
Systems engineering
languages for modeling

and analyzing supervisory
control structures in

cyber-physical systems

Master’s Thesis

Antoni Planells Valencia

Department of Mechanical Engineering
Control Systems Technology

Supervisors:
Michel Reniers

Bram van der Sanden

Eindhoven, July 2016

Abstract

In today’s world, a new generation of high-tech cyber-physical systems are becoming an integral
part of our societies and their impact is only going to increase within the next years. Because
of their importance, the companies that develop these systems use proper systems engineering
modeling tools to help with the design and development of these types of systems and to accelerate
the whole development process.

In this thesis, 4 very popular modeling tools/languages are being tested and evaluated in terms of
their capabilities for model-based systems engineering. These tools are Simulink&Stateflow from
MATLAB, Modelica, MechatronicUML and SysML. In order to do that, a proper introduction of
the systems engineering process is presented to set the criteria in which the different tools/lan-
guages will be evaluated. To support the evaluation process, a case study is presented with the
CIF3 language that will be attempted with all the other languages/tools. Each modeling lan-
guage/tool has been evaluated individually at first and then together with the others in the end.
In addition to the first evaluation, a proper basic introduction of all the modeling concepts that
each tool uses for modeling cyber-physical systems is provided and the building of the case study
as well. After that, in the second evaluation, the languages are extensively compared against
each other in terms of all the criteria set previously to see exactly the scope of capabilities that
each tools has. As a result from the two evaluations, a definitive review for each language/tool is
presented addressing their overall scope of capabilities, main strong features, main uses, possible
ways of improving and future development.

iii

Preface

This thesis is the culmination of a journey that I started six years ago and that has been one
life-changing experience. I started my bachelor degree in Industrial Engineering at the School
of Industrial Engineering of Barcelona (ETSEIB) in 2010. I have always had curiosity towards
mathematics and all its possible applications in the industry and that is why I thought my best way
to pursue that would be to do that bachelor program. I will never regret making this decision.
During that time I devoted quite an interest in engineering fields like robotics and automatic
control. After the bachelor, in 2014, I continued my studies with a Master in Industrial Engineering
at the same university an I specialized in Robotics and Automatic Control. During this period of
time, I had the oportunity to end my Master’s Degree at the University of Technology of Eindhoven
(TUe), at the Mechanical Engineering Department, and to do my thesis there. This project was
done from the 1st of February till now in the Control Systems Technology research group and has
opened my eyes to some engineering fields that I was not aware of and that have caused a lot of
interest in me.

This thesis would not have been possible without the support, help and advice of many people.
First of all, I would like to thank my supervisors Michel Reniers and Bram van der Sanden for
giving me the opportunity to work on such an interesting project with them. Their strict guidance
combined with their spontaneous enthusiasm has helped a lot during this process and has kept
me always on the right track. This experience has been of great value for me, as an engineer and
as a person, and I will always be grateful for that. I would also like to thank all the people that I
have met during my stay here Eindhoven and that have treated me well making me feel welcome
like at home. This includes the research students from my lab and all the Erasmus students that
have had experiences with me during this months. I would also like to thank my friends from back
home that have kept in touch with me despite the distance and that have supported me during
this whole process. Finally, I would like to express my gratitude towards my parents, sister and
family for their unconditional support during this experience and my whole life. It means the
world to me.

After this thesis, when I am done with the Master, I will start a new chapter in my life and I am
really looking forward to it. I feel ready to face all the challenges that life will put in my way and
I am mentally ready to overcome them and never give up on my dreams. This years have made
me grow from the little boy I was when I started the university to the grown man that I am now.
I would not be here where I am without all the people that I have encountered so I say once again:
Thank you.

