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Resum

El Cost Index (Cl) i el Take-off Mass (TOM) sén dos parametres molt importants per estudi-
ar les preferencies d’operacio de les aerolinies. El coneixement d’aquests dos parametres
permetria genera prediccions de trajectories basades en terra de forma exacta. Avui en
dia, desafortunadament, aquesta informacioé no és compartida per les aerolinies, ja que
és informacié confidencial perque defineix les estrategies de mercat de la aerolinea.
Lobjetiu d’aquest TFG és desenvolupar i evaluar un algoritme capag estimar el Cl i el
TOM a partir de dades de la trajectoria de vol, que podrien ser recollides per una antena
convencional (e.g. dades radar o ADS-B), utilitzant algoritmes de Machine Learning.
Lalgoritme haura de ser entrenat amb dades del PEP (Programa de Performance d’Air-
bus). Aquest s’enetrenara amb milers de trajectories, variant la distancia, TOM, CI i condi-
cions atmosferiques, per tal de constituir dades d’entrenament del Machine Learning. Un
cop generat I'algoritme per garantir la seva robustesa sera testejat amb dades que con-
tenen soroll alhora que s’evalura la influencia decadascuna de les variables de predicci6.
Finalment, I'algoritme amb noves trajectories generades amb el PEP.

Lobjectiu final del TFG sera comprovar i realitzar I'estudi amb dades de vol reals, per aixo
s’obtindran dades radar provinents del DDR2, una plataforma de Eurocontrol. A partir
d’alguns vols, es fara un estudi dels valors de Cl i TOM utilitzats per diverses aerolinies
amb l'algoritme de Machine Learning previament entrenat.

Com a conclusié s’ha pogut demostrar que el parametre més rellevant en la prediccio
del Cl és el Nimero de Mach, ja que és la relacid més directa amb la relacié del cost
temps-combustible. En canvi, pel cas del TOM, s’ha vist que esta més relacionat amb les
distancies i nivells de vol (FL). A I'aplicar I'algoritme a casos de vols reals s’ha observat
que les aerolinies de baix cost i les de bandera usen estrategies diferents de Cl. Tot i
aixi, una mateixa companyia acostuma a utilitzar el mateix valor de Cl per a la majoria de
rutes, desaprofitant 'oportunitat d’optimitzar els costos de la ruta i tots els avantatges que
ofereix el CI.
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Overview

The Cost Index (Cl) and Take-off Mass (TOM) are two parameters that are very important
in order to study the preferences on airlines operation. In the same way, these two parame-
ters would allow to predict ground-based trajectories accurately. Nowadays, unfortunately,
this information is not shared by the airlines, because this information is confidential as
they help to define market strategies of the airline.

The objective of this final degree project is to develop and evaluate an algorithm able to es-
timate Cl and TOM from data of a flight trajectory, that could be collected by a conventional
antenna (i.e. radar data or ADS-B), by using Machine Learning algorithms.

The algorithm should be trained with data from the PEP (Performance Program Airbus).
The data will be shaped by thousands of trajectories generated with different ranges of
distances, TOM, Cl and atmospheric conditions in order to establish the input training data
for Machine Learning. Once the algorithm has been generated, to ensure its robustness,
it will be tested with data containing noise where the influence of the parameters in the
prediction would be evaluated. Finally, it will be validated with new aircraft trajectories from
PEP.

The ultimate goal of the final degree project is to check and perform the study with real flight
data. To realize this, radar data will be obtained from the DDR2 platform of Eurocontrol.
With some flights trajectories, we will study the values of Cl and TOM used by several
airlines with the Machine Learning algorithm previously trained.

In conclusion, it has been demonstrated that for Cl the most relevant input variable is the
Mach Number because it is the most visible evidence given to the time-fuel cost relation.
On the other hand, TOM is more related to the distance of the flight and flight levels (FL).
When the prediction algorithm is applied to real cases flights, we observed that low-cost
airlines and flag carriers use different strategies of Cl. Even so, a single airline usually use
the same CI for most of their routes, wasting the opportunity to optimize the costs of the
route and all the advantages offered by the CI.
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INTRODUCTION

Aircraft trajectory prediction has been always been a key issue for on-board and ground-
based applications in Air Transport, but their importance will increase even more in a near
future with application of SESAR (Single European Sky ATM Research) and NextGen con-
cepts [2]. In this study, we apply Machine Learning to obtain some unknown parameters
of flight trajectories.

In the last couple of years, the data-link between aircraft and ground-based systems has
incredibly improved. The implementation of data-link permits ground-based systems to
download on-board trajectory predictions. Even the progress is evident and notable, in
some cases ground-based trajectory prediction is still necessary. An example could be
found when Air Traffic Management / Air Traffic Control (ATM/ATC) have problems and
require testing a large number of trajectories. In that situation, instead of downloading all
aircraft trajectories, ground-based trajectory prediction will be a better solution.

Even ground-based system dispose of aircraft data (position, velocity, callsign...), there
are many parameters still unknown because of the competitiveness between operators.
Parameters like actual mass, thrust setting of the engines or the cost index of the route
are not transferred to ground stations. Airlines prefer not to divulge strategic parameters
which influences on the cost and time of their routes.

Some studies have already searched for these unknown parameters by applying Machine
Learning methods. Two examples could be found in airspeed prediction during climb and
mass estimation methods for ground-based aircraft climb prediction [3] [4]. This articles
uses Machine Learning methods to predict flight phases or velocity, while in this project
this methods are going to be used to obtain two flight parameters Cost Index (Cl) and
take-off mass (TOM).

The goal of this final degree project is to present an algorithm to estimated the Cl and the
TOM of an aircraft using machine learning and surveillance data. In aviation, the term ClI
is used to evaluate the impact of time and fuel cost on a route. It is a strategic parameter
that has a relevant influence on aircraft trajectory and airline economy. Depending on its
value, the three main phases of flight (climb, cruise and descent) would be modified. Also,
TOM limits aircraft performances and its value could produce important changes on the
flight trajectory.

This project has two steps. During the first step, the machine learning algorithm will be
trained with known flight trajectories obtained from the Performance Engineer Program
(PEP) of Airbus. During the second step, the Cl and TOW of several trajectories will be
predicted using the trained algorithm and its performance will be assessed by means of
cross-validation. Figure 1 shows both steps of the project, and the stages that are done in
each one of the steps.

Finally, the prediction algorithm will be verified with aircraft trajectories generated with new
trajectories of PEP not used for the trainning. Thanks to the validation, it would be possible
to assess the accuracy of the model and to do a final implementation of evaluate real affic
trdata obtained from EUROCONTROL platform.



Cost index (CI) and take-off mass (TOM) estimation using machine learning algorithms

P s s e e e e e e e s = B I R —_

Training

Cl/ TOM >

Flight distance

1
I
I
|
Fight ime | | Machine leaming algorithm E
)
)
|
I

» " " Time to TOC
PEP »| Feature o
Altitude of first cruise

Distance of first cruise
—_
Time of first cruise

|

[

l

|

n Distance to TOC

I ————
(

[

l

et e

|
|
! 1
[ 1
( o 1,
I DDR —»| Feature extractor Ctasaifier l" ¢/ ToM
[ ]
I !
l ]

e e e e D e D e e R D D R D S S R D R R S e D e S e R e e e e e e e e = e

Figure 1: Machine Learning process



CHAPTER 1. BACKGROUND

Before to start the study, it is needed to introduce a brief explanation of the main concepts
that will be used in the following chapters. Also, it is explained other relevant models
related to the study.

First, we would respond to the following question; why is important to discompose a flight in
different phases? Whenever is needed to analyze the information from a flight trajectory,
it is useful to separate the whole flight in different phases. These phases have related
parameters such as aircraft speed limitations or determined transition altitudes that give
relevant information about other related flight variables which could be unknown. The
goal of this final degree project is to estimate the Cl and TOM from the characteristic
altitude, duration and speed of the different phases of the flight, and to separate the flight
information in different phases will be crucial for a better analysis of the routes.

On one hand, to obtain the Cl value, sometimes it would be enough seeing the starting
or the ending phase of a flight. It is strongly related to the climb gradient of the aircraft
ascension at the climb phase or the descend gradient at the descent phase. But other
times, it is needed an deeper analysis on cruise phase to search the points of changing
altitudes or Mach cruise speed to get an accurate result.

On the other hand, characteristic weights delimit the values of possible TOMs. As the
same way as Cl, flight phases permitted to find relations between the aircraft trajectory
and how the aircraft TOM is changing during the flight.

But, what happens if the day conditions vary from one flight to another? Flight parameters
would remain constant or will depend on the weather of the day? In aeronautics, it was
needed to model an atmosphere where all pressures and altitudes where established the
same for all the aircraft. Consequently, it was created the ISA model which permits to
unify meteorological conditions. When, climate conditions are far from the standard values
stipulated, it must be applied an ISA deviation.

In order to have real flight simulations, the program selected to generate flight trajectories
has been PEP. PEP is an Airbus program intended to many purposes related with flight
planning, performance evaluation and noise computation, among others. PEP is com-
posed by many modules, on of which can be used to generate the planned vertical profile
(i.e. altitude and speed) of a flight given certain parameters. With PEP simulations, the
algorithm will learn how each parameter affects the aircraft trajectory and, therefore, how
the prediction variables change.

Finally, once the Machine Learning algorithm has been trained, the program will be tested
with real flights. The aircraft trajectories will be obtained from DDR, an Internet platform
from Eurocontrol, which collects all European Flights.

1.1. Flight Phases

A flight can be decomposed in to three phases. These phases are the following:

e Climb: the climb phase starts at the take-off and ends with the aircraft reaching
the first cruise level at the top of climb (TOC). This phase, due to reach the best

3
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optimization, is supposed to be a continuous climb (CCO). [5]

e Cruise: Is the main, and typically, the longest part of the flight. It is the phase
where the airplane was designed for, where the minimum air resistance is obtained
(Drag), and where is burned the highest quantity of fuel due to its distance and
time required. The cruise is performed at constant altitudes (or flight levels(FL)).
However, since the optimal altitude increases as the aircraft weight decreases, the
aircraft may eventually climb to the following available flight level by performing a
step climb.

e Descent: Is the last part of the flight, where the airplane starts release altitude and
speed to reach the destination. The most efficient way to realize is a continuous
descent approach (CDA). [5]

All these phases have some related velocities which mainly depend on the CI, the TOM
and the weather conditions (i.e. temperature and winds). For a given combination of these
parameters. Flight Management System (FMS) does not only compute the optimal vertical
profile altitudes (Flight Levels), it also computes the optimal velocity profile, as can be
shown in the Figure 1.1 . It is necessary to know which are the main velocities that are
represented in a flight.

A A

Vv .
CON,Cruise (Mach
ECON,Cruise (Mach) Top of Descent

V. .
Top of Climb ECON,Cruise (Mach)

_| Crossover Altitude

VL-C ON,Descent (kt)

v

Altitude
Altitude

ECON,Climb (kt)

=250kt Vinax— 250kt

max

v

| acL AGL

Departure Destination

Figure 1.1: Velocities Profile

As the Figure 1.1 shows, the yellow lines represent the Take-Off and Landing phase. In
this phase, the aircraft is increasing or decreasing its velocity and it will always be a curve
line because the climb or decent gradient will not be constant. When the aircraft arrives to
250kt, it remains at constant velocity because there is a flight velocity limitation of a maxi-
mum of 250kt until reaching FL100. In the graph, this climb/descent phase is represented
in a blue straight line. Once the flight overpass FL100, the FMS define a Vecon,climb(kt)
that is the IAS velocity [kt], represented in red color in the figure, which allows the optimal
climb. There is one moment, when the airplane reaches a crossover altitude', where the
velocity starts to be given by Mach Number. The same happens in the descent phase
where it is defined an VECON,Descent(kt)-

'The Crossosver Altitude is the altitude at which a specified CAS and Mach value represent the same
TAS value.
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Once the aircraft is flying above the crossover altitude, the aircraft starts working in Mach
velocities. For each cruise altitude, it has a Mach velocity associated named as Vecon,cruise(Mach) s
which is the optimal speed computed as function of the Cl and the weight of the airplane.

1.2. Cost Index, factors and usage

Some airlines prioritises fuel saving while others prefer to arrive to the destiny in the min-
imum time possible. For that reason, it was needed to define a term, which relates both
concepts. Cost Index (Cl) is the ratio between the time-related cost of an airplane opera-
tion and the fuel cost.

. $
B TimeCost ~ W

= (1.1)
FuelCost ~ %

To do the study, it has been taken a range from 0 to 100 CI values for the case of Airbus
A320. That is because PEP’s Flight Management System (FMS) uses this values, but
depending on the airplane FMS it can take values from different ranges, like 0-999 (for
example Airbus A340). To a better understand of the Cl relevance, if it is assumed to have
a Cl equal to 0, it will imply a route performed at minimum range speed and minimum trip
fuel. And in the complete opposite, for maximum values of Cl, FMS uses the minimum
time speed without taking into account the fuel cost.

But from where did the Cl relation come from? [6] First, a trip cost can be expressed as a
sum of fix and variable costs:

C = CruelAF + Ciime AT + CCyiy (1.2)

Where: C is overall cost [$];  Cyue is the unitary cost of fuel [$/kg];  AF is the trip
fuellkgl;  Ciime is the unitary cost of time [$/min]; AT is the trip time [min];  CCpy is
the cost independent from time[$].

The way to optimize the overall trip cost is to minimize the variable cost, because are

related with the flight performances. Dividing the expression of the total cost by the cost of
the fuel, the cost function (7) is expressed as:

J= =AF + AT (1.3)
Cfuel fuel
Where: C
=l (1.4)
Cruel

From the term above, it is defined the Cl as the relation between the time cost and the fuel
cost. For a given route and the length of the trip is known, it can be computed the total
cost of the unitary length as:

| CI AF CI AF+CI
JONm) = — 4 — =20 B _armed 15
(INm) = 5+ G. ARG, G, (1.5)
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Where: ASR
SR(Specific Range) = Afuel [Nm/kg] (1.6)
Gy = Ground Speed = Wind +TAS  [kt] (1.7)

If the cost function is integrated for all the range of the trip, the result is the total variable

cost of the trip:
i Range AF + CI
CVariable - / ———dx (1 -8)
0 Gs

Cost Index is a parameter, which could determine important variations on aircraft Flight
Plan. Actually, airlines use the FMS to compute the appropriate trajectory in function of
the Cl selected. However, airlines don’t take full advantage of this calculation in all their
routes.

