
On the Problem of Evaluating the
Performance of Multiprogrammed Workloads

Francisco J. Cazorla, Member, IEEE, Alex Pajuelo,
Oliverio J. Santana, Enrique Fernández,

and Mateo Valero, Fellow, IEEE

Abstract—Multithreaded architectures are becoming more and more popular. In

order to evaluate their behavior, several methodologies and metrics have been

proposed. A methodology defines when the measurements for a given workload

execution are taken. A metric combines those measurements to obtain a final

evaluation result. However, since current evaluation methodologies do not provide

representative measurements for these metrics, the analysis and evaluation of

novel ideas could be either unfair or misleading. Given the potential impact of

multithreaded architectures on current and future processor designs, it is crucial to

develop an accurate evaluation methodology for them. This paper presents FAME,

a new evaluation methodology aimed to fairly measure the performance of

multithreaded processors executing multiprogrammed workloads. FAME

reexecutes all programs in the workload until all of them are fairly represented in

the final measurements taken. We compare FAME with previously used

methodologies showing that it provides more accurate measurements, becoming

an ideal evaluation methodology to analyze proposals for multithreaded

architectures.

Index Terms—Multithreaded processors, multiprogrammed workloads,

evaluation methodologies.

Ç

1 INTRODUCTION

MULTITHREADED architectures are able to execute several applica-
tions simultaneously, breaking the limitations of instruction-level
parallelism and boosting processor performance. The continuous
evolution of multithreaded architectures has lead to designs
including simultaneous multithreaded processors (SMT) [1], [2],
[3], chip multiprocessors (CMP), and even hybrid CMP/SMT
processors composed of separate SMT execution cores like the
IBM POWER5 and POWER6 and the Intel i7.

In spite of the increasing trend to use truly parallel applications,
multiprogrammed workloads are still commonly used to evaluate
CMP/SMT processors. Computer architecture researchers fre-
quently evaluate their proposals for multithreaded architectures
using workloads composed of independent single-thread applica-
tions like SPEC CPU [4]. In this paper, we focus on evaluation
methodologies for multithreaded architectures executing multi-
programmed workloads composed of noncooperative single-thread

applications that perform nonrelated work and do not communicate
each other.

For fully evaluating a wide range of scenarios, workloads
comprised of benchmarks with different behaviors should be used.
However, it is important to notice that working with different
programs running simultaneously involves an important decision:
to determine when the execution of the multiprogrammed work-
load will finish. In a single-threaded processor, the full program is
run until completion, but it is not so trivial in a multithreaded
processor running several programs at the same time. Applications
in a workload execute at different speeds due to the particular
features of each program and the competition for the shared
resources. Consequently, it is unlikely that they complete execution
at the same time.

This fact has a negative impact on the accuracy of the
evaluation of multithreaded processors. For example, assume a
two-thread workload running in a multithreaded processor with
two execution contexts. Both threads start executing at the same
time and share the processor resources during a period of time.
Since these threads run at different speeds, one of them will end its
execution before the other. Therefore, after the two-thread period,
there is a one-thread period in which a single thread is executed
alone. This is an undesirable side effect, since the full potential of
this multithreaded processor is only exploited during the two-
thread period and, thus, only results from the two-thread period
should be considered.

Several evaluation methodologies have been proposed to face
this problem. These methodologies determine how to perform
executions to assure that all the programs in the workload are still
running when the measures are collected. For instance, in the
previous example, the second thread may be finalized when the
first thread ends or the first thread may be reexecuted until the
second thread ends. However, with all these methodologies, it
cannot be assured that the measurements obtained are actually
representative of the whole program behavior.

Our approach to overcome this problem is FAME [5], a novel
methodology for the evaluation of multithreaded processors
executing multiprogrammed workloads. FAME is a flexible
methodology that can be applied to any multithreaded architec-
ture, including SMT, CMP, and CMP/SMT. The benefits of our
proposal are shown through results from real SMT and CMP
processors (Intel Pentium 4 and Dual Core). FAME is also
applicable to research simulators [5]. Overall, our results show
that FAME provides more accurate measurements than previously
used methodologies.

