
A BLOCK ALGORITHM FOR T H E  ALGEBRAIC PATH PROBLEM 
AND ITS EXECUTION ON A SYSTOLIC ARRAY 

Fernando J. Nunez and Mateo Valero 
Departamento de Arquitectura de Computadores 

Facultad de lnformatica de Barcelona, Universidad PolitCcnica de Cataluna 
Pau  Gargallo 5,08028 Barcelona, SPAIN 

This work was supported by the Ministry of Education and Science of Spain (CAICYTI under contract 
PA85 -03 14. 

ABSTRACT 

The solution of the Algebraic Path Problem (APP) for arbitrarily sized graphs by a 
fixed-size systolic array processor (SAP) is addressed. The APP is decomposed in two 
subproblems. A SAP is designed for each one, both SAPs combined produce a highly 
implementable versatile SAP (VSAP). The proposed VSAP has p x  p processing 
elements (PES), solving the APP of a n  N-vertex raph in N3/p2 + NWp + 3p-2 cycles. 
With slight modifications in the operations perkrmed by the PES the problem is 
optimally solved in N3/p2 + 3p-2 cycles. 

1. INTRODUCTION 

Important problems such a s  the Transitive Closure (TC), the All-Pairs Shortest 
Path (SP), and the Gauss-Jordan Elimination are  particular cases of the more general 
APP. Its solution is a computingintensive task, i t  has cubic complexity with respect to 
the size of the problem. 

Using (N + 1)2 PES in a hexagonally connected array the APP is solved in 7N cycles 
in  [ 11. An array that  solves the APP in 5N cycles with N X (N + 1) PES can be found in 
[2]. In [3] a dependence graph based design method obtains new and already proposed 
arrays for the APP. There, optimum arrays obtaining the result in 5N cycles with 
N x N PES are proposed. In fact, many SAPs devoted to special cases of the APP can be 
generalized for solving it. For example, SAPs for the TC and the SP [4], [ 5 ] ,  [6], [7]. 

There is always a computation too large for a given array. Mapping larger sized 
computations into smaller arrays is of great ractical interest. The original problem is 
decomposed into subproblems whose sizes &t the available SAP size. This paper is 
devoted to decompose the APP and to design a n  array for solving them and combining 
their partial results. APP instances like the TC have been partitioned [8], [9], but to 
our knowledge there are no works about the partitioning of the APP in the literature. 

In the next section the basics of the APP are  briefly reviewed. Section 3 is devoted 
to describe an  iterative block algorithm for the APP. Then, in  section 4 this algorithm 
is rearranged for solving the APP using only two matrix operations, i. e., the APP is 
decomposed into two subproblems. The design of a SAP for solving each subproblem, 
and their combination to form the resulting VSAP is commented in section 5 .  Block 
VO details, changes for achieving an  optimal execution, and performance expressions 
are given in section 6. Finally, in section 7 the outstanding points addressed in the 
paper are discussed. 

2.THE ALGEBRAIC PATH PROBLEM 

Consider a weighted directed graph G =  <V,E,w>, where V is its N-vertex set, E 
N x N  its edge set, and w:E-S an edge weighting function whose values are taken 
from the set  S. I t  belongs to a path algebra <S,+,X,*,O,l> to ether with two binary 
operations, "addition" + :S X S-S, and "multiplication" X :$X S-S, and a unary 
operation called closure ()*:SAS. Constants 0 and 1 belong to S. Hereby, + and x will 
be used in infix notation, whereas the closure of an  element a will be noted a s  a* .  
Additionally, * will have precedence over X and this over +. This algebra is a closed 
semi-ring, i. e., an algebra fulfilling the following axioms [lo]: + is associative. 

CH2603-9/88/oooO/0265$01.00 0 1988 IEEE 265 



266 

commutative, with 0 a s  neutral; X is associative with 1 as neutral, i t  distributes over 
+ . Element 0 is absorptive with respect to X. The equality a* = 1 + a  X a* = 1 + a*X a 
must hold. 

