
0 

Visualizing Type II Error in Normality Tests 

José A. Sánchez-Espigares, Pere Grima, Lluís Marco-Almagro 

Department of Statistics and Operational Research, Universitat Politècnica de Catalunya 

-BarcelonaTech, Barcelona, 08028, Spain 

 
 
 
 
 
Author’s footnote: 

 

José A. Sánchez-Espigares is an Associate Professor at Universitat Politècnica de 

Catalunya – BarcelonaTech, Barcelona, Spain (e-mail: josep.a.sanchez@upc.edu), Pere 

Grima is a Professor at Universitat Politècnica de Catalunya – BarcelonaTech, Barcelona, 

Spain (e-mail: pere.grima@upc.edu); and Lluís Marco-Almagro is an Associate Professor 

at Universitat Politècnica de Catalunya – BarcelonaTech, Barcelona, Spain (e-mail: 

lluis.marco@upc.edu) 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87657993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

Visualizing Type II Error in Normality Tests 

 

A Skewed Exponential Power Distribution, with parameters defining 

kurtosis and skewness, is introduced as a way to visualize Type II error 

in normality tests. By varying these parameters a mosaic of distributions 

is built, ranging from double exponential to uniform or from positive to 

negative exponential; the normal distribution is a particular case located 

in the center of the mosaic. Using a sequential color scheme, a different 

color is assigned to each distribution in the mosaic depending on the 

probability of committing a Type II error. This graph gives a visual 

representation of the power of the performed test. This way of 

representing results facilitates the comparison of the power of various 

tests and the influence of sample size. A script to perform this graphical 

representation, programmed in the R statistical software, is available 

online as supplementary material.  

Key Words: Normality test, Type II error, Visualizing information, Teaching statistics, 

SEPD Distributions 

1. INTRODUCTION 

Generally in hypothesis testing, what we want to verify has the burden of proof. 

Nevertheless, this is not the case in normality tests, where what we want to prove (the 

distribution is normal) is assumed as true. Moreover, not having an alternative 

distribution, the discussion on Type II error (considering the distribution is normal when 

it is not) is frequently skipped or at least minimized in general statistics courses, although 

this Type II error can be high. 

This problem has been widely discussed in the statistical literature, and several studies 

on the power of existing tests have been published. For example, Farrell and Rogers-

Stewart (2006), Yacini and Yolacan (2007) and Yap and Sim (2011) compare the power 
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of different normality tests against a set of alternative distributions. Results are shown 

in tables or power curves based on sample size, and a discussion of the most appropriate 

test depending on the kind of deviation from normality for each of the alternative 

distributions is included.  

Other papers emphasize the interest of having a visual representation of the test, 

facilitating the observation of departures from normality. This happens with the 

Kolmogorov-Smirnov test (KS), which is easy to understand and visualize, and still 

remains common in both textbooks and software packages (although its power is worse 

than that of other normality tests). In this regard, Rosenkrantz (2000) derives bounds 

for the theoretical quantile function suggesting a test that has the same visual 

representation advantages of the KS test. In a similar manner, Aldor-Noiman et al. (2013) 

propose a new method which provides simultaneous confidence bands for a normal 

quantile-quantile plot that are narrower in the extremes than those associated with the 

KS test, so higher powers are obtained, keeping the visualization benefit.  

This paper presents a visual and easy to understand way to show Type II error in 

normality tests. A graph shows a set of alternative distributions in a grid – a kind of 

mosaic of distributions – with the normal distribution in the center, and changing 

asymmetry as we move left and right, and changing kurtosis as we move up and down. 

A wide range of alternatives is then visible, and it is possible to test the hypothesis of 

normality for samples generated from each distribution. A sequential color scheme is 

then used to represent the probability of declaring normality, giving a visual 

representation of the power of the normality test used.  

