which proves that adding a baseline which just depends on the state does not
modify the estimate of the gradient.

4.3 Optimal Baselines

Once presented the concept of baseline for variance reduction, it is interesting to
see which are the baselines that lead to a minimum variance. An optimal base-
line is the one that minimizes the variance of each component of the gradient
gj 0].2 = Var(g;) without biasing it.

Here we derive the optimal baseline for G(PO)MDP, recall that the baseline in
the G(PO)MDP is time dependent. Therefore, we want b(s) that satisfies

min (szs.t.]ET[gjz] = Vp,] (4.13)
P h—o

Where bi denotes the baseline for the jth component of the gradient and for

the kth time step. We can express the variance as 0).2 = E[gjz] —E| gjz} 2 and

since E[g;] 2 does not depend on the choice of the baseline the minimization
problem can be expressed as

min ET[gjz] >E.[min g.z] (4.14)

inT JnT
byt {byde—o

Where the inequality is due to the Jensen Inequality. Deriving with respect bL
and forcing the derivative equal to 0, we end up with:

. B[(2{Z) Vo,log(me(alse)))?vir]
bL: tfgqﬁ 0g|7te (A|St t (4.15)
E-[(X o Ve;log(me(atlst)))?]

For computing the baselines the expectations are approximated with data from
the roll-outs. Even thought, G(PO)MDP and PGT are numerically equivalent
people in practice use PGT. This estimate of the algorithm allows the baseline
to be state dependent. The drawback is that there is not an analytic solution
for the optimal state dependent baseline. Conversely, it is used a near-optimal
baseline, the Value function V™(s¢),

.
V(s) =Bl) rulse = s, au ~ mi(-lsy)]

t’=t

So we will choose a baseline that approximates the Value function in practice,
which usually is either a linear combination of features or a neural network.
Using the Value function as baseline is a very intuitive and natural choice:
suppose we perform a roll-out of the trajectory and collect a noisy estimate

22 4. Policy gradients

T—1 t'=T-1
g= > (Volog(mo(ars))(Y. v *re) (4.16)
t=0

t'=t

which we will use to update our policy with the rule 6 + 6 — «§. If we were
using PGT without a baseline then this update rule increases the probability
of the action proportionally to (Zt:lq YY" tr,, which are all the rewards re-
ceived following the action. However, this update will increase the probability
of all actions, which makes the update rule noisy. Using the Value function as
baseline we get an estimate of how much better the action was than expected.
Therefore, we increase the log-likelihood of the actions that lead to better re-
sults than we expect and decrease the log-likelihood of those that lead to worse
sum of rewards. The difference Zt:;T*] YY"t — V7 (sy) is called Advantage
and is an estimate of the goodness of the action a; with respect the other ones

at state s;.

It is common to consider that the true MDP that you want to solve is the
undiscounted MDP, i.e., vy = 1. However, the undiscounted case leads to
gradient estimates with excessive variance in long episodes (T big). Then vy is
introduced as variance reduction parameter. Even though, doing so has the cost
of biasing your gradient estimate — trade-off bias-variance — the bias introduced
is not very harmful. Intuitively, it considers that the current action a; has no
effect in distant rewards. This assumption is completely valid in episodes were
there is no delay on the rewards (it can be harmful in sparse settings where you
get the rewards just if you complete a task). By adding the terms 1,v,y?,---
1— yT+1

we have an effective time horizon of T

Algorithm 1 "Vanilla’ Policy gradient

Initialize policy parameters 0 and baseline bg

fori=0,1, --
Perform a set of roll-outs with N trajectories
fort=0,...,T

Compute the return R(s¢) = X1 _, vt tr,
Compute the advantage A(s¢) = R(s¢) — b(s¢)

1
Fit the baseline minimizing;: N ZT]\::O ZLO R(s¢) — b(st)2

1 A
Compute the gradient estimate § = N ZE:O ZtT:_g (Volog(me (ailst)))A
0— 0+ g

4.4 Natural Policy Gradient

The standard gradient rule presented in the previous section is nonconvariant,
does not have consistent dimensions. The update rule 6; 4 «d]J06; is dimen-
sionally inconsistent, since 0J00; has units of elj and all 65 does not need to
have the same dimensions [14].

4.4. Natural Policy Gradient 23

We need to compute the steepest ascent direction, d0, which maximizes J(6)
under the constraint that d8? is small, so the linear approximation is still valid.
The norm is defined in a differential manifold that has a first fundamental form
G(8),d0? = doTG(0)dO. Then the steepest descent direction in this manifold is
given by G (0)~'VJ(0). The method presented in the former section considers
that the manifold of the parameters is R™, and therefore the first fundamental
form is the identity matrix. However, this is not a sensible choice and it is better
to use the coordinates of the manifold that 0 parametrize.

The natural gradient uses the Fisher information matrix (FIM) as first funda-
mental form. The distribution 7tiheta(-|s) defines a manifold for each state s
that has coordinates 6 (i heta(als) is a point on this manifold). Then the
Fisher information matrix of the distribution 7tyheta(-|s) is written as

dlog(me(als)) dlog(me(als))

Fs(0)ij = Eng (- 4.17
$(0)5 = Brg (15) [=54 0, (417)
Under certain regularity conditions the FIM can also be computed by
0log(me(als))
Fs(0)ij = By (s) 1 QOT} (4.18)

However, this last form is not usually used in practice due to the excessive cost
of computing second derivatives. The FIM defines the same distance between
two points regardless the choice of coordinates used. This invariance on the
metric is defined up to a scale. Obviously, if our manifold is parametrized
by the same parametrization times a scalar A the fundamental form will be A\?
times the original, but the surface will remain the same. This property does not
hold if we use G = I since the manifold changes with the choice of coordinates
0.

Lets now assume that every policy 7g is ergodic, meaning that it has a well
defined stationary distribution over the states u™*(s). Then we can define our
metric in the manifold as the expectation of the FIM over all the states given by
this distribution Ag

G(0) =E,n(s)[Fs(0)] (4.19)

The metric given by Equation 4.18 defines a distance on the probability manifold
for each state s and F(0) is the average of all these distances. It is worth noticing
that even thought F,(0) does not depend on the transitions probability of the
MDP, F(0) does. Since n™(s) is defined by

kg (s) = p(s)

7T

ut(s)zj j plsla, somolaclse W™, (s)dacdse
st€S JateA

W(s) =) (4.20)

24 4. Policy gradients

where p(s) is the initial state probability distribution of the MDP with time
horizon T. The steepest descent direction of the natural policy gradient is

g(8) =F(0)~'VJ(8) (4.21)

The natural gradient is the key ingredient for the results that policy gradient
methods have develop in the recent years. In particular, the next method we
explain (the one used in our work) is based upon the natural gradient.

S
Trust Region Policy

Optimization

Trust Region Policy Optimization (TRPO) is an iterative algorithm that guaran-
tees monotonic improvement of the policy over iterations [15, 8]. This algorithm
is derived from the policy gradients explained in the former section applying a
hard constraint on the KL-divergence between the current policy and the new
one. The algorithm is suitable for policies parametrized with a huge num-
ber of parameters (such as neural networks). Our experiments are carried out
using TRPO, due to it has proven impressive results in many complex environ-
ments such as walking humanoid and Atari. In the following we describe the
derivation of the algorithm.