2 EVALUATION METHODOLOGIES

In order to characterize multithreaded processors, we must
distinguish between three orthogonal concepts: measurements,
methodologies, and metrics. Measurements are objective data
collected from the execution of a workload in a given processor.
Common examples are IPC and power consumption. A methodol-
ogy defines how the workload execution is performed and when
the measurements are taken. These measurements are later
combined into metrics such as IPC throughput, weighted speedup
[6], and harmonic mean [7].

In this paper, we focus on evaluation methodologies. Evalua-
tion methodologies are critical because they determine the
representativeness of the taken measurements. The key idea is
that if the measurements are inaccurate due to the selection of a
wrong evaluation methodology, the precision of the metrics, and
hence the system characterization, will degrade even if the metrics
are supposed to provide fairness.

In order to fairly evaluate the performance of SMT or CMP
processors, measurements should be obtained while all threads in
a given workload are running. However, the threads in a workload
can be executed at different speeds, and thus they do not have to
finish at the same time. Consequently, the evaluation methodology

1722 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

. F.J. Cazorla is with the IIIA-CSIC (Spanish National Research Council),
Spain, and the Barcelona Supercomputing Center, Edificio Nexus II, Jordi
Girona 29, 08034 Barcelona, Spain. E-mail: francisco.cazorla@bsc.es.

. A. Pajuelo is with the Departament d’Arquitectura de Computadors,
Universitat Politècnica de Catalunya, C6-205, Campus Nord UPC, C/Jordi
Girona, 1-3, 08034 Barcelona, Spain. E-mail: mpajuelo@ac.upc.edu.

. O.J. Santana and E. Fernández are with the Departamento de Informática y
Sistemas, Universidad de Las Palmas de Gran Canaria, Edificio de
Informática y Matemáticas, Campus Universitario de Tafira, 35017 Las
Palmas de Gran Canaria, Spain.
E-mail: {ojsantana, efernandez}@dis.ulpgc.es.

. M. Valero is with the Departament d’Arquitectura de Computadors,
Universitat Politècnica de Catalunya, C6-205, Campus Nord UPC, C/Jordi
Girona, 1-3, 08034 Barcelona, Spain, and the Barcelona Supercomputing
Center, Edificio Nexus II, Jordi Girona 29, 08034 Barcelona, Spain.
E-mail: mateo@ac.upc.edu.

Manuscript received 2 Sept. 2009; revised 13 Jan. 2010; accepted 15 Jan. 2010;
published online 26 Feb. 2010.
Recommended for acceptance by M. Yousif.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2009-09-0451.
Digital Object Identifier no. 10.1109/TC.2010.62.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

should determine what to do whenever any thread finalizes its

execution. All current evaluation methodologies can be classified
based on its finalization method. This classification includes the
First, the Last, and the Fixed Instructions methodologies.

The First methodology finalizes the execution of a workload
when any program of the workload ends its execution [8]. The

main drawback of this methodology is that only one program in
the workload is executed until completion, and thus it cannot be
ensured that the remaining programs execute completely, losing

representativeness in the final result.
The Last methodology finalizes a workload execution when all

the programs have run until completion. The main drawback of

this methodology is that the total number of evaluated instructions
can vary from an evaluation to another one. Since the execution

speed of the different programs depends on the processor
parameters, any variation can cause all programs to be executed
at different speeds. As a consequence, it cannot be ensured that the

amount of executed instructions is the same for different
executions with different parameter values, and thus comparisons
between them may be inaccurate.

The Fixed Instructions methodology is based on the idea of
executing the same amount of instructions in every evaluation. The
execution finalizes whenever the total number of executed
instructions reaches a fixed threshold. This threshold is usually
determined per thread, that is, the execution of a workload with
N threads will finalize when the total number of executed
instructions is N times the threshold. Typical values for this
threshold range from 100-million instructions [9] or 200-million
instructions [10] to 1-billion instructions [11].