Cl depends on time trip and time is related to aircraft velocity. So, the main point is ClI
could introduce variations on aircraft speed. These variations are transcendental for air-
craft performances and there are some studies which introduce the affection of Cl on
speed changes. For example speed change up to Mach 0.09 in cruise phase, which will
correspond to approximately 10% of speed variation. The affectation on the climb and de-
scent are also notable. It could reach values of 96 knots variation between different values
of Cl. Another example is how ClI affects the descent is the distance between the optimum
positions of the top of descent, which could differ up to 20 NM.

Airlines operating costs can be clearly reduced adjusting the Cl value. This ratio between
time and fuel cost permits operators to modify the Cl for each route requirements.

On one hand, low values of Cl should be used when fuel cost are high compared to other
operating costs. On the other hand, for high values of Cl time will be more relevant than fuel
cost, so time will be prioritized searching for the minimum time flight. There two affecting
factors for Cl:

e Time-related direct operating cost.

First factor does not include fuel cost and it is the numerator of Cl ratio. In a flight,
there are many items which have a dependency with the operating time such as
flight crew wages or some aircraft maintenance. Some structural and mechanical
items like the fuselage or engines should be revised periodically. When the number
of hours flown is reached, there must be a maintenance associated. Maintenance
costs can be accounted for on airplanes by hours, by the calendar, or by cycles.
Those items which depend on operating hours causes high direct cost on time flight.

The cases where time-related cost is high, airlines should choose larger Cl to min-
imize time flying. In the other way round, when costs are fixed time flight is not so
important because there are no extra cost associated, so airlines would search for
low CI.
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e Direct fuel cost.

Fuel cost is the denominator of Cl ratio. As fuel cost is not fixed, it is another pa-
rameter to take into account. One important issue to be known is fuel tank does not
need to be full each time there is a flight. Depending on the distance range and the
following aircraft routes, a necessary fuel calculation could be made. Aircraft must
have enough fuel to perform their nominal route, plus the trip reserves and alternate
reserves.

As less weight carries the airplane, less consumption fuel. So, it would be normal
to think that in each route the plane should be filled only with the required fuel to
perform that route. Then, once landed, the plane could fill the fuel tanks again and
proceed to the next destination. This would be true if we do not care about fuel
price difference between countries. Depending on the country, there is an extreme
difference between fuel cost. For example, there are situations where airlines could
prefer to fill the fuel tank to the maximum even the fuel consumption during the trip
would be higher. This is because the fuel price at the origin is exceedingly lower
than at the destination.

Also, Cl values affect on flight phases. For aircraft climbing, the steepest slopes are for
lower Cl because the aircraft wants to go up as soon as possible to reduce fuel consump-
tion, seen in Figure 1.2. For larger Cl, the slope decreases to maximize time climbing.

INITIAL L4
CRUISE
ALTITUDE

apmary

Distance

Figure 1.2: Cl effects on climb phase [1]

For aircraft descents, the earliest Top Of Descent (TOD) is found for lower Cl, as seen in
Figure 1.3. This point permits a continuous descent with minimum thrust and reducing the
fuel consumption. For minimizing time and obtaining larger Cl, consists on being as much
time as possible on cruise where velocity is optimized.
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>

L FINAL
CRUISE
ALTITUDE

Altitude

Distance

Figure 1.3: Cl effects on descent phase [1]

1.3. Characteristics Weights

The airplane manufacturer define some weights that are relevant for the performances of
the flight, those weights have to be certified for the correspondent aeronautical authority
to ensure the airworthiness of the airplane, the most relevant ones are:

e MTOW: Maximum Take-Off Weight. Maximum permissible weight when starting
take-off for standard atmosphere conditions. Limited by aircraft structural and aero-
dynamic conditions.

e MLW: Maximum Landing Weight. Maximum permissible landing weight. Limited by
structural strength of the aircraft when impacting against the ground and aerody-
namic conditions.

o MZFW: Maximum Zero Fuel Weight. Maximum permissible weight before fuel load-
ing.

e OEW: Operation Empty Weight. Weight of the aircraft needed to operate. Weight
of the structure, engines and equipment that can be considered as an integral part
of the aircraft configuration. Includes necessary personnel, equipment and supplies
except fuel and payload.

e MFW: Maximum Fuel Weight. Weight of the maximum amount of fuel the aircraft
can load. This limit is the volumetric capacity of the aircraft’s deposits.

e MPL: Maximum Payload: It is the maximum burden that brings benefits to the com-
pany. Includes passengers with their luggage, mail, parcel and cargo. The MPL limit
is set by the structural strength of the aircraft:

MPL = MZFW — OEW (1.9)
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Figure 1.4: Payload vs. range on A320-200

Figure 1.4 shows the payload-range diagram of the A320-200. As it can be seen, payload
limits range when the aircraft is loaded with MTOW. If aircraft payload is reduced main-
taining MTOW, fuel quantity increases which implies an increase of range. Finally, the
maximum range is acquired when there is no payload on board and fuel quantity on board
is equal to MFW.

In Appendix A there is defined the characteristics weights for our case study.

1.3.1. Weight limitations

Weight would be an important parameter in the study, so it must be well explained. Charac-
teristic weights are imposed by the aircraft manufacturer, which will always be delimited by
the minimum weight possible (OEW) and the maximum (MTOW). As the range is stipulated
by the manufacturer, the range values will go from a minimum range value depending on
the aircraft model to its maximum. In this case, we will use data from Airbus characteristic
weights as the aircraft manufacturer. But even ranges are defined, there are many other
parameters which could change the possible weight values.

When generating the files to train the Machine Learning, there could be some TOM values
that are not valid. Sometimes, short distance delimits the maximum TOM to not exceed
other characteristic weights such as MLW or MZFW. Other times, large distance could
exceed the MFW or need a negative Payload to complete a long trip. All the case studies
which does not fit a realistic TOM value, must be remove and not used for the training.



10 Cost index (CI) and take-off mass (TOM) estimation using machine learning algorithms

When talking about operating altitudes, although distance range has the greatest affecta-
tion, weight also limits the maximum altitude. As more TOM, aircraft will need more lift to
be sustained and can not reach the maximum altitude possible. Once TOM decreases, it
permits aircraft to climb to its maximum stipulated altitude.

1.4. ISA Model

To a better understanding of some phases of the study, it will be introduced a brief concept
of ISA model. Civil Aviation Organization defined a hypothetical model called International
Standard Atmosphere (ISA)[7] which corresponds to an ideal atmosphere based on ther-
modynamic equations which relates pressure to altitudes, as can be seen in Figure 1.5.
It uses a standard reference for pressure, density, viscosity, and temperature at different
altitudes throughout the atmosphere. Therefore, ISA is a model which express the tem-
perature, pressure and density as a function of the altitude. Standard sea level pressure
and temperature are 1.013,25 mb (Py) and 15°C (Tp).

For the cases, that the meteorological conditions are not equal to the ISA conditions, it is
said that we are at ISA+ X. For example, at sea level (SL), if actual temperature is 20°C,
5°C above the standard, we are in ISA+5.

The ISA model is expressed by the following equations:

_ 7 1.08"Ue
T=T)—1.987 0 (1.10)
B h(m) 5.2561
P—PO(I—O.OO6STO(OK)> (1.11)
P
p—R—T (1.12)
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Figure 1.5: International Standard Atmosphere vs. height

Where: T is the temperature [K]; P is the pressure [Pa]; p is the air density [kg/m3];
R is the real gas constant for air [287,04m?/Ksec?].

2Equation applicable only up to Tropopause (h=11.000 ft)
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1.5. PEP: Performance Engineer’s Program

Flight trajectories are taken from a flight-planning program called PEP (Performance Engi-
neer's Program). Airbus has a module where it can be computed trajectories for different
aircraft types and scenarios in order to make a flight planning. The most efficient route in
terms of cost or time, depending on the Cost Index fixed by the company, will determine
its Flight Plan. Even the program has many modules, the study has been performed with
a tool called FLIP.

FLIP permits to adjust flight parameters and simulate trajectories in a real way. FLIP has
only Airbus aircraft types, so the study is centred on Airbus models commonly used by
airlines. Aircraft specifications are included in the tool, so performances and weights are
taken in account during the simulations. Among other parameters, FLIP considers aircraft’s
limitations on weights, velocities and altitudes. Also, the user can introduce variations
respect ISA conditions and wind influence. All this inputs can help the user to recreate the
most realistic scenario possible.

An important matter is to use FMS flight planning simulations. In FLIP, for a standard flight
cannot be add a cost index value. Without cost index fixed, velocities will be modified as
the program optimizes fuel consumption. FMS permits to add a cost index value for the
flight and it has in consideration all the speed limitations under ATC regulations and MMO
velocity.

In this case study, we have used the Airbus aircraft models that are available in PEP
performance program. All the properties of the airplanes used are detailed in Appendix A
where data have been obtained from official Airbus web page.

1.6. Machine Learning

Sometimes, when you are generating a model, there are parameters which are unknown.
Machine Learning techniques and algorithms use computational methods to learn infor-
mation directly from data experience. Machine Learning teaches computers to learn from
past data and it is able to predict future values for the unknown parameters. Algorithms
adaptively improve their performance as the number of past samples introduced increases.

There are two types of techniques of Machine Learning: supervised learning and unsu-
pervised learning. In our case study, we used the first one, which trains a model on known
input and output data to search for a future predicted outputs.

First, it is needed some known data about the predictor and response variables are needed
to train the model. Figure 1.6(a) shows how is added known data with the responses to
generate the model. This model gains confidence and is increasingly able to predict more
accurate responses by adding new known data. Once the model is trained, Figure 1.6(b)
shows how new data could be added to the model, which will predict the new responses
for the unknown parameters.
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Figure 1.6: Machine Learning process

Our parameters that need to be predicted are Take-Off Mass (TOM) and Cost Index (Cl).
This is because there is no information about their values and, except for the aircraft com-
pany, they are commonly two unknown parameters of the trajectory.

To compute the prediction variables, we used Machine Leaning from Matlab Toolbox [8].
Matlab propose different methods but there is not a unique solution. Finding the right
algorithm is partly just trial and error. Even though, depending on the size and type of data
introduced, there are algorithms which have a better fit.

1.7. Demand Data Repository (DDR)

This is a platform crated by Eurocontrol [9] with the Objective to provide the most accurate
picture of pan-European air traffic demand, past and future.

The DDR project was divided in two phases:

e DDR1: It is currently being phase out. This produce future traffic samples, mainly
using historical traffic samples adjusted with STATFOR forecast data.

e DDR2: covers DDR1 functionalities and also collects early available flight intentions
from airlines (SSIM/INNOVATA data) and from coordinated airports through the Eu-
ropean Union Airport Coordinators Association (EUACA).

In the DDR2 platform , there is a historical report of all European flight collected. In the
Figure 1.7, there is an example of the DDR2 platform to show how is presented. All flight
data is presented in a table, where is classified according to corresponding day of the
month. Each row presents a different file format to be downloaded and it is also added the
number of flights per day and its ranking position of the month.

As it has been seen in the platform, flight data is presented in a table where users can
download the flights in different file formats. But it is important to know the difference
between the two types of traffic:

e .m1: This document contains all the flight plans that was presented in a certain
period, chosen by the user, and those flight plans presented to the FMU (Flight
Management Unit) an were approved. It uses the last saved flight plan after all the
modifications with IFPS messages.
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Figure 1.7: DDR2 platform

e .m3: This document contain all the flights realized during a certain period. It uses
the actual 4D trajectory recalculated by aligning it to the existing route points.






CHAPTER 2. AIRCRAFT TRAJECTORY
GENERATION WITH PEP

As it has been explained before in section 1.5. PEP is composed by several tools which
can be used for many purposes (flight planning, performance data generation, noise cal-
culation, etc). For the case study is used FLIP mode with FMS; which has implemented all
speed regulations and tries to adjust aircraft speed to its optimal value.

First of all, it is essential to decide which aircraft will be studied. From the list of available
aircraft, will be studied the Airbus A320. A320 is the aircraft model most typically used by
European airlines. For this aircraft model thousands of trajectories with different values on
TOM, CI, Range, TOCs, Wind, AISA will be computed. These data will be used as known
data to let the machine learning algorithm learn from these trajectories.

As the number of trajectories to be introduced in PEP is over 100,000 samples per aircraft
model, the program cannot be manually executed. In order to generate the PEP input files,
it has been used an script with loops changing the values of the different flight parameters
explained before.

2.1. Script: Input files generation

The script permits to generate the PEP input files where each file will correspond to a
unique trajectory. There are some conditions that must be verified before a trajectory is
added to the study. Performance parameters could oscillate due to the aircraft model or
flight conditions. The following chapters present some limitations used to filter the possible
trajectories for the study.

2.1.1. Relation between variables

Even it has been defined an adequate range of values for the variables of each type of
aircraft, some results will not be valid. This is because there is a dependence between
some variables, which could generate non-possible trajectories. An example would be the
limitation on Range and TOC due to the aircraft TOM. Both payload and fuel on board
are factors which affects directly to route range. When aircraft carries MPL, the maximum
possible range of the aircraft is reduced. A similar thing occurs with TOC, which could not
reach its maximum altitude on cruise because of the heavy weight.

Other parameters which are interrelated could be AISA and wind with fuel consumption.
Once it is known the use of the ISA model, section 1.4. explained before, it is important
to notice that atmospheric pressure and temperature decreases with height at a standard
lapse rate. But what happens when the real pressure and temperature of a concrete day
does not correspond to the theoretical ISA values? Here is the point where ISA deviation
appears (AISA), to adjust the pressure/temperature of the day to the corresponding real
altitude of the aircraft. Aircraft performances will vary depending on the height. An AISA
could affect to fuel consumption, and so to Cl calculation. Also, the wind is a factor to be
taken into account, because it will modify the ground speed of our aircraft and, with it, the
total time and cost of the trip.