The weight w(p) of a path p=(el ,e2,  ..., em), eiCE, is defined a s  
w(P): = w(el)X w(e2)X ... X w(em) . The APP is the determination of the sum of weights 
of all the possible paths between each pair of vertices (i j). If P(i j) is the set of all the 
possible paths from i toj, the APP is to find the values [ l l l :  

Intemational Conference on Systolic Arrays 

d(ij):= 2 a ( p )  

We associate a weight matrix A={a(ij)}, l S i j 5 N  with graph G, where 
a(i j): = w((i j)) if (i j)CE, and a(ij) :  = 0 otherwise. This matrix representation permits 
us  to formulate the APP as  the computation of a sequence of matrices AM = {a(ij)(k)} 
0 1  k 5  N. The value a(i j ) ( k )  i s  the weight of all the possible paths from vertex i to j 
with intermediate vertices v, 15 v i  k. Initially, A(0): =A, then A*: =A(N), where 
A*:={a(ij)*} is an N X N  matrix satisfying a ( i j )*=d( i j )  if ( i j)CP(ij) ,  and a(ij)*:=O 
otherwise. 

The algorithms proposed to solve path problems formulated in matrix terms are 
known as matrix-methods; most are referenced in [ l l ] .  Among them we find 
algorithms for the TC [121, [131; the SP [141; and the classic Gauss and Gauss-Jordan 
eliminations to compute the inverse of a matrix. 

It was observed that  the same program schemes could solve these problems. A 
program scheme is a program with fixed control but where the sets over which the 
variables take their values, and the meaning of the algebraic operations is left 
uninterpreted [ 101. The majority of the program schemes useful for the APP come from 
Linear Algebra, like Jacobi and Gauss-Seidel methods, and the mentioned Gauss and 
Jordan eliminations [151. The Gauss-Jordan elimination has been recently introduced 
for solving the APP [l] .  The array described in [2] is based on it. 

There are many interesting r:blems that  are specializations of the APP [15]. If 
the algebra is boolean: S={O,l[ +"=OR, "x"=AND, 0*=1,  1*=1,  "O"=O, and 

"O"= + -, "1"= 0; closure is the constant operation 0. For matrix inversion: S = R , "+" 
and " X "  are the ordinary addition and multiplication with respective neutrals 0 and 1. 
The closure is a*= 1/(1-a) for a #  1. 

p E P(i j )  

"1"=1; the APP finds the TC. For the SP: S=[O,+m)U(+m}, "+"=min,  " XI' = + , 

3 . A P P  BLOCK DECOMPOSITION 

Block algorithms are  a useful tool for extracting parallelism from problems. For 
example, when solving matrix roblems, both, input and output matrices can be split 
into blocks or submatrices. Dikerent block subproblems can be allocated to different 
processors. Processors must combine their partial results in order to attain the desired 
global solution. This can be named as  interblock parallelism. 

Block algorithms are also used for solving problems in parallel using systolic 
arrays. However, the approach is completely different. In this case, blocks must fit the 
size of the available array. Subproblems are solved one after the other, with a proper 
sequencing to combine their partial solutions efficiently. By doing so, the original 
problem is solved. In the context of systolic computing, these are known as  size- 
independent algorithms, and problem decomposition is named partitioning [ 161, [ 171. 
Systolic arrays explote intrablock parallelism. An array can be seen a s  a single 
processor running a sequential algorithm, but operating on blocks instead of elements. 

Normally, problem partitioning generates subproblems of different nature. For 
example, the LU-decomposition is split into smaller matrix products with 
accumulation, linear systems of equations, and LU-decompositions [ 181; the TC 
requires solving smaller TCs and performing boolean matrix multiplications with 
accumulation [9]. We are interested in solving all the resulting subproblems using one 
sin learray. 

Euppose that  in the rocess of solving the APP by obtaining the matrix sequence 

solve the APP for matrices with pXp  elementsor smaller. The point is how to obtain 
Ace), ..., A(x),  matrix A(k P has been already computed. Also assume we know how to 



Algorithms 267 

A(k+p) through block operations. The involved blocks are shown in figure 1. Block A1 
is a p x p block on the diagonal. Note that  A2 and A3 have p x  (N-p) and (N-p) x p non- 
zero elements respective1 while A4 has (N-p) X (N-p). Then, Theorem 1 indicates how 
to obtain A(k + P I  from A(k7;hrough block operations. 