However, the Fixed Instructions methodology is also unable to
ensure that a representative part of every benchmark is being
executed, since workload execution ends in an arbitrary point
(whenever the total number of executed instructions is reached).
Even worse, despite the total number of instructions is the same,
the mix of executed instructions may change. As an example,
imagine that two different instruction fetch policies must be
compared, IF1 and IF2, in a two-context SMT processor. IF1 always
prioritizes instructions belonging to the first context and IF2
always prioritizes instructions belonging to the second one. The
execution finishes when N instructions from both threads are
executed. When both executions end, they have ran the same
number of instructions, but these instructions are not the same:
most instructions belong to the first thread for IF1 and most
instructions belong to the second thread for IF2. Therefore, since
the executed instructions are not the same, the comparison
between IF1 and IF2 is not fair regardless of the metric used.

3 THE FAME METHODOLOGY

Current evaluation methodologies do not ensure that all programs

in a workload are faithfully represented in the final results. To
alleviate this problem, we propose a new methodology called

FAME. The main objective of our methodology is to obtain
representative measurements of the actual processor behavior.
FAME determines how many times a program in a workload
should be reexecuted for being faithfully represented, that is, to
ensure that the difference between measurements collected at that
point and real values is below a particular threshold. Executions
are then run until all programs have been executed the minimum
number of times required to be representative. Once this number is
reached for all programs, execution can end at any point, since
representativeness is guaranteed for all programs.

The basis of FAME can be better explained using a synthetic
example. Light-gray bars in Fig. 1a show the instant IPC of a
synthetic application, that is, the IPC on each particular cycle of its
entire execution when run in isolation. The black line shows the
evolution of the average IPC of the application along its execution.
The average IPC value for a given execution cycle is calculated as
the average value of the instant IPC from the beginning of the
program execution until that particular cycle. Thus, the final IPC
would be equal to the average IPC value at the end of program
execution. It is clear that the average IPC converges toward the
final IPC value.

Fig. 1b shows the instant IPC and the average IPC during three
reexecutions of the application. In addition, Fig. 1c shows the
difference between the average IPC and the final IPC during the
three reexecutions. It is clear that the average IPC converges
toward the final IPC value. Even if that difference is a decreasing
function, it is important to note that it is not monotonic. This means
that the difference would be very small in a given cycle, but it may
increase again in the subsequent cycles. Therefore, if the goal is to
obtain representative measurements, program execution cannot be
stopped at any point.

One could think that the solution is to finalize program
execution when a full application repetition has been executed,
since the average IPC is always equal to the final IPC at the end of
any repetition. However, a multithreaded processor is able to
execute more than one application at once. Although execution can
be stopped at the end of a repetition for one of the programs, it is
likely that this point is not the end of a repetition for the other
programs, and thus the other programs could be not accurately
represented. The actual solution comes from the observation that
although the difference between the average and the final IPC does
not decrease monotonically, the maximum difference in a reexecu-
tion is lower for each new executed repetition, that is, it is a
decreasing monotonic function. Thus, if we execute enough
repetitions of a program, the maximum difference will reach a
value small enough to consider that the average IPC is representa-
tive of the full benchmark behavior. For this reason, our
methodology reexecutes all programs several times, until the
difference is upper bounded by a given threshold.

Fig. 1c shows the difference between the average and the final
IPC as our synthetic program is reexecuted. The highest difference
values are obtained in the first repetition due to the cold-start IPC
calculation of the program. The difference decreases along with the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010 1723

Fig. 1. Instant IPC, average IPC, and difference between both in a synthetic program during three repetitions. (a) IPC (x). (b) IPC during repetitions. (c) Difference
(percent) during repetition.

program execution, reaching zero when the first repetition finishes.
The difference is always zero at the end of every program
repetition, since the average IPC is always equal to the final IPC
at those points. It can be observed in Fig. 1c that the IPC behavior
of the first repetition is not representative of the IPC behavior in
following repetitions due to the cold-start effect. For this reason,
we discard the first repetition. It can also be observed that the
difference between the average and the final IPC presents similar
behavior for all repetitions excluding the first one. Indeed, the
instruction and the cycle in which the difference achieves its
highest value are always the same for all repetitions.