15
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The range values of the variables for the selected aircraft have been added in Appendix B.

2.1.2. Affectations on range variables

Apart from the relation between variables, there are some factors like the aircraft model or
meteorological conditions that will also affect loop ranges. Although some variable will be
fixed, others will not have constant range values.

Wind and AISA are meteorological affectations on aircraft. In this study, the aircraft
model flies in flight levels between 20,000 ft and 43,000 ft. As altitudes do not over-
pass the tropopause, air conditions could be considered lineal, the temperature drops as
-2°C/1.000ft. In this point, we set the ranges in usual values for wind speed (between -80
kt and 80 kt) and for AISA (between -20 and 20).

Aircraft models will affect on a different way. Characteristic weights and aircraft range are
imposed by the aircraft manufacturer. For characteristic weights, range values will always
move between OEW and MTOW. Also, the the maximum operating altitude, also known as
aircraft ceiling, is imposed by structural and motor limitations. It will set the possible TOCs
of the aircraft and define the ranges of possible altitudes for each aircraft.

To set Cl values, it has been defined a fixed range for A320 model. Taking values from
Airbus model, the aircraft has been studied for Cl values from 0 to 100. In the cases of
wide-body aircraft from Airbus, could be reached Cl values of 999.

2.2. Input format file for PEP

The Python code generates two input files in different formats. The first file is in .dat format
and contains all the parameters of the aircraft for the flight. The other is in .pep format
and it is the file necessary to execute the FLIP program. This last document contains the
routes of the input and output files generated before and after the PEP execution.

To execute the PEP program with more than one file at once, it has been used the Batch
Manager. Batch Manager is an internal tool from PEP which permits to load many input
documents to be executed on FLIP format.

An example of both format files are shown in Appendix C.

2.3. Reading the output file from PEP

Once the Batch Manager executed the input files of the aircraft, output files are gener-
ated. Output files contain all the information introduced in the input file an additional flight
planning in a table format at the end of the document. The flight planning contains all
information of the aircraft trajectory, but for the study we have focused on the variables
explained before.

For this case study is necessary to define the variable required for machine learning. For
that is necessary to analyze the vertical profile obtained from the PEP (Appendix C).
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The FMS with the inputs values of range, take-off mass (TOM) and the Cost Index com-
putes the optimal vertical profile. This vertical profile can define up to a maximum of four
cruises altitudes, as can be seen in Figure 2.1, that is because the airplane loses weight
as it burns fuel.
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Figure 2.1: Flight Phases

For machine learning training, it is necessary to define variables that can be obtained from
any trajectory to finally obtain the Cost Index and TOM. The variables defined that can be
obtained from PEP output are the following:

e Range: The overall distance of all the flight. (dist_total [Nm]).
e Trip time: The overall time of the flight. (time_total [min]).

e Climb: Phase from take-off to first cruise from here we obtain the distance and time
(dist_toc [Nm], time_toc [min]).

e Cruises: Main phase of the flight can be defined a maximum of four, in each cruise
we obtain a total of four variables: the time, the distance, the flight level, Mach
velocity. (dist_.crN [Nm], time_crN [min], h_crN [FL], M_crN [Mach], where N is the
number of cruise).

e Descent: the last flight phase, is from last cruise to landing here we obtain the
distance and the time (dist_tod [Nm], time_tod [min]).

e TOM: the take-off mass used for the trip.
e CI: the cost index used for the trip.
The total number of variables obtained from the OUTPUT file is 24", and they are orga-

nized in a table, the table format is shown in Table 2.1, that is the best way to introduce
these variables in the machine learning algorithm.

'In following chapters will be studied the possibility to add Wind and ISA conditions due to an improvement
of the accuracy, making 26 the number of variables.
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CHAPTER 3. MACHINE LEARNING
DEVELOPMENT

This chapter presents the machine learning development in this project. The aim of this chapter
is to train the algorithm to be able to compute the Cl and the TOM with a data input of the flight
trajectory.

Once the output files from PEP have been read, as explained in section 2.3., we pick up the
significant information. The imput of machine learning in Matlab must be in a table format so we
generate a table with the 24 variables that are necessary to start the training.

3.1. Matlab Machine Learning types

Machine learning of Matlab provides a toolbox that is able to learn from the experience using
computational methods [10]. Machine learning uses two types of techniques; one that works with
input and output data and the other that find hidden patterns in the input data[8] [11].

In the following sub-chapters are explained both types, the process of the selection of the algorithm
can be seen in Figure 3.1.
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Figure 3.1: Matlab machine learning types

The process is a trial and error, and the algorithms are characterized by the following properties:

e Speed of training: Time required to generate the algorithm to perform the predictions.
e Memory usage: Part of the physical memory of he CPU destined for the process.

e Predictive accuracy on new data: Average hits obtained in predictions.

19
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e Transparency or interpretability: How easily you can understand the reasons an algorithm
makes its predictions.

3.1.1. Unsupervised Learning

Unsupervised learning is useful when you want to explore your data but don’t have a specific goal
yet or are not sure what information the data contains. It's also a good way to reduce the dimensions
of your data.

Unsupervised learning finds hidden patterns or intrinsic structures in data. The most typical used
is Clustering, which that basically consists on group data in clusters.

Example: Most useful application is clustering, like gene sequence analysis, market research, and
object recognition.

This technique of machine learning is not useful to our case because all the data of our flight plans
are previously filtered and we do not want to obtain groups of data. What is required in this case is
to obtain the values of two variables (Cl, TOM) based on some trajectories parameters.

3.1.2. Supervised Learning

The aim of supervised machine learning is to build a model that makes predictions based on evi-
dence in the presence of uncertainty. A supervised learning algorithm takes a known set of input
data and known responses to the data (output) and trains a model to generate reasonable predic-
tions for the response to new data.

The main types for supervised learning are decision trees, classification and regression techniques.

3.1.2.1. Classification techniques

Classification techniques predict discrete responses. Some methods for classification are the Near-
est Neighbor Classifiers, where in Matlab toolbox can be found some examples:

e Support Vector Machines: (SVM) Classifies data by finding the linear decision boundary
(hyperplane) that separates all data points of one class from those of the other class. The
best case to use this method is when data is linearly separable between two classes [12].

e Discriminant Analysis: Discriminant analysis classifies data by finding linear combinations
of features. Discriminant analysis assumes that different classes generate data based on
Gaussian distributions.

e Neural Networks: Inspired by the human brain,the network is trained by iteratively modifying
the strengths of the connections so that given inputs map to the correct response. Permits
to model highly non-linear systems, and also let the model be updated constantly with new
data.

e Naive Bayes: A Naive Bayes classifier assumes that the presence of a particular feature in
a class is unrelated to the presence of any other feature. It classifies new data based on the
highest probability of its belonging to a particular class. Their application is mainly used for
small datasets with large number of parameters.
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e Nearest Neighbor: (kNN) categorizes objects based on the classes of their nearest neigh-
bors in the dataset. kNN predictions assume that objects near each other are similar. Dis-
tance metrics, such as Euclidean, city block, cosine, and Chebychev, are used to find the
nearest neighbor.

e Decision trees: A decision tree lets you predict responses to data by following the decisions
in the tree from the root (beginning) down to a leaf node. A tree consists of branching
conditions where the value of a predictor is compared to a trained weight. The number
of branches and the values of weights are determined in the training process. Additional
modification may be used to simplify the model. It is used when an algorithm is easy to
interpret and fast to fit, without a high predictive accuracy. There are different types of
decision trees depending on the complexity of the data set in the model:complex, medium
or simple trees [13].

There are other classification techniques which uses ensemble classifiers to predict the response.The
ensemble method is a technique that combines the predictions from multiple machine learning al-
gorithms together to make more accurate predictions than any individual model. The two examples
of ensemble classifiers most used are:

e Boosted Decision trees: Boosted decisions involves creating strong learners by a set of
weak learners by adjusting the weight of each weak learner to focus on misclassified exam-
ples.

e Bagged Decision trees: A bagged decision tree consists of trees that are trained indepen-
dently on data that is bootstrapped from the input data. In this way bagged decision trees
decrease the variance helping to improve the stability and the accuracy. It is a good solution
to use bagging when input predictors are discrete or behave non-linearly.

3.1.2.2. Regression techniques

This techniques predict continuous responses. The Matlab toolbox presents the following ones:

e Gaussian Process Regression: (GPR) models are nonparametric models that are used
for predicting the value of a continuous response variable. It can be applied in cases where
there must be an interpolation of spacial data in presence of uncertainty.

e Support Vector Machines: (SVM) in regression algorithms find a model that deviates from
the measured data by a value no greater than a small amount. It is able to predict a con-
tinuous response with a small error of sensitivity. It is very useful for high-dimensional data,
where many number of variables needed to be predicted.

o Linear Regression, GLM: A Generalized Linear Model is a special case of nonlinear models
that uses linear methods. It involves fitting a linear combination of the inputs to a nonlinear
function (the link function) of the outputs.

e Regression Trees:Decision trees for regression are similar to decision trees for classifica-
tion, but they are modified to be able to predict continuous responses. They are used when
predictors are discrete or behave non-linearly.
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3.1.2.3. Practical cases of Machine Learning techniques

For the use of classification techniques, the data set must follow some requirements to get an
accurate prediction model. To obtain the best accuracy as possible, the model must have enough
training examples, a good performance on the training set and should not be too complex. The
figures below show bad examples of training data for classifier models:

Figure 3.2: Bad examples of classifiers

In the order of images appearance, the one on the left present insufficient data to complete an
accurate classifier model. Many zone on the field would be unknown and the model would do blind
predictions. The image of the center present too much dispersion to adjust the model to accurate
predictions. The training error would be too high, so accuracy would dramatically drop off. Finally,
the image on the right, shows a very complex model would be very difficult to predict.

A classifier with high accuracy on predictions should have sufficient data, low training error and the
data must be prepared as simple as possible. Here, there is a good example of classifier:

Figure 3.3: Good example of classifier

The use of classification techniques are diverse. Some examples are text categorization for spam
filtering, fraud detection, optical character recognition, face detection, spoken language processing
and understanding, market segmentation for customers promotions, between others. To a better
understanding of how classifiers works, some practical examples are presented below. The algo-
rithms chosen are the most common used and will be useful for our future study of Cl and TOM
prediction.

First, a practical example of a Decision Tree is exposed [14]. The study consists on the attendance
to the USA festival Burning Man. The data set presents people’s income in function of their age.
In the Figure 3.4(a), data can be clearly separable in different groups between the green straight
lines. In the right, Figure 3.4(b), the decision tree conditions permit a prediction response for each
value of the whole model.
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Figure 3.4: Decision Tree practical example

Another practical example for SVM classifier can be seen in Figure 3.5. The study wants to dis-
tinguish between sheeps and goats in function of mean daily temperature and steps per day they
realize. Data can be cut in two main zones. Zones are separated for a border line with certain
margin of non-confusion, where no sample could be inside.
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Figure 3.5: SVM practical example

The last example is Bagged Decision Tree. Figure 3.6 is not a practical case, but will permit to
see how the algorithm works. It builds multiple such decision tree and amalgamates them together
to get a more accurate and stable prediction. Once known the feature (f) from the sample, the
algorithm predicts the solution for each tree.
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Figure 3.6: Bagged Decision Tree example

3.2. Training of the algorithm

To develop a Machine Learning some considerations have to be taken into account. The main
steps and advises to ensure the best prediction are the following ones:

. Getting data: The concept of ‘'more is more’ is relevant in this part, as bigger is the data

used for the training more accurate will result the algorithm. The training data must follow
the same format of the tested one. Finally, the data must be truthful and accurate.

. Choosing features: Using your own knowledge to know what features would be the most

helpful is the first step. Redundant features do not affect the algorithm and some times can
be helpful, because most of the algorithms do not require of independent features. But in
some cases can generate overfitting and this redundant features can affect negatively to
the prediction. If there are too many features, there methods of feature selection that would
simplify it, as can see below.

. Choosing an algorithm: Before to start, the learning paradigm has to be identified, that is

to say, determine if it is a regression or classification problem, if the function is to predict a
range or a value, and some others. In general, no learning algorithm dominates all others on
all, it depends on the simplicity of the problem, that is the reason why many algorithms have
to be tested, and it is a trial and error procedure. Here parallel compilation is useful such a
way to improve the computing time.

. Selecting Parameters: Imply a sensibility study of the parameters selected to make the

prediction. The best method to do it is a trial and test by setting different parameters combi-
nations.

. Testing Performance: Train part of the data, and test on rest, that will allow to predict the

accuracy of the algorithm, that method is cross-validation. Repeat the tests with split data in
a natural mode (i.e. date split, depending on the date when data was obtained).

. Running experiments: Once the algorithm is chosen and developed it is time to try to

make predictions. To do it in an efficient way is to automate it, generate a script that allows
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the reading of the data and to insert it to the algorithm, and finally returns the results in a
specified format.

3.2.1. Training for Cl and TOM

For our case study, once the table of the data is formed it is time to introduce it in the machine
learning toolbox of Matlab to train the prediction model.

The data introduced will be the case study for A320. And for this data, there will be two Machine
Learning algorithms because with one computation only can be subtracted one variable of predic-
tion. For this reason, one algorithm will be for obtaining Cl and the other one for TOM.

When the table is introduced in the toolbox, automatically detects the variables, its range, and offer
the possibility to classify the variables in predictor, response or not relevant. Non relevant will be
useful for those airplanes that not perform 4 cruises, with this method we can delete data of this for
cruise if the ranges of the data are zero. Also, a study of the variables sensibility will be perform
due to improve the algorithm accuracy, also will be considered the possibility to add atmosphere
conditions (wind and ISA).

Also this toolbox provides us a confusion matrix, that shows the accuracy as function of the value
of the predicted variables.

