
Universitat Politècnica de Catalunya (UPC)
- BarcelonaTech

Facultat d’Informàtica de Barcelona (FIB)

Master in Innovation and Research in Informatics (MIRI)

High Performance Computing (HPC)

2016-2017 |Spring Semester

Application Performance Evaluation
using Deep Learning

Author:
Simon Söderlind

Advisor:
Daniel Jimenez
Computer Architecture
Department (DAC)

Supervisor:
Judit Gimenez

Barcelona Supercomputing
Center (BSC)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87657939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

First of all, I would like to thank Jesus Labarta and Judit
Gimenez for proposing and giving me the opportunity to work
on this exciting project.

I would like to give another thank you to Judit Gimenez for
her supervising role for this thesis.

Thank you Daniel Jimenez for agreeing and taking on a tu-
toring role.

Finally, I would also like to thank all my family for their
constant support.

I

II

Abstract

Developing software for exascale systems will become even
more challenging than for today’s systems. Methods for eval-
uating the performance of applications and identifying po-
tential weaknesses are essential for reaching optimal perfor-
mance. Though the tools available today are not widely used,
and generally require some expert knowledge.

In recent years different deep learning techniques have en-
joyed great success in various fields, and especially in image
recognition. Though it is still to find its way in to the area of
application performance evaluation.

This work will take the first step towards introducing deep
learning to the area of HPC performance evaluation, opening
the door for others. Convolutional neural networks will be
fed images of timeline views of HPC applications and will
identify the intrinsic behavior of the application and return
some principal performance metrics.

The results show that deep learning techniques indeed can
be utilized for evaluating the performance of parallel applica-
tions, with the main limitation for its success being the sizes
of the data sets available. Furthermore a number of excit-
ing directions for taking the next step utilizing deep learning
techniques with performance evaluation are suggested.

III

IV

CONTENTS

Contents

1 Introduction, Motivation and Goals 1

1.1 High Performance Computing 2

1.2 Performance Evaluation 3

1.3 Deep Learning 5

1.4 Related Work 5

1.5 State of the Art CNN Architectures and Applications 6

1.6 Paper Outline 7

2 Performance Evaluation 9

2.1 POP Performance Metrics 9

2.2 BSC Tools Parallel Performance Analysis Suite 11

2.2.1 Extrae 11

2.2.2 Paraver 12

2.3 Analysis Process 14

3 Deep Learning 15

3.1 Neural Networks 15

3.1.1 Artificial Neural Networks 16

3.2 Training 21

3.2.1 Error Quantification 21

3.2.2 Backpropagation 22

3.2.3 Weight Initialization 25

3.3 Convolutional Neural Networks 26

3.3.1 The Convolution Layer 27

3.3.2 Pooling Layer 28

3.3.3 Example Architecture 29

3.3.4 Transfer Learning 30

V

CONTENTS

4 Methods 31

4.1 Software 31

4.2 Hardware 32

4.3 Neural Network Models 32

4.3.1 VGG-19 33

4.3.2 Custom Models 34

4.4 Data Generation 35

4.4.1 Data Pre-Processing 36

4.5 Training Process 37

5 Experiments 39

5.1 Unprocessed Data 39

5.2 VGG-19 Models 40

5.2.1 Classification 40

5.2.2 Regression 41

5.3 Custom Models 42

5.4 Importance of Large Data Sets 43

6 Discussion, Conclusions and Future Work 45

6.1 Discussion 45

6.2 Conclusions 46

6.3 Future Work 46

References 47

Appendices 56

A Detailed Results 57

A.1 Unprocessed Data 57

A.2 VGG-19 Classification Models 58

A.3 VGG-19 Regression Models 59

A.4 Custom 60

A.5 Importance of Data 61

VI

CHAPTER 1. INTRODUCTION, MOTIVATION AND GOALS

1 Introduction, Motivation and
Goals

With the evolution of high performance computing (HPC) moving towards
the exascale era, something which entails more complex hardware and often
utilizing heterogeneous clusters, the development of suitable high performance
applications will become more difficult as well. To optimize these applications,
profiling and tracing tools will become even more important. Though the
utilization of such tools and understanding of any anomalies typically require
some work and expert knowledge.

In recent years different deep learning techniques have enjoyed great success
in various fields, and are good at identifying structures from high dimensional
data. Though they have still not entered the area of application performance
evaluation. It would be interesting to see how they can be applied to this area.

This thesis aims to act as a proof-of-concept with the objective of introducing
deep learning techniques to the area of performance evaluation of HPC appli-
cations. More specifically, this thesis will combine the tools developed at BSC
with state-of-the-art techniques within the image recognition field, which will
facilitate the initial analysis process, removing the need of an expert.

With one of the pillars on which Paraver is built upon being the ideology
of visual inspection being the first step in an analysis, this angle will be ap-
proached from a deep learning standpoint. The recently very successful deep
learning - computer vision - technique of convolutional neural networks will
be utilized on timeline images generated with Paraver, to predict a number of
performance metrics for the application in question.

This thesis investigates whether deep learning techniques could be successfully
used for performance analysis by experimenting with different deep learning
models and addresses the following questions:

• Will models primarily designed for other tasks be a good starting point
or will a custom model for this task be more suitable?

• Will better results be achieved by pre-processing the input images?

• Is a lot of data essential for the models to perform well?

1

CHAPTER 1. INTRODUCTION, MOTIVATION AND GOALS

1.1 High Performance Computing

The values brought by supercomputers have become indispensable for govern-
ments, scientific researches and enterprises when it comes to generating new
discoveries and innovative breakthroughs for products and services. Not only
are supercomputers contributing to the scientific progress, but they are also
aiding in things like national security, industrial competitiveness, and overall
quality of life[34].

The broad spectrum of industries utilizing supercomputers include, amongst
many others:

Aerospace

– Aircraft manufacturers such as Airbus and Boeing are able to signifi-
cantly reduce the design-to-production timeline when launching new air-
crafts by utilizing supercomputers, something which have translated into
savings of tens of billions of dollars for the aerospace industry[34]. To
put the need for for HPC in the production of aircrafts into context, a
large passenger jet has got well over two millions individual parts, that
need to be simulated individually and as part of a larger system. For
this reason Airbus has got no less then three own supercomputers, all
listed on the Top 500 list[25].

Automotive

– In the same way as the aerospace sector has benefited greatly from HPC,
so have the automotive sector. General Motors is one of the companies
which relies in HPC in their development process. The tools used by GM
allow their engineers to make crash tests by performing simulations from
every angle with tests ranging from airbag performance to pedestrian
safety[9]. The IDC1 made a study estimating that HPC has enabled
the European automakers to reduce development time while still greatly
improving the crashworthiness, environmental friendliness and passenger
comfort of vehicles from 60 months, down to 24 months[44].

Energy

– Supercomputers are transforming both how energy is produced and how
it is consumed[34]. With HPC being used to make building more energy
efficient, as well as being fundamental in the research for more effective
energy production there are now projects like HPC4E2 dedicated for
these questions[12].

1International Data Corporation
2HPC for Energy

2

CHAPTER 1. INTRODUCTION, MOTIVATION AND GOALS

Health Care

– Another field which has made revolutionary progress thanks to HPC
is health care. For example, HPC-powered next-generation sequencing
techniques have reduced both the time and cost of a complete human
genome sequencing down to just a few days, with a cost as low as $1, 000.
Something which, just 15 years ago, would have cost over $1 billion, and
many person-years of work[23]. Similarly, researchers have now been able
to model the human heart down to the cellular level, using one of the
world’s most powerful supercomputer[47].

While it is clear that scientific researchers benefit extremely from HPC, the
use of supercomputers reach further than that. With at least one MLB3 team
utilizing supercomputers to evaluate how the different batters hold up against
different types of pitchers[21]. And with the movie industry highly rely on
supercomputer for animation of movies. In fact, media and entertainment
make up around 10% of the overall HPC server business[8]. The fact is that
results of HPC is all around us, even the creation of Pringles potato chips
utilizes supercomputers[11]. With the general awareness of the importance of
HPC being quite low, even though HPC plays an important role to the quality
of our lives[14], the organizers of the yearly Supercomputing Conference4 have
launched an awareness campaign under the hashtag #HPCMatters where the
industry share their stories of how HPC has transformed how they work[13].

The benefits of HPC and parallel programs are evident, but the creation of
such programs is much harder than the creation of sequential programs[58].
Things developers for parallel programs need to consider include among others;
how to divide the calculations, how to partition the data and where to place
it, how the different processes communicate with each other.

1.2 Performance Evaluation

With exascale computers around the corner, the ASCAC5 subcommittee on
Exascale Computing has identified some challenges for reaching such extreme-
scale computing[29]. One of the challenges was to have exascale ready ap-
plications. And for application to perform efficiently at such scales, tools for
evaluating their performance are of great importance.

The European Commission has funded POP CoE6 which provides services for

3Major League Baseball
4A yearly supercomputing conference for High Performance Computing, Network-

ing, Storage and Analysis sponsored by ACM and IEEE Computer Society http://

supercomputing.org/index.php.
5Advanced Scientific Computing Advisory Committee
6POP: The Performance Optimisation and Productivity Centre of Excellence in Com-

puting Applications

3

CHAPTER 1. INTRODUCTION, MOTIVATION AND GOALS

academia as well as industry in the EU to help improve the performance of
their HPC applications[16]. The POP project consists of different partners
across Europe7 providing teams with, among other areas, excellence in per-
formance tools and tuning. There are a number of commercial performance
tools available such as the Intel tool-set8, CrayPat9, and Allinea tools10. But
there are also a number of open-source tool-sets developed by POP partners
and collaborators, such as:

Paraver

Paraver is a tool utilized together with Extrae, both developed at BSC, which
is based on the philosophy that visual inspection should be the first step when
capturing a program’s characteristics and behavior. Atop of a good visual
view, Paraver provides a complementary statistical view which offers a different
viewpoint of the application under analysis (Section 2.2 covers a more in-
depth introduction to Paraver, and the BSC tools parallel performance analysis
suite).

Scalasca

The SCalable performance Analysis of LArge Scale Applications (Scalasca)
toolset, is a joint11 German project[20]. Scalasca is an analysis tool for a post-
mortem analysis of trace files created with the independent Score-P measure-
ment system[19]. The analysis with Scalasca identifies potential performance
bottlenecks, in particular those concerning communication and synchroniza-
tion, and offers guidance in exploring their causes.

Even though there is no lack of available tools, the use of such tools are not
very widely spread, with manual code instrumentation (i.e. inserting code for
time measurements) still being the most common way of performance analysis.
With one main reason for this being the inhibitive complexity of getting started
with these tools[45].

7BSC (Spain), USTUTT (Germany), Jülich (Germany), NAG (UK), RWTH Aachen
(Germany), TERATEC (France)

8Trace Analyzer and Collector[26], VTune Amplifier[27]
9Cray Performance Measurement ans Analysis Tools [6]

10MAP[1], Performance Reports[2]
11Forschungszentrum Jülich - Jũlich Supercomputing Centre, Technische Universität

Darmstadt - Laboratory for Parallel Programming, and German Research School for Simu-
lation Sciences - Laboratory for Parallel Programming

4

CHAPTER 1. INTRODUCTION, MOTIVATION AND GOALS

1.3 Deep Learning

Deep Learning is a very hot area which has managed to drastically improve
the state-of-the-art in multiple different AI tasks. It turns out that deep learn-
ing techniques are very good at identifying intricate structures in high di-
mensional data, something which has made it applicable in many domains of
science[51]. It has not only beaten records in typical AI problems such as im-
age recognition[49, 72], and speech recognition[66]. But it has also shown to
be successful at predicting the activity of potential drug molecules[55], recon-
structing brain circuits, language translation[71], analyzing particle accelerator
data[10], and much more.