Operator ()* represents the APP of a block, + and X are the natural extension to 
matrices of addition and multiplication of the underlying algebra. Figure 2 illustrates 
a block operation. 

A4 A3 A I  A2 
k P N-p-k 

Figure 1. The blocks referenced 
in Theorem 1. 

Figure 2. A block operation illustrated. 

Theorem 1: Under the preceding assumptions, A ( ~ + P )  can be obtained from A(k) as 
follows: 

Al(k+p): =Al(k)* (3.a) 
A2(k + p): =Al(k)* X A2(k) (3.b) 
A3(k+p): =A3(k) XAl(k)* (3.c) 
A4'k+p):=A4(k) + A3(k)XAl(k)*XA2(k) (3.d) 

Proof: A k-path in G is defined a s  a path whose intermediate vertices must belong to 
the set {l..k}.With each matrix A(k) we can associate a graph G(k)= <V,E(k),w(k)> 
whose edge weights are the sum of all the possible k-paths in G between each ordered 
pair of vertices. A (k + p)-path in G is either a k-path (an edge in G(k)) or a path in G(k) 
whose intermediate vertices are taken from the set {k + l..k + p}. An example of the 
latter path is depicted in figure 3-a. If i j €{k+ l . . k+p}  then (3.a) follows trivially. 
Consider now (3.d), then ij€{l..N}-{k+l..k+p}. The general form of this path is 
represented in figure 3-b. Note that  a(vl,vm)(k+P), an  element of Al(k)*, is the weight 
of all the (k+p)-paths from v l  to vm. Thus, the weight of this path from i to j is 
a(i,vl)(k) X a(vl,vm)(k + P) X a(vmj)(k). If vertices are any in the specified sets, the 
overall operations can be expressed in matrix terms a s  (3.d). The term A4W adds the 
contributions of the k-paths. Cases (3.b) and (3.c) are simplifications of (3.d).0 

It is worth mentioning that block schemes for the APP can also we derived by 
extending to blocks the properties fulfilled by elements, and then applying any valid 
program scheme to blocks. Nevertheless, we have decided to present Theorem 1 
because i t  is more general. It permits to design parallel algorithms using different 
block sizes for the same problem. In addition, by employing graph instead of algebraic 
terms, i t  provides insight in the effect of the underlying operations. 

4. TWO-PRIMITIVE A P P  PARTITIONING 

As said, all subproblems must be solved by a single array. In this paper, we are 
concerned with 2-D SAPS although the results also apply to one-dimensional 
machines. For the moment, let us advance that  the fixed-size array developed in the 
next section has p X p processing elements (PES). 



268 Intemational Conference on Systolic Arrays 

i , jC(l. .N}-(k+l..k+p) 

vl,. . ,vmC(k+l..k+p} 
(b) a(i,vl)(k) a(vl,vm)(k + P) a(vm,j)(k) 

Figure 3. (a) A (k + p)-path in G('d with intermediate vertices in {k + l . .k + p); 
(b) a general form of these paths. 

Hence, it is natural to partition the N X N  matrices to be computed into square 
blocks with p x p  elements. Without loss of generality, assume p divides N evenly. The 
remaining of this section will deal with blocks, or groups of them. Some matrix 
notaticn conventions are mandatory. 

Suppose an  N X N  matrix A that is split into N/pXN/p blocks of size p x p .  A(i j )  is 
one of these blocks placed a t  the i-th block-row, j-th block-column. The i-th block row, 
and the j-th block column are respectively denoted as A(i,&) and A(&$. A(i,&-j) refers 
to the i-th row without block A(i j). Under this convention, A(&-i,&-j) is obtained from 
A, eliminating its i-th and j-th row and column. Subranges also need to be specified. 
For instance, A(ij..k) is composed of blocks in the i-th row from column j to column k. 