Antoni Planells Valencia

July 20, 2016

v

Contents

Contents vii

1 Introduction 1

1.1 Cyber-physical systems . 1

1.2 Systems engineering . 2

1.3 Model-based engineering . 4

1.3.1 Model-based systems engineering . 5

1.4 Cyber-physical systems development process . 5

1.5 MBSE and supervisory control . 6

1.6 xCPS platform . 6

1.7 Objectives and outline . 9

1.8 Methodology for comparing and evaluating modeling languages 10

2 Introduction to Model-Based Systems Engineering and Discrete-Event Systems 13

2.1 Fundamentals of MBSE with supervisory control synthesis 14

2.2 Behavioural models in MBSE . 15

2.3 Control strategies . 16

2.4 Models for supervisory Control . 17

3 Case study: Pick&Place Station of the xCPS platform 19

3.1 CIF3 . 20

3.2 Modeling the uncontrolled system . 20

3.2.1 Uncontrolled Hybrid plant . 20

3.2.2 Requirements . 24

3.2.3 Discrete-event plant . 26

3.3 Developing the controlled system . 27

3.3.1 Synthesis process and supervisory controller development 27

3.3.2 Simulation . 28

4 Stateflow & Simulink 29

4.1 Basic modeling concepts . 30

4.1.1 Simulink . 30

4.1.2 Stateflow . 32

4.2 MBSE capabilities . 36

4.2.1 Specification phase . 36

4.2.2 Supervisor development phase . 37

4.2.3 Validation phase . 38

4.2.4 Implementation phase . 39

4.3 Case study . 39

vii

CONTENTS

5 MechatronicUML 43
5.1 Basic modeling concepts . 43

5.1.1 Component Model . 43
5.1.2 Real-Time Statecharts . 45

5.2 MBSE capabilities . 49
5.2.1 Specification phase . 49
5.2.2 Supervisor development phase . 50
5.2.3 Validation phase . 51
5.2.4 Implementation phase . 52

5.3 Case study . 53

6 Modelica 55
6.1 Basic modeling concepts . 56

6.1.1 State Machines . 57
6.2 MBSE capabilities . 59

6.2.1 Specification phase . 59
6.2.2 Supervisor development phase . 61
6.2.3 Validation phase . 61
6.2.4 Implementation phase . 62

6.3 Case study . 62

7 SysML 65
7.1 Basic modeling concepts . 66

7.1.1 Structure . 66
7.1.2 Requirements . 69
7.1.3 Behaviour . 70
7.1.4 Parametrics . 75

7.2 MBSE capabilities . 76
7.2.1 Specification phase . 76
7.2.2 Supervisor development phase . 77
7.2.3 Validation phase . 78
7.2.4 Implementation phase . 78

7.3 Case study . 78

8 Comparison between modeling languages/tools 81
8.1 Overall comparison . 81
8.2 Comparison review . 85

8.2.1 Simulink&Stateflow review . 85
8.2.2 MechatronicUML review . 86
8.2.3 Modelica review . 86
8.2.4 SysML review . 87

9 Conclusions and Recommendations 89
9.1 Conclusions . 89
9.2 Recommendations and future work . 90

Bibliography 93

Appendix 97

A CIF3 Models 97
A.1 Plant Models of the System . 97
A.2 Models of the requirements . 98
A.3 Hybrid System Models . 99

viii

CONTENTS

B Stateflow Models 103

C Case study: Modelica Code 105

ix

Chapter 1

Introduction

1.1 Cyber-physical systems

In today’s world, computing and communication devices are becoming smaller and cheaper res-
ulting in embedded objects and structures that interact directly with the physical environment
and extend the humans capabilities. This phenomenon has resulted in a new generation of sys-
tems with multiple sensing and actuation units that allows them to gather, process, exchange and
use information in order to bridge the cyberworld of computation and communication with the
physical and biological world. These systems are known as Cyber-Physical Systems (CPS), see
[43].

The cyber-physical systems are systems that link the cyberspace with the physical world through
a network of interrelated elements such as sensors and actuators, robots and manipulators, and
computational engines. Embedded computers and networks are used to monitor and control
the physical processes, normally by using feedback loops where the physical processes affect the
computations and the other way around. In order to improve the scope of their capabilities, the
future technology developments in the area of CPS are mostly focused on the ability that we can
have to interact with the physical world through computation, communication and control trying
to expand their capabilities to the optimal limits. This generates new research challenges and
opportunities which include the design and development of next-generation airplanes and space
vehicles, hybrid gas-electric vehicles, fully autonomous urban driving and prostheses and other
medical devices that allow brain signals to control physical objects. Apart from these examples
of CPS you could also consider robotic systems, manufacturing systems and smart spaces like
common CPS that you find in today’s world.