In short, deep learning is a machine learning genre inspired by the neurons
in the visual cortex of the brain work, where certain neurons react to differ-
ent scenarios, often through the weighted connection to previously activated
neurons. The combinations of these neurons can be used to represent very com-
plex scenarios. The weighted connections are not hand-designed, but rather
learned through a learning process. A technique which allows for the models
to improve with experience and data[40].

The origins of deep learning could arguably be traced back to 1873 when
Alexander Bain introduced the neural groupings as the first models on neu-
ral networks (or even back to 300 BC when Aristotle began the attempts to
understand the human brain)[74].

Deep learning techniques have since been limited by the computational re-
sources and data sets available for training[62]. Though with GPUs12 con-
stantly improving and now being used to perform work beyond just graphics,
the training of deep learning models can now be done in a more manageable
time. And has recently become very popular again, arguably with AlexNet[49]
winning the ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)13

back in 2012 (with groundbreaking results), as starting point.

1.4 Related Work

While, to the best of my knowledge, no work utilizing deep learning models for
analyzing the performance of HPC applications have been done before, there
exist works with flavors related to the work performed in this thesis.

Clustering, an unsupervised machine learning technique was utilized in [39] to
group the computational regions with similar behavior into cluster for further
grouped analysis. They utilize the DBSCAN14 algorithm which is a density

12Graphical Processing Units
13The ImageNet challenge is evaluating algorithm for object detection and image classifi-

cation at large scale. The data set includes over 1.3M images in 1000 categories. [65]
14Density-Based Spatial Clustering of Applications with Noise[33]

5

CHAPTER 1. INTRODUCTION, MOTIVATION AND GOALS

based algorithm which, from a 2D performance space (such as, instructions
completed and IPC), based on the proximity of the behavior of computations,
group them into clusters. Some practical uses of cluster analysis include ex-
trapolation of performance data and reduction of input data for multilevel
simulations.

In [54], Llort et al. turned to the computer vision field in their pursuit of
insight on how the behavior of parallel applications evolve for different scenar-
ios where the conditions for the execution change. They extended the work
done in [39] and utilized a tracking algorithm to track and analyze how the
behavior of computational clusters change for different scenarios. With this
tracking technique it is possible to see how different factors (such as hardware,
software versions, scales and program configurations) affect the performance
of the application.

Efforts have also been made towards automating the analysis process, similar
to this thesis, though using a numerical approach for obtaining the performance
metrics. In [63] the authors extract performance metrics, utilizing Paraver, for
multiple core counts and further provides a model for extrapolating the metrics
and to predict their evolution with scale.

1.5 State of the Art CNN Architectures and Applica-
tions

The development of convolutional neural networks (see Section 3.3) is rapidly
improving every year, a good example of this can be seen by looking at the
winners for the ImageNet challenge for the last years. Figure 1.5.1 shows how
the winners in the classification category performed over the last 5 years, with
last years winners Trimps-Soushen’s model achieving a 2.99% top-5 error. A
trend which many of the newer models follow is that the models are becoming
deeper. AlexNet (winner of ILSVRC2012) is built up by five convolutional
layers and three fully connected layers, with the winners of 2015 presenting
one ensemble of 152 layers[42].

The convolutional neural networks are also used to achieve state of the art and
groundbreaking results in different applications. In [56], the authors utilized
CNNs for the image question answering task, and are able to answer questions
such as:What is the largest blue object in this picture? and How many pieces
does the curtain have?

The authors of [53] are utilizing convolutional networks for detecting extreme
weather in climate data sets. A task which normally requires human exper-
tise in defining events based on physical variables, but is now achieved with
convolutional neural networks with an accuracy between 89− 99%.

6

CHAPTER 1. INTRODUCTION, MOTIVATION AND GOALS

2012 2013 2014 2015 2016

5

10

15

Year

E
rr

or
(%

)

Figure 1.5.1: Improvement of the top 5 error for the classification task of
the ImageNet challenge over the years.

1.6 Paper Outline

The outline of the rest of the thesis is the following: Chapter 2 covers the
performance metrics sought in the the experiments as well as a more in depth
explanation of the performance tools utilized.

Chapter 3 describes the deep learning techniques utilized in obtaining the
aforementioned performance metrics.

Next, Chapter 4 explains the techniques, together with the software and hard-
ware, used for the experiments.

Chapter 5 presents the experiments performed and their results in a flowing
fashion.

Finally, conclusions and a discussion together with recommendations for future
work are given in Chapter 6.

7

CHAPTER 1. INTRODUCTION, MOTIVATION AND GOALS

8

CHAPTER 2. PERFORMANCE EVALUATION

2 Performance Evaluation

An introduction to performance evaluation for HPC systems was given in Sec-
tion 1.2. This chapter will give a more thorough explanation of the concepts
used in this thesis. First the performance metrics used in this work are intro-
duced, followed by a more detailed introduction to the performance tools this
work are utilizing.

2.1 POP Performance Metrics

The pursuit of optimizing performance of a parallel code can be an intimi-
dating task, and it is often hard to know where to start. The communication
pattern for the application might be inefficient? Or perhaps the computational
distribution is not very well divided? To provide guidance for questions like
these POP has defined a methodology for analysis of parallel codes, which pro-
vides a quantitative measurement of the relative impact of the factors inherent
in parallelisation[17].

The POP methodology is using a hierarchy of metrics where each metric rep-
resent a common cause of inefficiency for parallel programs. The metrics make
it possible to compare the parallel performance across different scenarios (e.g.
different core counts, different input, etc.) to identify potential weaknesses of
the code. The metrics are calculated as efficiencies in the range between 0 and
1, where a higher number indicates a better efficiency (which also can be pre-
sented as a percentage 0− 100%). As a general guideline, an efficiency above
0.8 can be regarded as acceptable, whereas values lower than that indicate
performance issues where a deeper look is needed.

The hierarchical structure of the metrics can be seen in Figure 2.1.1. At the
very top is the Global Efficiency which can be used to assess the overall quality
of the parallelisation of the application. There are typically two main causes
of inefficiencies in parallel applications, which lead to the next level in the
hierarchy.

The Global Efficiency is calculated by taking the product of the Computation
Efficiency and Parallel Efficiency. The Computation efficiency metric repre-
sents how well the application is scaling and is calculated by computing the
total time spent performing useful computations1 across all processes. In a

1Useful computation refers to the time the application is performing actual computations

9

CHAPTER 2. PERFORMANCE EVALUATION

strong scaling scenario the sum of the useful computation time should be the
same at all scales for a perfect efficiency. Two possible causes for poor Com-
putation Efficiency are that dividing the work increases the total amount of
computations required, and that the use of additional processes lead to con-
tention on shared resources. These can be examined through the Instruction
Efficiency and IPC Efficiency, respectively. Whereas they do not directly
make up the Computational Efficiency, they can provide good insight.

Global
Efficiency

Parallel
Efficiency

Computation
Efficiency

Communication
Efficiency

Load
Balance

Transfer
Efficiency

Serialization
Efficiency

Instruction
Efficiency

IPC
Efficiency

Figure 2.1.1: Hierarchical structure of the POP metrics, with directly af-
fecting dependencies shown with whole arrows, and indirect
dependencies with dashed arrows. The three metrics impor-
tant for this thesis are shown in bold.

The Parallel Efficiency exposes the inefficiencies caused by dividing the work-
load over processes and then communicating in between them. Similarly to
the Global Efficiency, the Parallel Efficiency is defined as the product of two
metrics lower in the hierarchy. In this case those metrics are Load Balance and
Communication Efficiency. The Load Balance tells how good the distribution
of the workload is, and is calculated as the ratio between the average time each
processor is performing useful work and the maximum time.

LoadBalance =

∑n
p=1(UsefulComputationT imep)/n

MAX(UsefulComputationT imen)
(2.1)

The Communication Efficiency identifies applications which suffer because they
spend too much time communicating, instead of performing useful work. The
communication efficiency is defined as the ratio between the processor spending
the most time performing useful work and the total runtime.

which progresses the program, and not, for example, time spent waiting in a barrier.

10

CHAPTER 2. PERFORMANCE EVALUATION

CommunicationEfficiency =
MAX(UsefulComputationT imen)

TotalRuntime
(2.2)

From the Communication Efficiency metric it is possible to compute two sub-
metrics which breaks it further down. The metrics are Serialization Efficiency
and Transfer Efficiency, but to derive these metrics a simulation of an ideal
network2 is required. By comparing the total runtime on a simulated ideal
network and the real network we can measure the inefficiencies due to data
transfer, which is quantified with the Transfer Efficiency metric. Once the
Transfer Efficiency is calculated, it is straight-forward to compute how much
of the communication inefficiency comes from processors waiting for other pro-
cessors to be ready to communicate. This is computed by dividing the Com-
munication Efficiency by the Transfer Efficiency, and is finally quantified in
the Serialization Efficiency metric.

2.2 BSC Tools Parallel Performance Analysis Suite

While there exist different tools for performance evaluation, in this thesis the
tools from BSC tools[4] are used. The main tools used during this work include:
Extrae - for creating trace files; and Paraver - for visualizing and obtaining
metrics form the traces.

2.2.1 Extrae

The Extrae package is devoted to generating the trace files of the applications
which is later used by Paraver and Dimemas3. Extrae is able to intercept calls
to parallel runtimes, such as MPI, and creates a sequence of time stamped
records, which are collected in a trace file for post mortem analysis. Extrae
can also capture when and where entries and exits to parallel runtimes occur,
at nanosecond precision and with minimum overhead. Extrae can capture
much more information than that, such as IPC and cache misses (by utilizing
PAPI counters[5]), who communicates with who, and from where in the code a
certain call was made. For this thesis the above mentioned features will suffice.

The trace files generated are made up of three types of records:

State: A record which associates a state value for a thread during a certain
time interval. Paraver is not associating any semantics to the encoding of the
state field, allowing for great flexibility to take on any value. Examples of state
values are; Running - the thread is performing normal computations; Waiting

2In an ideal network the communication occurs instantly.
3Dimemas - a simulation tool to answer ”what if” questions. Will not be used in this

work.

11

CHAPTER 2. PERFORMANCE EVALUATION

- the thread is idle, waiting for some criterion (e.g. waiting for other threads
to reach a barrier); Not yet created - the thread is not included in the set of
working threads (e.g. in the beginning of an application before the master
thread has created its slaves).

Event : A record representing a punctual event occurring at a certain time for
a specific object. Just as for the state record, Paraver is not associating any
semantics to this record, and they are simply encoded as two integers, type
and value. Examples of events recorded by Extrae include, cache misses for
different levels, instructions completed and entry/exit points of MPI routines,
user functions, OpenMP parallel regions and CUDA kernels.

Relation (Communication): A record establishing a relationship between two
object in two points in time. Examples for relation records include commu-
nications between processes in MPI applications, movement of tasks between
threads in OmpSs applications, and memory transfers in CUDA or OpenCL
applications.

2.2.2 Paraver

Paraver is a visual API, a browser, for traces generated with Extrae. Key
features in the design of Paraver were: expressive power, flexibility and ca-
pability to efficiently handle large traces. The modular structure of the tools
helps achieving this goal.