Now, we will present Algorithm 1, that  computes the APP of an N X N  matrix from 
the basic assumption that  i t  is known how to obtain the APP of a p x p  block. 
Algorithm 1 is a direct outcome of Theorem 1. It  is row oriented. A column oriented 
version could be obtained by simply interchanging block indexes, and inverting the 
order in which blocks are multiplied. 

Algorithm 1 
B(0): = A  
fork: = 1 to N/p 

B(k,k)(k): = B(k,k)(k-l)* (4.a) 
B(k,&-k)(k): =B(k,k)(k) X B(k,&-k)(k-l) (4.b) 
B(&-k,&)(k): = B(&-k,&-k)(k-l) + B(&-k,k)(k-l) XB(k,&)(k) (4x1 

end  for 
A*: =B(N/p) 

Note that A ( ~ P )  = Blk), thus, after N/p iterations results A* = ACN = B(Y/p). 
At this point, we have seen that the APP is decomposable into smaller APPs and 

matrix multiplications (with or without accumulation), observing the rules of the 
underlying algebra. The next stage is to modify Algorithm 1 for making i t  more 
suitable of systolization. I t  is interesting to minimize the number of primitives 
executable by the VSAP. Only two primitives, named P1 and P2, suffice for the APP. 
Let us define them. Consider three matrices X, Y, Z with sizes p x p ,  p x m ,  and p x m  
respectively. WedefinePl andP2as:Pl(X,Y) = X*XY;andPP(X,Y,Z) = XXY+Z.  

Algorithm 2 

fork: = 1 to N/p 

Algorithm 2 solves the APP using only P1 and P2. 

B(0): = A  

B(k,&)(k): =Pl(B(k,k)(k-l),B(k,l..k-l)(k-1)IIplB(k,k + l..N)(k-l)) (4.d) 
fori: = 1 to Nip with i z k 

end  for 
B(i,&)(k): =P2(B(i,k)(k l),B(k,&)(kI,B(i,&-k)(k 1)) (4.e) 

end  for 
A*: = B(N/p) 



Algorithms 269 

Lines (4.a) and (4.b) obtain A(k,&)(k). Using P1 they can be grouped into line 
(4.d),where the symbol I denotes matrix juxtaposition, and Ip is the p x p  identity 
matrix. On the other hand, line (c) is equivalent to: 

allowing to use P2  for computing A(i,&)(k) in line (4.e). 

5. A VERSATILE S A P  FOR T H E  A P P  

When designing versatile SAPs, the additional complexity caused by partitioning 
must be minimized in order to attain a n  economic and implementable machine. More 
specifically, i t  is mandatory to reduce the overhead caused by partitioning in the 
external hardware and communications, as  well as in the required control. The 
additional delays, and PE complexity have to be minimized too [19]. 

Intuitively, the VSAP can be obtained by overlapping, in some sense, two SAPs, 
one for P1 and the other for P2. Moreover, both candidate SAPs must be as  similar as 
possible. An efficient sequencing between consecutive subproblems also has direct 
influence on performance. Most of these points are taken into account in papers 
dealing with the mapping of partitioned systolic algorithms into fixed-size arrays. 

In order to attain a highly implementable design, additional constraints could be 
observed. For example, by forcing equal input and  output data formats, there is no 
need for a data rearranging network between the VSAP and the external memory 
modules. In other words, a single storage scheme can be used for all the matrices. 

Another interesting restriction is to have memory modules only along one side of 
the SAP'S polygon. This fact avoids having different algorithms to perform the same 
operation over matrices entering the array from different points. 

Algorithm 2 has been designed to use the same block in a (maybe long) sequence of 
operations. Hence, in order to be used, this block is preloaded in the VSAP. This helps 
to reduce the internal and the external U 0  bandwidth requirements. All these 
constraints have influenced the design of the VSAP. 