We define the advantage function A™ (s, a) as

AT(s,a) = Q"(s,a) = V7(s) (5.1)

The advantage function tell us the goodness of an action compared with the
mean of all possible ones in that specific state. The identity given by [16] let
us express the total return of another policy 7 in terms of the policy 7t and its
advantage function.

N
J(7t) =] (m) HEMZ Y AT (s, at)] (5.2)
t=0

Proof First we note that

AT[(S» a) = Es’~P(s’\s,a][R +Yvn(s/) - Vﬂ(s)]

Hence, we can rewrite the expected sum of advantage functions as

26 5. Trust Region Policy Optimization

T 00
Eal) V' A™ (st ac)) = Bl v (Re + YV (s41) = V(st))]

t=0 t=0
= Eal—V"(s0) + i Y'Rd
t=0
= —Eg, [V™(s0)] + Eﬁ[i V'Rl
= —J(7) + J(m) -

pals) = > y'P(s = s¢) (5.3)

where sg ~ po and the actions are sampled according to 7t. Then rewriting the
former equation

J(7) =J(m) +) ox Y (als)A™(s,) (5.4)

Hence, an update of the policy © to @ which has non-negative advantage
function almost everywhere in every state s will improve the expected total
return. This makes the classical result of deterministic policy optimization
ft = argmaxq A”(s, a) a valid algorithm that converge to the optimal policy
when there is no positive advantage function in an state where the visitation
frequency is positive. However, this equation is intractable due to the complex
dependency on the visiting frequency.A linear approximation is used instead

Le(7) = J(m) + > or Y A(als)A™ (s, a) (5.5)

Instead of using the visitation frequency of the updated policy 7t we are using
7. Since 5.5 is a linear approximation of J(7t) (when the policy is a differentiable
function of a parameter vector 0) if a small step improves L it will also improve
J. However, we do not know which is the maximum step-size where this
approximation is valid and an improvement on L leads to an improvement on

J.
[16] proved that if we set as updated policy as the mixture

= (1—o)m+ ort’ (5.6)
being 7" = arg min, L (7’), then the following inequality is satisfied

- o 2ey 5
J(7) 2 Lx(7) T 0 a0 (5.7)

27

€ is defined as € = max; [E [A™(s, a)]. Note that this bound is only valid when
the updated policy is a mixture, which is not desirable in many cases since it
is restrictive and intractable (such as when computing the KL-divergence). It
would be convenient to have a similar updated scheme where we could use a
more general class of stochastic policies.

Theorem Let o = DI\/** (7, 7t) then Equation 5.7 holds.

Dv is the total variation distance that is defined as D1y (p, q) = % 21191 — pil
for discrete distributions and D1v(p,q) = %f\q(x) — p(x)|dx for continuous
ones. We define DT{/** (7, 1) = maxs Dy (7t(-[s), 7i(-s)

Interestingly we can use the KL-divergence (more tractable) instead of the total
variation distance to constrain the distance from the two distributions. It is
known that Dy (p,q) > Dtv(p,q)?. Then if D (m, /&) = maxsDxr (7, 7)
we have the following inequality

~ ~ 2 max ~
(%) > Ln(m—ﬁ% (m,) (5.8)

This is a slightly softer constrain than the one presented in 5.7. It follows
immediately from the fact that «,y € [0, 1]. This bound is weaker when o = 1.

Maximizing iteratively the term L(7t) — CD** (7, 7t), where C = (12_% gives
an algorithm that improves monotonically the total expected return J(7). This

is easily proven. Let’s denote M (7ti 1) = Lx(7i41) — CDZY** (i, 7ti41). Then,

J(miv1) = My(mtiqr)
J(my) = My ()
J(migq) = J(m) > Mi(mie1) — Mi(my)

So maximizing M; induces the maximization of the true objective function J.

However, this algorithm is not practical since it implies the computation of the
exact advantage functions. Also, the steps performed while maximizing M are
often too small leading to slow convergence. We can take bigger steps if we
instead impose a constraint on the KL-divergence between the policies, hence
a trust region constraint:

max Ly, (7t5)
0 (5.9
subject to: Dy (g, 715) < &

It is implied that the policies 7 are parametrized by the vector 8. This maxi-
mization problem is sounded given the theory, but it is very hard in practice
since it bounds every point in the state space. We modify it using an heuristic
approximation on the KL-constraint

28 5. Trust Region Policy Optimization

Dy, (8,8) = Es-p[Dkr (7o (Is), 75 ([s))] (5.10)

Then Trust Region Policy Optimization solves the following optimization prob-
lem

max Ly, (75)
0 (5.11)

subject to: D9 (6,6) <6

i
5.1 Practical Algorithm

We desire to solve the optimization problem presented in equation 5.11. Ex-
panding its terms we obtain

max po(s) 5 (sla)Ag(s, a)
6 Z ° Za: o (5.12)

subject to: D9 (6,0) < 8

In order to solve it, we replace the term)., p(s) by an expectation — where
the samples are taken from p(s). Also, the advantage function is replaced
by the Q-values given by Qg, which differs from the original function just
by a constant. Finally, the term },, mg(s|a) is modified using an importance
sampling estimator, where we sample the actions from a distribution q(als)
instead of 7g (s|a) to compute the expectation.

The result is we actually solve the optimization problem given by

T (sla)
q(slg) o5) (5.13)

subject to: s, [Dkr(0,0)] < 8

maXéESNpe ,a~q [

The expectation is computed averaging the samples and the Q-values with an
empirical estimate. Usually we parametrize the Q-function as a neural network
and fit it with the Monte-Carlo estimates. And, in order to solve the constraint
term of the optimization problem, we use the conjugate gradient algorithm and
later on a line search.

We use as a gradient the natural gradient, so it is needed to solve the linear
system Fg = VL, where F is the Fisher Information Matrix. In large scale
problems (such as neural networks, that have millions of parameters) it is
intractable to invert this matrix. Thus, thanks to a cheap computation of the
hessian-vector product (see [8] Appendix C.1) it is used conjugate gradients to
solve the linear system.

5.1. Practical Algorithm 29

Once the gradient direction is computed, we need to ensure that the KL-
divergence constraint is satisfied, i.e, we need f3 such as D]Fi?_ (0,0+Bg) < 5. We
approximate the KL-divergence with its quadratically form, D}$ (6,0 + Bg) ~
25
9'Fg

1B2g"Fgand force this term equal to §. Hence, we end up obtaining p =

Since we have used a quadratic approximation of the KL-divergence to compute
(3 it is not guaranteed that the original constraint is fully satisfied, and also,
perhaps, the step given by 8 is too big and results in a worsened expected
total return. Therefore, a line-search is applied in order to not only ensure the
constraint is fulfilled, but also ensure policy improvement. Starting from the
parameter 3 obtained we shrink it exponentially until the policy has improved
and the constraint is satisfied.