Two of the main design choices on which the analytic power of the tool stand
on are its lack of semantics and hardwired metrics. Not having fixed semantics
allows for extending the tools to support new performance data or program-
ming models without any requirements of changing the visualizer, capturing
it in a Paraver trace is enough. In a similar fashion, with the metrics not
being hardwired, but instead programmed, a huge number of metrics may be
displayed. To compute the metrics the tool offers a large set of time functions,
a filter module as well as a mechanism which allows for combining two time-
lines. Any metrics once computed can easily be saved in configuration files
which makes it as simple as loading the saved file when the metric is to be
used again.

Paraver offers a minimalistic set of views, with the philosophy that, differ-
ent views should provide qualitatively different types of information. The two
views available are a timeline view and a statistical view. The timeline view
represents the behavior along time and processes, with each window displaying
a single view; a piecewise constant function of time. The types of functions
displayed fall into three groups; Categorical, Logical, and Numerical. The cat-
egorical functions show things such as, in which state the thread is in. The
categorical functions take on an integer value [0, n] (where n is a small num-
ber). The logical functions display information such as, whether the thread is
in a specific user function or MPI call. The logical functions are mapped to the

12

CHAPTER 2. PERFORMANCE EVALUATION

set {0, 1}. Finally, the numerical functions display things like the duration of
an MPI call, or the number of cache misses. The numerical functions can take
on any real value. An example of a timeline view can be seen in Figure 2.2.1.
The functions can be represented in different ways in the views, where two
of the most common ways are color encoding (where each functional values is
represented with an individual color) and Not null gradient (where the func-
tional values are represented according to a gradient scheme with low values
taking a light green color and high values a dark blue color. Zero values are
represented with a black color).

Figure 2.2.1: Paraver timeline view, with the different threads showing
on the y-axis and time on the x-axis. The different colors
represent different states of the application.

The statistical view provides numerical analysis of the traces. The statistical
view can be illustrated as both tables and histograms (both in 2D and 3D),
Figure 2.2.2 shows an example of both a table view as well as a histogram view.
The table view allows for analyzing statistics for specific categorical control val-
ues (such as different MPI calls, or different user functions). Relevant statistics
to display include time (in seconds or percentage) spent in each call, number
of calls, average duration of calls, etc. The histogram view displays bins of
numeric control values. Each bin represents a range of values, which allows
for an analysis providing insight on things such as how many instructions the
different computation bursts perform for different threads, which IPC value is
most common, etc.

(a) Table view
(b) Histogram view

Figure 2.2.2: Statistical views for Paraver traces.

13

CHAPTER 2. PERFORMANCE EVALUATION

With trace files potentially being fairly large, Paraver offers different manip-
ulation methods for reducing the data down to a more manageable size. The
traces can be filtered, only keeping the relevant data. Such filtered traces could,
for example, be generated such that it only shows computations larger than
a certain threshold, or only showing runtime related calls (removing informa-
tion about hardware counter, etc.). A feature for cutting the traces exists as
well, keeping all information but only for a certain time interval, or for certain
processes. Typical reasons for cutting the traces are: removing initialization
and finalization periods (typically not of interest) and for analysis of local
behaviors not globally representative.

The Paraver kernel also provides a non-graphic interface, Paramedir. Paramedir
can read traces, apply standard configurations and write a human readable
ASCII output. The non graphical version is very useful in scripts and batch
processing.

2.3 Analysis Process

Many applications tend to have a repetitive behavior, and often a few itera-
tions are doing a good job at representing the global behavior of an applica-
tion (though within each iteration there might be many regions with separate
behaviors). Reducing the traces to fewer iterations could then significantly
increase the manageability of the traces while still providing a representative
analysis. Something which is exploited in this work, by fitting one iteration
into a single timeline view.

The initial search space for the analysis would then be the metrics defined
in Section 2.1. Once the fundamental factors for the performance have been
identified, a deeper analysis can be made towards finding causes for any inef-
ficiencies.

14

CHAPTER 3. DEEP LEARNING

3 Deep Learning

This chapter introduces some basic background knowledge needed, for the un-
familiar reader, to understand the concepts used in this thesis. This chapter
begins by introducing some basics about neural networks, followed by expla-
nations on the training process, and ends with covering convolutional neural
networks.

3.1 Neural Networks

Neural networks, under which deep learning falls, have taken its inspiration
from the human brain, which can be described as a biological neural network.
The principles embraced are how the brain is able to process information and
train itself. Much about the human brain remain a mystery, but the computer
scientists work on the understanding that the brain works by having neurons
collecting signals from other neurons through a number of fine structures called
dendrites. The neurons are sending out electrical activity of different strengths
along an axon, a long thin stand. The axons then splits to thousands of small
branches, at the ends of which there is a synapse. The synapse takes the
activity coming from the axon and converts it into an electrical effect, which
can then either excite, or inhibit the connection to the receiving neurons.
Would the inputs to a neuron be excitatory large enough compared to its
inhibitory input, the neuron would ”fire” and electrical activity down its axon.
Figure 3.1.1 illustrates this concept. The learning process then consists of
altering the effectiveness of the synapses, in such that the influence of a certain
neuron on another changes.

Neural networks have many noteworthy characteristics, which make them an
attractive solution for machine learning. Their curious ability to be able to take
complicated or imprecise data and obtain meaning from it, is very useful when
trying to identify patterns and trends which would otherwise be too complex
for a human or more conventional computer techniques to see. Furthermore,
its ability to learn how to perform tasks based on the data given and to create
its own representation and organize what it has learnt are all advantages which
are appealing for machine learning.

15

CHAPTER 3. DEEP LEARNING

Figure 3.1.1: Illustration of how the communication between neurons oc-
cur.1

3.1.1 Artificial Neural Networks

The artificial equivalent of the biological neuron was first mathematically de-
fined in 1943 by Warren McCulloch and Walter Pitts, and is known as the
McCulloch-Pitts-Neuron, or MCP neuron[57]. The MCP neurons work un-
der certain assumptions which can be summarized with the McCulloch-Pitts
output rule:

Ni =

{
1

∑
jWNj ≥ θ AND no inhibition

0 otherwise
(3.1)

and visually in Figure 3.1.2. The rules say that each neuron is a binary device
with a fixed threshold, theta. That the weights (W) of the excitatory inputs
are all of identical weight and how the inhibitory input possesses the absolute
veto over all excitatory inputs.

OutputθInhibitory input

Excitatory input
WNj

WNk

Figure 3.1.2: Illustration of the McCulloch-Pitts output rule.

While the MCP neuron was an important definition as it introduced how
neuron-like elements could execute, it had no learning capabilities, so it was

1Image from http://www.mysearch.org.uk/website1/html/106.Connectionist.

html.

16

CHAPTER 3. DEEP LEARNING

basically a hard coded device. The next major stepping stone came in 1958,
with the introduction of the Perceptron, which is similar to what we are using
today[64]. There are some important differences between the perceptron and
the MCP neuron. The weights and thresholds for perceptrons are not all
identical, and the weights can take-on both positive and negative values. The
inhibitory synapse is removed, but most important of all, the perceptron has
got a learning rule. The perceptron can be defined as

Ni =

{
1 ui > 0

0 ui ≤ 0
(3.2)

where

ui =
∑
j

WjNj + θj (3.3)

as well graphically in Figure 3.1.3, with Wj, Nj and θj being the weight, input
and bias of input neuron j, respectively.

I1

I2

...

Ij

ui

W ij

+ θ

0

input

output

ui

1

0

Figure 3.1.3: Illustration of the behavior of a perceptron. A neuron ui
takes j inputs, sums them together and adds a bias θ. If the
result is higher than a threshold, 1 is returned, otherwise 0.

The learning schema for the perceptron fairly is straightforward. Let δ be the
difference between the desired target and the output (N) of the perceptron for
a given input. Then the change in the weight is chosen such that it remains
proportional to delta. For a certain learning rate 0 < ε < 1, we then have:

∆W = εδN. (3.4)

17

CHAPTER 3. DEEP LEARNING

3.1.1.1 Feed-Forward Neural Networks

The most basic use of a perceptron would be to have two inputs and a single
output, which could, for example, classify which of the inputs is larger. This
is an example of a single-layer feed-forward neural network (like Figure 3.1.3
illustrates), where the information is only flowing in one direction, different
from recurrent neural networks2 where the information can flow backwards
too, recurrent neural networks will not be further mentioned in this thesis.

Single-layer perceptrons can have more than just two input and a single out-
put. They can have an arbitrary number of both and can be used for linear
regression. Though the single-layer perceptron is only able to distinguish lin-
early separable pattern, illustrated in Figure 3.1.4, and in 1969 it was shown
that it was incapable of learning an XOR-function3[59].

Figure 3.1.4: Limitations of the single-layer perceptron.4

The shortcomings of single-layer neural networks can be addressed with multi-
layer neural networks which adds one, or multiple, extra layers between the
input and the output layers. These extra layers are referred to as hidden
layers. Figure 3.1.5 illustrates a multi-layer feed-forward network with one
hidden layer. In fact, in 1989 it was showed in the first version of the universal
approximation theorem that a feed-forward network with only a single hidden

2Recurrent neural networks create an internal memory as connections creates cycles,
something which makes them very useful for processing sequences of inputs for tasks such
as, speech recognition, translation and self-driving cars.

3Exclusive Or (⊕): a⊕ b = (a ∨ b) ∧ ¬(a ∧ b)
4Image from http://www.cs.nott.ac.uk/~pszqiu/Teaching/G53MLE/ffnets-note.

pdf.

18

CHAPTER 3. DEEP LEARNING

layer could approximate any continuous function f ∈ R, although it mentions
nothing about its learnability[43].

x1

x2

x3

...

xi

y1

y2

y3

...

yj

z1

z2

z3

...

zk

x1

x2

x3

xi

z1

z2

z3

zk

Input Layer Hidden Layer Output Layer

Figure 3.1.5: Illustration of a multi-layer feed-forward neural network
with i neurons in the input layer, j neurons in the single
hidden layer, and k neurons in the output layer.

3.1.1.2 Activation Functions

The original MCP neuron defined the output as one if a certain condition
was met and zero otherwise. That is, the MCP neuron activates if a certain
condition is met, according to its activation function. The MCP neuron had
only a single activation function defined, namely the step/threshold function,
see Figure 3.1.6(a).

But since the MCP neuron a number of activation functions have become
popular. The activation functions provide a crucial role in the neural networks
as they add non-linearity to the networks, without which none of the complex
task could be solved. Different activation function posses different properties
making some more suitable than others. The historically most popular one is
the sigmoid non-linearity, which can be expressed as:

σ(x) = 1/(1 + e−x) (3.5)

and illustrated in Figure 3.1.6(b). The sigmoid function takes on values
”squeezed” into the range [0, 1], where very large negative numbers takes on
zero and large number takes on one. This was a nice interpretation of how the
firing rate of a biological neuron was perceived to behave. Though in practice
it has some major drawbacks which make them impractical during training
(training explained in Section 3.2), something which has lead to them rarely
ever being used any longer.

19

CHAPTER 3. DEEP LEARNING

(a) Step/threshold (b) Sigmoid

(c) Tanh (d) ReLU

Figure 3.1.6: Illustrations of different activation functions.

