

TREBALL FINAL DE GRAU

TÍTOL: Obstacle Avoidance for an Autonomous Rover

TITULACIÓ: Grau en Enginyeria d’Aeronavegació

AUTOR: Marc Chesa Roldàn

DIRECTOR: David Calero Scanlan

SUPERVISOR: Oscar Casas Piedrafita

DATA: 23 de juny del 2017

Títol: Obstacle Avoidance for an Autonomous Rover

Autor: Marc Chesa Roldàn

Director: David Calero Scanlan

Supervisor: Oscar Casas Piedrafita

Data: 23 de Juny de 2017

Resum

L’objectiu d’aquest projecte es millorar un rover autònom indoor donant-li
capacitat per a evadir obstacles.

El rover utilitzat com a punt de partida, anomenat Gauss, es una plataforma
robòtica amb quatre rodes, motors, un controlador de motor, un
microcontrolador i sensors de localització i percepció. Gauss fa servir tot
aquest hardware per proporcionar mòduls de control, localització, planificació
de ruta i detecció d’obstacles en 2D. El rover resultant després de la millora,
anomenat AROA (Autonomous Rover for Obstacle Avoidance), ha afegit nou
hardware al sistema i ha millorat l’arquitectura software.

El nou hardware implementat al robot consisteix en una càmera RGB-D (Red-
Green-Blue Depth), un microprocessador, un regulador de tensió i una bateria.
La càmera RGB-D es el nou sensor de percepció, que permet detecció
d’obstacles en 3D. La bateria i el regulador s’utilitzen per proveir i distribuir
potencia a aquest nou sistema. Una selecció de components s’ha realitzat per
tal d’escollir el nou hardware entre les diferents opcions del mercat.

L’arquitectura software ha estat renovada i ara està basada en ROS (Robot
Operating System). S’han migrat els mòduls de planificació de ruta i detecció
d’obstacles al nou microprocessador i dissenyat un algoritme d’evasió
d’obstacles. El mòduls de localització i control s’han mantingut al
microcontrolador i han estat adaptats per treballar amb ROS.

La càmera RGB-D, Kinect v2, ha estat calibrat per tal garantir una bona
detecció d’obstacles. El procés consisteix en un calibratge geomètric de les
dues càmeres que conté el sensor, i d’un calibratge de profunditat.

Per últim, per verificar els diferents mòduls, s’han realitzat diferents tests. S’han
avaluat el mòdul de planificació de ruta, el de detecció d’obstacles i el de evasió
d’obstacles.

Title: Obstacle Avoidance for an Autonomous Rover

Author: Marc Chesa Roldàn

Director: David Calero Scanlan

Supervisor: Oscar Casas Piedrafita

Date: June 23rd 2017

Overview

This project objective is to improve an indoor autonomous rover with obstacle

avoidance capability.

The rover used as starting point, called Gauss, is a robotic platform with four

wheels, motors, a motor controller, a microcontroller and localization and

perception sensors. Gauss uses all of this hardware to provide control,

localization, path planning and 2D obstacle detection modules. The resulting

rover after the improvement, called AROA (Autonomous Rover for Obstacle

Avoidance) has added new hardware to the system and improved the software

architecture.

The new hardware implemented to the robot consists on a RGB-D (Red-Green-

Blue Depth) camera, a microprocessor, a voltage regulator and a battery. The

RGB-D camera is the new perception sensor that allows for 3D obstacle

detection. The battery and the voltage regulator are used to provide and

distribute power supply to this new system. A component selection has been

made to choose the new hardware among the different options in the market.

The software architecture has been renewed to be ROS (Robot Operation

System) based. The path planning, obstacle detection modules have been

migrated to the new microprocessor, and an obstacle avoidance module has

been designed. The localization and control modules have been maintained at

the Gauss microcontroller and have been adapted to work with ROS.

The RGB-D camera, Kinect v2, has been calibrated to guarantee a good

obstacle detection. The process consist on a geometrical calibration of the two

cameras on the sensor, and a depth calibration.

To verify the different modules, different test have been performed. Path
planning, obstacle detection and obstacle avoidance modules have been
evaluated.

 ACKNOWLEDGMENTS

I want to thank David Calero Scanlan, my tutor form the CTTC, for all his
support and patience while guiding me during this project.

I also want to thank Oscar Casas Piedrafita, my project supervisor form the

UPC, for offering me the opportunity to do this project.

I also want to thank all the people at the Geomatics department of the CTTC,
but specially Enric Fernandez Murcia and Eduard Angelats Company for their

proposals and revisions of this memory.

Finally, I would also thank my family for their moral support me during all the
process, but especially I want to thank Irene Radcliffe for her support in the

hardest moments.

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ... 1

 Project Scope ... 1

 Document overview ... 1

CHAPTER 2. STATE OF THE ART .. 3

 General view on autonomous rovers .. 3

 Sensors for autonomous rovers .. 5
2.2.1. Depth perception sensors ... 5
2.2.2. Localization sensors ... 7

 Obstacle avoidance techniques ... 9

CHAPTER 3. SYSTEM DESIGN ... 13

 System Requeriments ... 13

 Gauss Design ... 13

 AROA Design ... 17

CHAPTER 4. HARDWARE DESIGN .. 21

 Component selection .. 21
4.1.1. 3D Range finder ... 21
4.1.2. Microprocessor ... 23
4.1.3. Battery .. 24
4.1.4. Voltage Regulator ... 24

 Hardware architecture ... 25

 Power consumption and total cost .. 25

CHAPTER 5. SOFTWARE DESIGN ... 27

 Software environments ... 27
5.1.1. Arduino ... 27
5.1.2. ROS .. 27

 Software architecture .. 29
5.2.1. Localization ... 30
5.2.2. Control .. 31
5.2.3. Path planning .. 32
5.2.4. Obstacle detection .. 34
5.2.5. Obstacle avoidance .. 36

CHAPTER 6. KINECT CALIBRATION ... 39

 Camera geometric calibration .. 40

 Depth calibration ... 42

CHAPTER 7. TEST AND VALIDATION.. 45

 Path planning validation ... 45
7.1.1. Path planning test ... 45

 Obstacle detection validation ... 49
7.2.1. Frame rate test ... 49
7.2.2. Reaction time test ... 49
7.2.3. False data probability tests ... 50
7.2.4. Dynamic obstacles test ... 51

 Obstacle avoidance validation ... 52
7.3.1. Turn criteria test .. 52
7.3.2. Obstacle avoidance test ... 52

CHAPTER 8. CONCLUSIONS .. 55

BIBLIOGRAPHY .. 59

APENDIX A. GAUSS HARDWARE COMPONENTS 63
Robot Platform .. 63
Motors.. ... 64
PID Motor Controller ... 64
Encoders ... 65
Gyroscope ... 65
IR Sensors... 66
Microcontroller ... 66

APENDIX B. ARDUINO CODE .. 67

APENDIX C. ODROID CODE .. 81

Main..81

Path planner ... 91

File reader .. 93

Classes ... 94
Point2D .. 94
Rover command .. 94

LIST OF FIGURES

Figure 1. Pictures of Roomba, Amazon robot, Mars Curiosity and Google self-driving car.

[4], [6], [5], [8] .. 3

Figure 2. ToF diagram [18].. 5

Figure 3. Versions 1, 2 & 3 of the “Bug algorithm” [26]. ... 9

Figure 4. Dijkstra algorithm [27]. ... 10

Figure 5. A* algorithm [27]. ... 11

Figure 6. D* algorithm working without previous map [28]. .. 11

Figure 7. Picture of Gauss. ... 14

Figure 8. Schematic of the skid steer drive [30]. .. 15

Figure 9. Gauss reference framework ... 16

Figure 10. Gauss system architecture. .. 16

Figure 11. Picture of AROA ... 17

Figure 12. AROA system architecture ... 19

Figure 13. Robot State interaction diagram ... 19

Figure 14. Schematic of a Kinect V2 [39]. ... 22

Figure 15. Picture of an Odroid XU4 [40]. ... 23

Figure 16. Sample picture of a Li-Po battery [43]. ... 24

Figure 17. Picture of HE104+DX voltage regulator [46]. .. 24

Figure 18. Diagram of the hardware architecture. ... 25

Figure 19. ROS communication [48]. .. 28

Figure 20. Software System general scheme .. 29

Figure 21. Localization module algorithm .. 30

Figure 22. Control algorithm .. 31

Figure 23. Waypoint threshold .. 32

Figure 24. Path planning module .. 33

Figure 25. Obstacle detection area ... 35

Figure 26. Obstacle detection algorithm .. 36

Figure 27. OA conceptual design .. 37

Figure 28. Obstacle avoidance algorithm .. 38

Figure 29. Radial and tangential distortion effects [52]. ... 39

Figure 30. Calibration process .. 41

Figure 31. Uncalibrated and calibrated image comparison .. 42

Figure 32. Distance difference relative to X-coordinate ... 42

Figure 33. Distance difference relative to Y-coordinate ... 43

Figure 34. Distance difference relative to XY-coordinate ... 43

Figure 35. Ideal path ... 45

Figure 36. Path Planning test layout ... 46

Figure 37. Path Planning test results .. 48

Figure 38. False positive test layout .. 50

Figure 39. False negative test set up .. 51

Figure 40. Turn criteria test set up (right turn) ... 52

Figure 41. Ideal obstacle avoidance .. 53

Figure 42. Obstacle avoidance test set up .. 53

Figure 43. Lynxmotion A4WD1 chassis and wheels mounted kit [56] 63

Figure 44. GHM-16 motor [57] .. 64

Figure 45. RoboClaw 2x15A motor controller [58] ... 64

Figure 46. E4P-100 encoder [59] .. 65

Figure 47. L3GD20 [60] .. 65

Figure 48. Sharp GP2D12 IR sensor [61] .. 66

Figure 49. Picture of a BotArduino [62] ... 66

Chapter 1. Introduction 1

CHAPTER 1. INTRODUCTION

 Project Scope

The world is evolving to the automation of processes, and robotics is the spare
head of this phenomenon. From the small vacuum cleaners to planet exploration
vehicles in space missions, and passing through robots used in factories,
agriculture, warehouses or mining, they have invaded lots of aspects of our lives;
they are here to stay, and they are the future.

The geomatics department of the CTTC (Centre Tecnològic de
Telecomunicacions de Catalunya) proposed me a project for my degree final
thesis, that consisted on improving an autonomous rover. This rover, developed
by CTTC and named Gauss, had a very simple 2D obstacle detection system.
The objective of the project was to improve the obstacle detection and to design
a new obstacle avoidance system with 3D detection capability, and to implement
it on the rover.

The new system, had to include new hardware components, and a renovated
software architecture supporting ROS (Robot Operating System). The resulting
system has been named AROA (Autonomous Rover for Obstacle Avoidance).

The main motivation is learning more about the field of robotics performing an
experimental project, and contributing to CTTC robot development.

Summarizing, the objective of this project is to improve the capability of the
current autonomous robot in order to make it capable of performing 3D obstacle
detection and avoidance.

 Document overview

This document is organized in 8 chapters, three annexes and this introductory
section, summarized as follows:

Chapter 2, State of the Art, presents sensors and technologies used for wheeled
robots, from a hardware and a software point of view. In addition, the most used
obstacle avoidance techniques are presented.

Chapter 3, System Design, introduces Gauss’ hardware and software
architecture. Moreover, it presents a list of the new requirements and AROA’s
conceptual design.

Chapter 4, Hardware Design, explains in detail the components selection and the
hardware architecture of the system.

2 Obstacle avoidance for an autonomous rover

Chapter 5, Software Design, presents the renovated software architecture and
the algorithms and modules of the new system.

Chapter 6, Kinect calibration, presents the calibration process performed with the
RGB-D camera Kinect, and the obtained results.

Chapter 7, Test and Verification, explains the different test scenarios and results
of the different robot subsystems, including the obstacle detection and avoidance
capability.

Chapter 8, Conclusions, discusses the results of the project and proposes further
improvements that can be performed in the rover.

The Annexes present the hardware used by Gauss and the used code.

Chapter 2. State of the art 3

CHAPTER 2. STATE OF THE ART

An autonomous rover is a robot capable of navigating throughout an environment
without the intervention of a human operator. Robots, and especially autonomous
rovers, provide efficient and practical utility for business, particularly in industrial
and space applications. Never sleeping, never tired, never bored, never having
lack of motivation and never being sick. That is why robots are already preferred
over humans in some areas, especially on hazardous environments or situations
[1].

 General view on autonomous rovers

Robots can be categorised in multiple ways, but usually are classified according
to type of platform and/or the application. Robots can fit in five categories from
the platform point of view: stationary, legged, wheeled, flying or swimming robots
[2]. According to this classification, an autonomous rover is a wheeled robot.
Wheeled robots are defined as robotic platforms that navigate around the ground
using motorized wheels to propel themselves [3]. The main advantages they offer
are that are easy to implement in mechanical terms and that are very stable in
most environments, compared to other mobile platforms such as legged robots.
The main drawback of wheeled robots is that they are not able to perform a good
navigation over some surfaces, such as rocky terrain, sharp declines, or areas
with low friction.

In terms of application, autonomous wheeled robots are one of the most used
platforms in nowadays engineering: For instance, domestic robots such as
Roomba vacuum cleaner [4], rovers used in space applications such as the Mars
Curiosity [5], robots in Amazon automated warehouses [6], multipurpose robots
designed by Clearpath robotics [7] or the Google self-driving car [8] (Figure 1).

Figure 1. Pictures of Roomba, Amazon robot, Mars Curiosity and Google self-
driving car. [4], [6], [5], [8]

4 Obstacle avoidance for an autonomous rover

Each platform and specific application, require from specific hardware and
software systems.

As for hardware, robots carry different types of sensors (which will be discussed
in section 2.2), actuators and integrated circuits (IC). The most used types of IC
are programmable chips, and among them, the microprocessor, the
microcontroller, the FPGA (Field Programmable Gate Array). A robotic platform
can have one or multiple ICs of a single or different types, depending on the task
that it needs to perform. For example, a robotic arm that performs an easy motion
may use a single IC whereas Mars rovers, which are complex systems, may use
an IC for each different task (One for navigation, one for sensors acquisition, one
for the robotic arms…).

In general, microprocessors (µP) have a dedicated CPU (Central Processing
Unit) where the RAM (Random Access Memory), ROM (Read-Only Memory),
etc., run on different chips [9], whereas microcontrollers (µC) usually have a
single embedded chip that includes and manages the CPU, RAM, ROM and I/O
(Input/Output) ports [10], although there are exceptions. Also, µP clocks usually
run faster than µC clocks. This is why µP are usually used for processes that
require more processing capacity. An example of µC and µP are Arduino [11] and
Raspberry Pi [12], respectively. FPGAs are a type of IC that has reprogrammable
logic gates, whereas µP and µC cannot. FPGAs are more expensive and more
power consuming than regular microcontrollers or microprocessors, but in
exchange can perform dedicated tasks at faster speeds than µP and µC. The
reason is that FPGAs have reprogrammable logical gates. Xilinx Spartan-6 is an
example of a FPGA board [13].

The software framework of robots is usually attached to the type of IC in use.
For instance, MyRio is prepared to work with LabView or Arduino with to work
with Arduino programming code and the Arduino IDE. Although it is possible to
code specific ICs with other languages, it is unusual to see it. Even tough, there
are some open-source software platforms in robotics, being the most
representative ROS (Robot Operative System), which can be used with multiple
hardware devices and robot platforms.

ROS is a flexible framework for writing robot software, as defined in their web site
[14]. It compiles a collection of tools, libraries and conventions (grouped in what
they call nodes) that aim to simplify the task of creating a complex and robust
robot behaviour across a wide variety of robotic platforms. ROS implements many
nodes that perform most of the tasks that a robot might need to be developed.
For instance, there are algorithms that perform sensor data acquisition or control.
Among all of them, the most interesting for robot control with obstacle avoidance
is the ROS navigation stack [15]. The navigation stack is a set of ROS nodes that
work together to provide velocity commands to the rover base, taking into account
the position, the obstacles and plenty of other parameters critical for robot
movement through an environment.

ROS has three main advantages over other robotic frameworks; community,
standardization and the fact that it is open-source.

Chapter 2. State of the art 5

ROS community is becoming more popular day by day. It has a huge community
that maintains and creates new libraries and tools for plenty of robot sensors and
devices. Some of the nodes previously stated, are created by the community.

As stated before, ROS is open-source. That is the reason why it is compatible
with plenty of hardware and robotic platforms. For instance, any Ubuntu or Debian
Linux distribution can support ROS. ROS is also free to use for developers,
meaning that all the libraries can be downloaded with no cost and are modifiable.
Even tough, for commercialization it is required to use its industrial version, ROS-
industrial [16], that requires to pay for its licences.