30

5. Trust Region Policy Optimization

6

Policy Transfer via
Modularity

6.1 Introduction

Non-prehensile manipulation, such as pushing, can be used by robots to move
or to rearrange objects. Compared to grasping, pushing may be easier or even
necessary in certain cases. For example, pushing is especially important for
moving objects that are too big or too heavy to grasp [17]. Pushing can also
be used to move multiple objects at once, such as when clearing space on a
cluttered table, in which the robot can sweep multiple objects out of the way
in a single stroke [18]. Additionally, if a robot needs to grasp an object, it
may need to first push the object to a more ideal position or orientation before
grasping [19, 20, 21].

However, pushing is a challenging task for robots due to frictional forces that are
difficult to model [22, 23, 24, 25]. Many of the assumptions that are commonly
made for analyzing pushing motions have been shown to not always hold in
practice. For example, the frictional forces involved can be non-uniform, time-
varying, anisotropic, and deviating in other ways from the assumptions that
are usually made in pushing models [26].

In this work, we explore the use of reinforcement learning for robot pushing
tasks. Reinforcement learning has shown to be a powerful technique for en-
vironments with unknown dynamics or for tasks with complex dynamics that
are difficult to explicitly optimize over. Reinforcement learning has been used
for tasks such as learning to dress, swing a bat, perform locomotion, stand up
from a sitting position, drive a car, and many other tasks [27, 28, 8, 9, 29, 30, 31].

However, reinforcement learning methods, especially those using a neural net-
work to represent the policy, can often be difficult to use in the real world
due to the large number of samples required for learning. Some approaches
have been to reduce the dimensionality of the exploration space and explore
more significant directions [32]. This problem is especially important for deep
policy gradient methods; such methods have demonstrated impressive results
in simulation, but their use in the real world is limited by their large sample
complexity [33, 8, 9, 30]. Based on the impressive results that these methods
have demonstrated in simulation, we are motivated to explore whether such
methods can also be made to work in the real world.

32 6. Policy Transfer via Modularity

Object detection

[

[
1T9(G | S) Policy Transfer
_— _—l—

Simulation
Reality

Position controller

Figure 6.1: After training a policy to perform a pushing task in the simulator,
we transfer the policy directly to the real world. We decompose the system
into the modules of a pose estimator, a policy, and a position controller. This
decomposition leads to a robust transfer of the policy from simulation to the
real world.

We propose an approach for dealing with the sampling complexity by training
a policy in simulation, where many training samples can be quickly generated.
We then transfer the trained policy into the real world, without further training.
However, such an approach is challenging due to mismatch between the simu-
lation and the real world: images in simulation differ from images in the real
world, and the system dynamics in simulation can differ from the dynamics in
the real world.

We show that deep reinforcement learning methods can be trained in simulation
and then transferred to the real world by using the principle of modularity. In
contrast to most deep reinforcement learning approaches which they train the
system end-to-end (e.g. from pixels to torques) [8, 30, 34], we break the problem
into multiple separate pieces. Our system has a module that maps from image
inputs to object pose, from object pose to target joint positions, and from target
joint positions to motor torques. As shown in Figure 6.1, we train only the
middle module in simulation and then transfer this module to the real-world.
The surrounding modules are designed to enable ease of transfer, and are
different in simulation and in real world.

Further, we show that we can incorporate our prior knowledge about the task into
the system through modifications to the state space and to the reward function.
This is again in contrast to the traditional deep reinforcement learning approach
in which minimal prior knowledge of the robot task is incorporated into the
learning procedure [8, 9, 29, 30].

Finally, we formulate a new approach for varying the reward function over

6.2. Related Work 33

iterations of the optimization with asymptotic convergence to the original MDP,
which we refer to as "reward guiding". We show that our approach leads to
faster convergence (compared to other approaches such as reward shaping)
without modifying the optimal policy asymptotically. Our simulation and real-
world experiments illustrate the success of our approach for robot pushing
tasks.

6.2 Related Work

Non-prehensile Manipulation. Pushing, a form of non-prehensile manipula-
tion, has been studied in robotics for many years. An early analysis showed that
one can compute the direction of rotation of the pushed object, based on the
direction of the friction cone and the pushing force compared to the location
of the center of friction [19]. Others have modeled frictional forces using the
notion of a limit surface [22, 23, 24, 25].

However, all these approaches make a number of assumptions about the friction
that recent experiments have shown do not always hold in practice [26]. For
example, a recent study has shown that, for certain materials, the friction of
an object can vary greatly over the object surface. The friction can also vary
over time (it becomes lower as the object is repeatedly pushed and the surface
is smoothed) and it can vary based on the object speed and the direction of
pushing [26]. This study showed that most of the models that are normally used
for estimating friction, such as the principle of maximum-power inequality [22]
and the ellipsoidal approximation of a limit surface [24], do not always hold in
practice, resulting in pushing motions that differ from those predicted by these
models.

Learning a Dynamics Model. Some previous efforts have been made to deal
with the uncertainties in friction by learning how to push objects [35, 36, 37, 38,
39, 34]. These approaches typically involve first learning a dynamics model for
how an object will respond when pushed, and then choosing actions based on
this dynamics model. However, as discussed above, the dynamics model for
pushing can itself be fairly complex, sometimes involving a non-uniform friction
distribution over the object surface [26]. Thus, learning an accurate dynamics
model is itself a challenge, and once the dynamics model is learned, finding
an optimal policy for pushing can be similarly complex. In practice, a number
of approximations are usually made to the dynamics model to make it easier
to learn and to optimize over (such as assuming linear-Gaussian dynamics as
a function of the state [34]), but these approximations might lead to a reduced
task accuracy [40]. In contrast, we explore whether we can directly learn a
policy for pushing using reinforcement learning.

Policy Transfer. Due to the long training times required to learn complex
policies using reinforcement learning algorithms, we explore whether we can
train such policies in simulation and then transfer the trained policies to the real
world. Most of previous work for policy transfer involves policies that do not
involve object interaction [41, 42, 43, 44]. We explore whether we can transfer
policies that use non-prehensile manipulation (i.e. pushing).

34 6. Policy Transfer via Modularity

Furthermore, many transfer learning techniques require further training in the
real-world to adapt the policy to the real-world dynamics [45]. However, such
an approach does not work well when training complex policies represented
by neural networks trained using policy gradient reinforcement learning algo-
rithms, which require many samples for the policy to converge. We explore
whether we can train policies in simulation and transfer them to the real-world
directly, without further time-consuming fine-tuning required.

6.3 Methods

6.3.1 Overview

Our approach to object pushing aims at training a policy in simulation and
transferring it to the real-world. The task that the robot has to perform consists
of pushing a block placed on a table, starting from any initial position and
orientation, to a certain goal position (for this work, we are not concerned with
the final orientation of the block).

In order to train the policy quickly in simulation, we explore how we can
incorporate prior knowledge into the learning algorithm by modifying the input
state and the reward function. This is in contrast to many current approaches
for deep reinforcement learning which attempt to train the system end-to-end,
from pixels to torques, without any prior knowledge of the task. Additionally,
we explore using the idea of modularity to enable the policy to easily transfer
from simulation to the real-world. These ideas will be discussed in further
detail below.

6.3.2 Modularity

Rather than learn a policy end-to-end, from pixels to torques, we use the idea of
modularity to decompose the policy into multiple pieces, as shown in Figure 6.2.
Each piece can be designed separately and then composed together to obtain
the entire system. We show that decomposing the policy in this manner allows
us to easily transfer a policy trained in simulation to the real world.