A non-linearity which deals with some of the drawbacks of the sigmoid is the
tanh non-linearity. A tanh neuron is actually just a scaled sigmoid neuron
which maps the input to a number in the range [−1, 1], which actually solves
one of the big issues of the sigmoid, and for that reason it is in practice always
preferred over the sigmoid. Tanh can be seen in Figure 3.1.6(c) and can be
expressed as

tanh(x) = 2σ(2x)− 1. (3.6)

Though the most popular activation function the last few years has been the
ReLU (Rectified Linear Unit) which simply thresholds the input at zero

f(x) = max(0, x), (3.7)

as illustrated in Figure 3.1.6(d). The ReLU non-linearity solves the big com-
mon issue with the tanh and sigmoid, namely the problem with vanishing
gradients5, and is also significantly faster, as no expensive computations are
needed (exponentials, etc.). Though the ReLU neuron is not without its issues,

5A well known problem, where the gradient for the earlier layers become so small, where
even a large change in the input would cause a small change in the output.

20

CHAPTER 3. DEEP LEARNING

it turns out that it is fairly brittle during training. A large enough gradient
flowing through a neuron can cause updates in such that they never will change
again, and in effect ”dying”. One may find that as much as 40% of the neurons
are ”dead”[7].

There are multiple attempts to deal with the dying ReLU problem, with vary-
ing success, such as, setting a roof, Γ, on the output:

f(x) = max(0,min(x,Γ)), (3.8)

or like the CReLU which concatenates a positive and a negative ReLU:

ρc , (max(0, x),max(0,−x)), (3.9)

or the leaky ReLU, which allows negative values too, though only at a fraction
(α) of the magnitude of the positive ones:

f(x) =

{
x x ≥ 0

αx x < 0
(3.10)

3.2 Training

The feed-forward networks described have shown good results on many tasks,
but for them to perform adequately their weights need to be properly set. The
original MCP neuron required manual definition of the weights. Though this
can now be done through a training step, where the model learns appropriate
values for the weights.

3.2.1 Error Quantification

For the network to be able to learn, a way to quantify how good/bad a network
performs is needed. This is done by defining a loss function suitable for the
task in question. There are a number of different loss functions, both for
classification problems and for regression problems.

Classification problems try to determine to which class a certain data belong
to. This could be, for example, to determine whether an animal is a dog
or a cat. Some popular loss functions for classification problems include the
Softmax classifier and the Sigmoid classifier. The Softmax classifier calculates
a probability distribution for the classes as the following equation shows.

Si =
efyi∑
j e

fj
(3.11)

21

CHAPTER 3. DEEP LEARNING

Equation (3.11) normalizes the class scores f to fit in the range 0-1. Softmax
is typically used together with cross-entropy to then get a sense of how ”off”
this prediction is from the ground truth. With the probability distribution
vector S and the ground truth one-hot encoded6 label vector L we then define
the cross-entropy loss as:

C(S, L) = −
∑
i

Lilog(Si). (3.12)

Whereas the classification problems try to put the input into a certain cate-
gory, the regression problems are trying to predict a real-valued quantity. It
could be, for example, the price of a house. For regression problems, it is
common to compute the difference between the predicted values f and the
ground truth y. The L1 norm or the L2 squared norm would then measure on
differences. As will be explained in subsection 3.2.2 it is common to compute
multiple examples in one ”batch”. One would than take the mean error over
all examples, so for the mean L2 squared norm that would then be:

L̄2 =

∑n
i=1 (fi − yi)2

n
(3.13)

which also goes under the name, mean squared error (MSE).

3.2.2 Backpropagation

The backpropagation phase of neural network is where the actual learning oc-
curs. In backpropagation, the error of the predicted output is calculated, and
then propagated backwards through the network, hence the name backpropa-
gation.

The goal of the backpropagation is to tune the weights in such a way that
the loss function is minimized. This is achieved by taking the derivative of
the equations in the model and following the gradient in the direction which
minimizes the error. This method of following the gradient to minimize a
problem is called gradient descent ; a simple example of its usage can be seen
in Figure 3.2.1. This work will not go into details on how gradient descent
works, for more detailed explanation the reader is directed to [40].

Something which separates machine learning algorithms from the general opti-
mization algorithm is that the objective function is typically made up of a sum
over the training data. There are different approaches to manage this, where
the straightforward thing would be to compute the gradients for all train-
ing data in each training step, an approach called Batch Gradient Descent.
Whereas computing the gradient for the entire training set would certainly

6In a one-hot encoding, a vector with as many elements as there are classes have one zero
values, except for the correct category which has value one.

22

CHAPTER 3. DEEP LEARNING

Figure 3.2.1: Example behavior of gradient descent.7

lead to the most correct update, these computations are very costly and it has
been shown that the improvements in the calculated gradients are far from
linear with the increase of data used during the calculations.

Another approach would then be to only utilize a single training example per
step, a method called Stochastic Gradient Descent (SGD). SGD might be the
method which gives most value for each computation, though it could lead to
very abrupt changes when encountering outliers. It is also unable exploit the
parallel capabilities provided by GPUs, a parallelity which has been vital in
the recent popularity of neural networks.

Instead the most common approach is to use a small, randomly sampled, subset
of the training data for each training step, a method known as Mini-batch Gra-
dient Descent. The number of training images chosen for each training step, the
batch size, will vary widely, but are driven by the following considerations[40]:

• Larger batch sizes will result in a more accurate gradient estimate, though
with less than linear returns.

• GPUs tend to be underutilized by very small batches, leading to a min-
imum batch size below which no reduction in time will be witnessed by
reducing the batch size.

• The memory requirements tend to scale with the batch size, and is often
the limiting factor for GPUs when increasing the batch-sizes.

• Some architectures show improved performance when choosing batch-
sizes as powers of two.

7Image from [40].

23

CHAPTER 3. DEEP LEARNING

While the gradient descent strategy is a popular one for optimization, it can
be slow. To speed up the learning, a technique called momentum[61] could be
added. The momentum algorithm uses past gradients to calculate an expo-
nentially decaying moving average and continues to move in its direction. The
concept of momentum is illustrated in Figure 3.2.2.

Figure 3.2.2: An example of the behavior of the momentum technique,
with the black arrows showing the gradient, and the red
lines the path taken when momentum is added.8

A final concern when backpropagating through the network is how big of a
change to make to the weight, that is, what should the learning rate be? Too
large learning rate and we might never converge, too small learning rate and
it might take very long time converge (see Figure 3.2.3).

x

f(x)

(a) Large learning rate

x

f(x)

(b) Small learning rate

Figure 3.2.3: Illustration of the problem of choosing the correct learning
rate. Too high and it will never converge, too small and it
will take too long time.

An approach to manage this issue is by having an optimizing algorithm with
adaptive learning rate. One such algorithm is the Adam Optimizer [48]. Adam

8Image from [40].

24

CHAPTER 3. DEEP LEARNING

(formally described in Algorithm 1) calculates adaptive learning rates for each
parameter and updates them individually. Similar to the momentum technique
it keeps an exponentially decaying average of the past gradients m, and in
addition, it stores the exponentially decaying average of past squared gradients
v. m and v are estimates of the first and second moments (the mean and
uncentered variance) of the gradients and are used the update the weights θ,
based on the initial learning rate ε using the following (simplified) update rule:

θt+1 = θt − ε
m√
v
. (3.14)

There are other optimization algorithms with adaptive learning rates, such as
Adadelta[76], RMSprop[18] and Adagrad [32]. Exactly which learning algorithm
to use is still unclear, but it has been shown that algorithms with an adaptive
learning rate perform fairly robust over a wide range of tasks[67].

Algorithm 1 Adam Optimizer Algorithm

1: Input: Step size ε
2: Input: Exponential decay rates for moment estimates, ρ1 and ρ2 in [0,1).
3: Input: Small constant for δ for numerical stabilization
4: Input: Initial parameters θ
5: procedure Train(ε, ρ, δ, θ)
6: Initialize 1st and 2nd moment variables s = 0,r = 0
7: Initialize time step t = 0
8: while stopping criterion not met do
9: Sample a minibatch of m examples from the training set

{x(1), ..., x(m)} with corresponding targets y(i).

10: Compute gradient: g ← 1
m
∇θ

∑
i L(f(x(i); θ), y(i))

11: t← t+ 1
12: Update biased first moment estimate: s← ρ1s+ (1− ρ1)g
13: Update biased second moment estimate: r ← ρ2r + (1− ρ2)g � g
14: Correct bias in first moment: ŝ← s

1−ρt1
15: Correct bias in second moment: r̂ ← r

1−ρt2
16: Compute update: ∇θ = −ε ŝ√

r̂+δ
17: Apply update: θ ← θ +∇θ

3.2.3 Weight Initialization

Before the training can begin, the weights in the network need to be initialized
to some value. Without any knowledge on what the final values should be, it
would be reasonable to assume that half of the values would be positive, and
half negative. Something sounding reasonable would then be to initialize all
weights to zero, which could be expected to be ”the best guess”. Though this
would be an error, since this would lead to all neuron to compute the same

25

CHAPTER 3. DEEP LEARNING

output, something which would also lead to them computing the same gradient
during the backpropagation, and thus undergoing the same changes. To solve
this, some type of symmetry breaking will be needed. Something which can
be achieved by choosing small random numbered, centered around zero and
with unit standard deviation (e.g. from a Gaussian) as initial values for the
weights.

A problem emerging with this approach is that the variance grows with the
number of inputs, and ideally the variance should remain the same for each
layer. This can be achieved by utilizing the Xavier initializer[37], where the
variance is set to 1/N , with N being the number of input neurons.

3.3 Convolutional Neural Networks

While there are a number of different classes of artificial neural networks, when
it comes to image processing, convolutional neural networks (CNNs) are the
most popular ones. CNNs are very similar to ordinary Neural Networks, they
have weights and biases which are learnable. They have some non-linearity
introducing element and in the end will predict a class score or some real
value. What makes CNNs different is their assumption that the input data
has a grid-like topology, such as with images.

As described earlier, and seen in Figure 3.1.5, in regular NNs all neurons in
one hidden layer is connected to all neurons in the next hidden layer. It
is clear to see that, with a normal sized image of 200x200 pixels and three
color channels, resulting in 120′000 weights, the amount of parameters as more
neurons are added will become overwhelming. Instead, what the CNNs do is
taking advantage of correlations in the neighborhoods of features, which allows
for a significant reduction in the number of parameters, without reducing the
performance. Two main ideas leveraged by CNNs are sparse interactions and
parameter sharing.

As mentioned earlier, having fully connected neurons when images become
larger (thousands or even millions of pixels) is not desirable. CNNs utilize
sparse interactions by making the kernel smaller than the input image. This
can be done as, even though the entire image may contain millions of pixels,
meaningful feature such as edges, can be found with kernels of only tens or hun-
dreds of pixels. Figure 3.3.1 illustrates the difference between fully connected
and sparse interactions. This approach allows for a reductions of parameter
of many orders of magnitude. Looking at Figure 3.3.2 it can be seen how, in
deep networks, neurons in deeper layers can be connected, indirectly, with a
larger part of the input.

The parameter sharing idea refers to idea of reusing the parameters in more
than just a single place in a model, which is the case for the normal neural
networks, where each element is used in a single multiplication, and then never

26

CHAPTER 3. DEEP LEARNING

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

Figure 3.3.1: Difference between sparse connections and fully connected.
As seen, a lot less connection are formed for the sparse con-
nected one.

z0 z1 z2 z3 z4

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

Figure 3.3.2: In deep architectures, even with sparse connections, a large
part of the input can interact indirectly with deeper neurons.

revisited again. This is a quite logical idea, as if a kernel was used to identify a
vertical edge at a certain location, that same kernel would be able to identify
edges at other locations as well.