All the code and messages exchanged among ROS nodes are standardized.
This means that an algorithm that works for a robot can be used in any other
ROS-based robot with few modifications. It also allows to easily implement new
hardware on a system, as long as it can provide the specified ROS messages.

 Sensors for autonomous rovers

In order to be autonomous, wheeled robots need to know the environment in
which they are moving and their current localization, which is the position and
orientation they have respect this environment. The hardware used to obtain this
data can be classified in depth perception and localization sensors.

2.2.1. Depth perception sensors

Depth perception consists on determining the distance between the robot and the
surrounding objects than conform the environment. This is done by taking
measurements using one or a set of sensors, and then extracting meaningful
information from those measurements. There are a lot of types of depth
perception sensors, and most of them imitate human or animal senses. For
instance an ultrasonic sensor imitates bats echolocation [17]. Autonomous rovers
usually relay on active-ranging sensors. This type of sensors provide direct
measurement of distance to the surrounding objects interacting with the
environment. There are different technologies used by these sensors, but the
most used in robotics is the time of flight (Figure 2).

Figure 2. ToF diagram [18]

6 Obstacle avoidance for an autonomous rover

Time-of-flight (ToF) ranging makes use of the propagation speed of the sound or
of an electromagnetic wave. The distance to objects (d) is computed by
measuring the time (t) that the wave travels to the object based on the
characteristic propagation speed of the wave (c).

𝒅 =
𝒕 𝒙 𝒄

𝟐

(2.1)

The most common ToF sensors are infrared (IR), ultrasounds, laser rangefinders
and RGB-D (Red-Green-Blue Depth) [19]. IR sensors emit pulsed light, ultrasonic
sensors emit sonic waves, laser rangefinders emit a collimated light beam and
RGB-D emit a pulsed light pattern (usually known as structured light).

IR sensors use infrared light, which in general makes them less susceptible to
interferences than other ToF based sensors. Even tough, in areas where there is
another IR source, for instance under the effect of sunlight, an IR sensor could
be partially or totally blocked. In addition, they do not detect some surfaces, such
as glass [20], because emitted light has not good reflection.

Ultrasonic have the advantage that sound waves are reflected by surfaces than
other ToF cannot detected, like glass or a mirror. In addition, they are the
cheapest sensor of this kind in the market. Its main drawback is the lack of
resolution compared to other ToF sensors, and the susceptibility to interferences
produced by other ultrasonic sources [19].

RGB-D are a type of depth sensing devices that work in association with a RGB
camera. The sensors is able to augment the conventional image with depth
information about each pixel. In this sensors, the emitter projects a known pattern
onto the environment. The projected pattern is then captured by an infrared
camera in the sensor and estimates the per-pixel depth [21]. This sensors use
the technology combined with a RGB camera to create a coloured set of points
with known 3D coordinates, called point clouds [22], of the objects in front of the
sensors. A RGB-D sensor provides high accuracy and resolution compared to IR
and ultrasonic sensors. In the other hand, are more expensive than the other
sensors and their operating range is limited by the geometry of the sensor.

The fact that laser rangefinders emit light in a directive beam, means that it is
more resistance to interferences and has a greater detection range compared to
other ToF sensors [20]. This type of sensor can be attached to a rotatory
mechanism that aims the light beam to different positions to obtain 2D or 3D
information of the environment. When a range finder has these characteristics is
called LIDAR (LIght Detection And Ranging), which is one of the most used active
range finders in robotics. Laser rangefinders main drawback is that they are the
most expensive ToF sensors in the market.

Chapter 2. State of the art 7

2.2.2. Localization sensors

Localization, or positioning, consists on determining where the robot is in the
environment. In autonomous rovers, localization consist on determining a set of
TPVA (Time-Position-Velocity-Attitude). TPVA describes the robot position,
velocity and attitude at a particular instant of time. Localization sensors can be
classified as inertial and non-inertial sensors.

Inertial sensors are instruments that measure rotation and translation forces
observed by the object. These sensors are usually used to perform dead
reckoning, which is a method of localization that relies on estimating the position,
speed and orientation of the robot based on earlier known positions [23]. The
most used inertial sensors in autonomous rovers are gyroscopes and
accelerometers.

Gyroscopes are used to measure rotational forces. In autonomous rovers they
are used mainly to determine the heading of the vehicle. Gyroscopes measure
reactive torque that is produced due to the movement of the sensor to give

absolute orientation respect their spin axis. Torque (𝜏) is proportional to the
spinning speed (ω), the precession speed (Ω), and the wheel’s inertia (I) [19].

𝜏 = IωΩ

(2.2)

The main drawback of the gyroscopes used for dead reckoning is that the typical
error of the system is accumulative. This means that if they are used for a long
time, a small constant drift will provide a big error.

An accelerometer is a device that measures static (gravitational) and dynamic
acceleration forces [24]. Given the mass (m) of the accelerometer, the measure
of the dynamic forces (F) provides the acceleration (a) of the sensor in every axis:

a =
F

m

(2.3)

With the acceleration, the speed and position are easy to obtain with integral
calculation [24].

An IMU (Inertial Measurement Unit) is an embedded sensor that usually
combines 3-axis accelerometer and 3-axis gyroscope orthogonally placed
between them. In some cases, IMUs also carry magnetometers. IMUs are the
most used inertial sensor in robotics because are capable of measuring
translation and rotation, by integrating the different sensors previously stated.

Non inertial sensors do not measure directly the motion of the object. There are
plenty of sensors and technologies that can be used for localization (cameras,
barometers, Wi-Fi, UltraWide band, etc.), but the most used on autonomous

8 Obstacle avoidance for an autonomous rover

rovers are magnetometers, rotatory encoders and GNSS (Global Navigation
Satellite System). In addition, RGB-D or LIDAR sensors can be used for
localization using techniques such as SLAM (Simultaneous Localization And
Mapping) [25].

Magnetometers determine the direction of Earth’s magnetic north, and there are
two types: Hall Effect and flux gate compasses. Regardless of the type of
compass used, a major drawback concerning the use of the Earth’s magnetic
field for mobile robot applications involves disturbance of that magnetic field by
other magnetic objects. This issue is greater for indoors robots, since most
buildings have metallic structures that can disturb the magnetic field inside.

Rotatory encoders track the angular position of any rotatory device to generate
digital information. In rovers, are used to determine odometry (change of position
over time) by monitoring the number of turns made by the wheels. If an encoder
is able of determining the direction of the rotation, it is called quadrature encoder.
There are many types of encoder, like magnetic or mechanical, but one of the
most used in robotics is the optical encoder. The resolution is measured in cycles
per revolution (CPR) [19].

The GNSS is a beacon based localization [19]. There are at least twenty-four
operational GNSS satellites at all times. Each satellite continuously transmits
data that indicate its location and the current time. The GNSS satellites
synchronize their transmissions so that their signals are sent at the same time.
When a GNSS receiver receives the RF (Radio-Frequency) signal of a satellite,
the arrival time is measured and used to determine the relative distance to this
satellite, usually known as pseudorange. By combining four or more
pseudoranges, the position of the receiver is determined by triangulation means.
The main advantages of this system is low price of GNSS receivers and the fact
that they do not have accumulative error. In the other hand, GNSS receivers
cannot be used as a reliable localization sensors on robots that have to work in
low coverture areas, such a dense forest or indoors.

SLAM is a technique that involves the use of perception sensors, such as RGB-
D sensors, LIDARs, cameras and sometimes inertial sensors. It consists on trying
to simultaneously localize the sensor with respect to its surroundings, while at the
same time mapping the structure of that environment [25]. The sensors are
obtaining depth measurements from the environment and comparing the
obtained pattern with a map of the surroundings. The map can be introduced by
the user or generated and actualized during the operation of the robot. If the
detected pattern coincides with a pattern of the environment, the robot is able to
get a localization. At the same time, the environment is being mapped. It is a good
localization technique, but requires a post process period that is time consuming
[25].

Chapter 2. State of the art 9

 Obstacle avoidance techniques

One of the most critical issues a rover design is deciding how it reacts to the
environment. If there is an obstacle in the middle of the path, the robot has to
decide how to surpass it. Obstacle avoidance techniques aim to solve this
problem. Since the route has to be recalculated, it is common to see path obstacle
avoidance algorithms planning that include the robot path planning algorithm.
There are multiple obstacle avoidance algorithms. They can be classified
between map based and non-map based algorithms.

The non-map based algorithms do not relay on previous data of the surroundings,
but usually are more time consuming. There are plenty of algorithms in this
category, but the most representatives are the bug algorithm, the artificial
potential field method, the vector field histogram and follow the gap method.

Bug algorithm is the older one and the most basic algorithm. It plans a direct

path to the destination and only intervenes when an obstacle interferes the path,

then it follows the edge of the obstacle and takes a decision, that depends on the

bug algorithm version (there are 3 of them, Figure 3). The first version optimizes

the shortest distance, circling the obstacle until it reaches the starting point, and

then in computes the best “obstacle leaving point”. Once the “leaving point” is

reached again, it starts moving to the new generated path. The second version

generates a slope from the initial point and when an obstacle is found, it follows

the edge until this slope is reached again. The third version tries to optimize the

total travelled distance. When the robot is circling the obstacle, simultaneously it

computes the shortest “clear of obstacle” distance to the destination point, and

sets a new path to the destination. All three versions’ main advantage over other

obstacle avoidance algorithms is its reliability, because they always lead to the

final goal, but its main issue is that they not the best time saving option.

Figure 3. Versions 1, 2 & 3 of the “Bug algorithm” [26].

The artificial potential field method (APF) is a goal oriented algorithm, based
on the “potential field” principle. The robot and the obstacles are considered
positive charges and the goal a negative one, which means that the goal will
“attract” the robot and obstacles will “repel” it. The magnitude of the forces
depend on the distance to the elements of the environment (closer obstacles
induce greater charges). This method always selects the shortest path, but has

10 Obstacle avoidance for an autonomous rover

a local minima problem, since symmetric or U-shaped obstacles can create an
equipotential sink that the robot is not be able to leave.

Vector field histogram (VFH) is a method based on a generated distance
histogram of the surroundings obstacles, which is used to compute the optimal
route. It first makes a 2D histogram generated with the obstacles detected by the
sensors on the environment, which is converted into a polar histogram that is
used to decide the path with less “polar obstacle density”. The density is assigned
according to the distance of the obstacles (closer obstacles will generate greater
obstacle density). It is a good method to find the optimal path, but it needs lots of
calculations, which makes it time consuming.

Follow the Gap Method (FGM) is a method is based on finding the gap between
obstacles. First it uses the sensors to find all the gaps between obstacles on the
trajectory, and computes the heading angle needed to go to the biggest gap. Like
the APF and the VHF, it is a goal oriented system that also selects the shortest
path with little computation, but it also has a problem with U and H shaped
obstacles.

The grid map-based algorithms use a map of the environment in which the robot
operates. There are multiples map based algorithms, but the most important are
Dijkstra, A* and D*.

Dijkstra algorithm works by visiting grid squares in the graph starting in the robot
origin. It then repeatedly examines the closest non visited grid squares. It
expands from the starting point until it reaches the goal [27]. This algorithm is
easy to implement and computes the shortest path from the origin to the
destination, but for goals at long distances it is time consuming, since it scans the
whole map, as can be seen at Figure 4.

Figure 4. Dijkstra algorithm [27].

A* is an algorithm similar to Dijkstra, but with some improvements. Instead of
going to the next non visited grid square, it decides the next one using the
following formula:

Chapter 2. State of the art 11

 f(n) = g(n) + h(n)

(2.4)

g(n) represents the cost of the path from the starting point to any vertex n, and
h(n) represents the heuristic estimated cost from vertex n to the goal. A* balances
the two as it moves from the starting point to the goal. Each time through the main
loop, it examines the vertex n that has the lowest f(n). In Figure 5 the improvement
in the number of grid squares visited respect Dijkstra is easily appreciated [27].

Figure 5. A* algorithm [27].

The problem with Dijkstra and A* is that they are not suitable to work with a
dynamic map or without it. The D* algorithm (Dynamic A*) was developed to solve
this issue, guarantying that the initial path planning can be repaired in real-time
[28]. D* produces an initial plan based on known and assumed information with
A*, and then incrementally repairs the plan as new information is discovered
about the environment. If there is no map, D* assumes that there are no obstacles
and plans the shortest path. As it follows the path, it scans for obstacles. The D*
algorithm is used to re-plan each time a discrepancy is seen (Figure 6).

Figure 6. D* algorithm working without previous map [28].

Chapter 3. System design 13

CHAPTER 3. SYSTEM DESIGN

As stated in the introduction, the implemented robot design is built on an existing
CTTC robot platform, Gauss. Using this robot prototype as a starting point, AROA
has been designed taking into account the system requirements established by
CTTC.

 System Requeriments

The system requirements, established by the CTTC to evolve the Gauss project,
are the following:

 Design and implement an improved obstacle detection module. Gauss
has a simple 2D obstacle detection. It should be able to detect 3D static
obstacles in the path of the robot. It should include a calibration of the
obstacle detection sensors.

 Design an obstacle avoidance module that provides an algorithm to
determine a new path to follow in the event of obstacle detection. The new
system must be compatible with Gauss, both in software and hardware.

 The system must be ROS based, and compatible with Linux OS
processors.

 The cost of the new hardware required by the system should not be higher
than 500 €.

 Gauss Design

Gauss was designed as a part of OpenInLocation project [29], whose mission
was to accelerate the development of indoor location solutions. It features a
mobile autonomous platform with the required hardware and software equipment
to navigate in indoor real‐life scenarios. The role of Gauss robot was focused on
providing a robot with localization, path planning and obstacle detection
capabilities.

14 Obstacle avoidance for an autonomous rover

Figure 7. Picture of Gauss.

The robot is a four-wheeled mobile platform composed of four motors, two
encoders, a PID (Proportional-Integrative-Derivative) motor controller, a 3-axis
gyroscope, four IR distance sensors and an Arduino microcontroller (
Figure 7).

The system architecture can be defined in four big blocks or modules:
localization, control, obstacle detection and path planning.

The localization is in charge of obtaining displacement measurements from the
encoders and angular speed measurements from the gyroscope. This data is
processed to obtain a 2D position and a heading angle. To obtain position,
encoder counts are converted to meters. The encoder counts per meter is a
parameter that can be obtained measuring the wheel perimeter and the CPR
(cycles per revolution). In this particular case, the encoder counts are 27700 per
meter. To compute the travelled distance in meters, the average between the two
encoders is calculated:

distance (m) =
(encoder one counts + encoder two counts)

2 × encoder counts per meter
 (3.1)

Then, X and Y coordinates that give the position are calculated by means of
trigonometry, using the heading angle:

X = distance × cos(heading) (3.2)

Y = distance × sin(heading) (3.3)

Chapter 3. System design 15

To obtain the heading increments on a time instant, the measured angular speed
has to be converted into angular displacement multiplying by the sampling time
period. The total heading consists of the previous heading plus the angle increase
of the new measure.

heading (º) = previous heading + angle speed ∗ time

(3.4)

The control is based on skid steer motion (Figure 8), which is based on
differential drive. This type of motion is used by military tanks and bulldozer
vehicles [30]. This means that the four robot motors work paralleled in two motor
drives, left and right. The motors are controlled by the motor controller, which
receives direct commands from the Arduino microcontroller. Arduino has libraries
that allow an easy communication with the motor controller. Gauss control is
based on two commands, turn and advance. At turns, the motor controller
receives the required turning angle in degrees, and actuates the both motor
drives in consequence. To advance, the motor controller receives the required
distance, speed and acceleration for both motor drives, left and right. The speed
and acceleration are fixed. After finishing any command, the robot stops
automatically

Figure 8. Schematic of the skid steer drive [30].

The obstacle detection module is capable of detecting obstacles in two different
plains, both vertical and horizontal. To detect the obstacles, the robot is endowed
with four IR sensors, two of them oriented to the front of the platform to detect
obstacles in the horizontal plane and the other two oriented downward to detect
in the vertical one. Horizontal obstacles are the ones found in front of the robot
and vertical are situated below the robot, for instance, cliffs. Obstacle detection
is enabled at all times, interrupting the motion if necessary. If an obstacle is
detected, the detection module sends the proper command to stop the robot. If
an obstacle has not been encountered, the robot continues moving to the
destination waypoint. If an obstacle is encountered, the robot does not attempt to
determine an alternative route to reach the destination. This is the reason why
this robot is not considered to implement an obstacle avoidance system.