Image to Object Pose

The input to our system is an image containing the object to be pushed. In order
to push this object correctly, we need to obtain the object position. To achieve
this, we use AR tags, which can be easily identified and used to determine the
object pose. An alternative approach would be to train an object pose detector,
using one of various image algorithms for such tasks [46, 47, 48, 49]. When we
train the policy in simulation, we directly use the ground-truth object position,
obtained via our simulator.

6.3. Methods 35

robot joint angles
robot joint velocity
object goal position

target joint motor
images object pose ; angles torques
—¥ Vision figined Controller [———»

Policy

Figure 6.2: Our system for robot pushing. The center module (“Trained Policy")
is trained in simulation and transferred to the real world. The other modules
are designed to create the desired inputs and outputs for ease of transfer.

Separating the pose estimation from the rest of the system is crucial for trans-
ferring policies from simulation to the real world. The images rendered in
simulation have a very different appearance than the images from the real
world. Although some efforts have been made to increase the appearance vari-
ation of the simulated images [50], such an approach is still somewhat fragile,
as differences between the simulated and real-world images can still lead to
unexpected behavior.

Object Pose to Robot Joint Angles

Next, we learn a policy that maps from the object pose to the target robot
position. We learn this policy entirely in simulation. The policy is trained using
a reinforcement learning algorithm (TRPO with GAE) [8, 9], which allows the
robot to learn a fairly complex policy for object pushing. However, because
this policy is separated from the raw image inputs and the raw torque outputs
by the surrounding modules (see Figure 6.2), the policy easily transfers from
simulation to the real-world without any fine-tuning required.

Robot Joint Angles to Robot Torque

Rather than outputting the raw torques, the policy that we train in simulation
outputs the target robot joint angles. We then use a PD controller to map
from the target position to the robot torques. A similar approach has been
used for reaching, leaning, balancing, and other tasks that do not involve object
interaction [41, 42, 43, 44]. We demonstrate that such an approach can also
be used for tasks that involve object manipulation, specifically non-prehensile
manipulation (pushing).

6.3.3 Input State

A common approach for deep reinforcement learning is to train a policy using
the minimal information necessary to perform the task. For example, the
minimal information required for the robot pushing task is the robot joint

36 6. Policy Transfer via Modularity

Oobiject-goal
ey

Oee-object

Figure 6.3: We add additional inputs to our observation based on the vector
from the end-effector to the object, 0¢ce—object, and the vector from the object
to the goal, Oobject—goal-

angles and velocities; the object position, orientation, and velocity; and the goal
position (i.e. the location to which the robot must push the object). Using only
this information and sufficient training time, the robot is able to learn a policy
to successively achieve the task.

However, for many robotics tasks, the algorithm designer might have prior
knowledge about how the task should be performed. For example, in the case
of object pushing, it is clear that the robot must first move its arm towards the
object, and then it must move the object towards the goal. We thus simplify
the task faced by the learning algorithm by adding additional features to our
state-space: the three-dimensional vector from the robot end-effector to the
object, and the three-dimensional vector from the object to the goal position,
for a total of six additional features (See Figure 6.3). We show that adding
these additional features significantly speeds up the time required to learn an
optimal policy.

6.3.4 Reward Function

The goal of the robot is to push the object to the goal location. Thus, the minimal
reward function necessary to complete this task is the negative distance from
the object to the goal. However, the robot will have a difficult time learning
a policy under this reward function, since most random actions that the robot
takes will not have any affect on this reward (since most random actions will not
cause the robot to interact with the object, and hence will not affect the distance
between the object and the goal).

Thus, in order to decrease the training time, we add additional terms to the
reward function to guide the policy in a direction to maximize the objective. For

6.3. Methods 37

example, we add a term to the reward corresponding to the negative distance
from the robot end-effector to the object, to encourage the robot to move its
end-effector near to the object. We also add a term based on the angle between
the end-effector, the object, and the goal, to encourage the robot to move its
end-effector such that these three points lie on a straight line; specifically, we
add cos(0ee—objects Oobject—goal), Where oce object is the vector from the
robot end-effector to the object and oopject—goat is the vector from the object
to the goal.

6.3.5 Reward Guiding

Modifying the reward function by adding additional terms can help to decrease
the time to convergence, but it has the downside of modifying the learned policy.
It has been shown that, in order for the optimal policy to be unchanged, then
the reward function can only be modified in the following way:

r(s,a,s") =To(s,a,s") +vP(s’) — d(s) (6.1)

where 7(s, a,s’) is the new reward function when transitioning from state s to
state s’ after taking action a, ro(s, a,s’) is the original reward function, v is the
discount factor, and ¢ (s) is a real-valued function over states [12].

Although such a modification has been shown to not affect the optimal policy,
unfortunately it also does not always speed up the training time as much as one
would like. The reason for this is simple: the effect of modifying the reward
function in this way is equivalent to simply subtracting a baseline [51]. We
can see this if we accumulate the reward function to compute the return. The
original, unmodified return is given by

o

Ro = Z Yo,k (6.2)

k=0

where 19 \ is the unmodified reward ro received on the kth timestep. Then the
modified return is given by [51]

R'= " v (rok +ydlsks1) — bsi)) (63)
k=0

= ZViTo,k+ ZYkHd)(SkH)— Zka)(Sk)) (6.4)
k=0 k=0 k=0

= Ro+ Y Y¥lsi) — (dls0) +) ¥*d(sk)) (65)

i=1 k=1
=Ro — d(so0) (6.6)
6.7)

where sy is the state encountered at the kth timestep. Thus the return is only
changed by subtracting a baseline which is a function of the initial state so. Ithas
been shown that subtracting a baseline, especially an optimal baseline, can help

38 6. Policy Transfer via Modularity

reduce the variance of the estimator [52, 28]. However, this is unfortunately a
somewhat restricted way to modify the reward and we show that this can lead
to slower convergence than might be possible.

Instead, we set the reward-shaping discount factor from Equation 6.1 to vy =
v(i), in which the discount factor can vary over the iterations of the opti-
mization. Let yzp be the discount factor from the MDP. We then increase the
reward-shaping discount factor over later iterations of the optimization as:

Y(i) =ym (1 —exp(—i/T1)) (6.8)

where y(0) = 0 and y(i) — ym as i — oo. Thus, at convergence, y(i) = ym
and our time-varying reward shaping method approaches the original reward
shaping formulation from Eq. 6.1, and thus the optimal policy at convergence
is unchanged (the proof from the original reward shaping formulation [12]
applies at convergence). However, by varying y(i) we are able to achieve a
more flexible form of reward shaping that leads to faster convergence. We
name this approach “reward guiding".

In this formulation, the discount factor y(i) can be viewed as a variance reduc-
tion parameter. A similar perspective of the discount factor is taken in previous
work [9], in which the discount factor of the MDP is viewed as a variance
reduction parameter compared to the undiscounted MDP.