3.2.2. Avoiding training errors

Some algorithms could vary their accuracy due to their complexity. Data set must follow some
requirements to get an accurate prediction model and avoid training errors. An example could be
seen with decision trees. The tree must be big enough to fit training data, so the true patterns are
fully captured. But, if the tree is too big, the data may overfit and could generate false patterns or
capture noise due to have many branches in the tree. A graphical explication can be seen in Figure
3.7.
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Figure 3.7: Underfitting and overfitting error



26 Cost index (CI) and take-off mass (TOM) estimation using machine learning algorithms

For example, when we try to approximate a data set of points to a polynomial function, can be seen
the importance of the overfitting. In Figure 3.8, the data set points are fit with some polynomials
of a different degree. While, in the first figure the points are not well approximated, as the degree
increases, polynomial fits better the model. But, when the degree is increased too much, the
complexity of the polynomial function is too high and may overfit, like it happens in the last figure.

Figure 3.8: Polynomial fitting

Another problem which may occur with decision trees is the oversize of the tree. The error intro-
duced by changing the number of branches in a tree, may vary depending on the data set. The
best solution is to stop increasing the number of nodes in a tree when the training data accuracy
is the optimal value, that correspond to the minimum error. But there is a significant problem to
find this value because it can not be found the best tree size from the training error. So, the way of
finding the stop training point is searching when the error begins to increase.
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Figure 3.9: Decision trees size

The best way to find an optimal solution is to balance between simplicity and fit to data. Figure 3.9
shows the balance of the accuracy in function of the size of the tree. Depending on the algorithm
used, parameters must be adequate to minimize the total error and to obtain the most accurate
model as possible.
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3.2.3. Improving the models

Improving the models means increasing its accuracy and predictive power and preventing over-
fitting, to distinguish noise from data. This process is divided in three tasks:

e Feature selection: Consist on removing the variables do not improve gains of the accuracy
of the predictions, this allows to reduce computation time and to save storage. This task
is performed by many techniques but the aim is to find the variables with more weight in
the prediction, by removing the redundant features or by adding features until accuracy is
stabilized.

e Feature transforming: Is a method to reduce the dimensionality. The main techniques are
Principal Components Analysis (PCA)[15], non-negative matrix reduction and factor analy-
sis.

e Hyperparameter tuning: Parameter tuning is an iterative process. It begin by setting pa-
rameters based on a “best guess” of the outcome. The goal is to find the “best possible”
values— those that yield the best model. As the parameters are adjusted and model perfor-
mance begins to improve, can be seen which parameter settings are effective and which still
require tuning.






CHAPTER 4. RESULTS

This chapter shows the results obtained from the machine learning hold-out validation, validations
with trajectories generated with PEP and applications on real flight data obtained by DDR2 platform
of Eurocontrol.

In commercial aviation, there are two types of distinguished aircraft: the narrow-body and the wide-
body. Airbus A318, A319, A320 and A321 are examples of narrow-body aircraft’. These airplanes
are used for short routes like European continental routes.

The other type of aircraft are the wide-body?, which covers the A330, A340, A350 and A380 fam-
ilies. The main difference with narrow-body airplanes is the number of passengers to transport.
Wide-body airplanes are commonly used for long routes flights or short routes with a high density
of passengers in peak hours.

For the study, it has been selected one of the models most used for the airlines operations, the
A320-212. The aircraft chosen from the A320 is a short-medium range narrow-body of the Airbus
family. Nowadays, Airbus A320 family has over 7.400 aircraft delivered and almost 600 more in
backlog orders. Taking back that number, the A320-212 model covers around 4.400, which converts
it in the Airbus aircraft model most used by the operators. Thanks to choose the aircraft more used
by airlines, will permit to realize a complete study. The high number of real trajectories obtained
from DDR2 will provide a good approximation of the flight parameters used to perform a determinate
route.

4.1. Experimental Setup

To execute the experiment, it has been chosen the A320-212 aircraft from the Airbus family. The
results will give an example for a narrow-body, but it will also be interesting to study a wide-body
Airbus model to compare both solutions. In this way, flight performance will variate according to
the aircraft model chosen. However, the machine learning algorithm proposed in this final degree
project is generic, and could be applied to any aircraft model.

The study for A320 covers distance ranges from 150 up to 3.300 NM and TOMs from 47.000 to
77.000. The total number of flight trajectories generated are 111.100, as it can be shown in the
Table B.1, by the equation B.1. But from the total number of trajectories, some have to be deleted
because they do not accomplish aircraft performances or characteristics [16]. Some examples of
deleted trajectories are those that requires negative payload, or landing weight exceeds the Max-
imum Landing Weight. In this case, after removing the invalid files the total amount of trajectories
used have been 70.319 over 111.100 generated trajectories.

To train the model, we have used Matlab. This program gives access to a Statistics and Machine
Learning Toolbox. The application name is Classification Learning, which permits to classify data in
many supervised machine learning techniques. Inside the toolbox, the input data must be charged
in a very strict format. As explained in the sections before, the output file received from PEP is
converted into a table as seen in section 2.3. In the example of the table obtained is Table 2.1,
each row represents a different flight while all flight variables are assigned to a different column.

With this table format, the input of the ML is defined, and it allows a better manipulation of all the
data required for train the algorithms.

"Narrow-body aircraft is an airliner arranged along a single aisle permitting up to 6-abreast seating in a
cabin below 4 metres (13 ft) of width.
2Wide-body aircraft is a jet airliner having a fuselage wide enough to accommodate two passenger aisles.

29
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Once the data in a table format, there are 3 steps to create your workspace to train the model:

1. Table selection: It must be loaded all the data in a table format explained before.

2. Predictors and Response selection: From all the data of the table, it can be selected the
function variables in the machine learning method. For each variable can be can chosen
either Predictor, Response, or Do not import, depending on the relevance in the study.

3. Validation method: Once the data is imported, the user could add a validation method to
compute the accuracy of the different machine learning techniques. So before to start the
training, it can be selected the either if the user wants a cross-validation (protects against
overfitting by partitioning the data set into folds and estimating the accuracy of each fold), a
hold-out validation (takes a % of the hole data set to validate the method) or no validation.

In our case study, all the variables of the table are predictors except TOM and Cl that are responses.
As the program does not permit to compute both responses at the same time, it has been studied
which is the best way to predict both variables according to their dependence. In the sections
below, is explained either both cases with their respective results. To validate the program, it has
been chosen the holdout validation taking 10% of the total data set.

4.2. Takeoff mass estimation

First action before to start is to train the model with all machine learning methods in Matlab toolbox
to see which one performs better to estimate the TOM. The study will be divided in two cases, one
where Cl will not be taking into account, and the other where Cl will be added as an extra predictor
variable to the model. For the former case, 22 predictor variables will be used to estimate the TOM.
For the latter case the number of predictor variables will be 23, as Cl will act as a known value. A
complete table with all methods accuracy can be seen in the Appendix D, Figure D.1.

e CASE 1: TOM estimation without the Cl value (22 prediction variables).

e CASE 2: TOM estimation knowing the Cl value (23 prediction variables).

Analysing the accuracy of the TOM estimation, has been observed that some methods present very
low accuracy values. To show the best estimation results, the three methods with higher accuracy
have been selected for the remainder of the study and the other ones will be discarded because of
their lake of trust.

The selection of the best methods will permit to optimize their configuration parameters to be ad-
justed to our model. The 3 algorithms chosen are:

e Ensemble Bagged Trees: Presents an initial accuracy of 77,5% for both cases 1 and 2.
Their speed of training is very fast and represents the best accuracy obtained.

e Fine Gaussian SVM: Uses Support Vector Machines modeled to a Fine Gaussian function.
It is the model which takes longer to estimate TOM values values with an accuracy of 75,6%
and 74,8% in case 1 and 2, respectively.
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e Fine KNN: Uses Nearest Neighbors function. It has the lowest accuracy of both 3, but the
time computation for the algorithm is quite fast. It achieves an accuracy of 64,9% in case 1
and 49,5% in case 2.

4.2.1. Dependencies of the variables

A option called multivariables plots allows to obtain a plot with all the variables that are introduced
in the machine learning in order to investigate their dependence and correlation.

Itis interesting because is a first look for studying if there is an initial dependency between variables.
In Figure 4.1 can be seen the colors of the legend used in the multivariables plots, where each color
represents a discrete value of TOM. It will be useful to identify dependency between all the predictor
variables used in the ML training to find which are the ones that affect more on the ML training and
which are redundant (if any).
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Figure 4.1: Code of colors used for the A320 TOM estimation figures
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(a) TOM A-320: Distance to TOC vs. Time to TOC (b) TOM A-320: Distance to TOD vs. Time to TOD

Figure 4.2: TOM A-320: Distance and Time dependence

Figure 4.2 presents the relation between time and distance during the aircraft climb, Top of Climb
(TOC) and the descent, Top of Descent (TOD). Figure 4.2(a) shows an increment of TOM implies
a longer climb, because both time and distance to the TOC increase due to the fact that the aircraft
weights more and the available rate of climb is lower. The same happens in Figure 4.2(b), higher
values of TOM implies larger and longer descends. Also, the Cl is a delimiter factor during the
climb, and the effects of Cl during the TOC and TOD will be explained in following section 4.3.1.
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Original dataset: Table Original dataset: Table
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Figure 4.3: TOM A320: Distance and Altitude dependence

Figure 4.3(a) shows the relation between the distance of the climb phase and the altitude of the
first flight level. Similarly, Figure 4.3(b) shows the relation betweenn the distance of the descent
phase and the altitude of the second cruise altitude. In the first one, Figure 4.3(a), can be seen
that the lowest FL (FL190 to FL290) are reached only for the lower values of TOM. That is because
sometimes, for short routes, TOM is limited because of other characteristic weights. An example
could be found for short routes. In short flights, the aircraft will not burn much fuel. As all the aircraft
have a Maximum Landing Weight (MLW) defined, this weight plus the on-board Trip Fuel (TF) will
delimit the maximum TOM available for the flight beeing the MLW and TOM close values.

Also, aircraft always try to achieve its optimal cruise altitude as fast as possible, which is typical
very close to it maximum altitude (or ceiling) for the corresponding mass. For high values of TOM
and short routes, to reach higher altitudes implies a reduction on cruise time, and cruise represents
the design phase for airplanes.

The higher values of TOM are not reaching the higher values of FL, that is because lift has to be
equal to the weight of the plane to allow to maintain a constant altitude. In higher altitudes, the
density of air is lower and it implies a reduction of lift. As soon as the aircraft losses mass due
to fuel burn, it permits to climb to the next FL. Another reason is that for higher values of TOM,
lower is the Rate of Climb (ROC) available. The ATC imposes a minimum ROC, that does not allow
reaching the highest FL and implies resting in lower FL.

On the other hand, in Figure 4.3(b), is represented the altitude of the second climb versus the TOD.
The lowest values of TOM displays altitude 0, that is because a second cruise is not performed.
But the airplanes with highest values of TOM that are expected to perform longer routes and realize
a second climb. This is because there is a reduction on weight due to fuel burned during the first
cruise and as the mass of the aircraft decreases, the optimal altitude increases.

As has been told, the number of cruises performed depends on the distance range values and their
range is related with TOM. As larger is range, bigger has to be the value of TOM, because the
quantity of fuel to perform the flight has to supply enough power during all the flight.
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Figure 4.4: TOM A320: Time and Distance in cruise dependence

In Figure 4.4, is presented the time versus distance in each cruise. In a first look, it can be seen
that in first cruise, Figure 4.4(a), all the values of TOM are represented, but in the following ones
Figures 4.4(b), 4.4(c) and 4.4(d) only the highest values of TOM are represented, and the other
ones values are 0, that means that this values are not able to perform other cruises. Another thing
that can be seen is that for big values of TOM, the duration and distance in each cruise is lower
than other values. The main reason for the distance and time reduction is because these values
allow to reach another cruise and is not necessary to stay more time in the lowest FL. The values
of the top right in each figure means that has been a long cruise and probably the last one. In that
situation, if the pilot try to perform a climb to the following FL it will not be optimal, because it will
spend more fuel climbing than resting in the actual FL.

4.2.2. Hold-out validation

Matlab offers an option in each training to show the accuracy of each method. To represent the
accuracy for any value of the response required (in this case the value of TOM) there is a graphic
called Confusion Matrix.

To obtain this confusion matrix at the first step of the training, when the table is defined containing
all the data of the trajectories, a percentage of data is destined to validate the algorithm. In this case
a 10% of the overall data will be used to do a hold-out validation of the model. Once the algorithm
is trained, the confusion Matrix can be generated. There are two representations: in percentage of
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the overall data or in number of trials. The representation in number of trials can be seen in Figure
4.5.

A brief explanation of the following table of hold-out validation multiplot will help to understand the
information which it provides.

First, numbers in each square of the table corresponds to the relation between the results of Cl
predictions done (or estimations) respect the true class value of Cl. In green are presented the
well predicted values, which always corresponds to the diagonal of the table. Error estimations are
presented in red and are all the other table squares.

If all the results were over the diagonal, the total accuracy of the model will correspond to 100%,
and no error will be presented. As more errors are added, accuracy drops off. With this table can
also be studied the precision of the method, which can be extracted if a estimation result is far from
their true class value. In this way, the squares far from the diagonal of the table will imply a bad
precision of the model.

Figure 4.5 shows the best results for the TOM estimation using the A320 model. The one that has
shown better results is Figure 4.5(a), which for big values of TOM presents a good accuracy but
not for lower ones. The worst case is for TOM equal to 45.000 kg that only has a percentage of
hits of 21% from the data trial. The same occurs with the other methods, but the other ones have a
worst global result. Globally, the lower values of TOM present worst accuracy results because the
high huge of the dispersion is compressed between the initial values of TOM (47.000 - 61.000 kg).
The higher values of TOM can be predicted with better accuracy and does not present as much
dispersion as lower values.
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(a) Ensemble Bagged tree (22 variables) (b) Ensemble Bagged tree (23 variables)
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(c) Fine Gaussian SVM (22 variables) (d) Fine Gaussian SVM (23 variables)
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Figure 4.5: TOM A320 methods

4.3. Cost Index estimation

As in takeoff mass estimation, all machine learning methods in Matlab toolbox have been tested.
In first place, it is computed Cl without taking into account the TOM value, so the program uses 22
variables as parameters to determine the estimation of the Cl value. After that, the same compu-
tation is done but adding TOM as a variable. In this case, TOM value will be an additional predictor
variable, so the number of predictor variables will be increased to 23. A complete table with all
method accuracies can be seen in the Appendix D, Figure D.2.

e CASE 1: Cl estimation without the TOM value (22 prediction variables).

e CASE 2: Cl estimation knowing the TOM value (23 prediction variables).