16 Obstacle avoidance for an autonomous rover

The path planning module computes the route to follow. The robot framework is
based on local coordinates, where the robot starts at the origin of coordinates
(0,0) and oriented to a 0º heading (Figure 9). It is important to state that Gauss
does not use the same local coordinates for all of its operation; the coordinates
and heading are reset to zero each time the destination is reached.

Figure 9. Gauss reference framework

Path planning starts by reading a set of 2D coordinates, called waypoints,
containing the destinations. Then, it computes the distance and angle between
its current localization and the next waypoint. Then sends this data to the motor
controller, which actuates in the motors to turn first and advance later. During this
process, localization provides feedback to the system. The robot will go to all
these waypoints following the established order, and stop when the last waypoint
is reached.

Figure 10. Gauss system architecture.

Chapter 3. System design 17

In order to log the positions walked through, the robot has its own serial
communication protocol. All the software architecture is based on Arduino and
therefore all robot functions are programmed using the Arduino IDE.

There is further information on the hardware used on Gauss at APENDIX A.
GAUSS HARDWARE COMPONENTS.

 AROA Design

AROA is an evolution of the Gauss rover that takes into account the targeted
requirements with a renewed system architecture. It improves the previous
obstacle detection and introduces new obstacle avoidance and path planning
modules. The system is now able to detect 3D obstacles and give a new path
solution in order to avoid them. These new modules are implemented in a new
microprocessor, whose objective is to support ROS system (Arduino does not
support ROS because it requires to be installed in a Linux OS). The localization
and control modules are maintained on the Arduino with few modifications,
although they have been adapted to work with ROS.

To fulfil the obstacle detection and avoidance module requirements, the new
design includes a RGB-D sensor as a range finder. In addition, since the new
microprocessor and RGB-D work at different voltages, a new voltage regulator
and a battery are also included. This new hardware is provided with power supply
by an independent new battery. The hardware used in Gauss, (Arduino, motor
controller, gyroscope, encoders and motors) is maintained.

Figure 11. Picture of AROA

18 Obstacle avoidance for an autonomous rover

The new system architecture is now divided in five conceptual modules:
localization, obstacle detection, obstacle avoidance, path planning and control.

The localization module is based on the Gauss system. The Arduino acquires
data from the navigation sensors, encoders and gyroscope, and computes the
localization of the robot. The main difference is that now the data is sent to the
path planning module located in the microprocessor via serial bus.

The control is also based on Gauss, although it has some changes. The Arduino
receives a command from the path-planning module via serial bus, and executes
the corresponding motor controller functions. The motor uses the same function
for turns, but not for advancing. To advance now only sets a fixed speed at both
motor drives. To stop the robot, a new stop function is included. This function sets
the speed to zero on both motor drives. As for the motion, the skid steer drive is
maintained.

The obstacle detection has been upgraded and migrated to the microprocessor.
It has two main functions: to acquire data from the RGB-D camera and to decide
whether an object in path of the robot is an obstacle or not. If an obstacle is
detected, it sends the position of this obstacle to the obstacle avoidance module.
The design was intended to incorporate the IR, but the lack of memory after
implementing ROS on the current Arduino does not allow this feature. Even
tough, the system architecture is prepared to receive and process IR data.

The obstacle avoidance module is performed at the microprocessor. The used
algorithm has been designed especially for AROA, and is introduced later (5.2.5).
The general operation works as follows: the module is only enabled when an
obstacle has been detected. Its main task is to compute a new waypoint that
guides the robot into avoiding the obstacle. To do so, the robot performs a scan
of the environment and searches obstacle free areas. When a suitable area is
meet, the algorithm creates a new point on the route. The pathfinder module
reads this as the new waypoint.

The path planning has been renewed and migrated to the microprocessor. In
AROA, the framework of the robot is still based on local coordinates, but the
difference is that now are maintained during all the operation. It uses the
localization data sent by the localization module, and a file where all the
waypoints of the route are stored. It gives a path solution according to the
received inputs. The module receives the current coordinates and the new
destination coordinates (which are obtained from the file) and sends a control
command to the Arduino. There are four types of output commands: forward, turn
right, turn left and stop.

Chapter 3. System design 19

Figure 12. AROA system architecture

The modules work with a four-state system; STOP (1), FORWARD (2), TURN
RIGHT (3) and TURN LEFT (4). The state, called Robot State (RS), is defined by
path planning and is sent as a robot command to the Arduino. Arduino updates
the state with the robot command, and performs specific actions depending on
the state. All robot actions end with a STOP command, which is the starting point
for each motion.

Figure 13. Robot State interaction diagram

Although the Arduino IDE is still used to program the Arduino microcontroller, the
microprocessor software design relies on ROS. ROS nodes can be programmed
in C++ and python, but in the AROA design all ROS code has been programmed
in C++.

Chapter 4. Hardware design 21

CHAPTER 4. HARDWARE DESIGN

 Component selection

There are four new hardware components in AROA: a microprocessor board, a
RGB-D camera, a voltage regulator and a new battery.

4.1.1. 3D Range finder

Before deciding to use an RGB-D camera, some other range finder sensors were
considered. The selection took into account five different types of sensors: IR,
LRF, ultrasonic, RGB-D and LIDAR.

As stated in section 3.3, the robot should be able to detect 3D obstacles. This
fact made the IR, 2D laser rangefinders and ultrasonic sensors non-suitable as
the main sensor. The reason is that they can only detect obstacles on a quasi-
linear beam (1D) or 2D plain.

LIDAR and RGB-D sensors were the only options that provided a point cloud,
allowing for 3D obstacle detection. LIDARs are more expensive than RGB-D
sensors, with prices starting at 400 € [31], against the 100 € that a typical RGB-
D costs [32]. Although LIDARs are much more precise than RGB-D sensors, the
high resolution did not compensate the extra price given the fact that this is a low
cost robot. In addition, RGB-D sensors provide image information besides depth,
which can be useful in future for functionalities.

For the selection of an RGB-D camera, an extensive research has been made
looking for the best RGD-B sensor in terms of performance and price, but also
looking for a device that it can be easily integrated in ROS.

Among the multiple options in the market, only four have active support on the
ROS community: Asus Xtion Pro, Intel® RealSense™ R200, Kinect V1 and
Kinect V2 [33]. The sensors should have a good range and field of view, in order
to obtain the maximum information possible from the environment. The frame rate
and latency of the depth processing need to be taken into account, since they
represent how fast data is acquired, processed and transmitted. Finally, the price
and the type of depth measurement technology are elements to be considered.
In Table 4.1 a comparative of the four RGB-D sensors is presented.

22 Obstacle avoidance for an autonomous rover

Table 4.1 RGB-D sensors comparative [34], [35]

RealSense

R200
Kinect V1

Kinect V2

ASUS
Xtion

Max. Depth distance 3.5 m 4 m 4.5 m 3.5 m

Min. Depth distance 0.6 m 0.5 m 0.5 m 0.8 m

Latency - 60 ms
20 ms - 60

ms
90 ms

Field of view
(Horizontal/Vertical)

59º/ 46º 57º/43º 70º/60º 57,5º/43,5º

Frame Rate 60 fps 30 fps 30 fps 30 fps

Depth measurement
technology

Computer
Stereo
Vision

Structured
light

Structured
light

Structured
light

Price 151€ [36] 50€ [37] 90€ [32]
Out of
Stock

The selected RGB-D sensor is Kinect 2 because is the sensor with better price-
quality relation. It is the sensor with the highest operational range and field of
view, and also has the smallest latency time. The frame rate is good enough for
this application, even though it is worse than the offered by R200. In addition,
Kinect based sensors are compatible with ROS.

Kinect 2 has two cameras with a resolution of 512x424 pixels (infrared) and
1920x1080 pixels (RGB). The maximum power consumption of the device is 32
W (12 V / 2.67 A), although the typical consumption is 15 W. The main drawback
of Kinect 2 is that it requires an adapter cable that transmits the data to the
computer and provides power supply to the sensor [38]. The connector of this
cable is not standard, and the only way to obtain it is by purchasing the official
adapter, which increases the final price in 50 €.

Figure 14. Schematic of a Kinect V2 [39].

Chapter 4. Hardware design 23

4.1.2. Microprocessor

The main microprocessor candidates for the AROA system were the Raspberry
Pi 3 and the Odroid XU4. The reason is that both devices are boards owned by
CTTC and compatible with Linux OS.

Odroid XU4 mounts a Samsung Exynos5422 octa-core CPU, formed by two
quad-cores, an ARM Cortex-A15 (2.1 GHz) and an ARM Cortex A-7 (1.5 GHz)
[40]. Raspberry Pi 3 uses a single quad-core processor of 1.2 GHz. The more
cores and processing speed provides a higher speed on data acquisition and
processing from the Kinect. Odroid also has a 2 GB RAM memory in front of the
1 GB of the Raspberry. Both devices have a GPU (Graphics Processing Unit)
that shares the RAM memory with the CPU. Raspberry has a Broadcom
Videocore IV and Odroid a Mali-T628 MP6.

Although the components do not require to be purchased, the price has been
taken into account in the selection process, since it influences on the final AROA
system cost. Raspberry price is 31 € [41] and Odroid 53 € [42].

In addition, Odroid microprocessor has 2 USB 3.0 ports, whereas Raspberry only
incorporates 2.0 USB ports. Due to the fact that Kinect V2 requires a 3.0 USB
port to work properly, the selected microprocessor is Odroid XU4.

The lack of popularity of Odroid, in front of other devices such as Raspberry, is
one of its main drawbacks. There is less support and troubleshooting on the
internet because there are less people developing with it. The other main
drawback of Odroid is the power consumption. Odroid uses 20 W at maximum
workload capacity, and about 10 W at normal usage. Even tough, consumption
is not a critical element in the AROA system, since it can carry high capacity
batteries that could increase the robot’s autonomy.

Figure 15. Picture of an Odroid XU4 [40].

24 Obstacle avoidance for an autonomous rover

4.1.3. Battery

The new system consumption is higher than in the previous Gauss design, which
requires another battery. This battery only provides power to the new hardware
(Kinect and Odroid). The maximum power consumption of the system is 50 W
(30 W from Kinect and 20 W from Odroid).

The selected battery is a VoltOn Li-Po (Lithium-Polymer) that provides 4550 mAh,
14.8 V and a maximum peak of 35 C. This provides 67.3 W per hour, which is
enough to power the whole module for, theoretically, at least two hours. The
battery cost is 30 €.

Figure 16. Sample picture of a Li-Po battery [43].

4.1.4. Voltage Regulator

The new integrated hardware works at different voltages levels, and a voltage
regulator is needed to provide the required amount of power to each device.

The selected device is a Diamond Systems HE104+DX linear voltage regulator.
The HE104+DX is a high efficiency (95 %), high performance DC-to-DC converter
that supplies +3.3 V (30 W), +5 V (45 W), +12 V (36 W) & -12 V (6 W) outputs
[44].

Kinect works at 12 V and Odroid at 5 V making this device perfect for this purpose.
The price of this component is 250 € [45]. Even tough, this device is property of
CTTC and only for temporal use; at the future a lower cost voltage regulator will
be used.

Figure 17. Picture of HE104+DX voltage regulator [46].

Chapter 4. Hardware design 25

 Hardware architecture

Figure 18. Diagram of the hardware architecture.

The system hardware architecture is represented in Figure 18. The red lines
represent power connections and the blue lines communication buses. As it can
be seen, the system power relies on the Li-Po battery. The battery is directly
connected to the voltage regulator, which distributes the voltage to the Kinect
adapter and the Odroid.

The Kinect adapter is connected to Odroid with a USB 3.0. The Kinect adapter is
connected to Kinect in the other end with the non-standard cable. This cable
transmits the acquired data to the Kinect adapter and power to the sensor.

Odroid is also connected to the Arduino, and thereby to the rest of the Gauss
system, via serial USB to receive localization data and transmit control
commands.

 Power consumption and total cost

The system maximum power consumption is 50 W, as stated before, but the
theoretical consumption differs from the real. Table 4.2 Power consumption and
autonomyshows the power consumption based on empirical test, and the
theoretical autonomy based on this consumptions.

Table 4.2 Power consumption and autonomy

System state Power consumption Autonomy
(theoretical)

Idle 13.79 W 4h 50’

Fully operative 30.34 W 2h 12’

26 Obstacle avoidance for an autonomous rover

The total cost of the new design components is 473€, although the cost spent to
develop the prototype is only 140€ because the Odroid, battery and voltage
regulator where devices previously owned by CTTC (Table 4.3).

Table 4.3 List of component prices

Component Price

Kinect 2 90 €

Kinect adapter 50 €

Odroid 31 €

Voltage regulator 250 €

Battery 30 €

TOTAL 473 €

Chapter 5. Software design 27

CHAPTER 5. SOFTWARE DESIGN

 Software environments

AROA uses two different IC boards, and each one has been coded in different
languages and frameworks, Arduino and ROS.

5.1.1. Arduino

Arduino is an open-source electronics platform based on easy-to-use hardware
and software [47]. It uses the Arduino programming language, which is a
simplified version of C/C++, and the Arduino IDE as programming environment.
Arduino contains libraries to communicate with the motor controller, to acquire
data from the IMU and the IRs and to generate and receive ROS based
messages.

5.1.2. ROS

ROS has been introduced in the state of the art (2.1), but this section focuses on
explaining how it works in order to understand the code and algorithms designed.
Here are a brief explanation of ROS most important concepts and functionalities
[48].

 Packages: They are the main unit to organize software in ROS. A package

can contain ROS processes (called nodes), libraries or datasets, among

others.

 Message (msg) types: A message defines a data structure comprising

typed fields, supporting standard primitive messages (integer, floats,

bools…) among more specific messages, such as localization or IR Data

messages. The messages are standard for all the ROS community, which

means that all the message fields have to have a specific type of data.

 Service (srv) types: Services are based on the publish/subcribe model,

and are conformed of a pair of message structures, one is used to request

and the second is the reply. To use a service, there has to be a node

requesting it and waiting for the response, whereas a message is

published without need of being requested. The current AROA design,

does not use services.

 Nodes: Nodes are processes that perform computation of a single task. A

robot control system usually comprises many nodes working in parallel

and interacting each other. For example, one node might be in charge of

28 Obstacle avoidance for an autonomous rover

the infrared sensors and another of the control of the motors. ROS nodes

are written using a ROS client library, generally roscpp or rospy. Nodes

communicate with each other by passing messages or requesting

services.

 Topics: It is the name given to a specific content of a message. They are

published by nodes and a node that wants to receive this topic has to

subscribe to it. There may be multiple concurrent publishers and

subscribers for a single topic, and a single node may publish and/or

subscribe to multiple topics.

 Master: The ROS master is a node that provides name registration and

lookup to the rest elements on the environment. In other words, it works

like a DNS server, all ROS nodes have to communicate each other asking

their registration information to the master first.

About its operation, the ROS master acts as a nameservice. This means that the
master node contains all the registration information of all the published topics.
The different nodes of the robot communicate with the master to register and
receive information about other registered nodes. The master informs to these
nodes when the registration table information changes, which allows nodes to
dynamically create connections as new nodes are executed. After the first
connection with the master has been done, nodes communicate directly among
them. Nodes that subscribe to a topic, request a connection from nodes that
publish that topic, and stablish communication. Once the communication is
stablished, the publisher node sends messages to the subscriber node. The
messages are processed in a subscriber’s callback function.

Figure 19. ROS communication [48].

As mentioned before, the software design is divided in two different hardware
boards, Arduino and Odroid. The software design is also divided in five different
modules or algorithms: localization, path planning, obstacle detection, obstacle
avoidance and control.

Chapter 5. Software design 29

 Software architecture

The localization and control modules run on the Arduino board and are coded
with the Arduino language. The path planning, obstacle detection and obstacle
avoidance modules run in the Odroid board and are coded in C++ programming
language using ROS libraries.

As for ROS, the system works with three nodes plus the master:

1. robot_navigation_and_obstacle_avoidance node: Formed by all the

modules running on Odroid: path planning, obstacle detection and

obstacle avoidance. It publishes a command and a parameter message,

and subscribes to Pose2D and Point_Cloud.

2. kinect2_bridge node: Part of the package iai_kinect2. It is used to acquire

data from Kinect and for calibrating the sensor. It publishes processed data

to the obstacle detection module, and thereby, to the

robot_navigationa_and_obstacle_avoidance node. It publishes

Point_Cloud, although it publishes more messages that are not in use,

such as the captured images or the cameras information.

3. rosserial_arduino node: This module permits the communication between

an Arduino script and the master node. Includes the localization and

control modules. It published Pose2D message, and subscribes to a

command and a parameter.