3.3.1 The Convolution Layer

In the convolution layer, a certain numbers of kernels of varying size (both
dependent on the architecture used) move over the image performing a dot-
product and reducing the sum which produce a single output per kernel (known
as feature maps). The movement of the kernels and its operations are nicely
illustrated in Figure 3.3.3. Each kernel creates a feature map which could be,
depending on the the usage of padding or not, and the stride used, either the
same size as the input or, more commonly, smaller. The stride determines how
many steps the kernels should move between the calculations, a stride of two
would roughly half the size of the image. Adding padding to an image entails
adding a frame of zeros to the image. This is done in some architecture to
make sure that each element of the kernel reaches all parts of the image.

27

CHAPTER 3. DEEP LEARNING

(a) Movement of a kernel across the feature
maps/ images

(b) For each step, the kernel is
multiplied with the input and
the sum will make up the out-
put.

Figure 3.3.3: Behavior of a kernel in a convolutional operation.11

Each of the kernels reacts to different features, at lower levels these could be
things like edges or colors. Whereas the later layers react on combinations of
previous layer which could be things like eyes, feet, etc. Figure 3.3.4 shows the
filters learned in the early layers by Krizhevsky et. al. in the famous AlexNet9.

Figure 3.3.4: Illustration of the filters learned in AlexNet. Some are re-
sponsive of certain colors, others by certain structures.12

3.3.2 Pooling Layer

It is common to introduce a pooling layer occasionally between the convolu-
tional layers. The pooling layer’s main task is to reduce the dimensionality of
the data, and is also useful for reducing noise and overfitting. One can describe
the idea with the pooling layer by clarifying how, if one wants to identify a

9Winning architect of the 2012 ImageNet challenge.
11Image from [7].
12Image from [7].

28

CHAPTER 3. DEEP LEARNING

face in an image, the pixel-wise precision on where the eye is located is not
needed, merely if it is on the left or right side of the face would suffice.

The pooling layer works by a kernel of a specific size which moves over the
image (similar to the convolutional layer) and performs some type of pooling
operations; the most popular ones are average pooling and max pooling. A
very nice visual example of the downsampling of a 224x224 image using max
pooling can be seen in Figure 3.3.5.

Figure 3.3.5: Example of a max pooling operation with a 2x2 kernel with
i stride of two, which downsamples the image from 224x224
to 112x112.10

Whereas having some pooling layers in the architecture is still the most popular
approach, there are arguments that the pooling layers should be removed, in
favor of extra convolutional layers[70]. As seen earlier, this can be achieved
by increasing the stride in the convolutional layers, which in effect reduces the
dimensionality.

3.3.3 Example Architecture

The main building blocks of convolutional neural networks have now been
introduced; an example architecture using these building blocks can be seen
in Figure 3.3.6 which depicts the architecture of LeNet-5 [52].

LeNet-5 is a CNN architecture designed for digit recognition. The model takes
a 32x32 grey-scale image as input and passes it through a series of seven
layers, to finally receive an prediction [0-9]. It consists of two convolutional
layers; the first generating six feature maps of 28x28 pixels, by using a 5x5
kernel. The second convolutional layer also uses 5x5 kernels, but are producing
16 feature maps of 10x10 pixels. After each of the convolutional layer there
is a sub-sampling (pooling) layer, which reduces the dimensionality to one
fourth. After the second sub-sampling, three fully connected layer are added,
which perform the classification based on the features extracted by the previous
layers. The fully connected layers behave like the original neural networks,
where all neurons are connected to all others.

10Image from [7].

29

CHAPTER 3. DEEP LEARNING

Figure 3.3.6: Illustration of the LeNet-5 architecture.11

3.3.4 Transfer Learning

Deep neural networks have one big flaw; they are fairly hard to train. Typically
huge amount of data and a decent amount of compute power are needed.
In fact, it has become less and less common for people to train their own
model from scratch, i.e. with randomly initialized weights. Instead it is more
common to pre-train the model on a very large data set (such as ImageNet
with 1.3 million images) and then utilize the trained model, either as a fixed
feature extractor or as initial weights for later fine-tuning. Andrew Ng12 claims
that transfer learning will be the next driver of machine learning’s commercial
success[24]. this is possible due to the interesting phenomenon that the features
extracted in the earlier layers tend to be useful for other applications as well.
A feature map trained to identify a straight line trained on cat recognition will
still be useful when trying to identify birds[75].

Whereas utilizing a large data-set to pre-train the network is helpful when
only a small data set for the task at hand is available, general difficulties of
training deep neural networks remain. A much quicker way is to use an already
pre-trained model made publicly available13 and adapt the final classification
or regression to fit the problem in hand, and to keep the earlier stages of the
model fixed.

11Image from [52].
12Chief scientist at Baidu and professor at Stanford.
13For example, Model Zoo[3] has multiple pre-trained models available for other people

to adapt to their task at hand.

30

CHAPTER 4. METHODS

4 Methods

In this chapter the methodologies and techniques, as well as software and
hardware used in this thesis are described.

4.1 Software

For obtaining the training data the BSC performance tools with Paraver and
Extrae (as introduced in Section 2.2) will be used.

For generating, and preprocessing (Section 4.4.1) the training data from the
Paraver trace files, no special software was used. A simple combination of bash
scripts and python code with common libraries (e.g. NumPy1 and Matplotlib2)
were used.

When it comes to software for the deep learning model there are quite a few
to choose from, such as: Caffe[46], Theano[73], Torch[30] and scikit-learn[60].
But for this thesis Tensorflow [28], the open source Google developed scalable
machine learning library is used.

Tensorflow was released in November 2015 and has quickly gained popular-
ity. It is now one of the most popular deep learning libraries and has over
18′000 commits on GitHub3. In Tensorflow, machine learning algorithms are
represented as computational graphs. Computational graphs (also known as,
dataflow graphs) is a form of directed graphs where the nodes describe some
type of computations, and the edges represent the data flowing between these
operations[38]. The usage of data flow graphs allows for leveraging the par-
allel computational capabilities of multi-core CPU, GPU and even multiple
GPUs[36]. The data in Tensorflow is represented by tensors (by which the
name came from) which are typed n-dimensional arrays, and on which the
computations are performed. Once a computational graph has been defined,
it must be launched in a Session, which places the graph onto a CPU or GPU
and provides the methods to run the computations.

1NumPy: Fundamental package for scientific computing in Python,
http://www.numpy.org/

2Matplotlib: Python plotting library, producing publication quality figures,
https://matplotlib.org/

3https://github.com/

31

CHAPTER 4. METHODS

4.2 Hardware

The computations performed in this thesis were executed on two different
machines, one for training the models, and another for generating data and
testing the models.

The training was done on a bullx R421-E4 server which consists of[15]:

• 2 Intel Xeon E5-2630 v3 (Haswell) 8-core processors (each core at 2.4GHz
with 20MB L3 cache)

• 2 K80 NVIDIA GPU Cards

• 128 GB Main memory, 8 DIMMs of 16 GB -DDR4 @ 2113 MHz - ECC
- SDRAM

• Peak Performance: 250.94 TFlops

• 120 GB SSD local storage

• 1 PCIe 3.0 x8 8 GT/s, Mellanox ConnectX-3FDR 56 Gbit

• 4 Gigabit Ethernet ports

The usage of a GPU allowed for training more models and with larger images
within a time frame otherwise not feasible with just a CPU.

The image generation and testing of the model were performed on a laptop
with a Intel Core i7-4600U CPU, running at 2.1GHz, and having 8GiB DDR3
1600MHz memory.

Whereas training the model on a laptop would not have been feasible, no GPU
is needed for evaluating or utilizing the trained models.

4.3 Neural Network Models

In the endeavor of achieving a model which was able to predict the metrics
sought after, a number of different approaches were taken, all of which were
utilizing convolutional neural networks. The two main approaches for training
the network were:

1. Designing own models.

2. Using existing popular models and re-training them.

32

CHAPTER 4. METHODS

While the task at hand naturally would be considered a regression problem,
typically classification problems are somewhat easier to train[7]. In this thesis
both approaches will be explored. To achieve this, the final fully connected
layer together with the loss function will be adapted for each of the two ap-
proaches.

4.3.1 VGG-19

As pre-existing model, the VGG-19 [68] architecture was used, although with
some alterations. VGG-19 was introduced for the 2014 ILSVRC, where it won
first and second place in localization and classification tasks respectively. The
authors have openly released the weight used in the Imagenet challenge, which
were trained on the Imagenet data set[31], containing 1.3 million images of
1000 different categories. The weights were released to the Caffe model zoo
repository[3] and have later been converted to be compatible with Tensorflow
models[22].

The original VGG-19 model is built up by 16 convolutional layers, as seen in
Table 1, and three fully connected layers. The convolutional layers are utilizing
fairly small kernels sizes of 3x3, and have set the stride and padding set to 1,
which leads to the output feature maps have the same spatial dimensions as the
input feature maps. For each of the convolutional- and fully connected layers
ReLUs (explained in Section 3.1.1.2) are utilized to achieve non-linearity. For
down-sampling of the feature maps, the convolutional layers were intertwined
with max pooling layers (introduced in Section 3.3.2). The max pooling lay-
ers utilized non-overlapping 2x2 kernels (i.e. stride two), which reduced the
feature vector sizes by a factor of two. The full spatial configuration of the
convolutional and pooling layers of VGG-19 can be seen in Table 1 and more
thoroughly explained in the paper [68].

Layer
Weight

dimension
Kernel

Size Stride

Size
reduction

factor
Pooling/

Activation

Data (1,1)
Conv1 1 (64,3,3,3) 3 1 ReLU
Conv1 2 (64,64,3,3) 3 1 ReLU

Pool1 2 2 (2,2) Max Pooling
Conv2 1 (128,64,3,3) 3 1 ReLU
Conv2 2 (128,128,3,3) 3 1 ReLU

Pool2 2 2 (4,4) Max Pooling
Conv3 1 (256,128,3,3) 3 1 ReLU
Conv3 2 (256,256,3,3) 3 1 ReLU
Conv3 3 (256,256,3,3) 3 1 ReLU
Conv3 4 (256,256,3,3) 3 1 ReLU

Pool3 2 2 (8,8) Max Pooling

33

CHAPTER 4. METHODS

Conv4 1 (512,256,3,3) 3 1 ReLU
Conv4 2 (512,512,3,3) 3 1 ReLU
Conv4 3 (512,512,3,3) 3 1 ReLU
Conv4 4 (512,512,3,3) 3 1 ReLU

Pool4 2 2 (16,16) Max Pooling
Conv5 1 (512,512,3,3) 3 1 ReLU
Conv5 2 (512,512,3,3) 3 1 ReLU
Conv5 3 (512,512,3,3) 3 1 ReLU
Conv5 4 (512,512,3,3) 3 1 ReLU

Pool5 2 2 (32,32) Max Pooling

Table 1: Structure of the original VGG-19’s convolutional and pooling lay-
ers.

4.3.1.1 Architecture modifications

With the original VGG-19 model as a baseline, a number of alternative models
were produced. For the models created for this thesis, only the convolutional
and pooling layers (i.e. the feature extraction) from VGG-19 were used. Three
fully connected layers were then used to produce the desired output (regres-
sion/classification).

As utilizing average pooling instead of max pooling has been seen to show
some improvements[35], one alteration tested was to replace the original max
pooling layers with average pooling layers throughout the network. For similar
reasons, tests were performed where the activation functions were changed from
ReLUs to Leaky ReLUs.

