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Universitat Politècnica de Catalunya

pedro.delicado@upc.edu

Abstract
A bivariate density can be represented as a density level set containing a fixed amount
of probability (0.75, for instance). Then a functional dataset where the observations
are bivariate density functions can be analyzed as if the functional data are density
level sets. We compute distances between sets and perform standard Multidimensional
Scaling. This methodology is applied to analyze electoral results.

1. Introduction
The most important way of political participation for people in democratic countries is
certainly to vote in electoral calls. Nevertheless the participation in elections is usually
far for 100%: many people decide not going to vote for several reasons. A relevant
question is if there exists some relationship between the political ideology of a given
voter and its decision of going or not to vote in a particular election. In Spain it is
given as a fact that potential left parties voters usually participate in elections less than
right parties voters. In this work we analyze the relationship between position on the
left-right political dimension and the willingness to vote. Given that individual data are
not available we use aggregated data at level of electoral districts (”mesas electorales” in
Spanish: lists of around 1000 people that vote at the same ballot box because they live
in the same small area). Specifically we use electoral results from 2004 Spanish general
elections.

For each electoral district the available information allows us to define these two
variables: participation (proportion of potential voters that finally vote) and proportion
of votes for right parties. Observe that this last variable is not exactly the same as the
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proportion of potential voters with right political ideology. Unfortunately we only know
what is voting people that vote indeed. Nevertheless, if the size of the electoral district
is small compared with the size of the city it is sensible to believe that both quantities
should be similar. We assume that, given the electoral district, the political orientation
(left-right) is independent from the decision of voting or not.

We consider the 50 cities in Spain with the bigger numbers of electoral districts (157
districts or more). For each of these cities we have a list of observations of the bivariate
random variable (participation, proportion of votes for right parties), an observation for
each electoral district. We use then a kernel density estimator to obtain from this list
an estimation of the joint distribution of these two variables in each of the 50 cities
considered in our study. Therefore we have a functional dataset of length 50 consisting
on bivariate densities.

A preliminary dimensionality reduction step is usually very useful to perform the
exploratory analysis of functional datasets. Given that the dataset we are considering
consists on bivariate densities, it is possible to adapt the dimensionality reduction tech-
niques considered in Delicado (2011) for functional datasets formed by unidimensional
densities. Nevertheless we propose here an alternative way.

A bivariate density f(x, y) is frequently represented by some of its density level sets,
defined as L(c) = {(x, y) ∈ R2 : f(x, y) ≥ c}, for c > 0, or just their boundaries, in a
contour plot. Bowman and Azzalini (1997) propose to display only the contour level plots
that contain specific probabilities (they use 0.25, 0.50 or 0.75, reminiscing a boxplot) as
a effective way to characterize the shape of a bivariate density. The role of density level
sets is also relevant in the area of set estimation (see Cuevas and Fraiman 2009).

Bowman and Azzalini (1997, Section 1.3) give a very nice illustration of the use of
density level sets for exploratory data analysis. They study data on aircraft designs
from periods 1914-1935, 1936-1955 and 1956-1984. They obtain the first two principal
components and represent their joint density using a single level plot (that corresponding
to probability 0.75) for each period. In a single graphic Bowman and Azzalini (1997,
Figure 1.8) are able to summarize the way in which aircraft designs have changed over
the last century.

We borrow this way to summarize a bivariate density (the density level plot corre-
sponding to probability 0.75). Therefore our functional dataset is finally formed by 50
such density level sets. As an example Figure 1 shows the density level sets corresponding
to the 5 largest municipalities in Spain, jointly with the density level set corresponding
to the whole country as a reference. The standard correlation coefficient for each case
has been annotated. It is clear that there is a considerable variability between differ-
ent level sets. Moreover the relationship between participation and vote orientation is
clearer when considering homogeneous sets of electoral districts (those corresponding to
a specific city) than when considering the whole country (top left panel).

3. Multidimensional Scaling for density level datasets

The functional data we are analyzing are sets (density level sets). When looking for a
dimensionality reduction technique for this kind of data it is much more natural to turn
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Figure 1: Example of 6 density level sets.

to Multidimensional Scaling (MDS) than to some kind of Principal Component Analysis
(PCA). The main reason is that there exist several well known definitions of distance
between sets but there is not a clear Hilbert space structure on the set of sets allowing
to define PCA for datasets of sets.