Figure 20 represents the communication among ROS nodes, showing the
messages that are being exchanged and how the modules interact among them.

Figure 20. Software System general scheme

30 Obstacle avoidance for an autonomous rover

5.2.1. Localization

The localization module has three functions: acquires data from the sensors,
processes the data measures to convert it into odometry and sends the message
to the path-planning module. Depending on the robot current state, it has a
different behaviour:

 If MOVE is enabled, the encoder data is acquired, but gyroscope data is
not.

 When TURN LEFT or TURN RIGHT is enabled, the gyroscope calibration
parameters are recomputed once, right before the turn starts. After that,
gyroscope data is acquired and modified by the current calibration
parameters. The calibration consists on computing a static bias to correct
the error, and on a simple Kalman filter that was developed by Gauss’
team of engineers. In the TURN state, the encoder data is not acquired.

 When STOP is enabled, no data is acquired from any of the sensors. The
encoders’ absolute counters are restarted to zero.

Sensor measurements are only performed at specific states. The reason is that
it reduces the workload of Arduino, improving the loop speed and efficiency. Also,
after performing certain actions, the sensors are restarted, reducing the
cumulative error.

The processed position and heading are packaged in the form of a ROS geometry
message of the type Pose2D. The message contains a 2D position in X and Y
coordinates (in meters) and a heading orientation (in radians). Arduino sends this
data message via serial port to the rosserial_arduino node, which publishes the
message.

Figure 21. Localization module algorithm

Chapter 5. Software design 31

5.2.2. Control

The control is performed at the Arduino. It receives two ROS standard messages
from the robot_navigation_and_obstacle_avoidance node; a rover command
(Command message) and the required heading (Parameter message).
Depending on the received command, Arduino updates the robot state and sends
the proper velocity command to the motor controller.

It uses two functions to interact with the motor; speedM1 for right side motor drive
and speedM2 for left side motor drive. This functions require a speed in encoder
counts, which is fixed to 2770 counts per second (approximately 0.1 m/s).
Depending on the robot state, the value of the speed in both functions is changed.

 If the robot state is MOVE, the Arduino sets the same speed on both motor
drives.

 If the robot state is TURN LEFT or TURN RIGHT, the Arduino executes a
loop to turn the robot. First it computes the turning angle, which is the
desired heading minus the current heading. After that, motor controller
function sets a positive and a negative speed in each function; which one
depends on the turning direction. During the loop, robot is reading from the
gyroscope. The robot keeps turning until it meets the relative turning angle.
Then it stops the vehicle and change the state to STOP.

 If the robot state is STOP, the Arduino sets velocity to zero on both motor
drives.

Figure 22. Control algorithm

32 Obstacle avoidance for an autonomous rover

5.2.3. Path planning

Path planning module decides the route that the robot has to follow and
determines the current state of the robot. To do so, at each iteration of the code
it establishes a robot command, which corresponds with the robot state.

The algorithm starts reading a waypoints file, and copy it into a vector of
waypoints. The first and last position of the vector are the last waypoint and first
waypoint of the route respectively.

The algorithm reads the last position of the vector, which is always the next
waypoint to reach. This vector can be modified by the obstacle avoidance
algorithm to re-plan the route. With the localization data received from the
localization module, the path planning computes the distance and angle between
the current position and the destination waypoint.

Theoretically, if the current waypoint and the destination waypoint coincide, the
destination has been reached. The reality is that the localization has some error,
a waypoint threshold is stablished at the destination waypoint. This threshold is
a circle centred in the waypoint with a radius of 10 cm (Figure 23). When the robot
localization reports that the robot is inside this area, is when the destination is
considered to be reached.

Figure 23. Waypoint threshold

In the case that the robot is inside the waypoint threshold, the robot stops and
the waypoint is deleted from the vector. The next waypoint of the route is now
situated in the last position of the vector. In the next iteration of the code loop, the
algorithm treats this waypoint as it is the new coordinate destination.

On the contrary, if the destination has not been reached, the computed angle is
used to determine the turning angle and the robot command. Since the heading
can have some error, a ±2º threshold has been stablished (from now on, heading
threshold). In addition, the algorithm determines whether or not the detection of
obstacles is enabled:

 If the angle error is between 2º and -2º, the robot command is FORWARD.

The obstacle detection is enabled.

Chapter 5. Software design 33

 If the angle error is between 2º and 180º, the robot command is TURN

RIGHT. The obstacle detection is disabled.

 If the angle error is between -2º and -180º, the robot command is TURN

LEFT. The obstacle detection is disabled.

During turns, obstacle detection is not necessary since the robot is rotating
without displacement.

This algorithm keeps iterating for each localization message received, until the
waypoints vector is empty. In this case, the final destination has been reached,
and the algorithm finishes.

Figure 24. Path planning module

34 Obstacle avoidance for an autonomous rover

5.2.4. Obstacle detection

The obstacle detection module performs four tasks: it acquires data from the
Kinect sensor, processes and selects the data of interest, determines if there is
an obstacle in the path and enables/disables the obstacle avoidance algorithm.

First, the algorithm checks if the obstacle detection mode is enabled. If not, the
robot is turning and obstacle detection is not required.

Data acquisition acquires data from Kinect via Kinect2_bridge node. This node
provides multiple ROS messages, but the only one acquired by the obstacle
detection module is the point cloud message. This message contains the position
of the obstacles ahead in a 3D local coordinates, with centimetric resolution. The
origin of coordinates and orientation of the acquired data is the Kinect coordinates
and heading, and X, Y and Z coordinates are width, height and depth
respectively.

Data processing consists of three different processes: it eliminates wrong data,
defines the detection envelope and creates a 2D obstacle map vector from the
3D point cloud. Wrong data are false readings from Kinect, for instance, points
detected beyond Kinect detection range.

Kinect detection range goes from 0.5 m to 4.5 m. Below and beyond that range,
the robot dos not provide reliable data. The obstacle detection area is the section
in front of the robot in which an object becomes an obstacle (Figure 25. Obstacle
detection area). Everything outside this area is not considered a menace to the
motion of the robot. To define the detection envelope, several considerations
have to be taken into account:

 The upper limit is defined by the robot height, plus a security margin of 5

cm. Objects that can be traversed underneath, are not considered

obstacles. The upper limit is 20 cm height from the centre of Kinect.

 The lower limit is the distance to the floor. For Kinect, the ground is like

an obstacle. The lower limit is -10 cm height from the centre of Kinect.

 The laterals limits are defined by the robot width, plus a security margin

of 5 cm per side. Objects that are not in the path of the robot, do not

represent an obstacle. The total width of the envelope is 30 cm width.

 The maximum detection distance is the distance from the robot to the

next waypoint.

Chapter 5. Software design 35

Figure 25. Obstacle detection area

The resulting 3D point cloud of the envelope, is converted into a vector that
represents a 2D matrix. The X and Y coordinates of the point cloud correspond
to the rows and columns of this matrix, and each value of the matrix correspond
to the smallest depth value detected. The last part of the data processing is to
create a new 2D vector, obstacles vector, from the 3D obstacles detected. The
obstacles vector maximum length is the number of columns of the matrix. Each
position of the vector is filled with the smallest depth value of each column. With
this procedure, the most hazardous point of each width pixel in front of the robot
is used to create the 2D vector of obstacles. The spatial resolution of each pixel
decreases with more distance. The worst spatial resolution is 4 mm at 4.5 meters
[49].

After the obstacle detection data processing, is the algorithm determines if an
obstacle has been detected. If there is any obstacle inside the envelope, the robot
stops immediately. In order to determine if it is a dynamic obstacle, it waits for the
next point cloud data callback. If this callback contains no obstacles, a dynamic
obstacle crossed in front of the robot, and it resumes its previous operation. If the
obstacle is detected again, it is considered as a static obstacle. If a static obstacle
is detected, the robot enables the obstacle avoidance algorithm.

36 Obstacle avoidance for an autonomous rover

Figure 26. Obstacle detection module

5.2.5. Obstacle avoidance

The obstacle avoidance (OA) algorithm has been specifically designed for AROA,
inspired by some of the state of the art obstacle avoidance techniques (2.3). The
objective is to surround the obstacle, like in bug algorithm, but instead of following
the border of the object the algorithm tries to find where the obstacle ends,
similarly as in the “follow the gap” philosophy, to set a new waypoint beside it. To
do so, the robot turns until the obstacle is no longer detected. Figure 27 explains
graphically the AROA obstacle avoidance algorithm.

Chapter 5. Software design 37

Figure 27. OA conceptual design

The algorithm only starts if the obstacle avoidance is enabled. It has two main
objectives: determine the turning criteria and setting a new waypoint into the
waypoint vector in order to modify the route.

The designed turn criteria is used to determine the direction of the turn to avoid
the current obstacle. The 2D obstacle vector obtained by the obstacle detection
module is used to stablish the turn criteria. Each point of the vector is treated by
the algorithm as a single obstacle. Obstacles situated beyond the Kinect central
point at the X axis (15 cm) are considered obstacles at left and obstacles above
this points are considered to be at right.

It has been designed and implemented an algorithm to determine the turn criteria,
depending on the distance to the closest obstacle and depending on the total
number of obstacles detected. If there are obstacles below the 0.75 m depth
threshold, they are considered to be near to the robot, so the turning criteria is
determined by the position of the closest obstacle. If it is detected on the right,
the turning criteria is left and vice versa. If there are obstacles further than the
0.75 m depth threshold, it is considered to be far and the turning criteria is
determined by comparing the weight of the obstacles and the number of
obstacles at right and left side. The weight of a set of obstacles depends on the
quantity of obstacles detected at that side of the robot, and of the distance at
which they are. Right and left weight are computed with the following formula:

𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 = 1 + ∑
1

𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛

𝑛

1

(5.6)

In the formula, n is the total number of obstacles in one side. More obstacles will
sum up, but the distance at which those obstacles are, determines if they add
more or less to the total value. Further values add less than closer ones. If right
obstacle weight is greater than left one, the robot turn criteria is left and vice
versa.

38 Obstacle avoidance for an autonomous rover

After determining the turn criteria, the algorithm changes the robot state to match
the turning criteria, and executes a 10º turn in that direction. After the turn, the
robot stops and enables the obstacle detection algorithm. If an obstacle is
detected, the robot repeats the operation maintaining the turning criteria. If there
are not obstacles detected, a new position coordinate is set to the waypoints
vector.

The new waypoint is set at a distance equal to two times the distance to the
nearest obstacle, without changing the heading. It is multiplied by two to ensure
that the new waypoint is beside or beyond the detected obstacle. This new
waypoint is set into the last position of the waypoint vector, in order to become
the next waypoint of the route. After setting the waypoint, the obstacle avoidance
is disabled.

Figure 28. Obstacle avoidance module

Chapter 6. Kinect calibration 39

CHAPTER 6. KINECT CALIBRATION

Kinect 2 is a sensors that uses ToF technology. It uses the IR emitter to project
pulsed light beams, and an IR receiver that creates a depth image (this image is
later used to create the point cloud). The problem with ToF light based sensors
is that they are susceptible to light interferences, a type of random error. Kinect
designers have thought on this issue and the device can use CSV (computer
stereo vision), also known as stereo vision, to correct the depth error [50].

Stereo vision is a technique that takes advantage of the two cameras on Kinect
(RGB and IR) to triangulate the depth to the pixels of image. In Kinect, Stereo
vision depths are used as reference to characterise the ToF depth error at
different distances and points of the image. Even tough, assuming that there are
not depth error on stereo vision calibration is wrong. All cameras have a
systematic error associated due to the camera geometry. Cameras construction
and usage produce a misalignment between the camera objective and the
sensors matrix causing image radial and tangential distortion (Figure 29). Radial
distortion occurs because the image magnification decrease with distance from
the optical axis. Tangential distortion occurs because camera lenses are not
perfectly parallel to the imaging plane [51]. These errors can also be corrected
with a proper calibration.

Figure 29. Radial and tangential distortion effects [52].

The objective of this chapter is to show the cameras geometric calibration and
the results of the consequent depth calibration.

https://en.wikipedia.org/wiki/Magnification
https://en.wikipedia.org/wiki/Optical_axis

40 Obstacle avoidance for an autonomous rover

 Camera geometric calibration

Camera calibration is the process of determining the geometric property of a
camera such as its intrinsic and extrinsic parameters [52].

The intrinsic parameters of a camera define the internal geometry and camera
optics, such as the focal length and the optical centre. They determine how the
camera projects 3D points of the real world into a 2D frame.

The extrinsic parameters, in the case of Kinect, define the relation between the
two cameras. They are related by a translation vector and a rotation matrix, being
translation the distance between cameras and rotation the relative angle among
cameras.

To perform the calibration of Kinect, a ROS package dependant of iai_kinect2
has been used, kinect2_calibration. This package uses the OpenCV geometric
calibration procedure adapted for Kinect, which is an open-source BSD-licenced
library for computer vision algorithms [53].

This calibration is based on the Conrady-Brown model, which estimates the real
position of a distorted pixel. The Conrady-Brown formulas for the radial factor are
the following ones:

Xcorrected = x(1 + k1r2 + k2r4 + k3r6) (6.1)

Ycorrected = y(1 + k1r2 + k2r4 + k3r6) (6.2)

And the Conrady-Brown formulas for the tangential distortion are the next ones:

Xcorrected = x + [2p1xy + p2(r2 + 2x2)] (6.3)

Ycorrected = y + [p1(r2 + 2y2) + 2p2xy] (6.4)

Where x and y are the coordinates of the pixel and xcorrected and ycorrected are the
estimated coordinates after correction. The r is the radius in pixels of the image
at which the specific coefficient applies. The k and p parameters are the radial
and tangential distortion coefficients respectively.

As can be seen, finding the k and p parameters is the basis of the calibration,
which is done through basic geometrical equations. These equations are found
by comparing pictures of known pattern, such a chessboard, at a specific
distance; since the pattern is known, the difference between the expected and
the real result, gives a correction equation.

Chapter 6. Kinect calibration 41

The calibration consists on taking different pictures of this pattern; each found
pattern results in a new equation, and more equations mean that the distortion
coefficients reflect better the reality.

The complete calibration of Kinect requires to calibrate the intrinsic of each
camera (IR and RGB) and the extrinsic of both, making a total of three
calibrations. In all cases a chessboard pattern of 5x7x0.03 is being used, with a
distance between squares of 3 cm.

The procedure to calibrate consists on placing two tripods, one holding the Kinect
and the second holding the chessboard pattern, and locating them one in front of
each other as can be seen in Figure 30.

Figure 30. Calibration process

The objective of each calibration is to take pictures of the chessboard at two
different distances, at different positions and orientations and with the pattern
vertical and horizontal, to ensure that both radial and tangential parameters are
taken into account. It is recommended to take at least 100 pictures for a good
calibration; in the case of this particular calibration around 120 pictures have been
taken at two different distances.

After taking the pictures, it is necessary to run the calibration program in order to
generate a calibration file containing the distortion coefficients matrix. With the
parameters of the calibration file, kinect2_bridge will correct the error
automatically in any picture taken by Kinect.

42 Obstacle avoidance for an autonomous rover

Figure 31. Uncalibrated and calibrated image comparison

In Figure 31. Uncalibrated and calibrated image comparison, the correction can
be noticed on the edges of the picture, where the distortion is greater.

 Depth calibration

As stated before, Kinect uses stereo vision to correct the depth error on ToF
measures. The calibration consists on estimating the bias of the ToF measures
using the stereo vision measured distance as a reference. This bias is later used
to correct all the measures taken with ToF. The following section presents the
depth error corrected by the calibration.

Figure 32. Distance difference relative to X-coordinate

Figure 32 presents the measured depth error in the X axis. As it can be seen, the
depth data has a bias of -0.024 m approximately.

Chapter 6. Kinect calibration 43

Figure 33. Distance difference relative to Y-coordinate

Figure 33 shows the measured depth error on the Y axis. As it can be seen, apart
from the bias it has been detected a small drift. The bias for this axis is 0.03 m.
This drift is not contemplated by the Kinect2_bridge calibration, and it is not
corrected.

Figure 34. Distance difference relative to XY-coordinate

In Figure 34 it is represented the error of a whole 2D matrix frame. A constant
bias should provide a frame of the same colour (which represents error) at all
points. The fact that Y points near to 0 have a different colour than values at 400,
reaffirms the fact that there is a small drift on Kinect.

Chapter 7. Test and validation 45

CHAPTER 7. TEST AND VALIDATION

To validate the AROA system and the obstacle avoidance algorithm, a series of
tests have been designed. The aim of this tests is to determine if the requirements
are satisfied. The time, the travelled distance and the accuracy of the robot are
the key elements to determine the efficiency of the path planning algorithm. In
addition, the behaviour against obstacles is decisive to determine the efficiency
of the obstacle detection and avoidance algorithm.