6.4 Implementation Details

Our neural network maps from the input state to target robot joint positions,
which are defined as changes in angle from the current joint positions. The
network is defined by 3 hidden layers followed by the output layer. Each
hidden layer has 64 nodes, with tanh non-linearities between each hidden
layer. The network is implemented in Theano [53]. For the reinforcement
learning algorithm, we use TRPO [8] and Generalized Advantage Estimation
(GAE) [9] with a linear baseline using the implementation from rllab [33]. We
use the default parameters from TRPO in rllab for our optimization, and we
train the policy for 15,000 iterations with a batch size of 50,000 timesteps and 150
timesteps per episode. We use a discount factor of vy = 0.95, a KL-divergence
constraint of dxr = 0.01, and a A = 0.98 from GAE. We train the policy in
simulation using the Mujoco [54] simulator.

We use a position controller to map the targetjoint angles output by the network
to motor torques. For ensuring good transfer from simulation to reality, we
found that it is important that the controller gains are set low enough such
that the controller does not overshoot. In simulation, we allow enough time
between actions to allow the controller reach the target position with an error
smaller than 0.01 radians.

On the real PR2, we detect the position of the object using the Robot Op-
erating System (ROS) package ar_track_alvar. For the position controller,
we use the integrated position controller of the PR2, from the ROS package
pr2_controller_manager.

6.5. Results 39

6.5 Results

The experiments were designed to evaluate the impact of our contributions,
both of how to learn the policy learning in simulation and how to transfer the
policy from simulation to reality. In particular we seek to answer the following
questions:

m Can we incorporate prior task knowledge into the observation space or
reward function to increase the sampling efficiency or improve task per-
formance?

m Can reward guiding improve the learning time without asymptotically
modifying the MDP?

m How does a learning-based approach to non-prehensile manipulation
compare to that of a hard-coded baseline?

m Can modularity be used to transfer a policy from simulation to the real-
world while maintaining a similar level of performance?

We analyze our method on simulation in Sections 6.5.1, 6.5.2, and 6.5.3. And
We show the results on real world in Section 6.5.4. In addition to the below
experiments, videos of our results are also available online!.

6.5.1 Simulation Training
Prior knowledge in the state space

We analyze the effect of modifying the state space on the training time. In a
typical deep reinforcement learning setup, the system only receives the minimal
state space as input. In this case, that would include the robot joint angles and
velocities; the object position, orientation, and velocity; and the goal position to
which the robot must push the object. We call this minimal observation oy qase-

However, we show that we can augment the state space to improve the con-
vergence rate. We define oce object as the 3-dimensional vector pointing
from the robot end-effector to the object, and we define Oobject—goal as the
3-dimensional vector pointing from the object to the goal. Figure 6.4 shows
that adding these terms to the state space reduces the training time needed for
the robot to learn to perform the task.

Prior knowledge in the reward function

Next, we analyze the effect of modifying the reward function has on training
time. We explore the contribution of each of the following reward terms:

(i) Tovj,goal = —d(obj, goal)

Thttps:/ /goo.gl/fehPWw

40 6. Policy Transfer via Modularity

Final distance from
block to goal (m)

=== Opgce

f— obase, oee-object

— obase, oobjectfgoal

f— obase, oee-object, Oobject»goal

Number of training iterations

Figure 6.4: We use prior knowledge about the task to modify the state space.
Our results shown that adding prior knowledge can lead to faster convergence
compared to just using the original state space.

(ii) Tangle = COS(Oee—ob]’ect) Oob]'ect—goal)

(iii) T'ee‘obj = fd(ee, Ob))

The first term, —d(obj, goal), measures the negative distance between the object
and the goal (the position to which the object must be pushed). This term must
be included in order to encourage the robot to push the object towards the goal.

The second term, cos(0ce—objects Oobject—goal), €ncourages the robot’s end-
effector to approach the object from the appropriate angle. The term 0ce—object
is the vector from the robot end-effector to the object, and oovject—goat is the
vector from the object to the goal. By measuring the cosine between these
vectors, we encourage the end-effector, the object, and the goal to lie along
a straight line. However, the weight on this term is relatively small because
this term is only intended to guide the robot end-effector to the approximately
correct position. For accurate pushing, the robot may occasionally need to move
its end-effector to a different location that deviates from this line.

The third term, —d(ee, obj), measures the negative distance from the robot
end-effector to the object. This term will encourage the robot end-effector to
move near the object. If the robot is not given this term, then it will initially
perform actions that do not interact with the object. The robot would then not
see any change to the distance between the block and the goal, and the robot
would not receive any feedback that allows it to discover whether its actions
are useful. By adding this term, the robot’s initial actions are guided towards
the object. However, the weight on this term is again small because this is
not the primary objective; the robot has to move the end-effector around, and
occasionally away from the block, in order to re-position and push the block in
different directions.

We explore the effect of each of these terms by investigating the following
reward functions:

(i) T1 = Tobj,goal

6.5. Results 41

(i) 2 = Tobj,goal + W1 Tangle
(iii) r3 = Tobj,goal + W2 Tee,obj

(iv) 14 = Tobj,goal + W1 Tangle T W2 Tee,0bj

where w1 and w; are weighting factors on each of the reward terms.

The results are shown in Figure 6.5. In the plot, we have named r; = baseline,
T2 = baseline + angle, r3 = baseline + ee-distance, and 4 = baseline + angle +
ee-distance. We can see that, if only the minimum reward function is specified,
asinry, then the robot makes very little progress in learning, since as mentioned,
the robot’s initial random actions will not usually affect the distance from the
block to the goal. Adding in only the angle term (as in 12) also does not have
much effect. If we encourage the robot to move its end-effector towards the
object (as in r3), then we see a significant improvement in the training time.
Combining all three terms leads to the best convergence; once the robot is
encouraged to move towards the block, encouraging the robot to move and
place its end-effector at the correct angle further helps guide the robot towards
the correct pushing behavior.

Final distance from
block to goal (m)

= Baseline
Baseline + angle
=== Baseline + ee-distance

=== Baseline + angle +
ee-distance

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of training iterations

Figure 6.5: We use prior knowledge about the task to modify the reward func-
tion. Our results show that adding prior knowledge can lead to significantly
faster convergence compared to just using the original reward function.

6.5.2 Reward Guiding

Finally, we analyze the increase in sample efficiency of using our proposed
annealing reward shaping, which we refer to as “reward guiding," instead of
the conventional reward shaping method from Ng, et. al. [12].

For guiding we use the reward T4pj,goatl, and ¢(s) = Wi Tangle + W2 Tee,0bj
as potential function. This results in a faster learning (as show in section 6.5.1),
and at the same time we optimize the original objective function asymptotically.
Then our reward can be written as:

Tguiding = Tobj,goal(s’) +v(i)wvy Tangle + W2 ree,obj](sl)

—[W1 Tangte + W2 Tee,0bjl(s)

42 6. Policy Transfer via Modularity

Final distance from
block to goal (m)

- W/o shaping
Shaping

~Guiding

0 500 1000 1500 2000 2500 3000 3500 4000

Number of training iterations

Figure 6.6: We measure the performance over iterations of reward guiding,
shaping, [12] and learning without shaping (i.e. just adding extra reward
terms). Our results show that reward guiding can lead to faster convergence
compared to just using reward shaping or learning without shaping.