The models based on the VGG-19 architecture will be referred to using the
following naming convention:

VGG-19 Pooling Activation Output

Each of the parameters will take on a single letter with the following mapping:

Pooling Activation Output
Max pool Average pool ReLU Leaky ReLU Classification Regression

M A R LR C R

4.3.2 Custom Models

Apart from the VGG-19 based models, attempts at creating and training new
models from scratch were also made. The custom models created were de-
signed following the design principles presented in [69]. More specifically, the

34

CHAPTER 4. METHODS

design patterns which the custom models will aim at fulfilling are: to strive
for simplicity, to increasing symmetry, and following a pyramid shape.

It has been shown that simple architectures with very few different types of
units can perform very well[70]. Based on these findings the custom models
will only consist of four types of computations; convolutions, ReLUs, average
pooling, and fully connected multiply and adds.

There is also evidence of having symmetry (i.e. repeating structures) in an
architecture to facilitate training of deeper networks, such as in [50]. With this
in mind, the custom models will be constructed of blocks of two convolutional
operations and two ReLUs, followed by an average pooling.

Block = {CONV −ReLU − CONV −ReLU − AV G.POOL}

The final design principle on which the models were based on was for the ar-
chitecture to have a pyramid shape. One of the fundamental design patterns
for convolutional networks is the trade-off between maximum representational
power and elimination of redundant information. With the architecture hav-
ing a pyramid shape refers to that there should be an overall smooth down-
sampling, combined with an increasing number of channels in throughout the
architecture, which is exemplified in [41]. Taking this in consideration, the
number of channels added from one layer to another is kept small, and the
pooling performed is only done with a stride of two, not higher.

The custom models created consist of a number n of the previously explained
blocks, followed by three fully connected layers.

Architecture = Block × n− FC6− FC7− FC8

Architectures up to four blocks (n = 4) were used for the custom models. The
naming convention for the custom models is the following:

Custom n, n ∈ [1, 2, 3, 4].

4.4 Data Generation

The models were trained against Paraver MPI timeline images of different
traces available within the POP project at BSC. A total of 20′418 images were
generated, for different core counts, ranging from 6 cores up to 48 cores, with
efficiency metrics evenly divided between 0− 100%.

To generate the images, a small chop4 of the trace file was made using Paramedir.
The chops were then loaded with Paraver, which produced a timeline image,

4Chopping a trace file reduces the size of the trace. For this work, the chops were of a

35

CHAPTER 4. METHODS

similar to Figure 4.4.1, and calculated the performance metrics for that specific
chop. The workflow of the data generation can be seen in Algorithm 2.

Figure 4.4.1: Example of an unprocessed training image. Different ranks
are projected on the y-axis, and time along the x-axis. The
different colors represent time spent in different MPI calls,
with black being time outside of MPI.

Algorithm 2 Data Generation Workflow

1: procedure Generate Data(Tracefile F , Time Interval Ti,j)
2: Chop ← Paramedir(F ,Ti,j)
3: Image,Metrics ← Paraver(Chop)
4: Return Image, Metrics

The images generated in this process were of 200x525 pixels. Having the images
being larger in width than in height allows for more detailed information about
the trace in the same image.

4.4.1 Data Pre-Processing

During the work, whether pre-processing the images would produce better re-
sults or not was investigated. Pre-processing the images produces two main
benefits for the training. Firstly, non-relevant information in the image (such
as the name of the trace) are filtered out, thus reducing the intellectual ca-
pabilities needed for the model. Secondly, the dimensionality of the images is
reduced, which in turn means less computations and less memory needed for
the model, leading to faster convergence.

The pre-processing consists of three phases. First the black borders were
cropped out of the image (See Figure 4.4.1 for example of an image before
pre-processing.). Secondly, the black padding between the ranks was removed,
and the timeline was re-painted with time spent within the parallel runtime
in blue, and time performing useful work in green. Finally, the image was
re-scaled to fit the dimensions 144x490 pixels (re-scaling the images allows for
different core counts to be trained on the same model), which is about a third

(application dependent) fraction of the total execution time, resulting in a trace file with
the same number of ranks, but just a small time frame.

36

CHAPTER 4. METHODS

of the pixels of the original image. The workflow of the pre-processing can be
seen in Algorithm 3 and an example output image is depicted in Figure 4.4.2.

Algorithm 3 Image Pre-Processing

1: procedure Process Image(Image I)
2: Cropped ← CropImage(I)
3: ReColored ← ReColor(Cropped)
4: ReScaled ← ReSacale(ReColored,144,490)
5: Return ReScaled

Figure 4.4.2: An example of a pre-processed image, where the blue color
shows time spent in a parallel runtime and green color dis-
plays performing useful work.

4.5 Training Process

For the experiments, the total data set was divided into two sets; a training
set and a test set. The data was divided in a 85/15 split, where 85% of the
data formed the training set and 15% was used for the test set. The purpose
of this division is to allow for the models to be evaluated on data never seen
during the training process, thus being able to evaluate the model passed the
point of overfitting. During the training phase, any alterations on the weights
and biases will only be done based on the training set. The performance of
the models will then be evaluated based on the test set.

During the experiments both the loss-function (Section 3.2.1) as well as the
training, and testing accuracy will be monitored. Where the final conclusions
will be drawn from the test accuracy. With the predictions being real valued
number (although represented as a classification problem for some of the mod-
els) representing the percentage of the different metrics, the accuracy will be
evaluated by how close the prediction is to the actual value. The accuracy
is evaluated at seven thresholds, checking how much of the validation data
are correctly predicted with an error less than that threshold. The thresholds
are: 1%, 2%, 3%, 4%, 5%, 10% and 15%. The values the models are trained to

37

CHAPTER 4. METHODS

predict are the three performance metrics introduced in Section 2.1, which are
parallel efficiency, load balance, and communication efficiency. The models are
trained for each of the metrics separately.

38

CHAPTER 5. EXPERIMENTS

5 Experiments

This chapter presents the experiments for the different models, together with
their results in a running fashion.

As mentioned in Section 4.5, the experiments done are training the models
introduced in Section 4.3 to, based on an input image, predict the three per-
formance metrics shown in Section 2.1 (Parallel Efficiency, Load Balance, and
Communication Efficiency).

The 85/15 split of the data of 20′417 images left a training set with 17′355
images and a test set with 3′062 images. Where the models will be evaluated
based on how they perform against the images in the test set.

Common for all the models was how the weights were initialized, as well as the
learning algorithm used. All weights were initialized using the Xavier initializer
(see Section 3.2.3) and the biases are all set to zero. All the models will also
utilize the Adam optimizer for their weight updating (see Section 3.2).

The classification models all used softmax and the cross-entropy loss for the
training. And all the regression models used the MSE loss.

The first experiments considered data which had no pre-processing done to
them and will be covered in Section 5.1. Then the experiments for the VGG-
19 based models and the custom models are given in Section 5.2 and Section
5.3, respectively. The importance of large amounts of training data will be
evaluated in Section 5.4.

The results of the performance of the models are presented in bar plots, and a
numerical representation of the results can be found in Appendix A. The bar
plots will project the percentage of the test data which was correctly predicted
within the specific threshold values.

5.1 Unprocessed Data

For the evaluation of the unprocessed data (images such as in Figure 4.4.1),
the VGG-19 based regression models are used. The learning rate is set to 10−5

and the training was stopped after 10′000 epochs (each epoch consisting of a
batch of 32 images), as no further improvements were seen. The training had
then been going on for just over seven hours.

As seen in Figure 5.1.1 the models did not achieve a very high accuracy for the

39

CHAPTER 5. EXPERIMENTS

three performance metrics, with only 18% of the data being predicted within
1% of the actual value for the parallel efficiency, and even worse (16.2%) for
the communication efficiency. Even though somewhat acceptable values for
the load balance metric were achieved (with 95.2% of the data being predicted
within 3% of the actual value), the experimentations for the rest of the models
will use pre-processed data.

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

50

100

C
or

re
ct

ly
E

va
lu

at
ed

%

(a) Load Balance

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

20

40

60

C
or

re
ct

ly
E

va
lu

at
ed

%

(b) Communication Efficiency

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

20

40

60

C
or

re
ct

ly
E

va
lu

at
ed

%

VGG 19 A L R VGG 19 M L R
VGG 19 M LR R VGG 19 A LR R

(c) Parallel Efficiency

Figure 5.1.1: Results for the models trained with unprocessed data.

5.2 VGG-19 Models

The experiments for the VGG-19 based models are presented in this section.
All the training was performed on preprocessed data, as explained in Section
4.4.1.

5.2.1 Classification

The training for the classification models was performed in batches of 32 images
at a time and was run during a total of 18′000 epoch, after which no further

40

CHAPTER 5. EXPERIMENTS

improvements were seen (controlled by monitoring the loss function), which
took around eleven hours. The learning rate for the training was set to 10−5.

In Figure 5.2.1 the results for the classification models can be seen. For the best
performing of these models to reach a half-decent accuracy of close to 90%, an
error of 5% in the predictions will still be present. To get close to (still without
reaching) a 100% accuracy, up to a 10% and 15% error will be present in the
predictions, while only reaching a 97% and 98% accuracy, respectively. Such
performance would be considered too imprecise to be useful.

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

50

100

C
or

re
ct

ly
E

va
lu

at
ed

%

(a) Load Balance

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

50

100

C
or

re
ct

ly
E

va
lu

at
ed

%
(b) Communication Efficiency

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

50

100

C
or

re
ct

ly
E

va
lu

at
ed

%

VGG 19 A L C VGG 19 M L C
VGG 19 M LR C VGG 19 A LR C

(c) Parallel Efficiency

Figure 5.2.1: Results for the VGG-19 based classification models.

5.2.2 Regression

The training for the regression models was performed in batches of 32 images
at a time, and was executed during a total of 16′000 epoch, after which no
further improvements were seen (controlled by monitoring the loss function),
which took around twelve hours. The learning rate for the training was set to
10−5.

Figure 5.2.2 shows the accuracies achieved by the VGG-19 based models with
regression heads for the three performance metrics. As seen in the bar plots,

41

CHAPTER 5. EXPERIMENTS

the two models with average pooling are the ones with highest performance,
with close to 100% accuracy with less than a 3% error, for all three metrics,
which would be considered more than acceptable. For the highest performing
model, not a single image is mispredicted with an error of 10%.

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

50

100

C
or

re
ct

ly
E

va
lu

at
ed

%

(a) Load Balance

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

50

100

C
or

re
ct

ly
E

va
lu

at
ed

%
(b) Communication Efficiency

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

50

100

C
or

re
ct

ly
E

va
lu

at
ed

%

VGG 19 A L R VGG 19 M L R
VGG 19 M LR R VGG 19 A LR R

(c) Parallel Efficiency

Figure 5.2.2: Results for the VGG-19 based regression models.

5.3 Custom Models

The custom models were all trained using batches of 32 preprocessed images,
with a learning rate set to 10−4. The training for the custom models was
performed during 10′000 epochs, after which no further improvements were
seen, something which took between two and six hours, depending on the
number of blocks in the model.

In Figure 5.3.1, where the results for the custom models are presented, overall
very low accuracies are seen. Even for the best performing model, Custom 2,
less than 20% of the data is correctly predicted with less than a 5% error, for all
metrics (except communication efficiency which just reaches 20%). Extending
the error tolerance to 15% still only roughly half of the data is predicted

42

CHAPTER 5. EXPERIMENTS

correctly, making the resulting trained models useless.