Some methods present very low accuracy results for Cl prediction. This ones will not be taken into
account and the study will focus on the three methods that present the best accuracy.
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The selection of the best methods will permit to optimize their configuration parameters to be ad-
justed to our model as has been explained in TOM section. The algorithms chosen are:

e Bagged decision tree: Presents an initial accuracy of 76,7% and 77,1% for cases 1 and 2,
respectively. Their speed of training is quite fast and the model is able to estimate Cl in a
pair of minutes.

e Quadratic SVM: Uses Support Vector Machines modeled to a Quadratic Kernel function.
It has the most accurate response of all possible algorithms with the initial parameter com-
putations with 77,4% for 23 variables. For 22 prediction variables, Quadratic SVM presents
an accuracy of 75,4%. In terms of time computation, it is the model which takes longer to
estimate Cl values.

e Medium Gaussian SVM: Also uses Support Vector Machines but approximated to a Medium
Gaussian function. It achieve the lower accuracy of both 3, but the time computation for the
algorithm is also fast and takes some minutes to estimate Cl values.

4.3.1. Dependencies of the variables

As has been done in TOM section, multivariables plot will be used to represent the different predic-
tor variables of the training data set and infer dependencies and redundancies.

Looking for the dependence of the data variables when computing Cl, it has been found that dis-
tance and time influences Cl estimation.

For Figures shown in this Section, it has been used the colors legend shown below, Figure 4.6.
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Figure 4.6: Code of colors used for the A320 CI estimation figures

In the following graphs is shown the relation between distance and time when aircraft reach TOC
or TOD. Figure 4.7(a) shows that during the climb of an aircraft, the distance to reach the TOC for a
fixed amount of time increases with the cost Index. This happens is because Cl influences the climb
gradient to initial altitude cruise. For lower values of Cl, aircraft climbing gradient is the steppest
possible because the aircraft aims at reaching the most fuel-efficient altitude as quick as possible,
imposing to be the minimum horizontal distance flown by the aircraft. While CI value increases,
climbing gradient dwindle and distance is increased gradually with CI value.

In the second graph, Figure 4.7(b), appears a relation between distance and time of descent to
reach the TOD variables. For the same reason as before, Cl highly influences the gradient of de-
scent from the last altitude cruise. For lower values of Cl, the descent gradient corresponds to the
minimum angle of descent. Given a determine time of TOD, this factor implies to fly the maximum
horizontal distance possible. So, as Cl value increases, the descent slope becomes more steep
making the distance progressively decrease.
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Figure 4.7: Cl A320: Distance and Time dependence

The climb to TOC slope is one of the effects of the Cl value. In Figure 4.8, can be seen this effect,
where for lower values of Cl the slope is steeper than for the higher ones, which pretends to arrive
to TOC in less time than before. While for values from 0 to 50, the slope is clearly separable, but
from values of Cl equal to 60 or more, the slope does not present relevant changes on the slope.
That will imply that the prediction of Cl over 60 will not be as accurate as for the lower values of ClI.
In the following plot is represented the distance TOC versus the first cruise altitude in FL. All the
samples have been taken for the same value of TOM of 65.000 kg and the first FL of 37.000 ft.
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Figure 4.8: Climb performance, TOW=65.000 kg



38 Cost index (CI) and take-off mass (TOM) estimation using machine learning algorithms

Another parameter which affects Cl estimation is Mach Number. The following plots present the
dependence on Mach Number in cruise respect FL and horizontal distance to TOC. Figure 4.9(a)
shows the relationship between mach number and cruise altitude for different Cost Index. One
important parameter to remember is that time cost appears in the numerator of the Cl ratio. Con-
sidering a fixed value for cruise altitude, for low values of Cl, time cost relevance will be almost null.
This fact will imply Mach Number at cruise to take low values too. The case when Cl increases,
time cost gains importance, so Mach Number needs to increase to higher values.
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(a) Cl A320: Mach Cruise vs. FL (b) Cl A320: Mach Cruise vs. Distance to TOC

Figure 4.9: Cl A320: Mach Cruise dependence

In Figure 4.9(b), for the same reasons as before, Mach Number in cruise is directly related to time
cost operation. For a given value of distance to TOC, low values of Cl will imply lower Mach Number
values. This is because when time cost are low, time influence almost disappears so Mach Number
could decrease to values such us 0,5 or 0,6. Once time gains importance, Mach Number has to be
raised until it reaches the maximum operating Mach Number.

To show the relationship between the Cost Index and the cruise Mach, values are represented in
a box-and-whisker plot which permits to show results in a interquartile range (abbreviated IQR).
The IQR tells how spread out the middle values are. It can also be used to tell when some of the
other values are too far from the central value. Whickers are used for values does not enter to the
quartiles defined by IQR but are not too far away points. These points further than whickers are
called outliers, because they lie outside the range in which values are expect to be.

On each box, the central mark indicates the median 2 Mach velocity, and the bottom and top edges
of the box indicate the 25th and 75th percentiles, respectively. The default value for whiskers corre-
sponds to approximately the 99.3 percent coverage if the data are normally distributed. As Figure
4.10 shows, the plotted whisker is extended to the adjacent values depending on the IQR ampli-
tude, which is the most extreme data value that is not an outlier. Whiskers are always symmetric
respect the IQR box, except for the cases where values extend to the limits of the study or rather
there is no value on the whisker zone. Further points or outliers are plotted individually using the
'+’ symbol.

3Median value: is the value separating the higher half of a data sample from the lower half.
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Figure 4.10: Box-and-whisker model

Figure 4.11 shows the relationship between the Cost index and the cruise Mach. For big Cl values,
the number of Mach is increased, that shows the CI effects on the flight velocity, and the prioritiza-
tion of time against fuel consumption. Whiskers permit to say that as Cl values increase, dispersion
on Mach velocities decrease. The deviation of the median value, can be consequence of the wind,
ISA and range, because the only filtered applied to obtain this boxplot has been the value of TOW
equal to 65.000 kg. Also, Cl values from 50 and up some some Mach values are equal to MMO
and finally for Cl 100 there is no IQR because all the values of Mach are MMO, that means that the

airplane is flying a maximum velocity.
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Figure 4.11: Mach dependency for Cl, TOW=65.000 kg

4.3.2. Hold-out validation

As it has been seen, in the section before, accuracy changes depending on the machine learn-
ing algorithm used to predict. Now, in this hold-out validation multiplot, is shown the number of
predicted Cl values for each model. For the hold-out validation has been taken the 3 model predic-
tors with the higher accuracy. This models will be studied in terms of accuracy, precision or even

tendencies on Cl estimations.
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The hold-out validation Figure for the Cl is analogous to that of the TOM. The diagonal is green
when the value of the prediction is the same as the true value, which means that the algorithm has
to predicted right. The other squares in red mean that the prediction value does not correspond to
the true value.

The way to present the hold-out validation table is using the number of estimations for each class
prediction, following the method used in TOM. Hold-out validation multiplot presents the three best
models for 22 and 23 prediction variables:
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(c) Quadratic SVM (22 variables) (d) Quadratic SVM (23 variables)
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Figure 4.12: Cl A320 methods

In this case, from the graphs and accuracy results, can be extracted that with 23 prediction variables
the model is able to estimate almost the same as 22 prediction variables. It can be observed that
adding the TOM as predictor variable does not improve the estimation significantly. Even so, some
Cl estimated errors from 22 prediction variables could be slightly reduced.

Another point to comment is how Cl estimation accuracy depend on the Cl value predicted. While
for low values of Cl, the estimation accuracy is all over 90%, when CI passes over 50 the model
is not able to estimate in such precision. For high values of Cl, accuracy drops off significantly
because for higher values of CI Mach Number trends to MMO and all the trajectories became very
similar regardless of the Cl value.

Paying attention to the best algorithms used, bagged decision tree seems the most precise model
for Cl estimation. Estimations for low Cl never deviates more than 10% from the true class value,
even thought for high values precision is not so good and range error is increased. For both SVM
models, Quadratic and Medium Gaussian, present very low precision for high Cl values.

In conclusion, for all algorithms, accuracy is higher for lower values of Cl. Also, precision is good
because estimation errors are all near the diagonal of the table. When Cl value increases, precision
and accuracy decreases notably.

4.4. Method Selection

After training the data set with different ML methods, is time to decide if the Cl and TOM estimations
are better predicted separately or step by step, and which is the best method . With ML Toolbox
of Matlab, the program is only able to calculate a prediction for each execution of the algorithm. It
is not possible to predict two responses at the same time, that means, it can not be predicted the
value of Cl and TOM at the same time. Thus, two separate runs would be required to estimate the
Cl and TOM values of a certain trajectory.

Now, the different prediction combinations will be studied to find the best total accuracy for both
estimations. For the study, it will only be considered the machine learning methods with best
accuracy values.
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The obtained accuracy results for both Cl and TOM predictions with 22 and 23 variables are the
followings:

Cl TOM
22 variables | 76,7 % | 77,5 %
23 variables | 77,4 % | 77,5 %

Table 4.1: Initial accuracies for A320

Table 4.1, shows the results of Cl and TOM estimations with 22 prediction variables are very close to
the results for 23 variables. All this algorithms are tested with the default configuration parameters of
each model, but ML Toolbox allow an advanced option where initial parameters could be modified.
This will permit to improve the model accuracy and get better response estimations.

One possible method is to compute the accuracy for Cl and TOM individually. Only taking the
accuracy of the 22 prediction variables method, the accuracy of each variable will be executed in
an independent way. In this case, no error will be accumulated and the accuracy of the estimation
will be directly the same as computed with 22 variables.

Another issue to be considered is whether Cl and TOM estimations are dependent or not. If we
start from an initial scenario where both Cl and TOM are not known, estimations for 23 variables will
imply a previous estimation of the other variable. This previous estimation will introduce a certain
accuracy error which will be accumulated to the actual estimation error of the remaining variable.
So, both results for 23 prediction variables will accumulate the accuracy error from the previous
estimation.

Finally, this study is based on an iterative method. As the best accuracy results are obtained from
23 prediction variables, it will be interesting to consider a method that implies both variables simul-
taneously without the accumulative error. This method tries to minimize the error by consecutive
loops, where the values of Cl and TOM are computed iteratively until results converge to the previ-
ous step.

In this method, the first interaction computes the TOM with 23 variables of input, but the variable
corresponding to Cl is empty because it is unknown. Then, knowing the TOM predicted value, the
Cl is computed. The following steps consists on the same process until the prediction of the last
step coincides with the previous one.

In the case of the A320 has been observed that the best algorithm for TOM estimation is Ensemble
Bagged Tree with an accuracy of 77,5%. For Cl estimation, also Ensemble Bagged Tree appears
as the best estimation algorithm with 77,4% of accuracy. This results have been obtained for initial
parameters but the advanced options permit the number of learners to be modified, which will
suppose an accuracy improvement.

4.4.1. Ensemble Bagged Tree Optimization

As it has been seen, the best way to compute Cl and TOM is by means of an iterative method.
Despite we obtain an accumulative error due to computing both predictions together, the iterative
method permits to minimize that error and adjust the predictions increasing the accuracy in each
loop.

Once chosen the method to be used during the study, the following step is to optimize the algorithm
parameters to acquire the maximum accuracy for the estimation. There are four parameters which
influence the accuracy for Ensemble Bagged Tree:
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e Maximum number of splits.

As the number of splits grows, the complexity of the tree increases with it. A correct number
of splits will permit the model to improve the accuracy, but you must be careful because
a wrong value of number of splits could cause overfitting. The main way to choose the
best tree depth for the trees in the ensemble is using trial and error method. To see their
influence on accuracy, all parameters have been defined as constant values while changing
the maximum number of splits value.

e Number of learners.

The predictive power is increased as the number of learners does. Accuracy improves at the
cost of increase in time processing, complexity and memory usage. To use many learners
can produce high accuracy, but can be time consuming to fit. Normally, to have a model with
a high predictive power is needed a few hundreds of learners.

e Learning rate.

The value is set by default at 0,1 and cannot be modified in Matlab toolbox. If you set
the learning rate to less than 1, the ensemble requires more learning iterations but often
achieves better accuracy.

e Subspace dimension.

For subspace ensembles, consists on specify the number of predictors to sample in each
learner. Matlab chooses a random subset of the predictors for each learner. The sub-
sets chosen by different learners are independent. For Bag Ensemble Method, subspace
dimensions is 1 and cannot be modified. If the user wants to set a determinate number of
subspace dimensions, the method will change from Bag to Subspace. This method is mainly
used when the study requires many predictors.

To find the best accuracy parameters, the ensemble bagged tree has been executed with differ-
ent values of maximum number of splits and number of learners. Learning rate and subspace
dimension have been defined as constant, with values of 0,1 and 1, respectively.

After using trial and error method, it is obtained the best accuracy model for ensemble bagged tree.
The study have been realized for both Cl and TOM with the iterative method, obtaining the following
results:

e TOM: To obtain the best accuracy model, the values of Maximum Number of Splits and
Number of Learners has been changed in many tests. Finally the best results have been ob-
tained with the combination of: 26 Maximum Number of Splits and 150 Number of Learners.
The prediction of TOM accuracy is 78,6%.

e CI: After trial and error method, it is obtained the best accuracy model with the combination
of: 14 Maximum Number of Splits and 150 Number of Learners. The prediction of TOM
accuracy is 78,2%.