The tests have been designed to evaluate the different system parts, and are
classified into three validation groups: path planning, obstacle detection and
obstacle avoidance.

 Path planning validation

This section evaluates the efficiency of the path planning module. One test has
been designed to evaluate all the aspects of the algorithm.

7.1.1. Path planning test

Evaluating the efficiency of path planner requires to evaluate if the robot is able
to move through a given set of waypoints. This test is designed to evaluate the
efficiency of the path planner without the presence of obstacles. Path planning
algorithm receives data from the localization module, so the efficacy of their
response is also being evaluated.

The path planning test consists on a U-shaped circuit. The robot has to perform
this route and arrive to the final destination, marked in red in the figure. The path
consists of three waypoints, and two turns of 90º (Figure 35 and Figure 36). The
test was planned to be repeated five times, but it has been repeated eight times.

Figure 35. Ideal path

46 Obstacle avoidance for an autonomous rover

Figure 36. Path Planning test layout

Of the eight tests, the robot arrived to the final destination five times. In the other
four tests, the robot did not arrive because the localization was not immediately
updated after the robot turned for the first time. This makes impossible for the
path planning to guide the robot to the final destination because according to the
localization, it has no moved. The presented results are those obtained by the
five tests that arrived to the final destination.

Tables 7.1 and 7.2 present the localization of the robot at the last waypoint. At
this tables, the estimated position and heading are those detected by localization
sensors. The real position is the actual position of the robot, measured externally
with a tape measure.

At the tables the problems with the localization are noticeable. The difference
between the sensors measurements and the real position, which is the
localization error, is generally high. For instance, the mean of the average of the
destination absolute error is 0.24 m for the X axis. This is a big error because,
albeit the path planning module is working properly, the robot is not really inside
the waypoint threshold. It can be easily seen in Figure 37.

From the point of view of the path planning module, the result of this five tests are
satisfactory, since it has guided the robot according to the localization estimated
by the sensors. Even tough, test number five has been analysed in detail.

Chapter 7. Test and validation 47

Table 7.1 Final coordinates

Final coordinates (m)

X Y

Real Estimated Real Estimated

Test nº1 1.26 1.02 0.02 0.03

Test nº2 1.26 1.02 0.02 0.03

Test nº3 1.24 1.18 0.18 0.09

Test nº4 1.26 1.02 0.02 0.03

Test nº5 1.18 1.01 0.02 0.02

Average 1.24 1.02 0.05 0.04

Table 7.2 Path Planning heading test results

Final heading (º)

Real Estimated

Test nº1 7.9 5

Test nº2 6.9 5

Test nº3 3 1.1

Test nº4 7.1 5

Test nº5 5.5 3.7

Average 6.1 4

The results presented in table 7.3 show the localization of the rover and the
command emitted by the path planner. Figure 37 show the route that the robot
has performed according to the localization and to real measurements.

As can be noticed, each time the rover is inside the waypoint threshold of the
destination waypoints (0.1 m) it stops. For instance, when the destination was (0,
2), the robot stopped at (0, 1.93). It also can be noticed that after each STOP
command, a new waypoint is introduced. Is also noticeable how after each STOP,
the robot computes the turning angle and emits a TURN (RIGHT, for this case)
command.

The heading threshold (±2º), is also meet in all the examples. For instance, at the
first turn the planned angle was 86º, and the robot has stopped at 85º. In this
particular test, the robot has had made a corrective turn at the last segment of
the route. It went from angle 178º to -178º, a 4º turn to the right. At this
coordinates the path planning has recalculated the route because the heading
was beyond the heading threshold.

In conclusion, the path planning module is working as it should, but better
localization data would improve the robot general operation.

48 Obstacle avoidance for an autonomous rover

Table 7.3 Path planning results

Next waypoint (m) Localization (m and º) Rover Command

(0, 2) (0, 1.93, 0º) FORWARD

(0, 2) (0, 1.93, 0º) STOP

(1, 2) (0, 1.93, 0º) TURN RIGHT (86º)

(1, 2) (0, 1,93, 85º) STOP & FORWARD

(1, 2) (0.99, 2.02, 85º) STOP

(1, 0) (0.99, 2.02, 85º) TURN RIGHT (179º)

(1, 0) (0.99, 2.02, 178º) STOP & FORWARD

(1, 0) (1.03, 1.02, 178º) STOP

(1, 0) (1.03, 1.02, 178º) TURN RIGHT (-178º)

(1, 0) (1.03, 1.02, -178º) STOP & FORWARD

(1, 0) (1.01, 0.02, -178º) STOP

Figure 37. Path Planning test results

Chapter 7. Test and validation 49

 Obstacle detection validation

This section aims to determine the efficiency of the obstacle avoidance system.
To do so, the acquisition and processing of the point clouds is evaluated. Four
different tests have been designed: frame rate, reaction time, false data
probability and dynamic obstacle.

7.2.1. Frame rate test

Kinect detects, processes and publishes a point cloud at a certain frame rate.
This test aims to determine the frames per second (FPS) provided by Kinect.

For the test, 500 point clouds have been taken and the elapsed time has been
measured. The total number of point clouds divided by the elapsed time provides
FPS. The test has been performed three times.

𝐹𝑃𝑆 =
𝑛º 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒

(7.1)

Table 7.4 shows that the FPS average value is 0.5, which represents a point
cloud every two seconds. This value is a low value for an obstacle detection
application.

Table 7.4 Frame rate test

Total acquisition

 time (s)
FPS

Test nº1 1013 0.49

Test nº2 1120 0.5

Test nº3 1120 0.5

7.2.2. Reaction time test

The reaction time is the elapsed time that starts when an obstacle appears in the
path of the obstacle is detected and ends when the robot stops.

This test aims to stablish the reaction time of the robot. Kinect has been laid out
in a static test bench, but with the wheels in motion. For each test and an obstacle
has been placed in front of the robot. The timer is started at this instant. The robot
wheels eventually stop, and this is the moment when the timer is stopped. This
time is the reaction elapsed time. The test has been performed 15 times.

50 Obstacle avoidance for an autonomous rover

The results of the test prove a mean reaction time of 3.43 seconds. At the speed
of the robot, 0.1 m/s, it means that before an obstacle is detected the robot has
advanced 0.35 m. Because the near detection range of Kinect is 0.5, it can be
assured that the robot stops before colliding with the obstacles at all times.

Table 7.5 Reaction time test results

Test nº 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Elapsed
time (s)

1.5 2.9 4 3.5 4.5 2.5 3.6 3.1 4.3 3.4 3.8 4.1 2.7 4.1 3.7

7.2.3. False data probability tests

Sometimes, a detection iteration from Kinect emits a false positive. Also, there is
the possibility that due to light interferences a false negative is emitted. This tests
aim to determine the false positive and false negative probability of Kinect. A false
positive is considered to be a point cloud reporting a detected obstacle when
there was no obstacle. A false negative is considered to be a point cloud not
reporting a detected obstacle that is in front of the robot.

The test purposes is to evaluate the number of false positives and negatives
detected in 500 point clouds. For the test, Kinect has been laid out in a static test
bench with two different scenarios. With no obstacles ahead, first scenario, false
positives are measured (Figure 38). For an obstacle within the detection range,
second scenario, false negatives are measured (Figure 39). Each test scenario
has been performed three different times for each layout

Figure 38. False positive test layout

As can be seen from the Table 7.6, the mean false positive error is 1.2%, which
is small. Even tough, it has been considered in the design, and whenever the

Chapter 7. Test and validation 51

robot detects a false positive, it considers it a dynamic obstacle. This way, the
obstacle avoidance algorithm is not triggered.

Table 7.6 False positive error test results

Nº of detected
false positives

Error produced
by false positives

Test nº1 6 1.2 %

Test nº2 4 0.8 %

Test nº3 8 1.8 %

Figure 39. False negative test set up

The results of the test showed that the obstacle was detected by all the point
clouds, proving the false negative error is 0%.

7.2.4. Dynamic obstacles test

Dynamic obstacles are those that are not part of the environment, but a mobile
object. This test consists on a person crossing in front of the robot while it is in
motion, to evaluate the response. The purpose is to evaluate if the robot
continues the route after encountering a dynamic obstacle without enabling
obstacle avoidance. The test has been performed ten different times.

The results of the test showed that the obstacle was successfully detected and
that the robot stopped and resumed its motion after a few a seconds a 100% of
the times. This confirms that the obstacle detection algorithm is robust against
dynamic obstacles.

52 Obstacle avoidance for an autonomous rover

 Obstacle avoidance validation

The objective of this tests is to validate the system reaction against obstacles.
The turn criteria and the general operation are being evaluated.

7.3.1. Turn criteria test

The turn criteria, explained at 5.2.5, is the parameter that determines the direction
at which the robot turns to avoid the current obstacle.

To evaluate the turn criteria, a box has been situated at the coordinates (0, 0.9)
(left) for five tests, and at (0, 1.1) (right) for five more (Figure 40). The objective
is to evaualte if the robot turns to the correct direction, which is the oposite to the
current obstacle position.

Figure 40. Turn criteria test set up (right turn)

In the five tests in which the obstacle was at left, the turn criteria was considered
correct 100% of the times. The same happened for the five tests where the
obstacle was located at right. Thereby, the turn criteria is guiding the robot
correctly.

7.3.2. Obstacle avoidance test

This test aims to test if the robot is capable of fixing a new waypoint to avoid the
obstacle, and reach the final destination.

At this test the robot has to arrive at a waypoint situated at two meters in straight
line from the origin of coordinates, the waypoint (0, 2). To do so, it has to calculate
a new waypoint to avoid the obstacle. A box (0.3 m x 0.2 m) has been situated at
the coordinates (0, 1) as obstacle. The turning criteria has been fixed to turn right.

It is important that all the new waypoints fixed by the obstacle avoidance module
are situated beyond 0.35 m at X axis. This coordinate represent the box width

Chapter 7. Test and validation 53

plus the robots width (with a security margin). Any waypoint below this value, will
cause a collision of the robot. The test was planned to be repeated five times, but
it has been repeated ten times.

Figure 41. Ideal obstacle avoidance

Figure 42. Obstacle avoidance test set up

Of the ten tests, the robot arrived to the final destination five times. The problem
with the localization stated in the Path planning test (7.1.1) has affected the other
five tests, where the robot did not arrive to the final destination. The presented
results are those obtained by the five tests that arrived to the final destination.

Table 7.6 shows the results of the test. The localization is the point at which the
robot has stopped because the obstacle has been detected. The new waypoint
is fixed by the algorithm. As can be seen from the results all the new waypoints

54 Obstacle avoidance for an autonomous rover

are beyond the 0.35 m on the X axis. This ensures that the algorithm to determine
the new waypoints is valid for this scenario.

Table 7.6 False positive error test results

 Localization (m) New waypoint (m)

Test nº1 (0, 0.26) (0.58, 1.16)

Test nº2 (0, 0.20) (0.37, 1.54)

Test nº3 (0, 0.20) (0.46, 1.19)

Test nº4 (0, 0.19) (0,57, 1.25)

Test nº5 (0, 0.20) (0.44, 1.51)

Chapter 8. Conclusions 55

CHAPTER 8. CONCLUSIONS

The main objective of this project, which has been evolving an autonomous rover
with 3D obstacle avoidance capability, has been accomplished. Even tough, the
whole system does not work correctly because of problems with the localization
module. The requirements (3.1) have been fulfilled:

 The system obstacle avoidance module has been upgraded to detect 3D

obstacles.

 The system has a new 3D obstacle avoidance module.

 Obstacle detection, obstacle avoidance and path planning modules are

now based on ROS. Localization and control modules are not ROS based

(because they are located on the Arduino), but are compatible with the

ROS message system.

 The total cost of this prototype is 473 €.

The system has been endowed with new hardware needed to achieve the stated
requirements. The RGB-D camera Kinect 2 has given good results, providing
depth information below the centimetre in point cloud form. Even tough, the frame
rate of the device has proven much slower than expected, 0.5 FPS. The reason
is that the library that converts images to point cloud data, OpenGL, is not
supported by Odroid’s GPU drivers, and it has to rely on Odroid’s CPU [54]. This
conversion requires a lot of image processing capacity, a type of process that the
CPU does not perform as fast as the GPU would. Kinect 2 depth error has been
characterized and the sensor has been calibrated.

The ROS framework has been installed and configured in all the system. This
framework, although hard to understand at first, has allowed for faster
development of the software architecture. The most notable example is
iai_kinect2 module, which acquires image and data from Kinect 2. Data
acquisition from Kinect 2 is not trivial, and would have cost a lot of time of the
project. The same goes for the calibration of the sensors. This package, which
contained the nodes kinect2_bridge and kinect2_calibration, has reduced the
workload and the complexity of the project significantly. Another advantage of
having ROS running on all the system is that now it is standardized. This means,
for instance, that if in the future it is required to change Kinect 2 for another RGB-
D sensor, the messages that this new sensor will be delivering will be the same
used by Kinect 2. This saves a lot of future developing time and simplifies the
upgrading process of the platform.

Tests have been performed to evaluate the path planning, obstacle detection and
obstacle avoidance modules.

56 Obstacle avoidance for an autonomous rover

The path planning tests have determined that the module works properly. The
path planner computes the correct orders and drives the robot to the required
destination. Even tough, the path planning module is affected by the localization
module, which has to be improved because once in a while it provides wrong
positioning of the robot. It has been noticed that sometimes encoder data
provided by the motor controller is corrupted or it is simply not provided while in
motion. This causes a general failure of the system at some of its operations.

The obstacle detection tests have proven that the reaction time is 3.43 s. This
value is valid for the current robot motion speed, 0.1 m/s. In order to increase the
speed of the robot, the reaction time should be decreased. Otherwise, the robot
will collide with the obstacle.

The obstacle avoidance tests show that the implemented algorithm provide
good results for the proposed scenario. Even tough, to characterize the algorithm
general efficiency, more tests need to be performed in more complex scenarios
(for example, with more obstacles). In addition, the algorithm has room to be
improved. For instance, the current algorithm forces the robot to turn to search
for obstacle free areas. An improvement would be to use all the data from the
Kinect point cloud, and not only data inside the obstacle detection area. Having
more information of the environment ahead of the robot will help to determine a
suitable obstacle free area without turning the robot.

As can be seen, the robot performs all the desired tasks, but there is always room
to improve the system. Some proposals have been made to future developing.

The erratic behaviour of the localization has to be solved. More research should
be performed on this issue, because it harms the global operation of the system.

The usage of Kinect 2 to perform SLAM would improve the general system
operation. SLAM, as has been defined in the State of the Art (2.2.1), consists on
trying to simultaneously localize the sensor with respect to its surroundings, while
at the same time mapping the structure of that environment. This would help
solving the localization issues. In addition, generating a map of the environment
would help immensely the obstacle avoidance module, because map based
algorithms such as A* or D* could be used.

The low frame rate of Kinect should be improved. Right now Odroid is using
CPU to process point clouds, but with compatible drivers, it could rely on its GPU.
This would increase the frame rate.

The IR sensors used by Gauss should be integrated. This would provide the
system detection capabilities under 0.5 m. They have not been implemented in
the new design because the new Rosserial library increased considerably the
usage of the Arduino memory (the code occupies 76% of flash memory and an
80% of the dynamic memory, which produces stability issues). A ROS message
containing IR data cannot be defined in AROA’s Arduino, without overloading the
system. The solution would be to use a new microcontroller with more memory.
For instance, Arduino Due would increase the flash memory from 32 KB to 512
KB and the dynamic memory from 2 Kb to 96 KB [55] [56].

Chapter 8. Conclusions 57

The ROS navigation stack (2.1) could be implemented. This tool has not been
considered in this project for two main reasons. First, it does not allow an easy
implementation of a new obstacle avoidance algorithm. Second, it requires full
message standardization of ROS, which with the current Arduino is impossible
because of the lack of memory issue. Even tough, if a new microprocessor is
used, it is an interesting option that might be explored, because it integrates the
five main modules that AROA has (localization, control, path planning, obstacle
detection and avoidance) and introduces the usage of cost maps.

Finally, the interaction between user and platform can be enhanced. Right
now, the initialization of the robot requires four different terminals to be opened.
The system could be controlled by a single computer program or a cell phone
app with graphical interface that allows to initiate all the subsystems at the same
time. This program could also be useful to modify the waypoint set of the robot
dynamically. Also, to read data in real time from the robot, an Ethernet cable is
required. In the future, a Bluetooth or Wi-Fi communication may be integrated.