The following sections develop in detail the construction of the graph, together with an 

example showing its practical application. 
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2. MOSAIC OF DISTRIBUTIONS 

Zhu and Zinde-Walsh (2009) show (as a particular case of a more general distribution) a 

version of the Skewed Exponential Power Distribution (SEPD) that can be adapted to our 

needs:  

 

𝑓𝑓(𝑥𝑥 | 𝜇𝜇∗,𝜎𝜎∗,𝛼𝛼,𝑝𝑝) =

⎩
⎪
⎨

⎪
⎧     

1
𝜎𝜎∗
𝐾𝐾(𝑝𝑝) exp�−

1
𝑝𝑝 �
𝑥𝑥 − 𝜇𝜇∗

2𝛼𝛼𝜎𝜎∗ �
𝑝𝑝

�                     if 𝑥𝑥 ≤ 𝜇𝜇∗   

  
1
𝜎𝜎∗
𝐾𝐾(𝑝𝑝) exp�−

1
𝑝𝑝 �

𝑥𝑥 − 𝜇𝜇∗

2(1− 𝛼𝛼)𝜎𝜎∗�
𝑝𝑝

�           if 𝑥𝑥 > 𝜇𝜇∗
 (1) 

  
We say that 𝑋𝑋~𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝜇𝜇∗,𝜎𝜎∗,𝛼𝛼, 𝑝𝑝), where 𝜇𝜇∗ and 𝜎𝜎∗ are respectively the location and 

scale parameters, and correspond to the mean and standard deviation in the case of the 

Normal distribution, 𝑝𝑝 ≥ 0 is the parameter related to kurtosis, 𝛼𝛼 ∈ [0, 1] is related to 

skewness and 𝐾𝐾(𝑝𝑝) is the normalization constant, 𝐾𝐾(𝑝𝑝) = 1 �2𝑝𝑝1 𝑝𝑝⁄ Γ(1 + 1 𝑝𝑝⁄ )�⁄ . 

Values 𝑝𝑝 = 2 and 𝛼𝛼 = 0.5 correspond to the Normal distribution.  

The kurtosis changes when moving 𝑝𝑝 and keeping all other parameters constant. 

Analogously, the skewness changes when varying 𝛼𝛼 (Figure 1). 

 

 
 

 

Figure 1: pdf of SEPD with 𝜇𝜇∗ = 0 and 𝜎𝜎∗ = 1, with different values of p keeping 𝛼𝛼 = 0.5 (upper row) 
and different values of 𝛼𝛼 keeping 𝑝𝑝 = 2 (lower row) 
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As we want all distributions to have the same values of 𝜇𝜇 and 𝜎𝜎, consider 

𝑋𝑋𝑧𝑧~𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (0; 1;𝛼𝛼;𝑝𝑝). From the expressions obtained by Zhu and Zinde-Walsh (2009) 

for 𝐸𝐸(𝑋𝑋) and 𝑉𝑉(𝑋𝑋) follows that:  

  
𝐸𝐸(𝑋𝑋𝑧𝑧) =

1
𝐾𝐾(𝑝𝑝) �

(1 − 2𝛼𝛼)
𝑝𝑝Γ(2 𝑝𝑝⁄ )
Γ2(1 𝑝𝑝⁄ )� (2) 

 
                  𝑉𝑉(𝑋𝑋𝑧𝑧) =

1
[𝐾𝐾(𝑝𝑝)]2 �

(3𝛼𝛼2 − 3𝛼𝛼 + 1)
𝑝𝑝2Γ(3 𝑝𝑝⁄ )
Γ3(1 𝑝𝑝⁄ ) � − 

                   −
1

[𝐾𝐾(𝑝𝑝)]2 �
(1 − 2𝛼𝛼)

𝑝𝑝Γ(2 𝑝𝑝⁄ )
Γ2(1 𝑝𝑝⁄ )�

2

 

(3) 

We write 𝐸𝐸(𝑋𝑋𝑧𝑧) = 𝐴𝐴 and 𝑉𝑉(𝑋𝑋𝑧𝑧) = 𝐵𝐵2 to lighten the notation and define: 

 𝑌𝑌 ≡ 𝑔𝑔(𝑋𝑋𝑍𝑍) =  𝜇𝜇 + 𝜎𝜎 �
𝑋𝑋𝑧𝑧 − 𝐴𝐴
𝐵𝐵

� (4) 

One can check that 𝐸𝐸(𝑌𝑌) = 𝜇𝜇 and 𝑉𝑉(𝑌𝑌) = 𝜎𝜎2. In order to define the probabilitity density 

function (pdf) of 𝑌𝑌, a change of variable is applied:  

𝑓𝑓𝑌𝑌(𝑦𝑦) = 𝑓𝑓𝑋𝑋[𝑔𝑔−1(𝑦𝑦)] �
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑔𝑔−1(𝑦𝑦)� 