Figure 6.6 shows the comparison between using reward guiding, reward shap-
ing, and modifying the reward without proper shaping by adding additional
reward terms (as in v4 from the previous section).

The results show that reward guiding has the best performance. Reward guid-
ing accomplishes the same final distance from the block to the goal as shaping
after 40% of the total number iterations. Ng, et. al. [12] proved that reward
shaping does not affect the optimal policy. Similarly, reward guiding is guar-
anteed to have the same final optimal policy, but simply adding extra reward
terms (as in r4) would not.

6.5.3 Baseline Comparison

In this section, we show the need for learning-based methods for non-prehensile
manipulation, especially in domains where the robot needs to push objects
from arbitrary initial positions and orientations. To demonstrate the need
for learning in such scenarios, we compared our performance to that of a
non-learning based (“hard-coded") baseline procedure. In our “hard-coded
baseline", at the beginning of each episode, a gripper is placed on the opposite
side of the object from the goal. The gripper then pushes the object along the
vector that goes from the center of the object to the goal until the distance from
the object to the goal stops decreasing.

We compare the performance of our learning-based approach to that of the
baseline, testing both methods in simulation (the real-world experiments of
our method are desribed in Section 6.5.4). In these experiments, the goal is
fixed, and the object is placed in every point of a grid of size 0.4 m X 0.25 m,
with a resolution of 0.01 m, and the object orientation is sampled from a random
uniform distribution on [—7t, 71.

Figure 6.7 shows the final distance between the object and the goal from each
starting position. In it we can see that our method is robust to varying initial

6.5. Results 43

Initial x distance to goal (m)
Initial x distance to goal (m)

I
(=]
(=]

ou
N

0.1 0.0 -0.1
Initial y distance to goal (m)

0.1 0.0 -0.1
Initial y distance to goal (m)

Figure 6.7: Heatmap of the final distance between the object and the goal. The
axes denote the relative initial position of the object with respect the goal. The
final distance is thresholded to a maximum value of 0.1 m. Red indicates that
the final distance from the object to the goal is higher than 0.1m, whereas purple
indicates a 0 distance. Left: Our method. Right: Baseline. (Best viewed in
color).

700 Final distance object-goal Histogram 450 Final distance object-goal Histogram
600 400
350
500
300
a400 g
S S 250
=) =)
g 300 g200
= “ 150
200
100
100 50
0 0
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20
Final distance (m) Final distance (m)

Figure 6.8: Histogram of the final distance between the object and the goal.
Thresholded to a maximum value of 0.25 m. Left: Our method. Right: Baseline.

positions. On the other hand, the hard-coded baseline has much worse accuracy
for some initial object positions. A histogram of the final distances between the
block and the goal can be found in Figure 6.8. The poor performance displayed
by the baseline is due to the variability in the environment, specifically in the
orientation of the object relative to the goal position.

Figure 6.9 shows the final distance between the block and the goal as a function
of the initial orientation of the object. The orientation is defined as the angle
between longest side of the block and the x-axis.

The baseline fails to push the object for some initial orientations since the
gripper slides off the side of the block instead of pushing it closer to goal. In
contrast to our learning-based approach, the baseline is unable to recover from
such situations. The sharp decrease in the final distance around 1.1 radians is
due to the orientation at which the gripper starts pushing against the corner or

44 6. Policy Transfer via Modularity

Final distance object - goal (m) Final distance object - goal (m)
0.25 0.25
g 0.20 E 0.20
8 (o]
2 0.15 2 0.15
s o
@ Q
3 0.10 3 0.10
0.05 0.05
0'08.0 05 1.0 15 20 25 3.0 35 0'08.0 05 10 15 20 25 3.0 35

Initial orientation of the obiect (rad) Initial orientation of the obiect (rad)

Figure 6.9: Final distance between the object and the goal with respect the
orientation of the object in the plane of the table. Left: Our method. Right:
Baseline.

against the shortest side of the block. To view some examples of the baseline
failure cases, see the online video?.

Trajectories of the object

Trajectories of the object

013 0.15
3 £
g o.10 I
2 2. 0.10 /
o Q
2 2
S 0.05
: £ o005 T~ J
S s} 4
- c
= 0.00 2 0.00 _—
g 5 "\
x o

-0.05 x —0.05

~0.10 _

o1 0.2 0.1 0.0 -0.1 -0.2 0.10 0.2 0.1 0.0 —0.1 —0.2

y position of the object (m) y position of the object (m)

Figure 6.10: Trajectories of the center of the object while being pushed. The
axes denote the relative position of the object with respect to the goal. The red
square identifies the goal, which is located at the origin. Left: Our method.
Right: Baseline. (Best viewed in color).

In contrast, our learned policy is robust to changes of orientation, as seen
in Figure 6.9 (left). The learned policy is able to perform complex pushing
trajectories, correcting the trajectory and recovering the object if it has pushed
the block too far. A visualization of the pushing trajectories produced by our
method, compared to those of the baseline, are shown in Figure 6.10.

Zhttps:/ /goo.gl/fehPWw

6.5. Results 45

6.5.4 Real-World Pushing

In this section we show how modularity leads to a good performance when
transferring the policy from simulation to real world.

The experiments with the real PR2 were implemented with the same set up as
described in the former section: the goal is placed in a fixed position and the
object is randomly sampled on the table within a 1000 cm? area. Each episode
is terminated after 300 timesteps or when the distance from the object to the
goal is less than 2 cm (whichever happens first). We sampled 20 initial object
positions to test the performance of our approach.

Trajectories of the object

04 [T T T]
0.2} .
E
@ 00 i
2
o
1]
=
5
© -0.2t .
.0
.E
[=]
o
X 04} .
—0.6 | .

0.4 0.2 0.0 -0.2 -0.4 —-0.6
y position of the object {(m)

Figure 6.11: Trajectories of the center of the object while being pushed in the
real world. The axes denote the relative initial position of the object with respect
the goal (located at the origin). The red square identifies the goal. (Best viewed
in color).

The block in simulation and real-world are similar in size; but the mass distri-
bution is different, the simulated block is solid, whereas the real one is hollow.
The friction between the block and the table and between the block and the
gripper are also different between simulation and the real world. This leads
to different dynamics of the object and different resulting block trajectories, as
shown in Figure 6.11. Nevertheless, our method is capable of performing the
task (defined as at the final time step being within 2cm of the goal) in 70% of
the episodes, as shown in Figure 6.12. Figure 6.13 shows the final distance of
the object for each of the 20 sampled initial positions, demonstrating that our
method succeeds from varying initial block positions.

46 6. Policy Transfer via Modularity

14 Final distance object-goal Histogram

12+

10+

[=4]
T

Frequency

0 L L
0.00 0.05 0.10 0.15 0.2 0.25
Final distance (m)

Figure 6.12: Histogram of the final distance between the object and the goal.
Thresholded to a maximum value of 0.25 m.

The failing cases, in which the block does not reach within 2 cm of the goal,
were due to a poor estimation of the object position or orientation. The AR tags
were detected from a single kinect camera attached to the robot’s head. In some
cases the robot arm occludes the AR tags, which led to an incorrect estimate
of the object position. We mitigate this problem by estimating the position of
the object using the Mujoco simulator whenever the AR tags are not visible.
Moreover, the small differences between controllers lead to different motions of
the arm making it hard to achieve fine grain precision. This can be fully viewed
in the more erratic trajectory of the real world object in Figure 6.11.