Let us revise the essentials of Multidimensional Scaling (for more details see Borg
and Groenen 2005, for instance). This dimensionality reduction technique requires an
inter-individual distance matrix (or a dissimilarity matrix) as the only information about
data. Assume that there are n individuals and that ∆ is the n× n matrix with element
(i, j) equal to dij ≥ 0, the dissimilarity between individuals i and j. Assume that for
q ≤ n there exists a n× q data matrix X such that the Euclidean distance between the
i-th and j-th rows of X is dij . We say that X is a Euclidean configuration of ∆. Such
a configuration does not always exist. When it does, ∆ is said to be Euclidean. In this
case X can be chosen by having orthogonal columns known as principal coordinates.

Define the n×n matrix D with element (i, j) equal to d2
ij . It can be proved that ∆ is

Euclidean if and only if Q = −(1/2)PDP is positive definite, where P = I − (1/n)11T

is a centering matrix (1 is the n× 1 vector of ones). In this case, let Q = V ΛV T be the
spectral decomposition of Q (V is an n×n orthonormal matrix, and Λ = diag(λ1, . . . , λn)
with λ1 ≥ · · · ≥ λn). Let X̃q = VqΛ

1/2
q , where Vq is formed by the first q columns of V

and Λq = diag(λ1, . . . , λq). Then Q ≈ X̃qX̃
T
q and X̃q is a q-dimensional approximate

Euclidean configuration of ∆. Dimensionality reduction usually aims at visualizing data,
which requires a plane representation, and implies q = 2.
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Figure 2: Plane of the first two principle coordinates obtained from the MDS.

Two distances between sets used frequently (see Cuevas 2009, for instance) are:
Distance in measure: Given U, V ⊆ R2, dµ(U, V ) = µ(U ∆ V ), where U ∆ V =
(U ∪V )− (U ∩V ) is the symmetric difference of U and V , and µ is the Lebesgue measure
in R2.
Hausdorff metric: Given U, V ⊆ R2, dH(U, V ) = inf{ε > 0 : U ⊆ B(V, ε), V ⊆
B(U, ε)}, where for A ⊆ R2, B(A, ε) = ∪x∈AB(x, ε), and B(x, ε) is the closed ball with
center x and radius ε in R2.

Distance in measure is easily computed from the output of standard two dimensional
density estimation routines (we use the R library sm, accompanying the book of Bowman
and Azzalini, 1997). The computation of Hausdorff metric is not so direct. This is the
reason why in this work we use distance in measure between density level sets. Once the
distance matrix is calculated the MDS procedure follows in a standard way.

2. Analyzing electoral behavior

Figure 2 represents the plane of the first two principle coordinates obtained from the



MDS analysis of the distance in measure matrix between the 50 density level sets in
our study. The labels used in this graphic indicate the province where the 50 big cities
are placed (observe that some of them belong to the same province). The percentage
of variability explained by these two principal coordinates is around 60%, so it could
be interesting to explore additional dimensions. There is not any nonlinearity pattern
neither clustering structure.

In order to have a better interpretation of these first two principle coordinates addi-
tional graphics are helpful. Jones and Rice (1992) propose the following way to represent
functional principal coordinates (or principal components). They suggest picking just
three functional data in the dataset: the data corresponding to the median principal
coordinate score, and those corresponding to quantiles α and (1− α) of these score val-
ues (α close to zero guarantees that these functional data are representative of extreme
values of principal component scores). Alternatively, functional data corresponding to
the minimum and maximum scores could go with the median score functional data. This
is exactly what we represent in Figure 3, using blue color for the minimum, black color
for the median and red color for the maximum.

The first principal coordinate goes from negative relationship between participation
and proportion of votes to right parties (a city in the province of Santa Cruz de Tenerife)
to almost independence (a city in the province of Barcelona) to a positive relationship
(Sevilla). The interpretation of the second principal coordinate is not so clear. We
observe that the area of the density level sets decreases when moving from the minimum
scores (Badajoz) to the maximum (a city in the province of Santa Cruz de Tenerife,
different from that cited when talking about the first principal coordinate), but a deeper
analysis should be done in order to establish a clearer interpretation.
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Figure 3: Helping to the interpretation of the first two principle coordinates.