Bibliography 59

BIBLIOGRAPHY

[1] H. Ruslan, “https://www.aivoke.com/news/state-of-the-art-robotics/” [Online].

[2] “http://www.robotpark.com/All-Types-Of-Robots” [Online].

[3] “https://en.wikibooks.org/wiki/Robotics/Types_of_Robots/Wheeled” [Online].

[4] “http://www.irobot.co.uk/” [Online].

[5] «https://mars.nasa.gov/msl/» [Online].

[6] “https://www.amazonrobotics.com/” [Online].

[7] “https://www.clearpathrobotics.com/” [Online].

[8] “https://waymo.com/” [Online].

[9] “https://www.engineersgarage.com/tutorials/difference-between-
microprocessor-and-microcontroller” [Online].

[10] “http://www.infineon.com/cms/en/about-infineon/press/market-news/
2011/INFATV201110-003.html” [Online].

[11] “https://www.arduino.cc/” [Online].

[12] “https://www.raspberrypi.org/” [Online].

[13] “https://www.xilinx.com/products/silicon-devices/fpga/spartan-6.html”
[Online].

[14] “http://www.ros.org/about-ros/” [Online].

[15] “http://wiki.ros.org/navigation” [Online].

[16] “http://rosindustrial.org/” [Online].

[17] “http://www.pbs.org/wgbh/nova/next/body/bioinspired-assistive-devices/”
[Online].

[18] “https://ultrasonicsensor.wordpress.com/,” [Online].

[19] I. R. Nourbakhsh and R. Siegwart, Introduction to Autonomous Mobile Robots,
Cambridge, Massachusets: The MIT Press, 2004.

[20] “http://www.wisegeek.org/what-is-an-infrared-sensor.html” [Online].

[21] K. Litomisky, “Consumer RGB-D Cameras and their applications”, 2012.

[22] “https://en.wikipedia.org/wiki/Point_cloud” [Online].

[23] “https://www.skybrary.aero/index.php/Dead_Reckoning” [Online].

[24] “https://www.dimensionengineering.com/info/accelerometers” [Online].

[25] “https://www.kudan.eu/kudan-news/an-introduction-to-slam/” [Online].

[26] R. D. Khan , M. Zohaib, M. Pasha, R. A. Riaz, N. Javaid and M. Ilahi,
“Control Strategies for Mobile Robot with Obstacle Avoidance”.

[27] “http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.htm
l
#dijkstras-algorithm-and-best-first-search,” [Online].

[28] “http://www.frc.ri.cmu.edu/~axs/dynamic_plan.html,” [Online].

[29] A. M. Javier Arribas, “OpenIn Location Lab”, 2016.

[30] “http://www.robotplatform.com/knowledge/Classification_of_Robots/
wheel_control_theory.html” [Online].

60 Obstacle avoidance for an autonomous rover

[31] “http://www.robotshop.com/en/lidar.html” [Online].

[32] “https://www.microsoft.com/en-us/store/d/kinect-sensor-for-xbox-one/
91hq5578vksc” [Online].

[33] “http://wiki.ros.org/Sensors” [Online].

[34] “http://rosindustrial.org/news/2016/1/13/3d-camera-survey” [Online].

[35] “https://msdn.microsoft.com/en-us/library/jj131033.aspx” [Online].

[36] “https://click.intel.com/realsense.html” [Online].

[37] “https://www.amazon.es/Microsoft-Sensor-Kinect-Xbox-
360/dp/B004RFC94O/
ref=sr_1_3/262-9485731-7350541?ie=UTF8&qid=1496179453&sr=8-
3&keywords
=sensor+kinect+xbox+360” [Online].

[38] “https://www.microsoft.com/en-us/store/d/kinect-sensor-for-xbox-one/
91hq5578vksc” [Online].

[39] “http://support.xbox.com/en-US/xbox-on-windows/accessories/
kinect-for-windows-v2-setup” [Online].

[40] “http://blogs.microsoft.co.il/msdn/2015/01/07/kinect-for-windows-v2/,”
[Online].

[41] HardKernel, “https://magazine.odroid.com/wp-content/uploads/
odroid-xu4-user-manual.pdf” [Online].

[42] “https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale/” [Online].

[43] «http://www.hardkernel.com/main/products/prdt_info.php» [Online].

[44] “http://ep.yimg.com/ay/yhst-137411274456301/gens-ace-lipo-battery-
4400mah-60c-6-cells-4.gif” [Online].

[45] “https://www.diamondsystems.com/files/binaries/HE104+DX%20User
%20Manual.pdf” [Online].

[46] “http://www.wdlsystems.com/Power-Solutions/HE104DX/
HE104-DX-108-watt-3-3V5A-5V12A-12V2-5A-5V400mA-.html” [Online].

[47] “http://www.dpie.com/pc104/psu/tri-m-he104-dx” [Online].

[48] «https://www.arduino.cc/en/Guide/Introduction» [Online].

[49] «http://wiki.ros.org/ROS/Concepts» [Online].

[50] L. Yang, L. Zhang, A. Alelaiwi and A. El Saddik, “ResearchGate”,
https://www.researchgate.net/publication/277564106_Evaluating_and_
Improving_the_Depth_Accuracy_of_Kinect_for_Windows_v2.

[51] “https://www.mathworks.com/discovery/stereo-vision.html” [Online].

[52] “http://docs.opencv.org/2.4/modules/core/doc/intro.html” [Online].

[53]

[54]
[55]
[56]

“https://www.slideshare.net/JoaquimSalvi/lecture-2-camera-calibration”
[Online].
https://github.com/OpenKinect/libfreenect2/blob/master/README.md
https://www.arduino.cc/en/Main/ArduinoBoardDuemilanove [Online].
https://store.arduino.cc/arduino-due [Online].

[57] «https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-
31439-6_167»
[Online].

[58] “https://github.com/code-iai/iai_kinect2/issues/143” [Online].

Bibliography 61

[59] "http://www.robotshop.com/en/lynxmotion-a4wd1-
autonomous-rover-kit-botboarduino.html" [Online]

[60] “http://www.robotshop.com/en/12vdc-200rpm-ghm-16-w-rear-shaft.html”
[Online].

[61] “https://www.pololu.com/product/2392” [Online].

[62] “http://cdn.usdigital.com/assets/datasheets/E4P_datasheet.pdf
?k=636201882756427345” [Online].

[63] “https://www.pololu.com/product/1269/specs” [Online].

[64] “https://www.todoelectronica.com/es/2050-sensores” [Online].

[65] “http://www.robotshop.com/en/lynxmotion-botboarduino-robot-
controller.html” [Online].

[66] “https://link.springer.com/referenceworkentry/10.1007%2F978-
0-387-31439-6_167” [Online].

APENDIX A. GAUSS HARDWARE COMPONENTS 63

APENDIX A. GAUSS HARDWARE COMPONENTS

Robot Platform

The platform used by Gauss is a Lynxmotion A4WD1 rover kit [56]. It is made of
aluminium and has more than enough payload and space to carry all the sensors
and electronics, 2.2 Kg. Also, it has four wheels with independent traction, which
allows to perform skid steer motion. In addition to the wheels, the rover kit also
includes four encoders and motors, one for each wheel.

Here is more detailed information about the platform:

 Measures

- Length: 12.00" (30.5 cm)

- Width: 13.50" (34.3 cm)

- Length Chassis: 9.75" (24,8 cm)

- Width Chassis: 8.00" (20,3 cm)

- Height Chassis: 4.00" (20,1 cm)

 Wheels

- Wheel radius: 4.75" (12 cm)

- Tires of 4.75”

 Other information

- Payload: 2.2 Kg

- Weight: 2 Kg

- Maximum speed: 0.9 m/s

-

Figure 43. Lynxmotion A4WD1 chassis and wheels mounted kit [56]

64 Obstacle avoidance for an autonomous rover

Motors

The four motors are included in the rover kit, and are called GHM-16 [57]. This
12V DC motors provide 200 rpm and a 0.78Kg/cm torque, features suitable for
an in-door vehicle that does not have to face difficult terrain.

Figure 44. GHM-16 motor [57]

PID Motor Controller

The PID is a RoboClaw 2x15A motor controller. This device is able to control and
decode from two quadrature encoders and transmit via serial bus, and to supply
energy to two brushed DC motors and 15A for each of the motors (with 30A
peaks) and from 6V to 34V.

Quoting the manufacturer, the controller has a built-in PID routine that can be
used for closed-loop speed control and the encoder counts and speeds can be
read directly from the RoboClaw for use with an external control system. The
main advantage of this PID is that integrates libraries for Arduino development,
making it easier to program.

Figure 45. RoboClaw 2x15A motor controller [58]

APENDIX A. GAUSS HARDWARE COMPONENTS 65

Encoders

Two E4P-100 quadrature encoders, included in the rover kit, are the included in
the design. They require a 5V supply and provide 400 pulses per revolution at 30
KHz.

Figure 46. E4P-100 encoder [59]

Gyroscope

The gyroscope is a L3GD20 three-axes gyro. This device has selectable
measurement range and excellent sensitivity; for instance, the most precise
mode allows for readings up to ±250 dps (degrees per second) and 0.00875
dps/digit sensibility.

With regards to connection, it uses an I2C bus but each sensor has its own 7-bit
address, allowing direct connection to the required sensor. Besides technical
characteristics, it is a very small board (25 mm x 12 mm) that can be attached
anywhere in the chassis of the robot.

Figure 47. L3GD20 [60]

66 Obstacle avoidance for an autonomous rover

IR Sensors

The IR sensors are four Sharp GP2D12, which are able to detect and determine
the distance to objects between 10cm and 80cm, with a 3cm tolerance.

Figure 48. Sharp GP2D12 IR sensor [61]

Microcontroller

The microcontroller is a BotArduino, an upgrade of Arduino Duemilanove for
robotics. The main advantage of the platform in front of Duemilanove is its smaller
size and the fact that all I/O have the standard servo three pin connection,
allowing for direct connection to the servos and encoder directly without a
protoboard.

Figure 49. Picture of a BotArduino [62]

APENDIX B. ARDUINO CODE 67

APENDIX B. ARDUINO CODE

// MARC CHESA @ CTTC 2016

//***

// Comments:

// Version Arduino+motors++Comms controled with ROS.

// Robot movement is controlled with waypoints. Obstacle

detection and avoidance.

// Speed: MOVE_SPEED=3000 encoder counts per second

//***

// ######## INCLUDE ##########

 #include <L3G.h>

 #include <BMSerial.h>

 #include <RoboClaw.h>

 #include <math.h>

 #include <Wire.h>

 #include <TimerOne.h>

 #include <ros.h>

 #include <geometry_msgs/Pose2D.h>

 #include <std_msgs/Int8.h>

 #include <std_msgs/Float32.h>

 #include <std_msgs/Bool.h>

// ######## DEFINE ##########

 // ROBOCLAW PID PARAMETERS

 #define address 0x80

 #define Kp 0x00010000

 #define Ki 0x00008000

 #define Kd 0x00004000

 #define qpps 44000

 // COMS PARAMETERS

 #define SERIAL_SPEED_BPS 115200

 // NAVIGATION PARAMETERS

 #define MAX_WAYPOINTS 50

 #define METERS_TO_ENCODER_COUNTS 27700

 #define TURN_SPEED 2500

 #define MOVE_SPEED 3000

 #define MOVE_ACCEL 3000

 // GYROSCOPE PARAMETERS

 #define GYRO_CAL_MEASUREMENTS 100

 #define HEADING_ERROR_THRESHOLD_DEG 1.1

 #define GYRO_SCALE 1.01

 #define GYRO_READING_INTERVAL_MS 40

68 Obstacle avoidance for an autonomous rover

 #define GYRO_READING_INTERVAL_CAL_MS 10

 // DISTANCE SENSOR PARAMETERS

 #define FRONT_OBSTACLE_THRESHOLD_CM 10 //20

 #define DOWN_OBSTACLE_THRESHOLD_CM 20

 #define OBSTACLE_DETECTOR_DELAx_mS 50

 //MOTOR STATE PARAMETERS

 #define STOP 1

 #define FORWARD 2

 #define TURN_RIGHT 3

 #define TURN_LEFT 4

 #define STOPED_BY_USER 5

// ######## ENABLES ##########

 #define Wild_Rover_en //Enables rover control via ROS

commands and data; coodependant with ROS_Comms

 #define ROS_Comms //Enables ROS Comms; coodependant with

Wild_Rover

// ######## GLOBAL VARIABLES ##########

 RoboClaw roboclaw(12,13); // MOTOR CONTROLLER

 L3G gyro; // 3 AXIS GYROSCOPE

 // IMU calibration

 float KALMAN_PROCESS_NOISE_Z=0.05;

 float KALMAN_MEASURES_NOISE_Z;

 float BIAS_Z;

 float VAR_Z;

 // Kalman filter

 float data_gyro_z_pri;

 float P_z_pri;

 float P_z;

 float K_z;

 float A_z=1;

 float data_gyro_kalman_z;

 float data_gyro_z_acc_kalman_deg=0.0;

 boolean initial_loop=true;

 // Position

 float y_m=0;

 float x_m=0;

 float x_pre_m=0;//Initial position of robot is (0,0)

 float y_pre_m=0;

 float heading_deg = 0.0;

 float heading_rad = 0.0;

 float error_angle_rad_prev;//Correction of angle with gyro

 // Time measuring

APENDIX B. ARDUINO CODE 69

 unsigned long time_counter_ms = 0;

 unsigned long elapsed_time_ms = 0;

 float elapsed_time_s = 0.0;

 long tlast = 0;

 long tdelay = 500;

 long tdelayenc = 1000;

 // Sensors global parameters

 bool turning_robot = false;

 int8_t Rover_Command = STOP;

 int8_t Rover_State = STOP;

 int8_t Prev_Rover_State = STOP;

 uint32_t prev_enc1 = 0;

 uint32_t prev_enc2 = 0;

 float dist_real_m = 0;

 float rover_parameter;

 // ROS Comms

 #ifdef ROS_Comms

 //ROS node

 ros::NodeHandle_<ArduinoHardware, 2, 2, 96, 96> nh;

 //messages

 std_msgs::Int8 Rvr_Cmd;

 std_msgs::Bool Ardu_Turn;

 std_msgs::Float32 Param;

 geometry_msgs::Pose2D pose2d_sms;

 //Callbacks

 void Rover_Command_Cb(const std_msgs::Int8& Rvr_Cmd);

 void Parameter_Cb(const std_msgs::Float32& Param);

 //Publisher and subscribers

 ros::Publisher Pose_Data("Pose_Data", &pose2d_sms);

 ros::Publisher Arduino_Turn("Arduino_Turn", &Ardu_Turn);

 ros::Subscriber<std_msgs::Int8> Command("Command",

Rover_Command_Cb);

 ros::Subscriber<std_msgs::Float32>

Parameter("Parameter", Parameter_Cb);

 #endif

// ######## FUNCTIONS ##########

void setup()

{

 #ifdef ROS_Comms

 nh.loginfo("###### SETUP STARTED######");

 #endif

 // Comms initialization

 Serial.begin(57600);

70 Obstacle avoidance for an autonomous rover

 Wire.begin();

 roboclaw.begin(38400);

 // Roboclaw motor controller Setup

 roboclaw.SetM1Constants(address,Kd,Kp,Ki,qpps);

 roboclaw.SetM2Constants(address,Kd,Kp,Ki,qpps);

 #ifdef ROS_Comms

 // ROS comms init

 nh.initNode();

 nh.subscribe(Command);

 nh.subscribe(Parameter);

 nh.advertise(Pose_Data);

 nh.advertise(Arduino_Turn);

 #endif

 // Reset encoders

 roboclaw.ResetEncoders(address);

 // Gyro setup

 // Initialization

 if (!gyro.init())

 {

 delay(1000);

 while (1);

 }

 gyro.enableDefault();

 // Calibration

 calibrate_gyro(BIAS_Z, VAR_Z);

 KALMAN_MEASURES_NOISE_Z=VAR_Z;

 // Stop

 roboclaw.SpeedM1(address,0);

 roboclaw.SpeedM2(address,0);

 #ifdef ROS_Comms

 nh.loginfo("###### SETUP FINISHED######");

 #endif

}

#ifdef ROS_Comms

void pose2D_fill(void)

{

 pose2d_sms.x = x_m;

 pose2d_sms.y = y_m;

 pose2d_sms.theta = heading_rad;

}

void publish_msgs(void)

APENDIX B. ARDUINO CODE 71

{

 //fills a ROS geometry pose2D message with x,y and heading

obtained in this cycle

 pose2D_fill();

 Ardu_Turn.data = turning_robot;

 Pose_Data.publish(&pose2d_sms);

}

void Parameter_Cb(const std_msgs::Float32& Param)

{

 rover_parameter = Param.data;

}

void Rover_Command_Cb(const std_msgs::Int8& Rvr_Cmd)

{

 if ((Rover_State != TURN_RIGHT)&&(Rover_State !=

TURN_LEFT))

 {

 Rover_Command = Rvr_Cmd.data;

 }

}

#endif //ROS_Comms

// Estimates the Gyroscope mean and variance (channel Z only)

void calibrate_gyro(float &mean_z, float &var_z)

{

 float M2_z=0.0;

 mean_z=0.0;

 var_z=0.0;

 float delta_z;

 for (int n=1; n<(GYRO_CAL_MEASUREMENTS+1); n++)

 {

 gyro.read();

 delta_z = gyro.g.z - mean_z;

 mean_z = mean_z + delta_z/n;

 M2_z = M2_z + delta_z*(gyro.g.z - mean_z);

 delay(GYRO_READING_INTERVAL_MS);

 }

 var_z = M2_z/(GYRO_CAL_MEASUREMENTS - 1);

}

void get_gyro_heading(void)

{

 //KALMAN FILTER

 // prediction

 if (initial_loop==true)

 {

 // reset heading

 data_gyro_z_acc_kalman_deg=0.0;

 // Gyro calibration

72 Obstacle avoidance for an autonomous rover

 calibrate_gyro(BIAS_Z, VAR_Z);

 KALMAN_MEASURES_NOISE_Z=VAR_Z;

 //initial reading

 time_counter_ms = millis();

 //read gyro rate

 gyro.read();

 //read gyro temperature

 //gyro.read_temp(); //todo: for calibration table...