Regarding CPS impact nowadays, as time goes by, cyber-physical systems are becoming an integral
part of modern societies even though the first ones appeared some decades ago. In the early 1970s,
for example, the automotive embedded systems did already combine a closed feedback-loop control
of the brake and the engine subsystems (physical parts of the CPS) with an embedded computer
system (cyber parts of the CPS). Since then, new functionalities, requirements and networking
have dramatically increased the scope, capabilities and complexities of any CPS. This has created
some urgent needs to bridge the gaps between separate CPS sub-disciplines such as computer
science, automatic control or mechanical engineering in order to establish CPS as an intellectual
discipline in its own right.

In terms of the design, cyber-physical systems are challenging [18] because:

• The vast network and information technology environment connected with physical elements
involves multiple domains such as controls, communication and logic.

• The interaction with the physical world varies widely based on time and situation.

1

CHAPTER 1. INTRODUCTION

Because of this, the usage of multi-domain models that capture such variability is critical to
successful CPS development. Figure 1.1 shows some of the different domains that any CPS has
and that have to be taken into account.

Fig. 2. How do we relate multi-domain models of a CPS?

III. ARCHITECTURAL VIEWS

A CPS is typically described and analysed using multi-
domain models, where each model focuses on a fixed set
of concerns about the underlying system. Figure 2 shows
four models of the STARMAC quadrotor that represent the
same system from the physical, control design, software, and
hardware domain perspectives.

In virtually all analysis tools, such models are constructed as
collections of interacting components or modules. Thus, each
model has a structure that can be viewed as an architecture
with syntax and semantics defined by the particular formalism
underlying the design of the tool. Our goal is to define
consistent relations between these models at some level of
abstraction.

The approach proposed here focuses specifically on archi-
tectural views which represent the architectures of system
models as abstractions and refinements of the underlying
shared BA. In this context, well-defined mappings between
a view and the BA can be used as the basis for identifying
and managing the dependencies among the various models
and to evaluate mutually constraining design choices. The BA
thus becomes the repository for retaining results from various
analyses and designs so that the interdependencies are explicit.

This gives us the ability to reason about relations between
models by studying their individual mappings to the BA of
the system.

Current tools do not provide insights into the relationships
between such heterogeneous models of a CPS. This represents
a problem for architectural modeling, since it is generally im-
possible to understand how design decisions or analyses in one
view impact those of another. From a structural perspective,
an architectural view supports the description of a derived
architectural model to abstract over details that are irrelevant
for a particular analysis. The following definition formalizes
the concepts of the BA and architectural views that we have
described informally thus far.

Definition 1. An architectural view V for a modeling formal-
ism M is a tuple < CV ,RM

V ,RV
BA > where:

• CV is the component-connector configuration of the view,
with the types, semantics, and constraints defined by the
modeling formalism of the view

• RM
V is a relation that associates elements in the model

with elements in CV
• RV

BA is a relation that associates elements in CV with
elements in the BA

Figure 3 shows the conceptual relationship between system

Figure 1.1: Multi-domain models of a CPS [7].

In the development of a CPS many entities (we can call stakeholders or contributors) are involved
and each one them has different interests in different parts of the system. This results in different
persons (stakeholders) assuming different roles regarding certain problems or questions that involve
multiple engineering disciplines. In the resolution of all the problems and questions that have to
be addressed and solved, modeling plays a key role in the development of the whole system.

During the design process many modeling languages and tools are used to reflect the heterogeneity
of the CPS. The use of models during the design process of a CPS is called model-based system
engineering [22]. The use of this practice leads to multiple models (of different aspects of the
system) captured in different modeling tools which might have unclear relations among them. For
instance, during the control design stage an engineer may use continuous-time models to model
the plant and the controllers just to later convert those models to discrete-time models so that
they can be used for code generation. On the other hand, software engineers might probably use
various Unified Modeling Language (UML) [46] diagrams to design different aspects of the software
part of the system which will be integrated later with the code generated controllers. Therefore, a
proper selection of modeling tools is key during the design stage and can bring a lot of benefits if
they can model several aspects of the systems and their respective communications and relations.