Let InstMax2 be the instruction in the second repetition that
reaches the maximum difference between the average IPC and the
final IPC value within that repetition. Let also CycleMax2 be the
cycle in which that instruction is executed. Since the instruction
and cycle in which the application reaches the maximum
difference is always the same for all repetitions from the second
one onwards, we can compute the number of instructions and
cycles that should be executed to reach InstMaxi and CycleMaxi
for every repetition i. This calculation is performed with (1) and
(2), in which TotalInst and TotalCycle are the total number of
instructions and cycles of the program on each repetition.

InstMaxi ¼ ðTotalInst � ði� 2ÞÞ þ InstMax2; ð1Þ

CycleMaxi ¼ ðTotalCycle � ði� 2ÞÞ þ CycleMax2: ð2Þ

These equations make possible the computation of the max-

imum difference value for any program repetition beyond the

second one without needing to actually execute it. In other words,

executing two repetitions is enough to calculate the maximum

difference value for any number of additional repetitions, greatly

reducing the execution time required to obtain these values. Thus,

the maximum difference value from the beginning of the first

repetition can be calculated using (3).

DiffMaxi ¼
InstMaxi
CycleMaxi

� FinalIPC
�
�
�
�

�
�
�
�
: ð3Þ

From (3) we can deduce a formula to calculate the minimal
number of repetitions required to ensure representativeness of a
program. Since it is not possible to achieve perfect representative-
ness, we define a threshold value that indicates the maximum
difference between the average IPC and the final IPC that is
acceptable. We call this threshold value the Maximum Allowable
IPC Variance (MAIV). When the desired MAIV value is reached, it
can be considered that the average IPC value obtained is
representative of the full program execution.

In order to obtain representative results, executions will not

finalize until all threads have reached the point where the

maximum difference between the average IPC and the final IPC

is smaller than a chosen MAIV. From this point onwards,

execution can be stopped at any time. Equation (4) states how to

calculate the minimal number of repetitions required to fulfill a

given MAIV requirement. This equation is obtained working out

the value of i from (1)-(3)

i � d½ðCycleMax2 � 2 � TotalCyclesÞ � ðFinalIPC � ð1þMAIV ÞÞ
� InstrMax2 þ 2 � TotalInst�=
½TotalCycles � ðFinalIPC � ð1þMAIV ÞÞ � TotalInst�e:

ð4Þ

4 EXPERIMENTAL FRAMEWORK

FAME can be applied to both simulation environments and real

processors. In this paper, we focus on the latter. An evaluation of

FAME for simulation environments can be found in [5].

To prove the suitability of FAME in real scenarios, we apply the

methodology to both SMT and CMP processors representative of

current trends of multithreaded designs. As SMT processor we use

a 4.3 GHz Intel Pentium processor with Hyperthreading Technol-

ogy [3] and 512 MBytes of DDRAM at 400 MHz. As CMP processor,

we use a 2 GHz Intel Xeon 5130 Dual Core [3] processor with

8 GBytes of DDRAM (1,333 MHz FSB). In both processors, we boot

a Fedora Core 3 with GNU linux kernel 2.6.11 patched with

perfectr-2.6.18 to allow the access to the performance monitoring

counters from any privilege level of execution. The operating

system is booted at runlevel one to reduce as much as possible the

interferences generated by multiuser/multitasking processing.

Video, audio, and communication hardware capabilities are

disabled. The whole SPECcpu2000 benchmark suite was compiled

with all optimizations enabled using gcc 3.4.2 and Intel Fortran 9.0.