The Jordan algorithm for the quasi-inversion of a matrix can be extended for 
computing P1 [15]. The following equation must hold: A* =A x A* + Ip; then by 
postmultiplying both sides by B we can write: Pl(A,B) = A  x Pl(A,B) + B. In the latter 
equation Pl(A,B) is the unknown. The Jordan algorithm finds it by computing a 
sequence of matrices A(k), B(k), and M(k), 15 k 5  p, with respective dimensions p x p, 
p x m ,  and p x p .  Initially A(o):={a(ij)(o)}=A , and B(o):={b(ij)(o)}=B ; then 
AM: = M(k) x A(k-1) ; BW: = M(k) x B(k-1) ; 15 k 5  p. MW is obtained from the k-th 
column of A(k-1). Figure 4 shows its strbcture. I t  can be shown tha t  
B(P) =A* x B = Pl(A,B). 

k-th column 

Figure 4. The structure of  matrix Mk). 



270 

This recurrent formulation suggests to use a pipeline with p stages for computing 
P1. Matrices will enter into the pipeline by rows. Hence, p processing elements (PES) 
per stage will be required. Stage k performs the k-th recurrence. I t  receives first 
columns k to p of A(k-1) and delivers columns k + 1 to p of A(k). In this section we use 
A(k) to refer to a submatrix formed with columns k + 1 to p of this matrix. 

Figure 5 illustrates the structure and operation of the third stage when p=4.  In 
this example, columns 3 and 4 of A(2) enter skewed. Rows are circularily reordered, 
they reach the third stage in the order 3 , 4 , 1 , 2 .  The first element reaching the stage is 
a(3,3)(2), then a(3,3)(3)= a(3,3)(2)* is computed and stored in the bottom PE. The other 
elements in the third column are stored without modification. A stage is initialized 
when all its PES have stored their corresponding values. Once initialized, stage k 
premultiplies by M(k) any entering matrix with p rows and an arbitrar number of 

B(2) are premultiplied by M(3). Thus, in  the general case, stage k receives A(k-1) 
followed by B(k-11, sending A(k) and B(k) to stage k+ 1. 

Intemational Conference on Systolic Arrays 

columns. Specifically, in the example of figure 5, the fourth column of A(2 f and matrix 

B(3) ,A(3), 

B(2) 

... 22 

. . . . . .  

. . . . . .  ... 

t 
t 

... 

... 

... 

... 

32 

... 

... 

... 

... 

. . . . . .  

. . . . . . . . . . . .  

Figure 5. Operation of the third row when executing P1 forp = 4. 

When the bottom PE is initialized, the remaining elements of the entering row are 
premultiplied by the stored value. This updated row is sent upwards through the 
vertical links. The other PES premultiply this row by the values in their registers. The 
resulting rows are added to the rows received from the West ports, obtaining the 
updated rows sent through the East ports. In order to preserve the skew, the row 
traveling upwards is delayed one cycle (the dot means a unit delay) when i t  leaves the 
top PE. Note that  the updated rows exit the stage ordered and skewed as  required by 
the next s ta  e Primitive 1 requires m+4p-2 cycles to be obtained by this SAP. 

It  must % e  mentioned that in [31 this array was also obtained by means of a 
dependence graph based method. There, the array was used for computing A*, a 
particular case of Pl(A,B). 

Primitive P2 can be obtained in p recurrences too. A sequence of p x m  matrices 
C(O),C(l), .... C(P) must be computed. Initially, C(0): = C .  The recurrence is: CW: =C(k- 
1) +A(&,k) xB(k,&); 15 k 5  p. Now, the matrix notation refers to elements: A(&,k) and 
B(k,&) are the k-th column and the k-th row of matrices A and B respectively. As for 
P1, a p-stage pipeline with p PES per stage solves the recurrence. Stage k computes 

Now, figure 6 will help us to explain the operation of a stage. Again, the third row 
is shown for a case with p = 4. Matrices also enter by rows. Stage 3 stores A(&,3) and 
permits the remaining columns of A (column 4 in  this case), to reach the next stage 
without modification. The skew and row reordering are the same as  for P1. Row 
B(3,&) reaches first the bottom PE,  being sent upwards from PE to PE. Once a PE is 
initialized and matrix A has passed, i t  computes a row by premultiplying B(3,&) by 



Algorithms 271 

the value stored in its register. This row is added to the row of C(2) i t  receives, 
obtaining a row of 03). Primitive P2  requires two links from PE to PE.  One is used for 
passing B(k,&), and the other for reordering the bottom row of A and Primitive 2 
is also executed in m + 4p-2 cycles. 