4.5. Variables sensibility

After the optimization of the best Machine Learning method Ensemble Bagged Trees, as has been
seen in section above 4.4.1. is time to compute the variables sensibility. In this case, it will be com-
puted by training the model with the optimal parameters but deleting some of the inputs variables.
Then, the analysis of the increments or decrements of the accuracy obtained will determine the
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importance of each variable in the model. In Figure 4.13 is represented the block diagram of the
process, it is an interative process where in each step is deleted one variable as shown in Table
4.2.

Training Ensemble
Data Bagged

Accuracy
= Deleting Trees

parameters Training

=

Figure 4.13: Block diagram for variables sensibility

A320
Variables Cl TOM
Reference Accuracy | 78,2% | 78,6%
Velocity (Mach) -23,8% | -3,9%

Total Time & Distance | +2,0% | +3.7%
Time & Distance TOC | -7,5% | -14,9%
Time & Distance TOD | -1,0% | -6,1%
Cruise Altitudes -02% | -7,8%
TOM/CI -1,6% | -1,0%
Adding Wind & AISA | +2,4% | +2,7%

Table 4.2: Affectation in increment by deleting variables

For the study, it has been taken as the reference value the optimal accuracy obtained from the
optimization. As can bee seen in section 4.4. for the algorithm of computation of Cl is 78,2% and
for TOM is 78,6%. From here, the difference obtained from the reference accuracy and the new
training accuracy by deleting input variables, such us velocity, time, distance and Cl and TOM is
presented in the Table 4.2.

From Table 4.2 can be observed that from deleting total time and total distance, response predic-
tions improves its accuracy by 3%. The reason of that improvement is that total time and distance
are redundant data. In all the flight phases (climb for TOC,Cruises and descent for TOD) distances
and time are considered. If it is needed to obtain the totals, it could be computed by the sum of the
different phases, so that input variables give the information by duplicate. Also, distance and time
totals generate overfitting to the model. Many Cl and TOM could belong to different trajectories.
This fact would increment the complexity of the algorithm and would have a negative repercussion
on the final predictions. By deleting both variables, the accuracy of the training increases and the
errors on predictions would be reduced.

For the rest of the variables, their removal have a negative repercussion in the model accuracy, but
not with the same impact for Cl and TOM estimation. For example, velocity have a highest effect in
Cl, because in function of the Cl selected in FMS if time is minimized, velocity increases. But there
is no such relation between the weight of the aircraft and the velocity, because the reduction of the
accuracy is less than 4%. On the other hand, the variables related with trajectory performance like
altitudes, and distance (TOC and TOD) have more affectation in TOM, because the aircraft weight
affects in flight performance, reducing the cruise altitudes available or hindering the climb.

Additionally, it has been interesting to consider wind and ISA deviation. The meteorological con-
ditions have a relevant impact on trajectory path. For a given value of distance the trip time could
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vary depending on the wind and ISA affectation . Wind and AISA are parameters which has to be
obtained depending from a weather observation. This data has been considered for the trajecto-
ries generation, but initially, there were not considered in the ML because from the real surveillance
application of DDR2 data, this information required for the input is not available.

The fact of adding wind and AISA also improve the model accuracy. Both variables contribute
with relevant information for the model and permits to adjust the algorithm and to be more precise.
Affectation of adding both prediction variables are even the same, an increment of 2,4% for Cl, and
2,7% for TOM.

Finally, after analysing the affectation of each variable, it is seen the best accuracy model is ob-
tained by deleting total time and distance and adding wind and A/SA. The former variables generate
overfitting and the algorithm has redundant information by duplicate and gets lost. The conclusion
is to eliminate total time and distance variables from the following studies, so accuracy improves
as seen in section 4.4.1. The addition of the later variables will depend on the application we are
working on. Depending on the application, if wind and AISA are known parameters, will be used
in the algorithm to predict Cl and TOM values. If the application does not contain that information,
the algorithm used will be the previous model explained, without taking this variables in algorithm
for the prediction.

A320
Variations on model variables Cl TOM
Deleting Total Time and Distance 80,2% | 82,3%
Adding Wind & AISA, without Total Time and Distance | 82,7% | 87,0%

Table 4.3: Accuracy models

From this models, accuracy is improved in the critical prediction values. For Cl, accuracy for high
values is increased and is able to predict with better reliability, while for TOM, prediction for lower
values are notably improved. The confusion matrices 4.14 show the accuracy for all the different
values of Cl and TOM.
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Figure 4.14: Variations on model variables

4.5.1. Study of the variables with noise

In real life, data have an implicit noise due to errors in measurements and calibration. As samples
will have some noise, a deep analysis must be done to know the noise affectation on the model
and the final prediction accuracy.

To see if the ML algorithm is robust and capable of accurately predict the Cl and TOM values, a
noise study on the different variables will be done. On the section 4.5. variables were eliminated
from the ML study to see their affectation on the prediction model. Now, all variables will be able
for the study, but their values will be perturbed with a random noise to see how noise degrades the
prediction accuracy. Matlab allows to define the probability distribution affected by the random mea-
sures. In this project, a normal distribution has been selected because the most typical example of
noise.

The noise sensitivity analysis will performed for each predictor variable independently, in order to
isolate their effects. In the Table 4.4, it has been selected the variables to be modified and their
possible range of variation due to noise on the samples. The data set used for the analysis is the
same as the input of ML training but adding a random value between the variation range for each
variable. To choose the noise variation range, it has been assumed to have the worst case possible,
with extreme noise on the samples.

To compute the final accuracy of the new data set, it has been used the prediction model from ML
algorithm found in Figure 4.14(c) and 4.14(d). While wind and AISA will be added to the study,
total time and distance of the flights will be removed and not taking into account in the analysis
because it permits to improve the accuracy of the model (82,7% for ClI prediction and 87,0% for
TOM prediction).
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Variables Minimum Maximum | Variation
Altitude [ft] h h-500ft h+500ft 1000ft
Mach Number M M*0.96 M*1.04 8%
Wind and ISA deviation w w-15kt w+15kt 30kt
[kt] and [AISA] AISA AISA-10 AISA+10 A20
Cruise time and distance | tcr t_cr-2.5min | t.cr+2.5min 5min
[min] and [Nm] d_cr d_cr-4Nm d_cr+4Nm 8Nm
TOC time and distance t_toc | t_toc-2.5min | t_toc+2.5min 5min
[min] and [Nm] d_toc | d_toc-4Nm d_toc+4Nm 8Nm
TOD time and distance ttod | t_tod-2.5min | t_tod+2.5min 5min
[min] and [Nm] d_tod | d_tod-4Nm | d_tod+4Nm 8Nm

Table 4.4: Noise variation on variables

Once the random noise is introduced in the data set, the program is executed to predict Cl and
TOM in an iterative way. If the noise was equal to 0, all prediction will coincide with the known value
of Cl and TOM. This is because the data set will be equal to the training input of the ML model and
accuracy will be 100%. When noise is introduced, sample values change from the input data set,
so the training model would not correspond to the new sample with noise.

The accuracy has been computed by the comparison of the prediction value and the class value of
the input data set. So, the final accuracy is assumed as the percentage of the number of hits on
the prediction respect the total number of predictions.

A320

Variables Ci TOM
Altitude 94,88% | 99,96%
Mach Number 39,16% | 82,93%
Wind and ISA deviation | 93,54% | 93,28%
Cruise time and distance | 93,29% | 99,33%
TOC time and distance | 85,52% | 80,60%
TOD time and distance | 80,50% | 93,12%

Table 4.5: Accuracy after noise affectation

From Table 4.5, can be seen that TOM predictions are more accurate than Cl predictions. For Cl,
the main variables affected by the noise are the Mach Number and TOC/TOD times and distances.
Clearly, the main parameter to predict Cl is the Mach Number, which with a minimum variation of
it, the accuracy of the prediction would dramatically decline. In this case, with a noise variation
of 8% on the Mach Number, accuracy would drop off until a 39,16%. Also, affectation of noise is
present in TOC/TOD times and distances. Both are two phases of flight were gives very relevant
information to compute the Cl value, and the accuracy would be 85,52% and 80,50%, respectively.
For the rest of variables, accuracy on the predictions remains over the 90% which is still a reliable
result.

Looking at the TOM predictions, there are only two variables which accuracy is below 90%. When
noise is added on the Mach Number, the affectation on TOM prediction also decrease to 82,93%.
But the most relevant noise affectation appears in TOC time and distance. A crucial phase of flight
to determine the point which determines the maximum TOC of the aircraft is the climb phase. When
noise is added to time and distance to reach the TOC, the accuracy of the prediction reduces to
80,60%.
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In this case, accuracy is not enough to determine if the noise effect on the predicted results deviate
more or less from the true value. To show the error committed, it have been computed the Mean
Absolute Error (MAE) and the Standard Deviation (SD). Table 4.6 shows that for Cl in Mach Number
noise, MAE corresponds to + 18,57 with a SD of 21,10. Cl accuracy present a low value of 39,16%,
and with the error study, can be computed that the deviation of Cl could change almost 37 units
from the true value. In the case of TOM the most affected variables are Mach Number and Wind
& ISA deviation. Mach Number presents a MAE equal to + 892,20 with a SD of 1.926,90, so the
error is about the order of 2.000kg. Wind & ISA deviation shows less error, with a MAE of 4+- 407,33
and a SD of 1.731,30.

Cl TOM
Variables MAE SD MAE SD
Altitude +0,66 | 3,14 +1,05 68,53
Mach Number +18,57 | 21,10 | 892,20 | 1.926,90

Wind & ISA deviation +0,66 | 3,14 | 407,33 | 1.731,30
Cruise time and distance | +0,87 | 3,78 | +15,42 | 203,49

TOC time and distance +1,93 | 6,17 | 576,55 | 1.449,70
TOD time and distance +2,08 | 7,36 | +183,19 | 773,06

Table 4.6: MAE & SD for noise analysis

To avoid errors due to noise, the data set samples must be accurate. Noise effect on the variable
values should be reduced as much as possible to obtain the best predictions as possible. So, as
less noise have the data samples, better predictions could be done with the ML algorithm. In the
case of Cl, Mach Number and TOC and TOD values must be reliable to obtain an accurate result.
For TOM predictions, noise does not affect as much as in Cl, but also errors on Mach Number and
TOC time and distance would misfit the data and generate false results. In some situations not
only noise will be the problem, it is possible that due to ATC orders or pilot actions could generate
deviations from the optimal vertical trajectory. This deviations could be assumed as noise because
is a variation respect the optimal vertical profile.

4.6. Model validation

Sometimes the model that shows the best accuracy by Matlab does not imply that is the best
solution because the algorithm has been designed for training data and could present divergence
between training and test data. For that reason, one validation activities have been carried out.
The algorithm trained with PEP data has been used to predict the Cl and TOM of other trajectories
generated with PEP but not included in the training data set.

4.6.1. Validation with PEP

A set of 1,536 trajectories has been generated with PEP for different ranges, Cl and TOM. These
trajectories will be introduced to the trained algorithm to predict their Cl and TOM. Once obtained
this predicted values, they will be compared to the true values to examine the accuracy.

To try to improve the algorithm predictions, the parameters of the predictions will be changed to
maximize the accuracy, because the initial accuracy do not imply that is the optimal one for test
data, as explained previously on section 3.9. As has been seen, the fact of realizing a training
with less data does not downturn the accuracy. Increasing the complexity of the model does not
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ensure an improvement of the accuracy. The complexity of the algorithm is related to the number
of branches of the complex tree and what can be the best result for training does not imply to be
the best prediction for test data.

First of all, a validation of the best algorithm obtained in previous sections is going to be analyzed.
This algorithm does not takes into account the wind and ISA deviation because the final objective of
this algorithm is the implementation on real cases where wind and ISA conditions are not available
in DDR2 platform.
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Figure 4.15: A320 validation with PEP data

Figure 4.15 shows that in the first one where the Cl is estimated, is verified that for lower values
of the CI the prediction is better than for the higher ones. The ideal case of 100% of accuracy
would be represented as a straight line of 45° of slope. Also, it is interesting to see that the mean
values tends to be near the straight line of maximum accuracy, so the results seems to hit the CI
predictions. On the other figure of TOM, is corroborated that the worst accuracy is obtained for the
lower values of TOM. In this case, the mean values of TOM predictions are not so close to the 45
slope line of the 100% of accuracy, so the predictions hits are not as good as CI. For this initial
test of validation, the percentage of hits for Cl prediction has been of 81,77% and the one for TOM
67,71%.

Once arrived at this stage, it is interesting to make a study of the overfit of the algorithm, because
it exists the possibility that our algorithm is optimized for training data but not for test data, as seen
in section 3.2.2. For this reason, using this test data of 1.536 trajectories and our algorithm, by
changing the complexity parameters will be obtained the optimization for data test. The parameters
that affects on the algorithm complexity for the Ensemble Bagged Trees are two, the number of
splits and the number of learners. By changing the value of them, as can be seen in Appendix E, it
can be performed different tests and get the percentage of hits for each algorithm.

Finally, we can conclude that the affectation of changing the complexity parameters does not con-
siderably change the number of hits per both predictors. As it is not so relevant, for further studies
it will only be considered the optimal algorithm found in training section. From the prediction test
results in Appendix E is shown that the accuracy from the training data (given by Matlab) is not
equal to the obtained in the validation process. While in Cl the hits are almost the same value as
the accuracy of training, that does not succeed with TOM. For this reason, it is necessary to add
a validation process where new data is tested to check the classification learner of Matlab results.
Another aspect of interest is that in Ensemble Bagged Trees, the changes on number of learner
and number of splits, have no several impact on the test data due to a variance of +1% for both Cl
and TOM predictions.
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4.7. Application with real surveillance data

The algorithms have been trained, optimized and validated as has been seen in the upwards sec-
tions. In this section real flight data is going to be used to compute the Cl and TOM of flights that
have flown in European Airspace, to realize this section the data required has been taken from
DDR2, that is an online platform of Eurocontrol.

4.7.1. Data extraction

DDR2 platform contains all the historical data of European flights but presents an option to filter the
data as can be seen in Figure 4.16.