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

20

40
C

or
re

ct
ly

E
va

lu
at

ed
%

(a) Load Balance

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

20

40

60

C
or

re
ct

ly
E

va
lu

at
ed

%

(b) Communication Efficiency

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

20

40

C
or

re
ct

ly
E

va
lu

at
ed

%

Custom 1 Custom 2
Custom 3 Custom 4

(c) Parallel Efficiency

Figure 5.3.1: Results for the custom models.

5.4 Importance of Large Data Sets

With a common requirement for many deep learning methods being a large
data set. And seeing how the models pre-trained on a data set of 1.3M images
clearly outperforms the models trained from scratch with the specific data set
generated of 20K images, further experiments were performed to investigate
how the sizes of the data sets are affecting the results.

The best performing model, VGG 19 A LR R, was trained again, this time
while reducing the available images in the training set. The model was trained
again three times, against training sets of 5′000, 10′000, & 15′000 images, and
compared to the 17′355 images in the full-sized training set.

The training was performed similarly to the full data set, with batches of 32
images, and a learning rate of 10−5. The models ran for between 12′000 and
16′000 epoch after which no further improvements were seen.

43

CHAPTER 5. EXPERIMENTS

The results of this experiments can be seen in Figure 5.4.1, which clearly show
how the accuracy of the models improves as the training set is increased.

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

50

100

C
or

re
ct

ly
E

va
lu

at
ed

%

(a) Load Balance

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

50

100

C
or

re
ct

ly
E

va
lu

at
ed

%

(b) Communication Efficiency

< 1%
< 2%

< 3%
< 4%

< 5%
< 10%

< 15%
0

50

100

C
or

re
ct

ly
E

va
lu

at
ed

%

5000 10000
15000 17355

(c) Parallel Efficiency

Figure 5.4.1: Results when the model was trained using limited data.

44

CHAPTER 6. DISCUSSION, CONCLUSIONS AND FUTURE WORK

6 Discussion, Conclusions and
Future Work

6.1 Discussion

The experiments identified two models (VGG 19 A L R, and VGG 19 A LR R)
with the capability of predicting accurate performance metrics within a few
percentages for close to 100% of the test data. Whereas the performance of
many of the models did not reach satisfactory accuracies, the accuracies in the
top two models can be considered useful in an actual performance evaluation.

The experiments clearly showed how assisting the models by reducing the
complexity of the task at hand really improves their performance. In this work
this was done by preprocessing the images, and removing any non-relevant
information. Not only did this improve the performance of the models, it
also reduced their memory requirements as well as the amount of calculations
needed, which in turn reduces the total computation time.

With both pre-trained models as well as custom models being experimented
with, it is clear that the pre-trained models outperform the custom ones. A
plausible explanation to this would be the vast difference in training data
available during the training. With batch sizes of 32 images used, and a
training set of only 17′355 images, it would take the training less than 545
epochs to iterate through the entire data set. Meaning that the same image
would be going through the training step on 18 occasions or more (depending
on the number of epochs trained for), which is less than ideal for generalization
purposes.

The last experiments with limited amount of data clearly showed how a single
model’s performance is significantly increased as more training data is pro-
vided. This result together with the pre-trained models outperforming the
custom models are clear indicators that large amounts of data are paramount
for achieving good results.

The duration of the training for the different models took between two and
twelve hours on a GPU. With the amount of different models and experiments
run, it is clear that this would not have been feasible on a CPU alone, within
a reasonable time frame.

45

CHAPTER 6. DISCUSSION, CONCLUSIONS AND FUTURE WORK

6.2 Conclusions

In this work, deep learning techniques have been introduced to the field of HPC
performance evaluation. A number of different convolutional neural network
models have been trained and tested on timeline views from Paraver, with the
purpose of predicting different performance metrics for an application, which
would allow performance evaluation without the need of an expert.

The models extract features from the timeline views and are, based on that,
able to assess the performance of the application. Experiments showed how
the performance of the models improved significantly when the input images
are preprocessed, and in such reducing the complexity of the prediction task.
It was also seen that the performance of the models increase with the size of
the data set, and continuing the training of the best performing model, with an
even larger data set would most likely improve its performance even further.

One of the fundamental limitations of the approach with utilizing timeline
images from Paraver is the pixel limitation on the images. With the granularity
of events in a timeline being limited to the size of a pixel, would an application
have a granularity of its events finer than what can be expressed with a single
pixel, this information will be lost in the images generated.

Based on the results in this work, it is clear to say that deep learning techniques
indeed are potential instruments for the HPC performance evaluation field.
Hopefully this work will inspire others to continue researching the possibilities
utilizing deep learning in automating the performance analysis process. Which
would allow for users without the expert knowledge to in a simpler manner
identify issues and to improve the performance of their applications.

6.3 Future Work

Having introduced a working model for predicting the three top efficiency met-
rics (Parallel Efficiency, Load Balance, Communication Efficiency), a natural
extension to this work would be to train the models for metrics lower in the
hierarchy (Serialization Efficiency and Transfer Efficiency). The limiting fac-
tor for such models would be the generation of training data. As experiments
for this work showed, for the models to generalize well, a large amount of
data is needed. And for generation of data for the above mentioned metrics,
a Dimemas simulation of the application on an ideal network is needed, an
extra step which would increase the labor of generating large amounts of data.
Increasing the current data set and continuing the training for the presented
models would also be an interesting continuation, which would likely improve
the accuracies achieved even further.

With Paraver offering views of different information for the obtained trace,
and having been designed for visual analysis, many interesting opportunities

46

CHAPTER 6. DISCUSSION, CONCLUSIONS AND FUTURE WORK

for alleviating the analysis process with deep learning models exist.

For example identifying the impact of MPI arrival times (entering a communi-
cation phase with some skew may lead to the communications taking longer), as
shown in Figure 6.3.1. Or identifying when applications suffer from end-point
contention, as in Figure 6.3.2. The common hurdle for all these continuations
is the generation of a large enough data set.

Figure 6.3.1: Application with some imbalances, causing ranks to reach
communication phases skewed, which can increase the com-
munication time.

Figure 6.3.2: Application suffering from end-point contention, where all
ranks are communicating with rank 0 at the same time.

47

CHAPTER 6. DISCUSSION, CONCLUSIONS AND FUTURE WORK

48

BIBLIOGRAPHY

Bibliography

[1] Allinea MAP.
https://www.allinea.com/products/allinea-performance-reports.
Accessed: 2017-04-24.

[2] Allinea Performance Reports.
https://www.allinea.com/products/map. Accessed: 2017-04-24.

[3] Berkley Caffe Model Zoo, Jia Yangqing.
http://caffe.berkeleyvision.org/model_zoo.html. Accessed:
2017-04-24.

[4] BSC Performance Tools. https://tools.bsc.es/. Accessed:
2017-04-24.

[5] BSC Performance Tools - paraver. https://tools.bsc.es/paraver.
Accessed: 2017-04-24.

[6] Cray Performance Measurement and Analysis Tools.
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-2376-610.
Accessed: 2017-04-24.

[7] cs231n - Convolutional Neural Networks for Visual Recognition andrej
karpathy, stanford. http://cs231n.github.io/. Accessed: 2017-04-18.

[8] Film Studios Refocus HPC Management Lens nicole hemsoth.
https://www.hpcwire.com/2014/08/25/

film-studios-refocus-hpc-management-lens/. Accessed:
2017-04-27.

[9] General Motors is literally tearing its competition to bits sean gallagher.
https://arstechnica.com/information-technology/2013/09/

general-motors-is-literally-tearing-its-competition-to-bits/.
Accessed: 2017-04-27.

[10] Higgs Boson Machine Learning Challange kaggle.
https://www.kaggle.com/c/higgs-boson. Accessed: 2017-04-24.

[11] High Performance (Potato) Chips michael feldman.
https://www.hpcwire.com/2006/05/05/high performance potato

chips/?utm content=50621565utm medium=socialutm source=twitter.
Accessed: 2017-04-27.

49

BIBLIOGRAPHY

[12] HPC for Energy. https://hpc4e.eu/. Accessed: 2017-04-29.

[13] HPC Matters Plenary.
http://sc14.supercomputing.org/program/hpc-matters-plenary.html.
Accessed: 2017-04-27.

[14] HPC Matters to our Quality of Life and Prosperity don johnston.
http://www.scientificcomputing.com/article/2014/11/

hpc-matters-our-quality-life-and-prosperity. Accessed:
2017-05-03.

[15] Mino Tauro User’s Guide.
https://www.bsc.es/support/MinoTauro-ug.pdf. Accessed:
2017-04-24.

[16] Performance Optimisation and productivity, a centre of excellence in
computing applications. https://pop-coe.eu/. Accessed: 2017-04-27.

[17] POP Standard Metrics for Parallel Performance Analysis.
https://pop-coe.eu/node/69. Accessed: 2017-04-24.

[18] RMSprop Gradient Optimizer. http://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture_slides_lec6.pdf. Accessed: 2017-05-14.

[19] Scalable Performance Measurement Infrastructure for Parallel Codes -
SCORE-P. http://www.vi-hps.org/projects/score-p. Accessed:
2017-05-21.

[20] Scalasca. http://www.scalasca.org/. Accessed: 2017-05-21.

[21] Supercomputers a hidden power center of Silicon Valley pete carey.
http://www.mercurynews.com/2015/05/07/

supercomputers-a-hidden-power-center-of-silicon-valley/.
Accessed: 2017-05-07.

[22] Tensorflow VGG. https://github.com/machrisaa/tensorflow-vgg.
Accessed: 2017-03-10.

[23] The insideHPC Guide to HPC in Life Sciences (sgi and intel).
http://insidehpc.com/2015/03/

the-insidehpc-guide-to-hpc-in-life-sciences/. Accessed:
2017-04-24.

[24] The nuts and bolts of machine learning, Sebastian Ruder.
http://sebastianruder.com/highlights-nips-2016/index.html#

thenutsandboltsofmachinelearningl. Accessed: 2017-04-16.

50

BIBLIOGRAPHY

[25] The Supercomputing Strategy That Makes Airbus Soar nicole hemsoth.
https://www.nextplatform.com/2015/07/22/

the-supercomputing-strategy-that-makes-airbus-soar/.
Accessed: 2017-04-26.

[26] Trace Analyzer and Collector, Intel.
https://software.intel.com/en-us/intel-trace-analyzer.
Accessed: 2017-04-24.

[27] VTune Amplifier, Intel.
https://software.intel.com/en-us/intel-vtune-amplifier-xe.
Accessed: 2017-04-24.

[28] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[29] Steve Ashby, Pete Beckman, Jackie Chen, Phil Colella, Bill Collins,
Dona Crawford, Jack Dongarra, Doug Kothe, Rusty Lusk, Paul Messina,
et al. The opportunities and challenges of exascale computing. Summary
Report of the Advanced Scientific Computing Advisory Committee
(ASCAC) Subcommittee, pages 1–77, 2010.

[30] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a
modular machine learning software library. Technical report, Idiap, 2002.

[31] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 248–255. IEEE, 2009.

[32] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
Machine Learning Research, 12(Jul):2121–2159, 2011.

[33] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A
density-based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, volume 96, pages 226–231, 1996.

51

BIBLIOGRAPHY

[34] Stephen J Ezell and Robert D Atkinson. The vital importance of
high-performance computing to us competitiveness. Information
Technology and Innovation Foundation, April, 28, 2016.

[35] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis
using convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 262–270, 2015.