1.2 Systems engineering

Systems Engineering is an approach that combines many different engineering disciplines and
that has as main objective the development and realization of successful cyber-physical systems.
This approach integrates all the disciplines and specialty groups into a combined effort creating
a structured development process from concept to production to operation. It considers both the
technical and the business needs of all the customers/stakeholders with the goal of creating a
product that satisfies the user’s needs.

2

CHAPTER 1. INTRODUCTION

This engineering process, as it can be seen in [35], can be divided in the following seven steps that
can be coupled in the acronym SIMILAR. This steps are not exclusive and can be performed in a
parallel manner:

• State the problem. The process starts with a description of the top-level function that
the system has to perform in order to be accepted. This can be expressed in the form of a
mission statement or a description of the deficiencies in the system that must be improved.
This description should express the stakeholder’s requirements in functional or behavioural
terms (either as a text or as a model). Common stakeholders are the end users, maintainers,
suppliers, operators, owners manufacturers and other customers.

• Investigate Alternatives. During the design phase, alternative designs are created and
evaluated based on their performance, schedule, cost and risk figures of merit. Since almost
no design is likely to be the best in all the indicators, to choose the most convenient al-
ternatives multi-criteria decision-aiding techniques should be used in order to help with the
process. This analysis of alternatives is a continuous process that is redone as soon as more
data is available to study. Simultaneously, models are constructed and strictly evaluated so
that later on the prototypes are built. After that, several tests have to be run on the real
system to ensure the desired functionality.

• Model the system. For each of the alternative designs presented, models will be developed
and once the preferred alternative is chosen this will lead to an expanded model to help
manage the system through the entire life cycle. The types of models to be used include
block diagrams, object-oriented models, state machines, data-flow models, analytic equations
and mental models. Models should not only be constructed for the final product but also
for the process to produce it since systems engineering is responsible for creating a product
and its production process.

• Integrate. To integrate means to bring some entities together so that they work together
as a whole and that is what systems, businesses and people do in order to interact with
one another during the development process. Subsystems must be defined along natural
boundaries and to minimize the amount of information to be exchanged between them. For
these subsystems, some interfaces must be designed between them so that a system is built
and operated through efficient processes.

• Launch the system. In this phase, the preferred alternative previously chosen is designed
with a high degree of detail. This includes the parts that are built by the company or bought
and the integration and test of the different parts which leads to a certified final product.
This process of designing and producing the system is iterative and can suffer modifications
along the way since new knowledge is developed that may cause a re-consideration of the
steps in the development process.

• Assess performance. To assess the performance of the system in certain situations indic-
ators like figures of merit, technical performance measures and metrics can be used. The
process of measurement is key because if you cannot measure something you cannot control
it and if you cannot control it you cannot improve it. Figures of merit are usually used
to specify the requirements in the trade-off studies, the technical performance measures are
employed to reduce risk during the development process and metrics are used to manage the
company’s processes.

• Re-evaluate. This is probably the most important task among all of them since is one
of the most fundamental systems engineering tools. This should be a continuous process
with many parallel loops that consist in observing outputs and using this new information
to modify the system in a matter of its inputs, the product or the process.

The above description of the Systems Engineering process is just a proposed model which may not
coincide with all the cases. However, in a lot of cases the systems engineering process will share

3

CHAPTER 1. INTRODUCTION

a lot of similarities with this one. A summary of the systems engineering process, also referred to
as the V-model [38], can be seen in Figure 1.2.1.2. V-MODEL 9

Figure 1.1: V-model, from Clarus Concept of Operations, Publication No. FHWA-JPO-05-072,
Federal Highway Administration, 2005

System Design Systems design is the phase where system engineers analyze and understand
the business of the proposed system by studying the user requirements document. They figure
out possibilities and techniques by which the user requirements can be implemented. If any of the
requirements are not feasible, the user is informed of the issue. A resolution is found and the user
requirement document is edited accordingly.