From fo AIRAC v

Departure time between : and :

time at the runway

ADEP ADES

Route Peints and and

Target flights which have flown through those points (Points order is not important).

Filtered file queries are limited to 250.000 flights.

Aircraft Type

Callsign

Types | SO6 v |Models (& pq M3 Both

Figure 4.16: Filtering menu of DD2

In the filter can be selected the day of the study filling the boxes From... to..., and the period of
hours in the following ones (Departure time between: ... and: ...).

ADEP and ADES means the region where the plane departures and where arrives, respectively.
Can be selected a area (i.e. LFP = Paris area) or an airport (i.e.EGLL = London Heathrow), this is
useful to apply an study of a certain route.

Also, the study of a certain route can be performed with the box of Callsign, the callsign is the code
of a certain flight, this contains the ICAQ letters of the airline and 4 numbers to describe the route
(i.e. ABC1234, where ABC correspond to OACI code of the airline and 1234 the flight number).

The box with Route Points, is to filter by the airplanes that perform a flight that have passed thought
the selected waypoints. This section is not going to be used because all the studies only contem-
plates the origin and the destination.

The box of Aircraft type will be the most useful for this case study. With this filter can be filled with
A320 to demand the all flights that has been perform with Airbus-320 model.

Finally the last boxes, Type S06 M1 M3 Both, is to select the type of model trajectory. While M1
corresponds to the last-filed flight plan, M3 is the actual radar-tracked flight like has been explained
in 1.7. In this case we are going to use M3 files because are the actual trajectories which have been
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computed by the FMS on-board with the corresponding updates and regulations. Once has been
extracted the files to study this contains a list of segments of the flights. Each segments contains
data about position, times, callsign, aircraft model, and length of the segment.

An algorithm has been developed in Matlab to perform the following operation:

1. Classify all the lines of the files in function of the flight to which it belongs.

2. Order the data of each flight in function of the time, to have all the segments in temporary
order.

3. Group the segments in flight actions: Climb, cruise or descend. Also, the data that are wrong
has to be deleted, for example, a level-off*.

4. In each of the previous groups the relevant data has to be extracted with the format of Tabale
2.1,

This data do not present the velocity in Mach Number but in ground speed. In the algorithm trained
the Mach velocity of cruise is an input required, for that we are going to perform the following
calculation of the the Mach, with the following assumptions.

e The flight is perform with ISA Atmosphere.

e There is no wind, there is calm atmosphere.

4
VSnund

M
Where:
M = Mach Velocity

Ve Segment Length

4.2
Time (42)

[YRT
VSound = ’YV (43)

In equation 4.3: yis the adiabatic index, Y=1.4; R is the constant gas for dry air, R=8.314 [J/(K-mol)];
M is the molar weight of air, M=28.95-10-3 [kg/mol]; and T=Temperature(altitude) [K] applying ISA
Atmosphere equations 1.10.

The assumptions taken to estimate Mach Number could introduce errors in Cl and TOM predictions.
In the study of noise affectation, section 4.5.1., was found the importance of Mach Number. When
the Mach Number is affected by noise, the accuracy of the prediction drops off dramatically. In
this case, the assumptions of no ISA variation and a calm atmosphere with no wind, affects in the
results of the prediction as noise does. Under this circumstances, Cl and TOM predictions will be
affected, suffering a not quantified variation. Two possible improvements could be applied to avoid
this fact:

1. Using a data-based of the real atmosphere in the operating day, to know the real temperature
and wind conditions at each point of the trajectory. This data can be take from GRIB format-
ted files (e.g. those provided from NOAA, National Oceanic Atmospheric Administration, or
ECMWEF, European Centre for Medium-Range Weather Forecasts).

“Horizontal flight which can not be considered a cruise because its duration do not exceed 5 minutes
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2. Using ADS-B data instead of DDR2, so this data has been issued by the aircraft and contains
all flight performance and on-board parameters due to meteorological conditions.

With this previous assumptions, finally, all the boxes in the table can be filled. And the table required
for the input of the algorithm can be introduced in it to start the tests.

4.7.2. Analysis for real routes operated by airlines

Once the table is completed, the analysis will be compose by three studies, one for a low cost
airline, another one for a flag carrier and a third one for a one route operted by different airlines.
For each one of the airlines will be studied the flights performed for 5 different routes during a period
of 6 months. In the following figures is presented an example of a performed test flight.

This first test is focused on route Barcelona-El Prat airport and London Gatwick (LEBL-EGKK). The
data selected corresponds to the period from October 2016 to April 2017, with a total number of
472 flights for this route.

Figure 4.17: Horizontal profile of trajectories LEBL-EGKK

In Figure 4.17 can be seen the horizontal projection of all the trajectories, there is no much dis-
persion between them, and indicate that this company uses the same waypoints to perform this
route. There are a few exceptions that are deviated from the typical route probably to airspace
congestions, restrictions or weather issues.
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Figure 4.18: Vertical profile of trajectories LEBL-EGKK

In Figure 4.18 can be seen the vertical profile of the route, most flights have covered a range
between 650 to 725 Nm, that probably because the execution of different approach procedures,
holdings imposed by ATC or has been chosen different waypoints. Also, it is interesting to observe
the previously mentioned level-off, that little steps that have to be deleted from the data to obtain
the desired trajectory, without ATC affectation. In Figure 4.19 can be seen the representation of a
level-off, in blue is represented the desirable trajectory because allows to reach cruise altitude early
(FL350), and the orange trajectory has three level-off and implies a later arrival to TOC.

Figure 4.19: Example of level-off during climb

The flight data of the DDR2 platform presents all flights in form of a set of segments where contains
times, positions and different flight information. This data permits to make the vertical profile and
the route of the flights, but there no information about weather or wind. This means, the algorithms
which will be used for ML prediction could not use wind and ISA deviation. To predict Cl and TOM,
will be used the model showed in Figure 4.14(a) and Figure 4.14(b), where is deleted total time and
distance, with an accuracy of 80,2% and 82,3% for the Cl and TOM respectively.

To perform the prediction an iterative method will be applied, that is, the predictions of Cl and TOM
will be do it successively until the mean value of the Cl and TOM of iteration N-1 is the same of N.
Then the results will be plotted as can be seen in following sections.
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4.7.2.1. Airline A - Low cost

This first airline is a low cost airline, and the following routes will be studied:

Airline A: Low Cost
Departure | Arribal | Range [NM]
Route 1 LEBL EGKK 683
Route 2 LEBL EHAM 749
Route 3 LEBL LIRF 517
Route 4 LEBL EKCH 1.071
Route 5 LEBL GCLP 1.238

Table 4.7: Airline A

The data obtained for this 5 routes in the period of 6 months, will be tested with the algorithm of
prediction of Cl and TOM. Data is represented in a boxplot, separating the results for each different
route. The first three route have almost the same range between 500-750 NM while, the fourth and
the fifth increment the distance range up to 1.000-1.200 NM.
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Figure 4.20: Cost Index estimation Airline A.

For the CI values obtained in Figure 4.20, do not exceed the value of 20 in most of the routes,
oscillating with very low values of Cl. The maximum mean value of Cl is found in Route 3, probably
for some strategical reason. Also, what can be said is that this low cost airline realizes an strategy
of giving more importance to the fuel price than the trip time, that means lower values of Cl. In this
analysis can be seen that for some routes, like Route 3, the boxplot present the median (red line)
on the bottom of the box, that corresponds to the value on the middle of the whole data. Figure
4.21 is the scatter plot for Cl in case of Route 3. This plot shows that the great thickness of the
predictions are in Cl equal to 10, making that the whiskers grow to CI 0 and 30.



CHAPTER 4. RESULTS 55

100 [+

(o]

o

Q0 r

80 r

70

60 -

Q

50 -

Cost Index
o

4HF® 00 @ O® oo o oo o o o

30 EDOMOEEEEOIIICOCRINCID QoD CCIDODO@ @OEIDDC: O (RSO

20 G © O O@@OmOCDO @O0 ©  CHEDED OXID OO © @EI00 GIoOdmy

0 100 200 300 400 500 600 700 800
Numbers of flights

Figure 4.21: Cl scatter plot for Route 3

In the case of the TOM study, Figure 4.22, there a significant different between the first three routes
and the other two. As the distance range increase and the route is longer, the aircraft will need
more fuel to arrive to their destination. Due to an increment of fuel on-board, TOM value is also
increased. Route1, 2 and 3 present almost constant range values between 4.700kg and 6.100kg,
with a mean value over 5.300kg. In Route4, we can see the predicted results does not present
much dispersion. Almost all TOM prediction values are over 61.000-65.000kg. Finally, for Route5
shows more dispersion than Route4 but also have higher TOM values than the first three routes.
The augmentation on weight for the last two routes, increment of more than 7.000 kg, could be
occasioned by the added fuel. Aircraft will need to fly more distance than routes before, so some
fuel must be added to tanks.
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Figure 4.22: Takeoff Mass estimation Airline A.



56 Cost index (CI) and take-off mass (TOM) estimation using machine learning algorithms

4.7.2.2. Airline B - Flag carrier

The second study is focused in a flag carrier and we are going to analyzed 5 routes. Those routes
are:

Airline B: Flag Carrier
Departure | Arribal | Range [NM]
Route 1 EGLL LEBL 651
Route 2 EGLL LOWW 754
Route 3 EGLL LPPT 884
Route 4 EGLL LKPR 611
Route 5 EGLL LGAV 1.362

Table 4.8: Airline B

As the study on Airline A, data has been obtained for 5 routes in the period of 6 months. Data will
be tested the ML algorithm and represent predictions of Cl and TOM in a boxplot. Now, the first
four routes present similar ranges between 611-884 NM while, the fifth has a range of 1.362 NM.

In the case of a flag carrier Cl estimation, the results are shown in Figure 4.23. It shows that the
Cl used by this flag carrier airline is almost constant. For the studied Routes1-4 of similar ranges,
Cl value moves between 30 and 40. For the longest route, the fifth one, the mean value of ClI
decrease to 26. While Cl prediction for short ranges are quite precise, values fluctuate between
30 and 40, the longest route present dispersion on their predictions. Cl prediction value is below
30, but is not far from the other predicted values. The reason of using higher values of Cl is
because the operator prioritizes time before fuel consumption. Flag-carrier airlines want to satisfy
their passengers to arrive the earlier as possible to their destination.

100 - + + + + -
|
90 - + + + + }
80r — + + }
1
I
70 - | + + + \
|
1
I
5 60r I + + + |
z | |
= 50r ! - - - |
[ I | I I
o
O 40+ L 1
30r
| | |
20 + : 1 1
I
10T \ + + +
I
0 — + + +
Route1 Route2 Route3 Route4 Route5

Figure 4.23: Cost Index estimation Airline B.

For TOM predictions, it can be clearly seen the influence of distance. For the lower distance range
routes, Route1 and 4, TOM has a high dispersion from lower values of TOM until 6.300kg. Both
routes cover over 600 NM and their mean value of TOM also coincides around 5.800kg. Route2
and 3, with similar distance range of 800 NM present TOM around 61.000kg. Finally, Route5 shows
higher TOM values than the other routes. Even the distance is notably higher than the previous
ones, the increment on TOM is not so evident. TOM acquires a mean value of 63.000kg, but reach
TOMSs over 71.000kg.
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Figure 4.24: Takeoff Mass estimation Airline B.

4.7.2.3. Study of the Route: Barcelona - Dusseldorf

In the following section, is presented a study of a route operated by different airlines. The route has
been executed from "Aeropuerto de Barcelona-El Prat” (LEBL) to "Dusseldorf International Airport”
(EEDL).

The route from LEBL to EEDL is flown everyday by different operators. In this case study, we have
only considered the routes operated by an A320. In this conditions, we have found three different
airlines which performed this regular flight. Data have been extracted by the DDR2 platform, from
the 1 April of 2016 to the 30 April 2017, obtaining a total number of flights of 1.327.

After analyzing each flight, the ML algorithm predict Cl and TOM values for each airline. To a better
understanding of the information obtained, we have made a boxplot for both Cl and TOM prediction,
in function of the different airlines. In the boxplot is presented Airline 1 and 3, which are low cost
operators, and Airline 2, which corresponds to a flag-carrier operator.

As Figure 4.25 shows, Airline 1 and 3 present very low values of Cl prediction. Both mean values
correspond to a Cl equal to 9, with a dispersion between 0 and 20. This Cl results present similari-
ties with the study of Airline A on section 4.7.2.1. As explained before, low-cost operators prioritizes
to save fuel cost although they have to spend more time flying. In the boxplot of predicted Cl is
perfectly both Airlines 1 and 3, uses low values of Cl which indicates a predominance of fuel saving.
When looking at the Airline 2, Cl values slightly increase. Now, Cl mean value is 21, with possible
results between 10 and 30 but with dispersion on higher CI predictions. Airline 2 is a flag-carrier
operator and in contradistinction to low-cost, these airlines do not care about burning much fuel if
their passengers could arrive earlier to their destination. They give more importance to time cost
than fuel, so ClI values accustom to be higher than the previous one. In the boxplot, the Cl value
appears 12 units above, indicating that the operator gives more importance to time cost than Airline
1 and 3.
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Figure 4.25: Cost Index estimation for route LEBL-EDDL.

For TOM prediction, Figure 4.26, all airlines present similar values. While Airline 1 and 3 show
mean values of TOM around 5.700kg, Airline 2 gently increase to 6.000kg. An hypothesis of this
raise could be originated by the increment of the on-board fuel. As the second operator presents a
higher Cl value, the importance of time cost increases. To arrive before to the destination, aircraft
velocity must be raised. This change on speed will imply an increment on fuel burn rate. An
increment on fuel rate will signify that the aircraft will need to load more fuel on the tank to perform
the flight. This increment on fuel could be reflected in the graph as the difference on TOM between
Airline 2 and the other two.
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Figure 4.26: Takeoff Mass estimation for route LEBL-EDDL.
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4.8. Other computation methods to obtain CI

Finally is interesting to perform a comparison between this method of computing Cl that is a Data
Based method and will be compared with a Model Based method, which estimats the cost index
analytically, based on aircraft performance data and a dynamics model.