6.5. Results

47

Final distance object - goal (m)

015k

0.10 |

—0.05 e

Initial x position of the object (m)

—0.10 |-

-0.15

) T

.20
0.20

0.15 010 005 0.00 -0.05 -0.10 -0.15 -0.20
Initial y position of the object (m)

0.250

0.225

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

Figure 6.13: Scatter plot of the final distance between the object and the goal.
The axis denote the relative initial position of the object with respect the goal.
Thresholded to a maximum value of 0.1 m. Red indicates that the final distance
from the object to the goal is higher than 0.1m, whereas purple indicates a 0
distance. (Best viewed in color).

48

6. Policy Transfer via Modularity

7

Conclusions

7.1 Evaluation of Results

Transferring from simulation to real-world in non-prehensile manipulation
with comparable performance has been achieved. Decoupling the policy from
the visual inputs and torque outputs we alleviate the mismatch problem be-
tween simulation and real-world, thus making the policy more robust. This
work has been extended by showing how to incorporate prior knowledge in the
MDP by modifying of the observation space and the reward function.

Furthermore, we present the concept of "reward guiding" which does not mod-
ify the asymptotic optimal policy and leads to a faster learning than reward
shaping [12] or adding a linear combination of other reward terms.

7.2 Future Work

This work aims to shed new light into the problem of transfer from a simulated
environment to the real world. A problem that, when fully solved in all their
aspects, will revolutionize the field of Robotics and Artificial Intelligence. There
is still much work to do in this problem, and since we submitted the paper some
new exciting advances have been published.

The main difficulty to tackle in sim-to-real is the changing dynamics between
both environments. The friction coefficients, masses, inertias, and so on may
differ from one environment to the other. So the question is, how do we make
policies robust to such changes? There have been some works which have
contributed to this question [55, 56, 57, 41]. The work presented here deals with
it by imposing a quasi-stationary environment and using a controller that does
not overshoot. However, in dynamic tasks this approach becomes infeasible.
Animmediate extension of our work would be to use a recurrent neural network
as a policy, and train it with auxiliary tasks to predict the new dynamics. Then
the recurrent neural network could adapt to those changes and act accordingly.
Using a recurrent neural network may end up with a policy robust against
occlusions, as well.

50 7. Conclusions

Further limitations of our work come from the use of AR tags for the detection of
the objects. This could be solved using an object detection algorithm. However,
in more complex tasks that involve cluttered scenes, fine grain position or an
unknown number of objects, it would be desirable to train the policy using the
entire image as input. Some recent work by Tobin et al. [58] deals with the
differences between real images and simulated ones by using a large number of
simulated scenes with different colors, scenes, camera positions, etc... Hence,
treating the real image just as some random image from simulation. This opens
the door to the use of "cheap" data to solve transfer and enhance generalization.

[1]

(2]

[4]

Bibliography

G. Tesauro, “Temporal difference learning and td-gammon,” Commun.
ACM, vol. 38, no. 3, pp. 58-68, Mar. 1995. [Online]. Available:
http:/ /doi.acm.org/10.1145/203330.203343

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning,” in
NIPS Deep Learning Workshop, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, 02
2015. [Online]. Available: http://dx.doi.org/10.1038 /nature14236

D.Silver, A. Huang, C.]. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J]. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the
game of Go with deep neural networks and tree search,” Nature, vol. 529,
no. 7587, pp. 484-489, Jan. 2016.

S. Levine, C. Finn, T Darrell, and P Abbeel, “End-to-end
training of deep visuomotor policies,” J. Mach. Learn. Res., vol. 17,
no. 1, pp. 1334-1373, Jan. 2016. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2946645.2946684

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and
M. Riedmiller, “Deterministic policy gradient algorithms,” in Proceedings
of the 31st International Conference on Machine Learning (ICML-
14), T. Jebara and E. P. Xing, Eds. JMLR Workshop and
Conference Proceedings, 2014, pp. 387-395. [Online]. Available:
http:/ /jmlr.org/proceedings/papers/v32/silverl4.pdf

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” CoRR, vol. abs/1509.02971, 2015. [Online]. Available:
http:/ /arxiv.org/abs/1509.02971

52 BIBLIOGRAPHY

[8] J.Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, “Trust region
policy optimization.” in ICML, 2015, pp. 1889-1897.

[9] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[10] A. Y. Ng, “Shaping and policy search in reinforcement learning,” Ph.D.
dissertation, 2003, aAI3105322.

[11] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 1st ed.
Cambridge, MA, USA: MIT Press, 1998.

[12] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in ICML,
vol. 99, 1999, pp. 278-287.

[13] J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy
gradients,” Neural Networks, vol. 21, no. 4, pp. 682-697, May 2008.

[14] S. Kakade, “A natural policy gradient,” in Advances in Neural Information
Processing Systems 14 (NIPS 2001), T. G. Dietterich, S. Becker, and
Z.Ghahramani, Eds. MIT Press, 2001, pp. 1531-1538. [Online]. Available:
http:/ /books.nips.cc/papers/files /nips14/CN11.pdf

[15] J.Schulman, “Optimizing expectations: From deep reinforcement learning
to stochastic computation graphs,” Ph.D. dissertation, 2017.

[16] S. Kakade and J. Langford, “Approximately optimal approximate
reinforcement learning,” in Proceedings of the Nineteenth International
Conference on Machine Learning (ICML 2002), C. Sammut and A. Hoffman,
Eds. San Francisco, CA, USA: Morgan Kauffman, 2002, pp. 267-274.
[Online]. Available: http://ttic.uchicago.edu/~sham/papers/rl/aoarl.
pdf

[17] M. Dogar and S. Srinivasa, “A framework for push-grasping in clutter,”
Robotics: Science and systems VII, vol. 1, 2011.

[18] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push planning for
object placement on cluttered table surfaces,” in Intelligent Robots and Sys-
tems (IROS), 2011 IEEE/RS] International Conference on. 1EEE, 2011, pp.
4627-4632.

[19] M. T. Mason, “Mechanics and planning of manipulator pushing opera-
tions,” The International Journal of Robotics Research, vol. 5, no. 3, pp. 53-71,
1986.

[20] G. Lee, T. Lozano-Pérez, and L. P. Kaelbling, “Hierarchical planning for
multi-contact non-prehensile manipulation,” in Intelligent Robots and Sys-
tems (IROS), 2015 IEEE/RS] International Conference on. 1EEE, 2015, pp.
264-271.

[21] M. R. Dogar and S. S. Srinivasa, “Push-grasping with dexterous hands:
Mechanics and a method,” in Intelligent Robots and Systems (IROS), 2010
IEEE/RS] International Conference on. 1EEE, 2010, pp. 2123-2130.

BIBLIOGRAPHY 53

[22] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry friction
part 1. limit surface and moment function,” Wear, vol. 143, no. 2, pp.
307-330, 1991.

[23] R.D.Howe and M. R. Cutkosky, “Practical force-motion models for sliding
manipulation,” The International Journal of Robotics Research, vol. 15, no. 6,
pp. 557-572, 1996.