C(3) A 

C(2) 

... 22 

. . . . . .  

. . . . . .  

. . . . . .  

A 7 

... 

. . . . . .  43-31 

... 

... 

... 

... 

32 

... 

... 

... 

... 

. . . . . .  

6(3,&) 33 32 31 x x I 
Figure 6. Operation of the third row when executing P2 forp = 4. 

The VSAP resulting from the superposition of the arrays for Pl(A,B) and 
P2(A,B,C) above described is depicted in figure 7. I t  has p x p  orthogonally connected 
PES. Dotted links are used only when executing P2. Through them matrix B arrives to 
the PES. Solid links conduct matrices A and C. There are four different types of PES. A 
PE with its ports named is also shown. It  can be seen tha t  a PE could not have all these 
ports. No data-counterflow is present. 

Both primitives have two phases, a n  initialization phase where PE registers are 
loaded and a normal computation phase. In addition, P2 has an  intermediate phase for 
passing the remaining columns of A. Henceforth, PES must perform five different 
operations. The table in figure 7 indicates the actions carried out by each PE type 
when executing each operation. PlI  and P1N denote the initialization and the normal 
phases for P1. P21 and P2N do the same for P2, while P2P corresponds to the 
intermediate hase. The internal register of all PES is called r. Type IV PES have a n  
additional defay register d for attaining a proper output data skew. Parenthesized 
actions only apply to this type of PE. Two actions in the same line separated by a slash, 
indicate that only one is performed, depending on the PE type. Not specified output 
values do not matter. Some actions do not apply to all the PES because they do not 
have all the ports. 

In  order to attain a simple plot of the VSAP, PES have been grou ed into four types. 
However, the table of operations show that they are very simiyar. All include a 
multiply-accumulate unit. Types 11, 111, and IV, only differ in the number of links and 
registers. Type I PES must include a n  additional closure computation unit. As a 
result, PE complexity is kept relatively small. 

A single control unit connected to the bottom-left PE is required. Control tokens 
are passed from PE to PE systolically. They travel upwards at unit speed, whereas 
three cycles are spent between type I PES. 

To conclude this section, a brief comment about the fact of forcing the same data 
formats for input and output is convenient. We have presented i t  as a design 
constraint. Another point of view is thinking tha t  the VSAP purpose is two-fold: (a) to 
compute the desired result systolically, and (b) to perform succesive data reorderings 



272 International Conference on Systolic Arrays 

P 1 1  

P 1 N  

P2 I 

P2P 

P 2 N  

I 

r : = W S *  

N E : = r  x W S  

r : = W S  

N E : =  WS 

N E : = r  x W N + W S  
N W : = W N  

r:=WS 

E S : = r  x S E + W S  
NE:=  S E  / ( N E : = d )  

(d: = SE) 

r : = W S  

ES: = W S  
NE:= SE / ( N E : = d )  

(d: = S E )  

ES:=r x S W + W S  
N E : = S E / ( N E : = d )  

(d: = S E )  
N W : = S W  
E N :  = W N  

Figure 7. The VSAP, a PE with the name of the ports, and the table of operations. 

for attaining the specified data output format. In some sense, the data rearranging 
network between the memory modules and the VSAP has been embedded into the 
array. 

6. SUBPHOHLEiCI EXECUTION, PERFORMANCE, ANI) OPTIiClIZATIONS 

Once described the VSAP low level operation, we return to the high level execution 
specified by Algorithm 2. Figure 8 outlines the blocks entering and exiting the array 
during the second iteration for a case with N/p=3. It  is directly obtained from 
Algorithm 2. The PE input ports through which blocks come into the VSAP are 
indicated. The small, medium, and large blocks have p, N-p, and N columns 
respectively. All blocks have p rows. The up arrows point to the column arriving or 
leaving the array at the indicated cycle relative to the beginning of the second 
iteration. 

Theorem 2: The described VSAP computes the APP of an  N X N  matrix in 
NVp2 + " V p  + 3p-2 cycles. 