Benchmarks were executed until completion with the reference

input set. In the SMT processor, benchmarks belonging to a

workload are executed in different hardware contexts (hardware

threads). In the dual core processor, the benchmarks are executed

in different cores.
Workloads were generated with all the possible combinations

of the SPECcpu2000 benchmarks. In this sense, it is interesting to

note that our workloads are composed of noncooperative single-

threaded applications that perform nonrelated work and do not

communicate each other. Using multithreaded workloads com-

posed of independent applications is still a frequently used

technique by computer architecture researchers. We consider that

evaluation methodologies for parallel applications are a really

interesting topic for future research, but it is out of the scope of this

work.
It should also be noted that in order to determine the required

duration for each thread, FAME analyzes the behavior of every

program in isolation. Our assumption here is that the behavior of

each program in isolation is similar to its behavior when executed

as part of a workload, since the code signatures do not change [5].
In our experiments, we measure per-thread IPC. It can be

proven mathematically that the maximal error that can be obtained

with any metric, like throughput, weighted speedup or harmonic

mean, for a given workload is lower-or-equal to the maximal error

incurred in measuring the per-thread IPC. Therefore, all metrics

will suffer from lower error than the error in per-thread IPC.
In order to correctly measure the performance of a multi-

threaded processor, it would be desirable that the baseline

performance was obtained with the measurements taken when

the processor reaches a steady state since, in this state, the variation

of performance is negligible. In our real processor environment, we

have measured that the steady state is reached when every

program is reexecuted, at least, 20 times in a workload. Hence, we

calculate the error of every thread in a workload for every

methodology using (5), in which TiIPCsteady state is the IPC of

thread i for the baseline, and TiIPCmethodology is the IPC of thread i

reported by the methodology under study

ErrorTi ¼
TiIPCsteady state � TiIPCmethodology

TiIPCsteady state
ð%Þ: ð5Þ

5 ANALYSIS OF THE METHODOLOGIES

In [5], we analyzed the behavior of existing evaluation methodol-

ogies. Our results show that in the case of simulation environments,

current methodologies cannot ensure full representativeness of

every program in a workload, which can lead to unfair comparisons

between different simulator setups. These representativeness and

fairness problems are also present in real multithreaded processors

[3], [12], [13].

1724 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

We made a similar experiment on our real processor
environment. Fig. 2 shows the performance throughput of the
gcc and gap benchmarks when they are executed together on a
Pentium 4 processor. The light-gray bars show instant through-
put, that is, the sum of the instant IPCs of both benchmarks. The
black horizontal line represents the average instant throughput
until a time instant, that is, the average value of the instant
throughput for every cycle from the beginning of the workload
execution until the current time instant. The vertical solid lines
show the cycle in which the workload execution ends according
to each experimental methodology. The white circles over each

black line show the final throughput reported by that methodol-
ogy. Finally, the vertical dashed lines show the time instant at
which every instance of a program finishes. Above each line, we
add a legend in the form Tx� y, in which x indicates the
program and y indicates the number of times a program x has
been executed.

We observe that the real throughput value varies depending
on the used methodology. The results point out that the lowest
value is 0.8 (L and I400 methodologies) and the highest value is
0.85 (I200 methodology), which shows that using different
methodologies involves obtaining different results.

Fig. 3 shows the instant IPC of crafty and vpr sampled every
100 milliseconds. The benchmark vpr is a representative example of
an application in which the instant IPC varies noticeably, while the
benchmark crafty is a representative example of an application in
which the instant IPC does not vary significantly. As before, the
light-gray bars and the black line represent the instant IPC and the
average IPC of the given benchmark, respectively. The final IPC is
the average IPC at the end of the evaluation. Intuitively, in order to
fulfill a given MAIV, it would be necessary to reexecute more times
vpr than crafty, since its average IPC presents more variability. From
this information, we obtain CycleMax2 and InstMax2 and compute
the number of reexecutions i required to satisfy a given MAIV.

Table 1 shows the minimal number of reexecutions required
for both SpecInt and SpecFP with MAIV values ranging from 20
to one percent for (a) the Pentium 4 and (b) the Intel Dual Core.
The lower the MAIV value is, the higher accuracy required, and
thus, in most cases, the more repetitions are needed. For

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010 1725

Fig. 2. IPC of gap and gcc when executed together on an Intel Pentium 4.

Fig. 3. Instant and average IPC of two benchmarks executed in a Pentium 4. (a) vpr; (b) crafty.