[24] S. H. Lee and M. Cutkosky, “Fixture planning with friction,” Journal of
Engineering for Industry, vol. 113, no. 3, pp. 320-327, 1991.

[25] K. M. Lynch, H. Maekawa, and K. Tanie, “Manipulation and active sensing
by pushing using tactile feedback.” in IROS, 1992, pp. 416-421.

[26] K.-T.Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a million ways
to be pushed. a high-fidelity experimental dataset of planar pushing,” in
Intelligent Robots and Systems (IROS), 2016 IEEE/RS] International Conference
on. IEEE, 2016, pp. 30-37.

[27] R. Tedrake, T. Zhang, and H. Seung, “Learning to walk in 20 min,” in
Proceedings of the Yale workshop on adaptive and learning systems, 2005, pp.
10-22.

[28] J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy
gradients,” Neural networks, vol. 21, no. 4, pp. 682-697, 2008.

[29] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[30] V.Mnih, A.P.Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement
learning,” in International Conference on Machine Learning, 2016.

[31] A.Colome, A. Planells, and C. Torras, “A friction-model-based framework
for reinforcement learning of robotic tasks in non-rigid environments,” in
2015 IEEE International Conference on Robotics and Automation (ICRA), May
2015, pp. 5649-5654.

[32] A. Colome and C. Torras, “Dimensionality reduction and motion coor-
dination in learning trajectories with dynamic movement primitives,” in
2014 IEEE/RS] International Conference on Intelligent Robots and Systems, Sept
2014, pp. 1414-1420.

[33] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmark-
ing deep reinforcement learning for continuous control,” in Proceedings of
the 33rd International Conference on Machine Learning (ICML), 2016.

[34] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep
visuomotor policies,” Journal of Machine Learning Research, vol. 17, no. 39,
pp. 1-40, 2016.

[35] M. Salganicoff, G. Metta, A. Oddera, and G. Sandini, A vision-based learning
method for pushing manipulation. University of Pennsylvania, 1993.

54 BIBLIOGRAPHY

[36] T. Mericli, M. Veloso, and H. L. Akin, “Push-manipulation of complex
passive mobile objects using experimentally acquired motion models,”
Autonomous Robots, vol. 38, no. 3, pp. 317-329, 2015.

[37] M. Lau, J. Mitani, and T. Igarashi, “Automatic learning of pushing strategy
for delivery of irregular-shaped objects,” in Robotics and Automation (ICRA),
2011 IEEE International Conference on. 1EEE, 2011, pp. 3733-3738.

[38] S.Walkerand]J. K. Salisbury, “Pushing using learned manipulation maps,”
in Robotics and Automation, 2008. ICRA 2008. IEEE International Conference
on. IEEE, 2008, pp. 3808-3813.

[39] J. Zhou, R. Paolini,]. A. Bagnell, and M. T. Mason, “A convex polynomial
force-motion model for planar sliding: Identification and application,”
in Robotics and Automation (ICRA), 2016 IEEE International Conference on.
IEEE, 2016, pp. 372-377.

[40] Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, and S. Levine,
“Path integral guided policy search,” 2017 (In press).

[41] A. A. Rusu, M. Vecerik, T. Rothorl, N. Heess, R. Pascanu, and R. Had-
sell, “Sim-to-real robot learning from pixels with progressive nets,” arXiv
preprint arXiv:1610.04286, 2016.

[42] P. Christiano, Z. Shah, 1. Mordatch, J. Schneider, T. Blackwell,]J. To-
bin, P. Abbeel, and W. Zaremba, “Transfer from simulation to real
world through learning deep inverse dynamics model,” arXiv preprint
arXiv:1610.03518, 2016.

[43] L. Mordatch, N. Mishra, C. Eppner, and P. Abbeel, “Combining model-
based policy search with online model learning for control of physical
humanoids,” in Robotics and Automation (ICRA), 2016 IEEE International
Conference on. 1EEE, 2016, pp. 242-248.

[44] M. Cutler and J. P. How, “Autonomous drifting using simulation-aided
reinforcement learning,” in Robotics and Automation (ICRA), 2016 IEEE
International Conference on. 1EEE, 2016, pp. 5442-5448.

[45] S. Barrett, M. E. Taylor, and P. Stone, “Transfer learning for reinforce-
ment learning on a physical robot,” in Ninth International Conference on
Autonomous Agents and Multiagent Systems-Adaptive Learning Agents Work-
shop (AAMAS-ALA), 2010.

[46] S. Gupta, P. A. Arbeldez, R. B. Girshick, and J. Malik, “Aligning 3D mod-
els to RGB-D images of cluttered scenes,” in Computer Vision and Pattern
Recognition (CVPR), 2015.

[47] A. Krull, F. Michel, E. Brachmann, S. Gumhold, S. Ihrke, e. D. Rother,
Carsten", I. Reid, H. Saito, and M.-H. Yang, 6-DOF Model Based Tracking via
Object Coordinate Regression. Cham: Springer International Publishing,
2015, pp. 384-399.

BIBLIOGRAPHY 55

[48] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother,
Learning 6D Object Pose Estimation Using 3D Object Coordinates. ~Cham:
Springer International Publishing, 2014, pp. 536-551.

[49] E.Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold, and C. Rother,
“Uncertainty-driven 6d pose estimation of objects and scenes from a sin-
gle rgb image,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 3364-3372.

[50] F. Sadeghi and S. Levine, “(CAD)?RL: Real singel-image flight without a
singel real image,” arXiv preprint arXiv:1611.04201, 2016.

[51] J. Asmuth, M. L. Littman, and R. Zinkov, “Potential-based shaping in
model-based reinforcement learning.” in AAAI, 2008, pp. 604—609.

[52] E. Greensmith, P. L. Bartlett, and J. Baxter, “Variance reduction techniques
for gradient estimates in reinforcement learning,” Journal of Machine Learn-
ing Research, vol. 5, no. Nov, pp. 1471-1530, 2004.

[53] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints, vol.
abs/1605.02688, May 2016. [Online]. Available: http://arxiv.org/abs/
1605.02688

[54] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control.” in IROS. 1EEE, 2012, pp. 5026-5033.

[55] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. To-
bin, P. Abbeel, and W. Zaremba, “Transfer from simulation to real
world through learning deep inverse dynamics model,” arXiv preprint
arXiv:1610.03518, 2016.

[56] E. Tzeng, C. Devin, J. Hoffman, C. Finn, X. Peng, S. Levine, K. Saenko,
and T. Darrell, “Towards adapting deep visuomotor representations
from simulated to real environments,” CoRR, vol. abs/1511.07111, 2015.
[Online]. Available: http:/ /arxiv.org/abs/1511.07111

[57] W. Yu, C. K. Liu, and G. Turk, “Preparing for the unknown: Learning
a universal policy with online system identification,” CoRR, vol.
abs/1702.02453, 2017. [Online]. Available: http://arxiv.org/abs/1702.
02453

[58] J. Tobin, R. Fong, R. Alex, J. Schneider, W. Z. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from sim-
ulation to the real world,” arXiv preprint arXiv:1703.06907, 2017.

56

BIBLIOGRAPHY