With:  

𝑓𝑓𝑋𝑋(𝑥𝑥𝑧𝑧|0, 1,𝑝𝑝,𝛼𝛼) =

⎩
⎪
⎨

⎪
⎧     𝐾𝐾(𝑝𝑝) exp �−

1
𝑝𝑝
�
𝑥𝑥𝑧𝑧
2𝛼𝛼
�
𝑝𝑝
�                     if 𝑥𝑥 ≤ 0   

  𝐾𝐾(𝑝𝑝) exp �−
1
𝑝𝑝
�

𝑥𝑥𝑧𝑧
2(1 − 𝛼𝛼)�

𝑝𝑝
�           if 𝑥𝑥 > 0

 

Isolating 𝑋𝑋𝑧𝑧 in (4) we obtain: 

𝑔𝑔−1(𝑦𝑦) =
𝑦𝑦 − 𝜇𝜇
𝜎𝜎

𝐵𝐵 + 𝐴𝐴 

Therefore, we have: 
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𝑓𝑓(𝑦𝑦) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

     
𝐵𝐵
𝜎𝜎
𝐾𝐾(𝑝𝑝) exp�−

1
𝑝𝑝
�
𝐴𝐴 + 𝐵𝐵 �𝑦𝑦 − 𝜇𝜇

𝜎𝜎 �
2𝛼𝛼

�

𝑝𝑝

�             if 𝑦𝑦 ≤ 𝜇𝜇 −
𝐴𝐴
𝐵𝐵
𝜎𝜎   

  
𝐵𝐵
𝜎𝜎
𝐾𝐾(𝑝𝑝) exp�−

1
𝑝𝑝
�
𝐴𝐴 + 𝐵𝐵 �𝑦𝑦 − 𝜇𝜇

𝜎𝜎 �
2(1 − 𝛼𝛼) �

𝑝𝑝

�             if 𝑦𝑦 > 𝜇𝜇 −
𝐴𝐴
𝐵𝐵
𝜎𝜎

 (5) 

In order to draw the mosaic of distributions, values of 𝑝𝑝 between 1 (double exponential) 

and 50 (almost an uniform distribution) are used. The normal distribution (𝑝𝑝 = 2) is 

placed in the center. Each value of 𝑝𝑝 is equal to the previous one raised to a certain value 

𝑗𝑗, except for the second, which will always be equal to 21 𝑗𝑗�
𝑚𝑚
2−1.5�⁄ , where 𝑚𝑚 is the 

number of distributions on each side of the mosaic. For instance, for a 7x7 mosaic, these 

values will be: 1, 21 𝑗𝑗2⁄ ,  21 𝑗𝑗⁄ ,  2,  2𝑗𝑗,  2𝑗𝑗2 ,  2𝑗𝑗3. As the highest value of 𝑝𝑝 is equal to 50, 

in this case of 𝑚𝑚 = 7 it can be deduced that  𝑗𝑗 = �log 50
log 2

3 . In order to have the Normal 

distribution in the center, 𝑚𝑚 must be an odd number; therefore, in general, 𝑗𝑗 =

�log50
log2

𝑚𝑚
2−0.5

. 

For 𝛼𝛼 we take equidistant values between 0 and 1 (inclusive). Therefore, if we have 𝑛𝑛 

values, the 𝑖𝑖-th position will be  𝛼𝛼 = 𝑖𝑖−1
𝑛𝑛−1

 

With these criteria it is possible to obtain mosaics of distributions that vary in a 

reasonably equidistant way between the negative (𝛼𝛼 = 0) and positive (𝛼𝛼 = 1) 

exponential distributions, and from the double exponential (𝑝𝑝 = 1) to an almost 

uniform distribution (𝑝𝑝 = 50). Figures 2 and 3 show 7x7 and 25x25 mosaics made with 

the statistical software R. 
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Figure 2: Mosaic of distributions (7x7) with 𝜇𝜇 = 0, 𝜎𝜎 = 1 

 

Figure 3: Mosaic of distributions (25x25) 
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3. VISUALIZING THE PROBABILITY OF DECLARING NORMALITY 

Given a sample of size 𝑛𝑛, 𝑁𝑁 samples of each of the distributions in the mosaic are 

generated. The values of 𝜇𝜇 and 𝜎𝜎 do not affect the appearance of the mosaic as the 

distributions do not have a scale in the axis. The random number generation for each 

distribution is done by a procedure analogous to that used by Zhu and Zinde-Walsh 