Applying Machine Learning is a data base method, because it requires from an input data to be
trained and to develop the algorithm to make predictions without a model. Also, this method allows
the improvement by adding new data to be trained. On the other hand, Model Based is developed
by the application of models and once is developed not requires data to improve.

4.8.1. Model Based

Model Based method, is based on the Method for optimum economy cruise speed in an aircraft
[17], but instead of compute the Mach velocity, computes the Cl. Their fundamental is similar to
the operation of FMS, which receives many inputs, like the weight of the aircraft, the atmospheric
pressure and temperature, the wind speed and it is expected to receive the Cl value of the flight
to compute the optimal Mach. However, in this case the Mach is rather the cost index, and it is
supposed to be the optimal one.

The FMS works by reducing the variable costs, that can be defined as seen in equation 1.8. The
equation can be described as a function of mass, wind, Cl. To find the optimal for the equation
of total cost of the trip, it is derived from the Mach, and equated to zero, so the optimum mach is
obtained as equation 4.4.

0

a—AJ;[Mass,CI, Wind, AT| — Mopiimum(Mass,CI,Wind) (4.4)
The Model Based method presented, uses the same expression as FMS but finding the optimal
Cl, in function of the Mach Number. From equation above, Cl is obtained as a function of mass,
optimum mach, wind and temperature, because other data is an input for the calculus.

This method only requires data from two points of the cruise phase and computes the Cl as the
average of the Cl of boh points, while the Data Based method requires of the all trajectory. The
drawback of the model-based method is that it requires for the weight value of the airplane in the
point, and for example in a same FL of cruise the mass of the aircraft decreases in as fuel is burned.
On the other method, the data base, weight is not required, because Cl is computed at the same
time as TOM, with an iterative method.
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CONCLUSIONS

Cl and TOM are two parameters that notably affects on the aircraft trajectory and describes the
airlines operative strategy. For this reason, the trajectory prediction will never correspond exactly
to the real life operative because of the non-availability of these parameters.

In this project has been developed a new technique to estimate the Cl and TOM applying Ma-
chine Learning. From a FMS simulator called PEP from Airbus has been generated a database
of trajectories. With this database, Machine Learning creates a model based on the patterns for
Cl and TOM based on the trajectories. This pattern is embodied in an algorithm which allows the
estimation of Cl and TOM for a new performed trajectory.

The best way to face a problem of trajectory resolution is using Ensembled Bagged Trees model.
A bagged decision tree model consists of trees that are trained independently on data that is boot-
strapped from the input data. This algorithm has been selected not only because it has presented
the best accuracy results, rather it allow flexibility on their overfitting situations by changing the
configuration parameters involved in their complexity. Once selected the algorithm, a study of the
input parameters have to be done in order to improve the estimations. Improve the estimations not
only implies to know which are the main relevant variables, also the robustness of the algorithm in
front of the noise affectations.

In the case of ClI, the most relevant input variable is the Mach Number because it is the most visible
evidence given to the time-fuel cost relation. A slight variation of 8% on the Mach velocity, could
drop off the accuracy of the model in more than a 60%. The flight phases more affected by the ClI
chosen are the climb and the descent, particularly on the climb or descent slope to TOC or from
TOD, respectively. While Cl is strongly related with Mach velocity, TOM is more related with the
cruise altitudes (FL) or flight distances. Also TOC has an influence on TOM estimation because
weight limits the TOC altitude due to lift and rate of climb restrictions. TOM estimation presents
a higher robustness in front noise than CI. But when the algorithm validation is performed, it is
verified that original accuracy from TOM estimation falls due to an overfitting between the trained
and the test data.

The final goal of this algorithm is to be used for real application cases. The handicap of this study
is that the results will never be validated due to the privacy of Cl and TOM values imposed by
the airlines. What can be said about this study is that Cl value will be underestimated due to the
assumptions made to obtain the Mach Number. This Mach Velocity is obtained from ISA and a
calm atmosphere.In spite of the values of Cl and TOM would not correspond to the real ones, a
pattern strategy by the operators have been observed. The low cost airlines based its operations
on fuel saving which implies lower Cl, while flag-carriers prefer to minimize trip time, using higher
values of Cl. Also, for operations with higher ClI, has been found a increment of TOM because of
the increase on fuel flow.

This method could be characterized as a Data Based method. Nowadays, the estimation of ClI
and TOM is gaining relevance because allows better trajectory prediction, useful in programs in
development such us SESAR and NextGEN. That interest has made that new methods emerged
like Model Based, but unlike Data Based requires aircraft weight as an input.
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APPENDIX A. CHARACTERISTICS WEIGHTS
FOR AIRBUS

Table A.1 shows the characteristics weights for Airbus aircraft models [18].

AIRCRAFTS | MTOW | MLW | MZFW | OEW | MFL | MPL |

A318-112 68000 | 57500 | 54500 | 40900 | 18800 | 13600
A319-114 70000 | 61000 | 57000 | 39000 | 18394 | 18000
A320-212 77000 | 64500 | 60500 | 39000 | 18730 | 21500
A321-111 83000 | 73500 | 69500 | 47000 | 24044 | 22500
A330-243 230000 | 180000 | 168000 | 124948 | 109555 | 43052
A330-342 212000 | 174000 | 164000 | 126000 | 77060 | 38000
A340-212 257000 | 181000 | 169000 | 126000 | 77060 | 38000
A340-313 257000 | 186000 | 174000 | 131000 | 108831 | 43000
A340-541 373200 | 243000 | 230000 | 182800 | 174400 | 47200
A340-642 380000 | 265000 | 251000 | 187000 | 153800 | 64000
A380-841 569000 | 391000 | 255000 | 282500 | 254781 | 83500

Table A.1: Characteristics weights for Airbus
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APPENDIX B. PYTHOON LOOPS FOR AIRBUS
AIRCRAFT MODELS

Table B.1 shows the computations for the inputs used to obtain the trajectories in the python code.

The number of loops is computed as:

Interactions = Z H

long

Property,ax — Propertymin

o AProperty
Long Routes Short Routes
Properties | Minimum | Maximum | Increment | Minimum | Maximum | Increment
MTOW 47000 77000 2000 43000 67000 2000
Cl 0 100 10 0 100 10
RANGE 400 3300 270 150 300 150
WIND -80 80 20 -80 80 20
ISA -20 20 10 -20 20 10
ALTITUDE | 26000 27000 1000 19000 20000 1000
Total iterations 111.100

Table B.1: Airbus A320-212
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APPENDIX C. INPUT AND OUTPUT MODEL
FROM PEP

This is an example of an Input followed by an Output:

Input file and databases file specifications:

Input File=  c:\users\icarus\desktop\aircrafts\a320-212\51000_0
BAero databas C:\Program Files\PEP\Data\A32021FM.BDC

Gene databas C:\Program Files\PEP\Data\G32021FM.BDC

Moto databas C:\Program Files\PEP\Data\M565A1FM.BDC

01.BLOCK : GENERAL INPUT
DATE =4MAY02

DT = 010 CG = 27.00 RCABDE = 350. FUELM =  18730.
WMIOW = 77000. WMLAN = 64500. WMOE = 39000. WMZF = 60500.
FACFU = 1.000 FACTR = 1.000 FACBUF = 1.300 FACCW = 1.000
FLHV = 18590.

02.BLOCK : CONTROL STATEMENTS

KDIM =3 KMIOUT = 1 KWGHT =1

KAC =2 KAI =0 KENG =0 KLKED =0

KACEF =1 KAICP =0 KGEAR = 0 KFTP =0

KMRTT = 0

03.BLOCK : TAKE OFF + INITIAL CLIMB

FTAKO = .0 DTAKO = .0 TTAKO =

ATAKO = .0 FTAXOF = 140.0 TTAXOF = 12.0

KTAKO =1

04.BLOCK : CLIMB

CASCL1 =  250.00 CASCL2 = 300.00 XMCL = .780 ACLIMS = 10000.
RCLIMB = 300.

05.BLOCK : CRUISE

VCRUI = .780 ASTEP1 = 2000. TIMECR = 5. DELTAV = .000
DSTEP1 = . DSTEP2 = . DSTEP3 =

KLORA = 0 KRAT =1 KSTEP = 6

ASTEP2 = 2000. ASTEP3 = 2000. ASTEP4 = 2000.

ASTEPS = 2000. ASTEP6 = 2000. .

DSTEP4 = . DSTEPS = . DSTEP6 =

06.BLOCK : DESCENT

CASDEL = 300.00 CASDE2 = 250.00 XMDE = .780 ADESCS = 10000.
KAB =0

09.BLOCK : APPROACH AND LANDING

FGOARO = . FMISAP =

TGOARO = . TMISAP =

ALAND = . FLAND = . DLAND = . TLAND =

KLAND =1 KIFR =1

10.BLOCK : RESERVES

KRESER = 1 KRESAL =1 KRESA2 =1 KRESE3 = 1

FACRES = 1.050 FACRAL = 1.000 FACRA2 = 1.050 FACRE3 = 1.030
FADRES = . FADRAL =

12.BLOCK : SPECIAL INPUTS

WINDDP = .00 WINDCR = 080 WINDLA = .00 WINFIX = .00
KCONTA = 0 WINCHG = .00

R1 = 2430 R2 = . DR =

NW =1

XWl = 051000 XW2 = 55556. XW3 = 55557. XwW4 = 55558,
NA =1

XAl = 26000 XA2 = 33334. XA3 = 33335. XA4 = 33336.
13.BLOCK : TEXT INPUT

LTEXT =A320 STANDARD FLIGHT PLANNING

LDP =XXXX LDS =YYYY LAL =2772%

17.BLOCK : FMS CONTROL STATEMENTS

KFMSCL = 1 KFMSCR = 1 KFMSDE = 1 KFMSHO = 1
CINDEX = 010 KDIMCX = 1

99----==> end of user input file

PROGRAM : FLIP25F2 23.01.06

AERO : A320-111/211/212 05/10/92
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ENGINE : A320-111/211/212 05/10/92
GENERAL : A320-111/-210 14/06/96
A320 DATABASE WITH ENGINE CFM56/5-A
1. PICTURE
A320 STANDARD FLIGHT PLANNING
FLIGHT PLANNING
FMS - CALCULATION (HONEYWELL)
FROM : XXXX TO TYYYY
AIRCRAFT : A320-111/211/212 ENGINE : CFM56/5-A DATE 4MAY02
AIR CONDITIONING : LOW ANTI ICING : OFF FUEL HEATING VALUE 18590 BTU/LB
TEMPERATURE : ISA +10 CG POSITION 0 27.0 % MAX CABIN RATE OF DESCENT : 350 FT/MIN
CRUISE ALTITUDE : 38000 FT TAKEOFF WEIGHT : 51000 KG OPERATING WEIGHT EMPTY 39000 KG
COST INDEX 10 (KG/MIN)
CLIMB-MODE : ECONOMIC CRUISE-MODE : ECONOMIC DESCENT-MODE : ECONOMIC
INSTALLED FACTORS : RESERVES 5.0 % (on fuel)
POINT OF FLIGHT : WEIGHT : FUEL : TIME : DISTANCE : FL : SPEEDS : WIND : OAT
: GRND AIR : : :
KG : KG MIN : NM e KT / M KT :CELSIUS:
RAMP WEIGHT 51140 : :
TAXI OUT 140 : 12 : 0 : 25.0 :
WEIGHT AT BRAKE RELEASE 51000 : : 0 :
TAKEOFF and INITIAL CLIMB 140 1 3 3 15 : 5
CLIMB 698 : 8 51 : 45 ¢ 250/297/.601
CLIMB 163 : 3 21 : 17 : 625
CLIMB 168 : 3 23 19 : .648
CLIMB 173 3 26 : 21 .672
CLIMB 182 : 4 30 : 24 .696
CLIMB 198 : 4 : 36 29 .719
CLIMB 117 3 27 21 : : 725 : :
CRUISE (7th flight level) 6662 : 229 : 2069 : 1623 : 380 : .725 ECONOMIC 117 @ -46.5 :
DESCENT to DESTINATION AIRPORT 160 : 20 131 : 111 : 15 : .709/250/250 3 :
IFR APPROACH and LANDING 108 : 6 : 13 : 13 : 0 : 0 : 25.0
TRIP FUEL 8769 : 284 2430 : 1926 :
ROUTE RESERVES ( 5.0% trip fuel) 438
WEIGHT AT DESTINATION AIRPORT 42231
BLOCK FUEL 9347 : 296 :
DISTANCE from DEPARTURE AIRPORT to DESTINATION AIRPORT 2430 / 1926 NM (GROUND / AIR)
RAMP WEIGHT 51140 KG TOTAL FUEL on BOARD 9347 KG TOTAL TIME 4/56 H/MIN
TAKEQOFF WEIGHT 51000 KG TRIP FUEL 8769 KG TRIP TIME 4/44 H/MIN
LANDING WEIGHT 42231 KG ROUTE RESERVES 438 KG
ZERO FUEL WEIGHT 41793 KG
PAYLOAD 2793 KG



APPENDIX D. MACHINE LEARNING TRAINING
RESULTS

In this Appendix are shown the results obtained by applying the available Machine Learning meth-
ods in Matlab. Figure D.1 represents the training made for TOM predictions, while the second one,
Figure D.2, represents the training for Cl predictions.
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Figure D.1: TOM Training for A-320
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Figure D.2: Cl Training for A-320
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APPENDIX E. OVERFITTING STUDY FOR PEP
DATA TEST
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Figure E.1: PEP validation changing number of splits
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Figure E.2: PEP validation changing number of learners

Percentage of hits
Number of splits | TOW Cl

5 68,49% | 81,51%
15 68.48% | 81,05%
20 67,77% | 81,05%
30 68,23% | 82,23%
35 68,69% | 82,02%
50 68,55% | 81,64%

Table E.1: Hits results for changing the number of splits

Percentage of hits
Number of learners | TOW Cl
50 57,71% | 81,38%
200 67,77% | 80,99%

Table E.2: Hits results for changing the number of learners
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