The software specification document which serves as a blueprint for the development phase is
generated. This document contains the general system organization, menu structures, data struc-
tures etc. It may also hold example business scenarios, sample windows, reports for the better
understanding. Other technical documentation like entity diagrams, data dictionary will also be
produced in this phase. The documents for system testing are prepared in this phase.

Architecture Design The phase of the design of computer architecture and software archi-
tecture can also be referred to as high-level design. The baseline in selecting the architecture
is that it should realize all which typically consists of the list of modules, brief functionality of
each module, their interface relationships, dependencies, database tables, architecture diagrams,
technology details etc. The integration testing design is carried out in the particular phase.

Module Design The module design phase can also be referred to as low-level design. The
designed system is broken up into smaller units or modules and each of them is explained so that
the programmer can start coding directly. The low level design document or program specifications
will contain a detailed functional logic of the module. The unit test design is developed in this
stage.

1.2.2 Validation Phases

Unit Testing In computer programming, unit testing is a method by which individual units of
source code are tested to determine if they are fit for use. A unit is the smallest testable part of
an application. In procedural programming a unit may be an individual function or procedure.
Unit tests are created by programmers or occasionally by white box testers. The purpose is to

Figure 1.2: V-model [38].

1.3 Model-based engineering

Model-based engineering (MBE), also known as model-driven engineering (MDE) (since the terms
model-based and model-driven are commonly merged), is a software and systems development
methodology which focuses on creating and exploiting conceptual models of different disciplines
which are related to a specific problem.

This approach has as main purpose to increase the productivity by maximizing compatibility
between systems through the reuse of standardized models, simplifying the design process and
promoting the communication between teams working on the system to give better feedback and
evolve faster.

This MBE methodology is considered effective if any user of the application domain understands
properly the generated models and if these models can be used as the base for the later imple-
mentation of the system. These models are developed through extensive communication among
product managers, designers, developers and users of the application domain. As these models
approach completion, they enable the development of software and systems.

Some of the best known MBE initiatives are:

• the Object Management Group (OMG) initiative of the model-driven architecture (MDA),
which is a registered trademark of OMG [36].

• the Eclipse ecosystem of programming and modelling tools (Eclipse Modeling Framework)
[49].

Model-based engineering is an “umbrella” term that subsumes several sub-disciplines like model-
driven development (MDD), which focuses on software-intensive applications, and model-based
systems engineering (MBSE), which focuses on systems engineering applications among many
others.

4

CHAPTER 1. INTRODUCTION

1.3.1 Model-based systems engineering

Model-based systems engineering (MBSE) [22], also known as model-based systems development
(MBSD), is a methodology which focuses on the application of precise modeling principles and
practices to the activities in the systems engineering process throughout all the system develop-
ment life cycle (SDLC) [42]. These systems engineering activities include, but are not limited to,
requirements analysis and verification, functional analysis and allocations, performance analysis,
trade off studies, and system architecture specification [57].

MBSE enhances the ability to capture, analyze, share, and manage the information associated
with the complete specification of a process, resulting in the following benefits:

• Improved communications among all the development stakeholders (e.g. the customer, pro-
gram management, systems engineers, hardware and software developers, testers, and spe-
cialty engineering disciplines).

• The possibility to model a system from several different perspectives (and investigate/analyze
alternatives on them) allows to deal/manage the complexity that some high-tech CPS might
have.

• By providing evaluation possibilities for correctness, completeness and consistency (among
others), the developed systems have improved quality and less risk of failure.

• Enhanced knowledge capture and reuse of the information by capturing information in more
standardized ways and leveraging built in abstraction mechanisms inherent in model driven
approaches [44]. This in turn can result in reduced cycle time and lower maintenance costs
to modify the design.

1.4 Cyber-physical systems development process

The development of cyber-physical systems always requires a strong interaction between different
engineering disciplines like mechanics, electronics and control during the whole development pro-
cess. This is quite a complex process and since the functionality and performance of these systems
always depends on the interaction between the control software and the hardware resources this
is something that has to be taken a lot into account.