[36] Francesco Giannini, Vincenzo Laveglia, Alessandro Rossi, Dario Zanca,
and Andrea Zugarini. Neural networks for beginners. a fast
implemention in matlab, torch, tensorflow. arXiv preprint
arXiv:1703.05298, 2017.

[37] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Aistats, volume 9, pages
249–256, 2010.

[38] Peter Goldsborough. A tour of tensorflow. arXiv preprint
arXiv:1610.01178, 2016.

[39] Juan González Garćıa. Application of clustering analysis and sequence
analysis on the performance analysis of parallel applications. 2013.

[40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[41] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual
networks. arXiv preprint arXiv:1610.02915, 2016.

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages
770–778, 2016.

[43] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural networks,
2(5):359–366, 1989.

[44] IDC. High performance computing in the eu:progress on the
implementation of the european hpc strategy. 2015.

[45] Thomas Ponweiser Thomas Steinreiter Jerry Eriksson, Pedro
Ojeda-May. Profiling and tracing tools for performance analysis of large
scale applications. PRACE: Partnership for Advanced Computing in
Europe, 2016.

[46] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of

52

BIBLIOGRAPHY

the 22nd ACM international conference on Multimedia, pages 675–678.
ACM, 2014.

[47] Earl C Joseph, Chirag Dekate, and Steve Conway. Real-world examples
of supercomputers used for economic and societal benefits: A prelude to
what the exascale era can provide. International Data Corporation,
May, 20, 2014.

[48] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[49] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[50] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet:
Ultra-deep neural networks without residuals. arXiv preprint
arXiv:1605.07648, 2016.

[51] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[52] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings of
the IEEE, 86(11):2278–2324, 1998.

[53] Yunjie Liu, Evan Racah, Joaquin Correa, Amir Khosrowshahi, David
Lavers, Kenneth Kunkel, Michael Wehner, William Collins, et al.
Application of deep convolutional neural networks for detecting extreme
weather in climate datasets. arXiv preprint arXiv:1605.01156, 2016.

[54] Germán Llort, Harald Servat, Juan González, Judit Giménez, and Jesús
Labarta. On the usefulness of object tracking techniques in performance
analysis. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, page 29.
ACM, 2013.

[55] Junshui Ma, Robert P Sheridan, Andy Liaw, George E Dahl, and
Vladimir Svetnik. Deep neural nets as a method for quantitative
structure–activity relationships. Journal of chemical information and
modeling, 55(2):263–274, 2015.

[56] Lin Ma, Zhengdong Lu, and Hang Li. Learning to answer questions from
image using convolutional neural network. In Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

[57] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, 1943.

53

BIBLIOGRAPHY

[58] Paul E. McKenney. Is parallel programming hard, and, if so, what can
you do about it? (v2017.01.02a). CoRR, abs/1701.00854, 2017.

[59] Marvin Minsky and Seymour Papert. Perceptrons. 1969.

[60] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre
Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Édouard Duchesnay. Scikit-learn: Machine learning in python. J. Mach.
Learn. Res., 12:2825–2830, November 2011.

[61] Boris T Polyak. Some methods of speeding up the convergence of
iteration methods. USSR Computational Mathematics and Mathematical
Physics, 4(5):1–17, 1964.

[62] Thomas E Potok, Catherine D Schuman, Steven R Young, Robert M
Patton, Federico Spedalieri, Jeremy Liu, Ke-Thia Yao, Garrett Rose,
and Gangotree Chakma. A study of complex deep learning networks on
high performance, neuromorphic, and quantum computers. In
Proceedings of the Workshop on Machine Learning in High Performance
Computing Environments, pages 47–55. IEEE Press, 2016.

[63] Claudia Rosas, Judit Giménez, and Jesús Labarta. Scalability prediction
for fundamental performance factors. Supercomputing frontiers and
innovations, 1(2):4–19, 2014.

[64] Frank Rosenblatt. The perceptron: A probabilistic model for
information storage and organization in the brain. Psychological review,
65(6):386, 1958.

[65] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252,
2015.

[66] Tara N Sainath, Abdel-rahman Mohamed, Brian Kingsbury, and
Bhuvana Ramabhadran. Deep convolutional neural networks for lvcsr.
In Acoustics, speech and signal processing (ICASSP), 2013 IEEE
international conference on, pages 8614–8618. IEEE, 2013.

[67] Tom Schaul, Ioannis Antonoglou, and David Silver. Unit tests for
stochastic optimization. CoRR, abs/1312.6055, 2013.

[68] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

54

BIBLIOGRAPHY

[69] Leslie N Smith and Nicholay Topin. Deep convolutional neural network
design patterns. arXiv preprint arXiv:1611.00847, 2016.

[70] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and
Martin Riedmiller. Striving for simplicity: The all convolutional net.
arXiv preprint arXiv:1412.6806, 2014.

[71] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence
learning with neural networks. In Advances in neural information
processing systems, pages 3104–3112, 2014.

[72] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E.
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. Going deeper with convolutions. CoRR,
abs/1409.4842, 2014.

[73] Theano Development Team. Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-prints,
abs/1605.02688, May 2016.

[74] Haohan Wang, Bhiksha Raj, and Eric P Xing. On the origin of deep
learning. arXiv preprint arXiv:1702.07800, 2017.

[75] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How
transferable are features in deep neural networks? In Advances in neural
information processing systems, pages 3320–3328, 2014.

[76] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method.
CoRR, abs/1212.5701, 2012.

55

Appendices

56

APPENDIX A. DETAILED RESULTS

A Detailed Results

This appendix presents the results of the experiments numerically in a table
format. Each column in the tables shows the percentage of test data which
was correctly predicted with an error less than the column header.

A.1 Unprocessed Data

Table 2 Results for VGG 19 A L R trained on unprocessed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 18 20.8 28 33.6 37.8 49.8 66.2
Load Balance 66.4 87.8 95.2 97.6 98.2 100 100

Communication
Efficiency

16.2 24.8 30.4 34.2 38.4 52.2 62.8

Table 3 Results for VGG 19 M L R trained on unprocessed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 17.1 20.5 24.3 30.5 35.8 46.8 60.2
Load Balance 60.4 82.3 89.1 95.6 98.2 99.1 100

Communication
Efficiency

12.2 19.2 27.4 31.2 36.4 50.1 58.3

Table 4 Results for VGG 19 M LR R trained on unprocessed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 17.2 20.1 24 30.1 35 45.9 59.3
Load Balance 60.1 81.9 88.7 95 97.8 98.8 100

Communication
Efficiency

12.2 19 27.2 29.4 36.1 49.8 57.6

57

APPENDIX A. DETAILED RESULTS

Table 5 Results for VGG 19 A LR R trained on unprocessed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 18.1 20.9 28.3 33.9 38.2 50.1 66.9
Load Balance 66.4 87.7 95.0 97.5 98 99.8 100

Communication
Efficiency

16.4 25 30.6 34.8 39 52.9 63

A.2 VGG-19 Classification Models

Table 6 Results for VGG 19 A L C trained on pre-processed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 14.75 40.15 57.9 69.45 77.35 95.2 97.85
Load Balance 48.6 67.95 80 87.3 90.9 97.65 98.45

Communication
Efficiency

26.8 57.25 72.35 82.15 86.95 96.6 98.45

Table 7 Results for VGG 19 M L C trained on pre-processed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 14.35 45.65 63.8 73.75 79.7 93.8 96.9
Load Balance 44.2 58.55 67.15 74.35 80.15 92.75 95.1

Communication
Efficiency

23.15 48.95 65.4 75.55 81.35 91.95 94.1

Table 8 Results for VGG 19 M LR C trained on pre-processed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 13.8 39.05 57.1 69.2 77.95 93 96.95
Load Balance 44.25 59.7 71.05 77.6 81.35 91.8 94.75

Communication
Efficiency

18.15 43.1 58.55 68.85 75.75 88.65 93.65

Table 9 Results for VGG 19 A LR C trained on pre-processed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 18.3 47.35 67.8 80.05 86.85 96.4 98.15
Load Balance 48.7 64.9 77.05 84.65 90.3 96.75 98.2

Communication
Efficiency

31.4 62.7 75.5 83.2 87.9 96.8 98.85

58

APPENDIX A. DETAILED RESULTS

A.3 VGG-19 Regression Models

Table 10 Results for VGG 19 A L R trained on pre-processed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 84.8 97 98.4 99 99.3 99.63 100
Load Balance 75.1 94 97.76 99 99.43 100 100

Communication
Efficiency

73.4 93.26 97 98.4 99 99.53 100

Table 11 Results for VGG 19 M L R trained on pre-processed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 58.93 86.23 95.16 97.7 98.67 99.83 100
Load Balance 57.03 83.53 93.63 97.7 99.27 100 100

Communication
Efficiency

55.13 83.2 92.4 97 98.1 99.6 100

Table 12 Results for VGG 19 M LR R trained on pre-processed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 60 88.4 96.3 98.5 99.2 99.8 100
Load Balance 54.1 82.6 92.7 96.8 98.1 99.76 100

Communication
Efficiency

52.87 80.93 93.27 97.17 98.43 99.76 99.93

Table 13 Results for VGG 19 A LR R trained on pre-processed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 85.3 97.1 98.67 99.4 99.77 100 100
Load Balance 76.01 92.6 96.67 98.43 99 100 100

Communication
Efficiency

73.4 93.03 97.33 98.33 99.16 100 100

59

APPENDIX A. DETAILED RESULTS

A.4 Custom

Table 14 Results for Custom 1 trained on pre-processed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 2.5 5.5 8 9 12.5 25 42.5
Load Balance 3 5 6.5 11.5 13 27.5 37.5

Communication
Efficiency

2.5 8 11 15 20 37 55.5

Table 15 Results for Custom 2 trained on pre-processed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 3 4.5 7.5 10.5 14.5 29 45.5
Load Balance 4.5 10 14 15.5 18 34 42

Communication
Efficiency

6.5 10 11 12.5 20.5 35.5 57.5

Table 16 Results for Custom 3 trained on pre-processed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 3.5 6 7 8.5 12.5 23.5 35
Load Balance 2.5 5.5 7.5 10 13 26 33.5

Communication
Efficiency

2 5.5 8.5 11.5 16 36 57

Table 17 Results for Custom 4 trained on pre-processed data

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 1 3.5 4 5.5 8.5 24.5 39
Load Balance 1 4 5.5 8.5 10 23 32

Communication
Efficiency

3 6.5 9 13.5 19.5 37.5 54.5

60

APPENDIX A. DETAILED RESULTS

A.5 Importance of Data

Table 18 Results for VGG 19 A LR R trained on 5′000 images

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 69.93 88.33 94.63 97.07 98.03 99.57 99.76
Load Balance 60.6 82.93 92.17 95.4 97.03 99.17 99.73

Communication
Efficiency

58.1 80.77 89.97 94.27 96.53 99.03 99.63

Table 19 Results for VGG 19 A LR R trained on 10′000 images

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 80.47 94.63 97.37 98.33 99.2 99.9 100
Load Balance 68.33 88.7 94.8 97.23 98.13 99.57 99.87

Communication
Efficiency

67.3 88.93 94.4 96.8 98.07 99.6 99.93

Table 20 Results for VGG 19 A LR R trained on 15′000 images

< 1% 2% 3% 4% 5% 10% 15%
Parallel Efficiency 83.23 95.6 98.1 99 99.37 99.8 99.87
Load Balance 72.6 92.93 97.33 98.67 99.47 100 100

Communication
Efficiency

70.23 92.87 97.03 98.3 98.8 99.5 99.93

61