Observe tha t  the bottom band has no holes. In general, the length of one of i t  sides 
is N3/p2 + NVp. The skew adds p-1 cycles, and 2p-1 cycles are spent for crossing the 
VSAP once initialized. Hence, a total of N3ip2 + "2/p + 3p-2 cycles are required.0 

The address generator of each module is a counter with preloading. The central 
control unit sends control signals to its nearest address generator. This signals arrive 
to the remainig address generators in a systolic fashion. I t  can be easily verified tha t  
the sequence of matrices A(k) is computed in-place, only N2 memory words are used. 

For the sake of clarity, a suboptimal algorithm has been described. Note tha t  there 
are holes between consecutive blocks leaving the array (see figure 8 again). 



Algorithms 273 

3'd\ 2,& \ \ , it. 

. . 

Figure 8. Block 110 sequencing of  the second iteration for Nlp = 3. 

The purpose of Ip is to obtain A(2,2)(2) from the values stored in the array. This can 
be overlapped with the loading of A(1,2)(1) by simply modifying operation P2I. There is 
no conflict between the two actions. With this change, N cycles are saved. A much 
more interesting improvement is to avoid entering Op blocks, starting, instead, the 
loading of the following block. In this case, P21 and P2P must be changed. In addition, 
actions to store the entering block must be included (as in P2I). Again, there is no 
problem, all actions are orthogonal. The achieved saving amounts Nzip-2N cycles. One 
additional optimization lasts to be done. The VSAP initialization when executing P1I 
(at  the beginning of every iteration), can be performed when the last Op block of the 
previous iteration entered the array. Again, there is no contention for resources, and 
the result is a simple change in P11, leading to reduce the execution time by N cycles. 
With this modifications in the operations, we reduce the total number of cycles to 
N3/pz+3p-2. Despite the transitory phases due to the skew, the VSAP outputs are 
delivering valid results in all the cycles. Thus, the optimal performance has been 
attained. No additional links neither additional functional units have been required. 
Only one more operation has appeared. 

Let us define the efficiency of a n  array as the ratio the total number of operations 
performed to the number of cycles used by the array times the number of processors. 
For a case with p = 10, an  efficiency of 90 per cent is achieved with problem sizes of 
N = 100 and N = 30 for the suboptimal and optimal executions respectively. 

7.DISCUSSION 

In order to map the computations for solving a n  arbitrarily large problem into 9 
fixed-size array two approaches can be taken. We can start  with an  array conceived to 
solve that problem (problem-size dependent) and perform PE groupings, pile pieces of 
the array, or folding it. On the other hand, i t  is possible to return to the original 
problem and decompose it into subproblems tha t  fit the available SAP size. Even 
though the first approach is more methodic, the second gives us the opportunity to 
attain a very optimized design by carefully selecting design constraints to cope with a 
higher degree of freedom. 

Henceforth, i t  has been developed an  iterative block algorithm for solving the APP 
of an  N-vertex graph supposing that we know how to obtain the APP of a graph with, 
at most, p vertices. The computations have been arranged in such a way tha t  only two 
matrix operations suffice for obtaining the result. In other words, the APP has been 
decomposed into two primitive subproblems. Primitive 1 and 2 were defined as  
Pl(A,B)=A*XB and P2(A,B,C)=AXB+C, were matrices A ,B , and C have p x p .  
p X m, and p X m elements respectively. 



274 Intemational Conference on Systolic Arrays 

Two similar SAPS have been designed, one for each primitive. From their 
superposition a VSAP resulted. The VSAP has p x p  orthogonally connected PES. One 
of our prime concerns has been to design an  array with good features for 
implementation. The U 0  data skew is the same for all the blocks. This together with 
the lack of data counterflow permits to chain subproblems with no time penalties, 
keeping the PES busy all the time. By conceivin the array to deliver matrix rows in 
the same order that  they were received, can be Folded to join their input and output 
ports.This allows to have only one memory bank composed of p memory modules 
placed along one the SAP polygon edges. In addition, there is no need for a data 
rearranging network, and all the matrices can be stored with the same scheme. 
Memory addressing is performed by simple counters. A centralized control unit  
generates all the control signals required by the PES and address generators. Control 
signals are transmitted systolically. The resulting array has good implementation 
features by the observation of the indicated constraints. 