(2009). Values following 𝑌𝑌~𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (0; 1;𝛼𝛼;𝑝𝑝) are generated from a random number 𝑈𝑈 

from a uniform distribution 𝑈𝑈(0, 1), and another random number 𝑊𝑊 from a gamma 

distribution with shape parameter 𝑘𝑘 = 1/𝑝𝑝 and scale parameter 𝜃𝜃 = 1, in the form:  

𝑌𝑌 =  

⎩
⎪⎪
⎨

⎪⎪
⎧ −𝛼𝛼𝑊𝑊1/𝑝𝑝

Γ �1 + 1
𝑝𝑝�

    if  𝑈𝑈 < 𝛼𝛼

(1 − 𝛼𝛼)𝑊𝑊1/𝑝𝑝

Γ �1 + 1
𝑝𝑝�

   if  𝑈𝑈 ≥ 𝛼𝛼

 

A normality test is performed for each of the 𝑁𝑁 samples of each distribution, and each 

𝑝𝑝-value is recorded. Given a certain level of significance, we assign a value to each 

distribution equal to the proportion of samples (out of 𝑁𝑁) for which the assumption of 

normality is not rejected.  

Figure 4 shows 7x7 mosaics with the probability (for each distribution) of declaring 

normality when using the Shapiro-Wilk test. These values are based on simulation of N 

= 10000 samples for each distribution. A level of significance of 5% is used. The 

calculations were performed with the R statistical software, using the 'nortest' package 

(Gross, 2013). Obviously, the power of the test increases with the sample size 𝑛𝑛. 

A sequential gray scale is used to display results more clearly. From lighter to darker 

colors the ranges are 0-0.05, 0.05-0.25, 0.25-0.50 and 0.50-1. 
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𝑛𝑛 = 25 𝑛𝑛 = 50 

  

𝑛𝑛 = 100 𝑛𝑛 = 500 

  

Figure 4: Mosaic of distributions including the proportion of times that the hypothesis of normality is not 
rejected (with 0.05 as significance level) using the Shapiro-Wilk test for the sample sizes shown 

 

Figure 5 shows the results obtained using the following normality tests: Kolmogorov-

Smirnov-Lilliefords, Anderson-Darling and Shapiro-Wilk, with samples of size 𝑛𝑛 = 25, 50 

and 100. Dark areas in the mosaics are basically symmetric about the vertical axis 

crossing the center of the mosaic, due to the fact that distribution shapes are also 

symmetric about this axis.  At the lower lines of the mosaic the distribution is almost 

uniform, so it changes scarcely from left to right. Therefore, the test either declares or 

not normality for all distributions in that line. On the contrary, skewness is relevant in 
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the upper lines of the mosaic, with very asymmetric distributions on the left and the 

right parts of the graph, so the test only declares normality, at most, in the central 

distributions. These behaviors give the candle flare shape that can be seen in the graphs.  

 

 KS-Lillefords Anderson-Darling Shapiro-Wilk 

𝑛𝑛= 

25 

   

𝑛𝑛= 

50 

   

𝑛𝑛= 

100 

   
Figure 5: 35x35 mosaic of distributions for comparing the results using three different normality tests 

with three sample sizes.  

 

The smaller the dark area in the graph, the more powerful the test is. Obviously, when 

the sample size is increased, the dark area becomes smaller. Looking at Figure 5 we can 

also conclude that Anderson-Darling test works better than KS-Lillefords test, and 

Shapiro-Wilk test better than Anderson-Darling. The ideal situation –unattainable when 
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working with samples – would be having only dark black in the center, where the normal 

distribution is located.  

In our experience, the existence and importance of Type II error in normality tests is 

often neglected both in academic and business settings. The graphs shown in this paper 

allow the visualization of Type II error and, in this way, help in understanding the 

limitations of these kind of tests. Also, the mosaic facilitates the comparison among 

normality tests and the impact of sample size in a visual manner.  

 

SUPPLEMENTARY MATERIALS 

An R script named “Visualizing Type II Error.R” is attached as supplementary material. 

The script allows graphical representations as those shown in this paper. Instructions on 

how to use the script are contained in the script code.  
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