TABLE 1
Number of Repetitions Required for Every SPEC2K Benchmark

(a) In the Intel Pentium 4. (b) In the Intel Dual Core.

example, if a MAIV value of less than one percent is required,
some benchmarks (gap, gcc, mcf, perl, vpr, and equake) have to
be reexecuted more than five times to be accurately represented
in the workload. It is also noticeable that when the MAIV
requirements are relaxed (five percent), only one repetition is
needed in most of the SPECs.

Once the minimal number of repetitions is obtained, workload
executions can begin. Workload will not finalize until every
program in the workload has been executed, at least, as many
times as the minimal number of repetitions required for accurate
representativeness. If any program reaches this minimal number
of repetitions before the rest of the programs, it will reexecute
once and again until all programs fulfill their requirements. This
is not a problem for representativeness, since the maximum
difference between the average and the final IPC can only
decrease. When all programs have been reexecuted at least the
corresponding minimal number of times, workload execution can
be stopped at any point, since we can ensure that the results are
representative. For example, in the workload composed by gcc
and vpr, requiring a MAIV of one percent, gcc and vpr must be
reexecuted at least seven and ten times, respectively. If gcc
finishes first, it must be reexecuted to keep the complete
workload executing, that is, to maintain a fair scenario for the
execution of the other thread. Once both benchmarks reach the
minimal number of repetitions, execution finalizes.

To use FAME in real scenarios, every benchmark in a workload
should be reexecuted until the desired MAIV is reached. To do
that, FAME requires access to the performance counters in the
processor, so that the IPC of every benchmark in the workload can
be computed whenever one of them finishes its execution.

The memory hierarchy is flushed before each program’s
reexecution because the OS allocates a new process address to
execute another instance of the same application. Thus, the thread
memory footprint corresponding to the program reexecuted is
erased by the OS. In simulation environments, when a program is

reexecuted, we flush the data of this thread from the memory
hierarchy. This flush procedure is done to prevent the processor
from unfairly taking advantage of the warming up of structures.
Indeed, real operating systems do so. In every context switch, the
TLB is invalidated and thus the memory hierarchy is flushed.
Nevertheless, we found that, for our simulation environment [5],
the initialization part (the first instructions executed after a context
switch) is a negligible percentage of the total execution time and it
does not vary the results. The difference between flushing and not
flushing is less than 0.01 percent for all cases.

6 ACCURACY EVALUATION

In order to show the benefits of FAME, this section provides a
comparison between FAME and previous methodologies in real
processors (in [5], we provided a detailed comparison of FAME
against those methodologies in simulation environments). Data are
presented in terms of per-thread IPC, since accurate per-thread IPC
measures involves accurate measures for all currently used metrics.

Figs. 4 and 5 show the accuracy results for an Intel Pentium 4 and
a Dual Core 5130 Xeon processors, respectively. These figures show
the average error of every methodology with respect to the baseline
(gray bars) and the maximum positive and negative errors.

The main observation from Figs. 4 and 5 is that all current
methodologies present a noticeable average error. The First and
Last methodologies present a significant error due to the fact that
when these methodologies finalize the execution of a workload, it
cannot be ensured that all programs are fairly represented in the
final result. For the Ix methodologies, we observe that the more the
executed instructions the less the error is, but at the cost of
increasing evaluation time. FAME is the methodology that
presents the lowest error, and thus the measurements obtained
with FAME are more representative of the final results than the
ones obtained with any other methodology. As it can be expected,
the lower the MAIV value is, the lower the error obtained by

1726 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

Fig. 4. Per-thread error in an Intel Pentium 4 with Hyperthreading. (a) Pentium 4 hardware context 0. (b) Pentium 4 hardware context 1.

Fig. 5. Per-thread error in a Dual Core Intel Xeon 5130. (a) Core 0; (b) Core 1.

FAME, since the higher precision is required. On the other hand, a
lower MAIV value also involves that a higher number of iterations
are needed, increasing execution time.

This shows that there is a clear trade-off between the number of
instructions a methodology executes and the error it obtains. It
depends on the researcher to decide about this trade-off, but it
should be noted that even using a five percent MAIV value will
require much lower execution time than the baseline execution,
just having a negligible þ=�5 percent of maximal error. We do
really believe that a MAIV of five percent is a good trade-off
between representativeness and evaluation overhead.