The development process, including the control system, starts with an extensive analysis of the
requirements from the different users/stakeholders which describe the desired functionality and
performance for the real system. From these requirements, conceptual specifications regarding
the hardware and control components are derived during the concept development phase. Using
these requirements as a start, the machine’s dynamics and the control strategy to control it are
defined with the help of models which are properly developed, simulated and analyzed. It is
very important to emphasize that in this stage the primary objective is that the stakeholders
requirements are fulfilled. These new specifications are used as guidelines for the next stages of
the development process and this implies that it is very important that the specifications are
correct. By correct, we mean that the hardware and the control system work according to their
corresponding specifications so that the system fulfills the mandatory requirements.

During the concept-development phase, a very powerful tool like simulation can be used to determ-
ine, define and validate all these specifications for the system. Since this tool can be used from the
early stages in the development process this leads to a reduction of concept-design errors thanks
to simulation-based validation. The physical-design phase is used to define with a high degree of
precision how the control system interacts with all the actuators and sensors from the hardware
system. This leads to the creation of several models with extensive information about the sensors

5

CHAPTER 1. INTRODUCTION

and actuators of the system, and the control system is adapted to guarantee the desired overall
performance of the system.

In the last implementation and testing phase, the control system is implemented in the real-time
platform. For desired functionality in real-time, the calculations are better performed within well-
defined time periods. Therefore, it is important to evaluate the impact of the calculations durations
on the communication behaviour. In case of any differences with respect to the behaviour seen
in simulation time, an extensive correctness analysis has to be done and this can lead to changes
in the previous design. In the end, the control system operates the real machine through an I/O
interface.

The first two phases in the development process give virtual system models which are reliable
representations of the systems components and the control system that is associated with them.
Ideally, in the implementation and testing phase, these virtual system models are replaced by the
real system and the control system is applied in a real-time environment without suffering more
changes in its design.

1.5 MBSE and supervisory control

The model-based systems engineering (MBSE) methodologies provide various advantages for su-
pervisory controller development. Concretely, formal and executable models are built and em-
ployed in the design phase for design-space exploration of the supervisors that control the system.
These models are a crucial part of the design process, since all subsequent steps such as the syn-
thesis, validation, verification, testing, and code generation all depend on them. Therefore, it is
very important that the models are easy to create, understand, and adapt.

Supervisory Control Theory (SCT) [8] typically looks at systems modeled as a discrete-event
system (DES) [12]. DESs are discrete-state, event-driven systems, whose state evolution depends
entirely on the occurrence of asynchronous discrete events. When designing the supervisory control
functions for DESs, model-based approaches can be used to understand the systems behavior. The
most commonly used approach in order to model the behaviour of the system is automata, also
known as Finite-State Machines (FSMs).

This approach is also used in the synthesis-based MBSE framework [3], where FSMs are extended
with variables resulting in extended finite automata (EFAs) [32]. In this framework, the first step
consists of the creation of discrete-event models of the uncontrolled system that is often referred
to as plant. Then, the requirements regarding the control of the system are modeled. These
requirement models might refer to variables and states (also of other automata) to enable concise
modeling. After modeling, Supervisory Control Theory can be applied to automatically synthesize
a control function, referred to as supervisor. The supervisor is used to restrict the behaviour of
the plant such that the system never violates any of the given requirements and constraints. The
main feature of the synthesized supervisor is not to restrict the behaviour of the plant more than
strictly necessary while guaranteeing that the control requirements are achieved. This is referred
to as minimally restrictive supervisor.

1.6 xCPS platform

The cyber-physical system that has been chosen to be studied (or at least part of it) in this thesis
is the xCPS platform [1]. The xCPS platform (Figure 1.3) is a small scale machine that mimics a
production line capable of assembling and disassembling objects. The cylindrical assembly pieces
of the xCPS (which can be seen in Figure 1.4) come in two complementary shapes (top work piece
and bottom work piece), and three colours (silver, black or red).