With simple PES able to perform five different operations the APP is solved in 
N3/p2 +Nz/p+3p-2 cycles. Nevertheless, i t  was indicated how to obtain an  optimal 
execution requiring N3/pz + 3p-2 cycles by only slight changes in the PE operations. 

REFERENCES 

[l] G. Rote, ”A Systolic Array Algorithm for the Algebraic Path Problem (Shortest 
Paths; Matrix Inversion)”, Computing 34,1985. 
[2] Y. Robert, D. Trystam, ”Systolic Solution of the Algebraic Path Problem”, in 
SYSTOLIC ARRAYS, W. Moore, A. McCabe, R.Urquhart, eds., Adam-Hilger, 1987. 
[3] P.S. Lewis, S.Y. Kung, ”Dependence Graph Based Design of Systolic Arrays for the 
Algebraic Path Problem”, Proc. Ann. Asilomar Conf. Sign. Syst. Comput., Nov. 1986. 
[4] L.J. Guibas, H.T. Kung, C.D. Thompson, ”Direct VLSI Implementation of 
Combinatorial A1 orithms”, Caltech Conf. on VLSI, Jan.  1979. 
[5] S.Y. Kung, P.5. Lewis, S.C. Lo, ”On Optimally Mapping to Systolic Arrays with 
Application to the Transitive Closure Problem”, Proc. 1986 IEEE Int. Symp. on 
Circuits and Systems. 
[6] S.Y. Kung, S.C. Lo, ”A Spiral Systolic Architecture/Algorithm for Transitive 
Closure Problems”, Proc. 1985 Conf. on Computer Design. 
[7] S.Y. Kung, S.C. Lo, P.S. Lewis, ”Optimal Systolic Design for the Transitive Closure 
and the Shortest Path Problems”, IEEE Trans. on Computers, C-36,5, May 1987. 
[8] H.D. Cheng, K.S. Fu,  ”Algorithm Partition for a Fixed-Size VLSI Architecture 
Using Space-Time Domain Expansion”, 7th Int. Sym. on Computer Arithmetic, 1985. 
[9] F.J. Nunez, N. Torralba, ’Transitive Closure Partitioning and Its Mapping to a 
Systolic Array”, Proc. 1987 Int. Conf. on Parallel Processing, Penn State Univ., Aug. 
1987. 
[ 101 D.J. Lehmann, ”Algebraic Structures for the Transitive Closure”, Theoretical 
Computer Science, 4, 1977.1987. 
[ 111 U. Zimmermann, ”Linear and Combinatorial Optimization in Ordered Algebraic 
Structures”, Ann. Discrete Math., 10, 1981. 
[12] S. Warshall, ”A Theorem on Boolean Matrices”, J. ACM 9,1,1962. 
[13] B. Roy, ”Transitivite e t  Connexite”, C. R. Acad. Sci. 249,1959. 
[14] R.W. Floyd, ”Algorithm 97: Shortest Path”, C. ACM 5 ,6 ,  1962. 
[E] M. Gondran, M. Minoux, S. Vajda, GRAPHS AND ALGORITHMS, Wiley, New 
York, 1984. 
[16] K. Hwang, Y.H. Cheng, ”Partitioned Matrix Algorithms for VLSI Arithmetic 
Systems”, IEEE Trans. on Computers, C-31,12, Dec. 82. 
[17] J.J. Navarro, J.M. Llaberia, M. Valero, ”Partitioning: An Essential Step in 
Mapping Algorithms Into Systolic Array Processors”, IEEE Computer Mgz, July 1987. 
[18] J.J. Navarro, J.M. Llaberia, M. Valero, ”Solving Matrix Problems with No Size- 
Restriction Using a One-Dimensional Systolic Array Processor”, Proc. 1986 Int. Conf. 
on Parallel Processing. 
[19] S.Y. Kung, ”VLSI Array Processors”, in SYSTOLIC ARRAYS, W. Moore, A. 
McCabe, R.Urquhart, eds., Adam-Hilger, 1987. 