The key point here is that FAME adapts the finalization
moment of a workload to the behavior of the programs that
compose that workload. Hence, if a program presents an invariant
IPC, FAME executes few instructions for a lower error. For
example, when executing the workload eonþ twolf in the Intel
Pentium 4 scenario, in which both threads have a plain IPC, FAME
with a MAIV five percent executes only 7.1 billions of instructions
and leads to an error of 0.05 percent. The Last methodology
obtains the same error but executing 2:5� more instructions. On
the other hand, programs with higher IPC variance need to be
reexecuted several times in order to ensure a fair measurement.
For example, in the workload eonþ perlbmk in the Dual Core
scenario, perlbmk has a high IPC variance what makes FAME
(MAIV five percent) execute 2� more instructions than the
I2;000 methodology to obtain the same error (0.6 percent).

Fig. 6 shows the average number of instructions executed with
every methodology per hardware context (T0 and T1), Fig. 6a for
the SMT configuration and Fig. 6b for the CMP configuration. We
observe that in the SMT scenario, FAME always executes less
instructions than the Last methodology and nearly the same
amount of instructions than the I2;000 methodology for MAIVs of
20, 10, and five percent. FAME (MAIV two percent) only executes
50 percent more instructions than the I2;000 methodology. In the
CMP scenario (Fig. 6b), FAME (MAIV 20 percent) obtains, on
average, less error (0.11 percent) than the Last (0.2 percent) and the
I2;000 (0.36 percent) methodologies executing 25 and seven percent
less instructions, respectively.

7 RELATED WORK

Several methodologies and metrics have been proposed for
measuring the performance of multithreaded processors executing
noncooperative workloads. On the one hand, evaluation meth-
odologies determine how to take measurements from a workload.
On the other hand, metrics compute a representative value from
the measurements obtained using an evaluation methodology.

In this paper, we have evaluated the First, the Last, and the Fixed
Instructions methodologies, which have been already explained in

previous sections. FAME is an evaluation methodology that

provides more accurate measurements than any of the aforemen-

tioned methodologies.
Commonly used metrics are throughput [2], harmonic mean [7],

and weighted speedup [6]. According to [14], both harmonic mean

and weighted speedup have system-level meaning in multi-

program environments, while throughput has not. In particular,

harmonic mean represents user-perceived performance and

weighted speedup represents system-perceived performance, so

combining both metrics provides insight into the trade-off between

single-program performance and overall system performance. In

this paper, we have focused on per-thread IPC instead of on any

particular metric because, as mentioned before, per-thread IPC is

the only variable parameter used to compute any of these metrics.

In other words, showing accuracy for per-thread IPC demonstrates

accuracy for any of these metrics.
The most related work to FAME is the cophase matrix [15]. A

qualitative comparison between FAME and cophase matrix for

simulated environments can be found in [5]. In real scenarios, the

cophase matrix cannot be easily applied. The main problem to

port cophase to a real processor scenario is the implementation

of the checkpointing mechanism needed to start the execution of

one phase of a thread. This means that an operating system

should provide a mechanism to restore the whole memory image

of a process in a given point. On the other side, cophase makes a

fast-forward of 1.5M instructions per thread in a phase to warm

up memory structures, which is impossible to perform in a real

processor. Furthermore, if cophase is modified to avoid this fast-

forward by executing instructions, it cannot be ensured that both

threads in a phase reach, at the same time, the segment of code

to evaluate.

8 CONCLUSIONS

Research in multithreaded processors is becoming more and more

popular due to current industrial trends. In these researches, an

appropriate evaluation methodology is mandatory to guarantee

the accuracy of the results. However, current methodologies do not

ensure the representativeness of the obtained results and, even

worse, they do not ensure that a fair comparison can be done

between different experiments.
FAME is a novel evaluation methodology aimed to fairly

measure the performance of multithreaded processors. FAME is

mainly based on representative program reexecution. The basic

idea behind our proposal is that, when a program is reexecuted

enough times, its average performance converges to a representa-

tive result. Therefore, once all programs in a workload are executed

a required number of times, representativeness is assured.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010 1727

Fig. 6. Average executed instructions per context. (a) Pentium 4 scenario. (b) Dual Core scenario.