 //delay in initial reading

 delay(20);

 elapsed_time_ms=millis()-time_counter_ms;

 time_counter_ms = millis();

 //compute elapsed time from last reading

 elapsed_time_s=((float)elapsed_time_ms)/1000.0;

 P_z=1;

 //prediction

 P_z_pri=A_z*A_z*P_z+KALMAN_PROCESS_NOISE_Z;

 data_gyro_z_pri=A_z*(gyro.g.z-BIAS_Z);

 //update

 K_z=P_z_pri/(P_z_pri+KALMAN_MEASURES_NOISE_Z);

data_gyro_kalman_z=data_gyro_z_pri+K_z*(GYRO_SCALE*(gyro.g.

z-BIAS_Z)-data_gyro_z_pri);

 P_z=(1-K_z)*P_z_pri;

 initial_loop=false;

 }else{

 //Get loop execution time and reset timer

 elapsed_time_ms=millis()-time_counter_ms;

 time_counter_ms = millis();

 //read gyro rate

 gyro.read();

 //read gyro temperature

 //gyro.read_temp();

 //compute elapsed time from last reading

 elapsed_time_s=((float)elapsed_time_ms)/1000.0;

 //prediction

 data_gyro_z_pri=A_z*data_gyro_kalman_z;

 P_z_pri=A_z*A_z*P_z+KALMAN_PROCESS_NOISE_Z;

 //update

 K_z=P_z_pri/(P_z_pri+KALMAN_MEASURES_NOISE_Z);

data_gyro_kalman_z=data_gyro_z_pri+K_z*(GYRO_SCALE*(gyro.g.

z-BIAS_Z)-data_gyro_z_pri);

 P_z=(1-K_z)*P_z_pri;

 }

APENDIX B. ARDUINO CODE 73

 // compute the heading change from reset [deg]

data_gyro_z_acc_kalman_deg=data_gyro_z_acc_kalman_deg+data_

gyro_kalman_z*elapsed_time_s;

 // wrap degrees to [0,360] Z

}

bool coordinates_and_heading(void)

{

 uint8_t status1, status2;

 bool valid1 = true;

 bool valid2 = true;

 uint32_t enc1=0;

 uint32_t enc2=0;

 //we need to declare this variables to avoid problems

when computing absolute value of enc1-prev_enc1;

 uint32_t enc1_filter=0;

 uint32_t enc2_filter=0;

 uint32_t encoder_counts;

 long prev_dist_real_m;

 if (Rover_State == FORWARD)

 {

 enc1 = roboclaw.ReadEncM1(address, &status1, &valid1);

 enc2 = roboclaw.ReadEncM2(address, &status2, &valid2);

 delay(20);

 enc1_filter = enc1 - prev_enc1;

 enc2_filter = enc2 - prev_enc2;

 //This if works a filter for encorder characteristic

error (enc + (2^8/2, 2^16/2, 2^24/2 & -2^32/2)),

 //2^8 is not filtered because its a posible encoder

value, and it gives only a 5mm error.

 if (enc1_filter > 15000)

 {

 //nh.loginfo("ENCODER1 INVALID");

 valid1=false;

 }

 else if (enc2_filter > 15000)

 {

 //nh.loginfo("ENCODER2 INVALID");

 valid2=false;

 }

 //if one encoder gives wrong readings, we will rely in

the other one; if both send wrong readings, we won't send

any data.

 if ((valid1==true) && (valid2==true))

 {

 encoder_counts =(enc1+enc2);

 dist_real_m = encoder_counts / 2;

74 Obstacle avoidance for an autonomous rover

 dist_real_m = dist_real_m /

METERS_TO_ENCODER_COUNTS;

 y_m = dist_real_m*cos(heading_rad)+ y_pre_m;

 x_m = dist_real_m*sin(heading_rad) + x_pre_m;

 prev_enc1 = enc1;

 prev_enc2 = enc2;

 }

 else if (valid2==true)

 {

 encoder_counts = enc2;

 dist_real_m =

encoder_counts/METERS_TO_ENCODER_COUNTS;

 y_m = dist_real_m*cos(heading_rad)+ y_pre_m;

 x_m = dist_real_m*sin(heading_rad) + x_pre_m;

 prev_enc2 = enc2;

 }

 else if (valid1==true)

 {

 encoder_counts = enc1;

 dist_real_m =

encoder_counts/METERS_TO_ENCODER_COUNTS;

 y_m = dist_real_m*cos(heading_rad)+ y_pre_m;

 x_m = dist_real_m*sin(heading_rad) + x_pre_m;

 prev_enc1 = enc1;

 }

 else

 {

 return false; //If false, the data is corrupted;

 }

 }

 return true;

}

boolean move_robot(float dist_m)

{

 uint8_t depth1, depth2;

 uint32_t

target_counts=round(METERS_TO_ENCODER_COUNTS*dist_m);

 uint8_t status;

 bool valid;

 bool stop_valid;

 bool valid_data = true;

 uint32_t enc1_correct;

 uint32_t enc2_correct;

 uint32_t enc1_stop;

 uint32_t enc2_stop;

 uint32_t counter_pos=0;

 uint32_t enc1_temp;

 uint32_t enc2_temp;

 uint32_t move_speed=MOVE_SPEED;

APENDIX B. ARDUINO CODE 75

 uint32_t move_accel=MOVE_ACCEL;

 uint32_t counter_send=0;

 uint8_t counter_send2=0;

 float dist_real_m;

 uint32_t enc11;

 uint32_t enc22;

 uint32_t target_counts_correct;

 //Motor instructions to move

 roboclaw.ResetEncoders(address);

roboclaw.SpeedAccelDistanceM1M2_2(address,MOVE_ACCEL,move_s

peed,target_counts,MOVE_ACCEL,move_speed,target_counts,1);

 roboclaw.ReadBuffers(address,depth1,depth2);

 do{

 roboclaw.ReadBuffers(address,depth1,depth2);

 long tcurrent = millis();

 if(tcurrent - tlast > tdelayenc)

 {

 valid_data = coordinates_and_heading();

 if (valid_data == true)

 {

 publish_msgs();

 }

 #ifdef ROS_Comms

 nh.spinOnce();

 #endif

 tlast = millis();

 }

 //Obstacle detection

 if ((Rover_State == STOP)||(Rover_State ==

STOPED_BY_USER))

 {

 //stop

 roboclaw.SpeedM1(address, 0);

 roboclaw.SpeedM2(address, 0);

 uint32_t enc1 = roboclaw.ReadEncM1(address,

&status, &valid);

 uint32_t enc2 = roboclaw.ReadEncM2(address,

&status, &valid);

 return true;

 }

 }while((depth1!=128) || (depth2!=128));

 return true;

}

boolean turn_robot(float target_heading)

{

 boolean turning_R=false;

76 Obstacle avoidance for an autonomous rover

 boolean turning_L=false;

 float heading_error = 0.0;

 float heading_turn = 0.0;

 initial_loop=true;

 boolean end_turn=false;

 String myString = String(target_heading);

 char character[6];

 myString.toCharArray(character,6);

 turning_robot = true;

 heading_turn = heading_deg;

 if (target_heading > 180)

 {

 target_heading = target_heading - 360;

 }

 else if (target_heading < -180)

 {

 target_heading = target_heading + 360;

 }

 #ifdef ROS_Comms

 nh.loginfo("TARGET HEADING");

 nh.loginfo(character);

 #endif

 do

 {

 get_gyro_heading();

 //displayspeed();

 heading_error = data_gyro_z_acc_kalman_deg-

target_heading;

 heading_deg = heading_turn + data_gyro_z_acc_kalman_deg;

 if (heading_deg>180)

 {

 heading_deg = heading_deg - 360;

 }

 else if (heading_deg<-180)

 {

 heading_deg = heading_deg + 360;

 }

 heading_rad = (heading_deg*PI)/180;

 //decide turning direction

 if (heading_error>HEADING_ERROR_THRESHOLD_DEG)

 {

 if (turning_L==false)

 {

 //turn left

 roboclaw.SpeedM1(address, TURN_SPEED);

APENDIX B. ARDUINO CODE 77

 roboclaw.SpeedM2(address, -TURN_SPEED);

 turning_L=true;

 turning_R=false;

 }

 }

 else if (heading_error<-HEADING_ERROR_THRESHOLD_DEG)

 {

 if (turning_R==false)

 {

 //turn right

 roboclaw.SpeedM1(address, -TURN_SPEED);

 roboclaw.SpeedM2(address, TURN_SPEED);

 turning_L=false;

 turning_R=true;

 }

 }

 else

 {

 //stop and beep

 roboclaw.SpeedM1(address, 0);

 roboclaw.SpeedM2(address, 0);

 Prev_Rover_State = Rover_State;

 Rover_State = STOP;

 // Rover_Command = STOP;

 y_pre_m = y_m;

 x_pre_m = x_m;

 roboclaw.ResetEncoders(address);

 turning_robot = false;

 end_turn=true;

 }

 delay(GYRO_READING_INTERVAL_MS);

 long tcurrent = millis();

 if(tcurrent - tlast > tdelay)

 {

 publish_msgs();

 tlast = millis();

 }

 #ifdef ROS_Comms

 nh.spinOnce();

 #endif

 }while(end_turn==false);

 #ifdef ROS_Comms

 nh.loginfo("END TURN");

 #endif

 return true;

}

void move_and_turn(void)

{

 float relative_angle;

78 Obstacle avoidance for an autonomous rover

 float distance;

 uint8_t depth1,depth2;

 if ((Rover_Command == STOP) && (Rover_State != STOP))

 {

 roboclaw.SpeedM1(address,0);

 roboclaw.SpeedM2(address,0);

 Prev_Rover_State = Rover_State;

 Rover_State = STOP;

 do{

 roboclaw.ReadBuffers(address,depth1,depth2);

 }while(depth1!=0x80 && depth2!=0x80); //loop until

buffer is empty command completes

 }

 else if ((Rover_Command == FORWARD) && (Rover_State !=

FORWARD))

 {

 roboclaw.SpeedM1(address,3000);

 roboclaw.SpeedM2(address,3000);

 Prev_Rover_State = Rover_State;

 Rover_State = FORWARD;

 }

 else if ((Rover_Command == TURN_RIGHT)&& (Rover_State !=

TURN_RIGHT))

 {

 relative_angle = rover_parameter - heading_deg;

 if (relative_angle != 0)

 {

 Prev_Rover_State = Rover_State;

 Rover_State = TURN_RIGHT;

 turn_robot(relative_angle);

 }

 }

 else if ((Rover_Command == TURN_LEFT)&& (Rover_State !=

TURN_LEFT))

 relative_angle = rover_parameter - heading_deg;

 if (relative_angle != 0)

 {

 Prev_Rover_State = Rover_State;

 Rover_State = TURN_LEFT;

 turn_robot(relative_angle);

 }

 }

 else if (Rover_Command == STOPED_BY_USER)

 {

 roboclaw.SpeedM1(address, 0);

 roboclaw.SpeedM2(address, 0);

 Prev_Rover_State = Rover_State;

 Rover_State = STOPED_BY_USER;

 roboclaw.ResetEncoders(address);

APENDIX B. ARDUINO CODE 79

 do{

 roboclaw.ReadBuffers(address,depth1,depth2);

 }while(depth1!=0x80 && depth2!=0x80);

 }

}

########## MAIN LOOP ##########

void loop()

{

 long tcurrent = millis();

 bool valid_data = true;

 if(tcurrent - tlast > tdelay)

 {

 valid_data = coordinates_and_heading();

 if (valid_data == true)

 {

 publish_msgs();

 }

 tlast = millis();

 }

 #ifdef ROS_Comms

 nh.spinOnce();

 #endif

 move_and_turn();

}

APENDIX C. ODROID CODE 81

APENDIX C. ODROID CODE

Main

/*main.cpp

 *

 *Created on: Jan 2, 2017

 *Author: Marc Chesa

 */

/**CTRL+C**/

#include <signal.h>

/**FILE READER**/

#include <sstream>

#include <iostream>

#include <fstream>

/**VECTOR AND MATH VARIABLES**/

#include <vector>

#include <string>

#include "math.h"

#include <chrono>

/**ROS**/

#include "ros/ros.h"

#include <ros/spinner.h>

#include "geometry_msgs/Pose2D.h"

#include "std_msgs/Bool.h"

#include "std_msgs/Int8.h"

#include "std_msgs/Float32.h"

#include "sensor_msgs/PointCloud2.h"

/**OUR CLASES & FUNCTIONS**/

#include "pathfinder.h"

#include "Point2D.h"

#include "file_reader.h"

#include "rover_command.h"

using namespace std;

/**Parameters**//

#define Ymax -0.10

#define Ymin 0.19

#define Zmax 5.5

#define Zmin 0.5

#define Xlever_arm -0.03

#define Zlever_arm -0.10

#define grid_size 0.01

#define Xdetection_max 0.13

#define Xdetection_min -0.18

#define centre_turn_criteria -0.025

/**STATES**/

82 Obstacle avoidance for an autonomous rover

#define STOP 1

#define FORWARD 2

#define RIGHT 3

#define LEFT 4

#define STOPED_BY_USER 5

//control variables

int num_obstacles = 0;

int num_kinect_it = 0;

//variables

int rover_state = STOP;

int prev_rover_state;

int IR_Right;

int IR_Left;

int turn_criteria = 3;

int current_turn_criteria;

int IR_turn_criteria = 3;

int robot_speed = 0;

float Xrover = 0;

float Yrover = 0;

float current_heading_rad = 0;

float current_heading_deg = 0;

float prev_heading_deg = -1;

float rover_parameter = 0;

float obstacle_mean_distance;

float obstacle_min_distance;

float Zdetection_max;

//bool turn_published = false;

bool obstacle_detected = false;

bool IR_obstacle_detected = false;

bool OD_enabled = true;

bool OA_enabled = false; //OA = Obstacle Avoidance

bool Decide_turn_criteria = true;

bool Kinect_Callback = false;

bool waiting_turn = false;

bool turning_robot = false;

Point2D wp;

vector<Point2D> waypoints;

chrono::time_point<chrono::system_clock> start_t, end_t,

publish_t, turn_t;

ros::Publisher Command;

ros::Publisher Parameter;

std_msgs::Int8 Motor_Command;

std_msgs::Float32 Rover_Parameter;

//***FUNCTIONS & CALLBACKS***\\

/**CTRL+C**/

APENDIX C. ODROID CODE 83

void publish_command (int cmd, float param)

{

 Rover_Parameter.data = param;

 Parameter.publish(Rover_Parameter);

 Motor_Command.data = cmd;

 Command.publish(Motor_Command);

 printf("published: %d %f\n", cmd, param);

}

void my_handler(int s)

{

 rover_state = STOPED_BY_USER;

 rover_parameter = 0;

 publish_command_5(rover_state,rover_parameter);

 printf("Stopped by user\n");

 exit(1);

}

bool compare_Point2D_fields(Point2D a, Point2D b)

{

 return (a.x) < (b.x);

}

/*

void Turning_Callback(const std_msgs::Bool Ardu_Turn)