Any metric can use the measurements obtained with FAME
because a methodology just dictates how to take measurements
and not how to use them. Furthermore, since the main difference
among multithreaded designs is the amount of shared resources,
all of them present the same evaluation problems, making FAME
directly applicable to SMT processors, CMP processors, and even
CMP/SMT processors in both simulation and real scenarios.

As a case study, we apply FAME to real SMT and CMP
processors. In both cases, FAME achieves better accuracy than
traditional evaluation methodologies, proving that FAME is a
worthwhile contribution for the evaluation of future multithreaded
processors.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Education of
Spain under contracts TIN2007-60625 and CSD2007-00050, the
HiPEAC European Network of Excellence, the Barcelona Super-
computing Center, and an Intel fellowship. The authors would like
to thank Javier Vera, Jaume Abella, and Beatriz Otero for their
valuable help during the development of this work.

REFERENCES

[1] M. Serrano, R. Wood, and M. Nemirovsky, “A Study of Multistreamed
Superscalar Processors,” Technical Report #93-05, Univ. of California, 1993.

[2] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm, “Exploiting
Choice: Instruction Fetch and Issue on an Implementable Simultaneous
Multithreading Processor,” Proc. 23rd Int’l Symp. Computer Architecture,
1996.

[3] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller, and M. Upton,
“Hyper-Threading Technology Architecture and Microarchitecture,” Intel
Technology J., vol. 6, no. 1, pp. 4-15, 2002.

[4] http://www.specbench.org/, 2010.
[5] J. Vera, F. Cazorla, A. Pajuelo, O.J. Santana, E. Fernández, and M. Valero,

“FAME: FAirly MEasuring Multithreaded Architectures,” Proc. 16th Int’l
Conf. Parallel Architectures and Compilation Techniques, 2007.

[6] A. Snavely, D. Tullsen, and G. Voelker, “Symbiotic Job Scheduling with
Priorities for a Simultaneous Multithreaded Processor,” Proc. Int’l Conf.
Measurements and Modeling of Computer Systems, 2002.

[7] K. Luo, J. Gummaraju, and M. Franklin, “Balancing Throughput and
Fairness in SMT Processors,” Proc. Int’l Symp. Performance Analysis of
Systems and Software, 2001.

[8] F. Cazorla, E. Fernandez, A. Ramirez, and M. Valero, “Dynamically
Controlled Resource Allocation in SMT Processors,” Proc. 37th Int’l Symp.
Microarchitecture, 2004.

[9] E. Tune, R. Kumar, D. Tullsen, and B. Calder, “Balanced Multithreading:
Increasing Throughput via a Low Cost Multithreading Hierarchy,” Proc.
37th Int’l Symp. Microarchitecture, 2004.

[10] K. Luo, M. Franklin, S. Mukherjee, and A. Seznec, “Boosting SMT
Performance by Speculation Control,” Proc. 17th Int’l Parallel and Distributed
Processing Symp., 2003.

[11] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen, “Single
ISA Heterogeneous Multi-Core Architectures: The Potential for Processor
Power Reduction,” Proc. 36th Int’l Symp. Microarchitecture, 2003.

[12] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and J. Joyner, “POWER5
System Microarchitecture,” IBM J. of Research and Development, vol. 49, no. 4,
pp. 505-521, 2005.

[13] http://opensparc-t1.sunsource.net/, 2010.
[14] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for

Multiprogram Workloads,” IEEE Micro, vol. 28, no. 3, pp. 42-53, May 2008.
[15] M. Biesbrouck, T. Sherwood, and B. Calder, “A Co-Phase Matrix to Guide

Simultaneous Multithreading Simulation,” Proc. Int’l Symp. Performance
Analysis of Systems and Software, 2004.

1728 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