{

 turning_robot = Ardu_Turn.data;

}

*/

void Pose_Data_Callback(const geometry_msgs::Pose2D Pose_Data)

{

 Xrover = Pose_Data.x;

 Yrover = Pose_Data.y;

 current_heading_rad = Pose_Data.theta;

 current_heading_deg = ((current_heading_rad*180)/M_PI);

 //odometry_data = true;

 //printf("Pose Data\n");

}

void Point_Cloud_Callback(const sensor_msgs::PointCloud2 pCloud)

{

 //printf("KINECT CALLBACK\n");

 int height = pCloud.height;

 int width = pCloud.width;

 float X;

 float Y;

 float Z;

 Point2D kinect_point;

 Point2D kinect_prev_point;

 vector<Point2D> kinect_matrix;

84 Obstacle avoidance for an autonomous rover

 vector<Point2D> kinect_vector_local;

 vector<Point2D> potential_obstacles_vector;

 vector<Point2D> kinect_vector_global;

 if (OD_enabled)

 {

 Kinect_Callback == true

 for (int v = 0 ; v < height; v++)

 {

 for (int u = 0 ; u < width; u++)

 {

 int arrayPosition = v*pCloud.row_step +

 u*pCloud.point_step;

 int arrayPosX = arrayPosition +

 pCloud.fields[0].offset;

 int arrayPosY = arrayPosition +

 pCloud.fields[1].offset;

 int arrayPosZ = arrayPosition +

 pCloud.fields[2].offset;

 memcpy(&X, &pCloud.data[arrayPosX],

 sizeof(float));

 memcpy(&Y, &pCloud.data[arrayPosY],

 sizeof(float));

 memcpy(&Z, &pCloud.data[arrayPosZ],

 sizeof(float));

 if ((isnan(X) == false)&&(Z < Zmax)&&(Z >

 Zmin))

 {

 if ((Y < Ymin)&&(Y > Ymax))

 {

 //*** Vector filler

 kinect_point.x = roundf(X *

 100) / 100;

 kinect_point.y = roundf(Z *

 100) / 100;

 kinect_matrix.push_back

 (kinect_point);

 }

 }

 }

 }

 // kinect_matrix vector values are sorted from lower

 to higher X values

 sort(kinect_matrix.begin(), kinect_matrix.end(),

 compare_Point2D_fields);

 // A new vector is created giving a 2D aproximation

 of the enviroment in front the rover

 kinect_vector_local.push_back(kinect_matrix.at(0));

APENDIX C. ODROID CODE 85

 for (int it = 0 ; it < kinect_matrix.size() ; it++)

 {

 kinect_point = kinect_matrix.at(it);

 if (kinect_point.x == kinect_prev_point.x)

 {

 if (kinect_point.y < kinect_prev_point.y)

 {

 kinect_vector_local.pop_back();

 kinect_vector_local.push_back(kinect_point);

 kinect_prev_point = kinect_point;

 }

 }

 else

 {

 kinect_vector_local.push_back(kinect_point);

 kinect_prev_point = kinect_point;

 }

 }

 // Creation of the "security area" for Obstacle

 Detection

 float Dist_X = wp.x-Xrover;

 float Dist_Y = wp.y-Yrover;

 Point2D most_relevant_obstacle;

 float turn_left = 0;

 float turn_rigth = 0;

 int mean_counter = 0;

 obstacle_mean_distance = 0;

 if (!OA_enabled)

 Zdetection_max = sqrt(pow(Dist_X, 2) +

 pow(Dist_Y, 2));

 bool local_obstacle_detected = false;

 most_relevant_obstacle = kinect_point;

 for (int it = 0; it < kinect_vector_local.size() ;

 it++)

 {

 kinect_point = kinect_vector_local.at(it);

 if((kinect_point.x <=

 Xdetection_max)&&(kinect_point.x >=

 Xdetection_min)&&(kinect_point.y <=

 Zdetection_max))

 {

 local_obstacle_detected = true;

 if (kinect_point.x <=

 centre_turn_criteria

 {

 turn_rigth = turn_rigth +

 (1/kinect_point.y);

86 Obstacle avoidance for an autonomous rover

 }

 else if (kinect_point.x >

 centre_turn_criteria)

 {

 turn_left = turn_left +

 (1/kinect_point.y);

 }

 if (kinect_point.y

 < most_relevant_obstacle.y)

 {

 most_relevant_obstacle =

 kinect_point;

 }

 obstacle_mean_distance =

 obstacle_mean_distance + kinect_point.y;

 mean_counter++;

 }

 }

 obstacle_min_distance = most_relevant_obstacle.y;

 obstacle_min_distance);

 obstacle_detected = local_obstacle_detected;

 if ((obstacle_detected)&&(!OA_enabled))

 {

 obstacle_mean_distance =

 (obstacle_mean_distance/mean_counter);

 if (most_relevant_obstacle.y <= 0.75)

 {

 if (most_relevant_obstacle.x <=

 centre_turn_criteria)

 {

 turn_criteria = RIGHT;

 }

 else if (most_relevant_obstacle.x >

 centre_turn_criteria)

 {

 turn_criteria = LEFT;

 }

 }

 else

 {

 if (turn_rigth > turn_left)

 {

 turn_criteria = RIGHT;

 }

 else

 {

 turn_criteria = LEFT;

 }

 }

 }

 }

 Kinect_Callback == false;

APENDIX C. ODROID CODE 87

}

int main(int argc, char **argv)

{

 printf ("START\n");

 // Variables Setup

 int rover_state = STOP;

 float initial_angle = 0;

 Point2D new_OA_waypoint;

 rover_command cmd;

 float prev_heading_deg = -1;

 // CTRL+C

 struct sigaction sigIntHandler;

 sigIntHandler.sa_handler = my_handler;

 sigemptyset(&sigIntHandler.sa_mask);

 sigIntHandler.sa_flags = 0;

 sigaction(SIGINT, &sigIntHandler, NULL);

 // ROS Setup

 ros::init(argc, argv,

 "rover_navigation_and_obstacle_detection",

 ros::init_options::NoSigintHandler);

 ros::NodeHandle nh;

 ros::Subscriber sub = nh.subscribe("Pose_Data", 1,

 Pose_Data_Callback);

 ros::Subscriber sub2 = nh.subscribe("/kinect2/sd/points",

 1, Point_Cloud_Callback);

Command = nh.advertise<std_msgs::Int8>("Command", 1);

 Parameter = nh.advertise<std_msgs::Float32>("Parameter",

 1);

 //Function to read the waypoints dataset

 waypoints = file_reader();

 publish_t = chrono::system_clock::now();

 turn_t = publish_t;

 // LOOP

 while(waypoints.size() > 0)

 {

 if (OA_enabled)

 {

 //printf("OA Iteration\n");

 if (waiting_turn)

 {

 chrono::duration<double> diff_time =

 chrono::system_clock::now()-turn_t;

 if (fabs(current_heading_deg -

 rover_parameter) < 3.0)

 rover_state = STOP;

 rover_parameter = 0;

 usleep(3500000);

 waiting_turn = false;

88 Obstacle avoidance for an autonomous rover

 }

 prev_heading_deg = current_heading_deg;

 ros::spinOnce();

 }

 else if (!obstacle_detected) //Obstacle

 avoidance module introduces the new waypoint

 {

 rover_state = STOP;

 rover_parameter = 0;

 publish_command(rover_state,rover_parameter);

 //rotation

 float Xrot = (*Zdetection_max)*sin(current_heading_rad);

 float Yrot = (2*Zdetection_max)*cos(current_heading_rad);

 //translation

 float Xglobal = Xrover + Xrot + Xlever_arm;

 float Yglobal = Yrover + Yrot + Zlever_arm;

 new_OA_waypoint.x = Xglobal;

 new_OA_waypoint.y = Yglobal;

 waypoints.push_back(new_OA_waypoint);

 printf("NEw OA WAYPOINT %f %f\n", Xglobal, Yglobal);

 OA_enabled = false;

 }

 else

 {

 if(Decide_turn_criteria)

 {

 if (turn_criteria == RIGHT)

 {

 rover_state = RIGHT;

 rover_parameter =

 current_heading_deg + 10;

 }

 else if (turn_criteria == LEFT)

 {

 rover_state = LEFT;

 rover_parameter =

 current_heading_deg - 10;

 }

 current_turn_criteria =

 turn_criteria;

 publish_command(rover_state,

 rover_parameter);

 printf("first turn criteria: %d\n

 ", current_turn_criteria);

 Decide_turn_criteria = false;

 waiting_turn = true;

 }

 else

 {

APENDIX C. ODROID CODE 89

 if (current_turn_criteria == RIGHT)

 {

 rover_state = RIGHT;

 rover_parameter =

 current_heading_deg + 10;

 }

 else if (current_turn_criteria ==

 LEFT)

 {

 rover_state = LEFT;

 rover_parameter =

 current_heading_deg - 10;

 }

 publish_command(rover_state,

 rover_parameter);

 printf("turn criteria:

 %d\n ", current_turn_criteria);

 waiting_turn = true;

 }

 }

 }

else if (obstacle_detected == true)

 {

 rover_state = STOP;

 rover_parameter = 0.0;

 publish_command(rover_state,rover_parameter);

 printf("Potential Obstacle detected\n");

 usleep (2000000);

 ros::spinOnce();

 if (obstacle_detected == true)

 {

 OA_enabled = true;

 Zdetection_max = obstacle_min_distance;

 Decide_turn_criteria = true;

 }

 }

 wp = waypoints.back();

 if (!OA_enabled)

 {

 prev_rover_state = rover_state;

 cmd = pathfinder (Xrover, Yrover, wp.x, wp.y,

 current_heading_rad);

 rover_state = cmd.command;

 rover_parameter = cmd.parameter;

 if ((rover_state == RIGHT)||(rover_state == LEFT))

 {

 OD_enabled = false;

 }

 else

 {

 OD_enabled = true;

90 Obstacle avoidance for an autonomous rover

 }

 // If the robot is in STOP state, but has not

 detected an obstacle, the waypoint has been

 reached and it is eliminated from the list of

 waypoints

 if (rover_state == STOP)

 {

 speed1 = 0;

 speed2 = 0;

 rover_state = STOP;

 rover_parameter = 0;

 publish_command(rover_state,

 rover_parameter);

 waypoints.pop_back();

printf ("%f %f %f %f %f %f %f %d\n", time_count, Xrover, Yrover,

current_heading_deg, speed1, speed2, rover_parameter,

rover_state);

 }

 //pathfinder returns -1 if the code has failed.

This will stop the robot and the code.

 else if (rover_state == -1)

 {

 rover_state = STOP;

 rover_parameter = 0;

 publish_command(rover_state,

 rover_parameter);

 return 0;

 }

 }

 chrono::duration<double> publisher_time =

 chrono::system_clock::now()-publish_t;

 if ((!waiting_turn)&&(publisher_time.count() >=

 0.5)&&(rover_state != STOP))

 {

 publish_command(rover_state, rover_parameter);

 //Print pose on screen

 time_count = time_count + 0.5;

printf ("%f %f %f %f %f %f %f %d\n", time_count, Xrover, Yrover,

current_heading_deg, speed1, speed2, rover_parameter,

rover_state);

 publish_t = chrono::system_clock::now();

 }

 ros::spinOnce();

 }

 printf("Final destination reached!\n");

 printf("#########################\n");

 return 0;

}

APENDIX C. ODROID CODE 91

Path planner

/* pathfinder.cpp

 *

 * Created on: Jan 2, 2017

 * Author: Marc Chesa

 */

#include "math.h"

#include <stdio.h>

#include "pathfinder.h"

#define waypoint_radius 0.10 //10 cm

#define max_heading_error 2 //The parameter sets the maximum error on

the right and the left as 2º, a total of 4º

using namespace std;

// Pathfinder function decides what the rover must do according to

current position and heading and destination.

// To do so, returns an rover command structure, containing a command

(in form of integer number) and a heading.

// Command can have the following values (stop (1), forward (2), right

(3), left(4), error (-1)).

rover_command pathfinder(float Xrover, float Yrover, float Xtarget,

float Ytarget, float current_heading_rad)

{

 rover_command cmd;

 float absolute_heading_rad;

 float absolute_heading_deg;

 float target_heading_deg;

 float current_heading_deg = ((current_heading_rad*180)/M_PI);

 float Dist_X = Xtarget - Xrover;

 float Dist_Y = Ytarget - Yrover;

 float Real_Distance = sqrt(pow(Dist_X, 2) + pow(Dist_Y, 2));

 // If the Real_Distance is different to 0, the relative angle

between the current

 // and destination waypoints is computed taking into account the

current heading.

 if ((Real_Distance > waypoint_radius)||(Real_Distance < -

waypoint_radius))

 {

 //Angle is obtained by computing the arcsin.

 absolute_heading_rad = asin(Dist_X/Real_Distance);

 absolute_heading_deg = ((absolute_heading_rad*180)/M_PI);

 if (Dist_Y < 0)

 {

 if (Dist_X > 0)

 {

 absolute_heading_deg = 180 - absolute_heading_deg;

 }

 else if (Dist_X <= 0)

 {

 absolute_heading_deg = fabs(absolute_heading_deg) -

180;

 }

 }

92 Obstacle avoidance for an autonomous rover

 //Finally, we compute the difference between the absolute and

the current angle;

 target_heading_deg = absolute_heading_deg -

current_heading_deg;

 }

 // If the Real_Distance is 0, the destination has been reached, so

the rover must stop.

 else

 {

 cmd.command = 1;

 cmd.parameter = 0;

 return cmd; //Stop

 }

 //2. The angle between waypoints, target_heading_deg, is used to

determine the motion.

 // An angle of 0 means that the heading is already correct, and

a forward order is given.

 // An angle of 180 or -180 means the same, the destination is

straight behind. In this case,

 // the rule is that always turn to the right.

 if ((target_heading_deg <= max_heading_error)&&(target_heading_deg

>= -max_heading_error))

 {

 cmd.command = 2; //Move forward

 //cmd.parameter = Real_Distance;

 }

 else if (0 < target_heading_deg)

 {

 cmd.command = 3; //Turn right, also for a 180 degrees

 //cmd.parameter = absolute_heading_deg;

 }

 else if (0 > target_heading_deg)

 {

 cmd.command = 4; //Turn left

 //cmd.parameter = absolute_heading_deg;

 }

 else

 {

 cmd.command = -1;

 cmd.parameter = 0;

 printf ("error %d\n", cmd.command); //Error

 return cmd;

 }

 cmd.parameter = absolute_heading_deg;

 return cmd;

}

APENDIX C. ODROID CODE 93

File reader

/* file_reader.cpp

 *

 * Created on: Jan 2, 2017

 * Author: Marc Chesa

 */

#include <sstream>

#include <iostream>

#include <fstream>

#include <vector>

#include <string>

#include <iterator>

#include "Point2D.h"

using namespace std;

vector<Point2D> file_reader (void)

{

 Point2D wp;

 vector<Point2D> waypoints;

 vector<Point2D>::iterator it;

 ifstream file

("/home/odroid/ros_workspace/src/rover_navigation_and_obstacle_detecti

on/Rover_Path.txt");

 string line;

 if (file.is_open())

 {

 it = waypoints.begin();

 while (getline(file,line))

 {

 stringstream ssin(line);

 //cout << line << endl;

 //cout << ssin << endl;

 ssin >> wp.x; //x

 ssin >> wp.y; //y

 //cout << wp.x << endl;

 //cout << wp.y << endl;

 waypoints.insert(waypoints.begin(), wp);

 }

 file.close();

 }

 else

 {

 cout << "Unable to open the file";

 }

 for (it = waypoints.begin(); it != waypoints.end() ; it++)

 {

 int index = distance(waypoints.begin(), it);

 wp = waypoints.at(index);

 //cout << wp.x << endl;

 //cout << wp.y << endl;

 }

 return waypoints;

}

94 Obstacle avoidance for an autonomous rover

Classes

Point2D

/*

 * Point2D.h

 *

 * Created on: Jan 2, 2017

 * Author: Marc Chesa Roldan

 */

#ifndef POINT2D_H_

#define POINT2D_H_

class Point2D

{

 public:

 double x, y;

 private:

};

class Pose2D

{

 public:

 double x, y, theta;

 private:

};

#endif /* POINT2D_H_ */

Rover command
/*

 * rover_command.h

 *

 * Created on: May 31, 2017

 * Author: Marc Chesa Roldan

 */

#ifndef ROVER_COMMAND_H_

#define ROVER_COMMAND_H_

class rover_command

{

 public:

 int command;

 float parameter;

 private:

};

#endif /* ROVER_COMMAND_H_ */

APENDIX C. ODROID CODE 95