6

CHAPTER 1. INTRODUCTION

4WC00 Introduction

1 Introduction

Nowadays, high-tech systems are used for multiple societal problems. Due to the need of innovation,
these systems are growing in complexity which makes it more and more difficult to develop the
software which has to control it. Therefore, simulation-based approaches have been developed,
where not the real system is used to test the developed software but a simulation. This makes
it possible to decrease the chance of errors during the operation. An important part of this is
validating and evaluating the behavior of a system by making a graphical visualization of it that
graphically represents the state of the system during the simulation.

At the faculty of Electrical Engineering, such high-tech system is located in the Electronic Systems
laboratory, see Figure 1.1. It is a prototype flow shop workstation which contains a process line
and two Gantry robot arms. Its main function is to assemble and disassemble work pieces which
are shown in Figure 1.2. Currently there is no high level software present that can be used to
control this system. However, a higher level model which controls the components of the system
is desired. Due to the complexity of the system and the time to finish the project, not the whole
workstation will be considered. Looking at the workstation, a complex part is the process line,
which consists of an assembling, a disassembling and a transporting part. Within this bachelor
final project the assembling and the transporting part of the system will be covered.

Figure 1.1: The prototype flow shop workstation.

The goal of this project is to develop models for the uncontrolled assembling and transporting
part of the flow shop workstation to get control over it. Therefore, by analyzing the workstation,
models can be created using the Compositional Interchange Format 3 (CIF3) [1]. It is a modeling
language which can be used for activities as modeling, supervisory control synthesis, simulation
based visualization, real time testing, etc. Using this modeling language, a model should be created
which is able to control the actuators of the components, so they may guide the work pieces safely
through the workstation. In order to validate the developed model, a visualization has to be

TU/e 1

Figure 1.3: xCPS Platform [23].

High-tech Cyber-Physical Systems such as xCPS provide bachelor/master students and PhD re-
searchers with a realistic platform to perform measurements and analysis on, hence enabling
development of novel techniques that are closer and more applicable to real practice.

Figure 1: Top and side view of the xCPS platform.

For reasons of cost and effort students cannot easily get ac-
cess to perform experiments on industrial machines. As-
sumptions made by students, in the absence of measure-
ments, cannot be validated and may be unrealistic for prac-
tical industrial platforms. Systems such as xCPS provide
students and researchers with a realistic platform to perform
measurements and analysis on, thus enabling development
of novel techniques that are closer and more applicable to
practice.

2.1 Platform Overview
The system layout (Figure 3) illustrates the main compo-
nents of the platform. The platform consists of one storage
area, six conveyor belts, two indexing tables, two gantry
arms, and several actuators and sensors. The storage area
is a grid where 25 components can be stored.

There are six actuators called ‘stoppers’ in strategic po-
sitions along the assembly process that can obstruct the
movement of pieces, effectively creating buffers accumulat-
ing pieces on the conveyor belts. Switches make it possible
to change the route of individual objects. A turner can flip
pieces. The platform also contains two actuators for assem-
bly and disassembly of pieces. The pick & place actuator can
clamp a part and combine it with a complementary part. A
separator can disassemble two combined pieces. The xCPS
platform is equipped with 15 sensors that can detect the
presence of an object in the surrounding area. These sen-
sors cannot distinguish the type of an object or its colour. To
detect the type, colour, and location of an object, a camera
can be added to the set-up.

Because of the flexibility of this platform, there are many
possible use cases. One can for example simulate an assem-
bly process where individual parts arrive on the first con-
veyor belt, are subsequently assembled and then put back
into the storage. The gantry arms and storage area can
be used as a sorting machine, where the storage is sorted
according to selected criteria, but can also be used for two-
player games such as tic-tac-toe and four-in-a-row. Each of
these use cases carry different objectives and learning goals.

Figure 2: Assembly pieces in the xCPS.

2.2 Hardware Abstraction Layer
The mechanical hardware of the xCPS platform (i.e., belts,
arms, picker) is controlled by electrical motors, servos and
pneumatic actuators. These actuators are controlled by sig-
nals from several data acquisition and control input/output
cards inside a general-purpose computer platform.

The Hardware Abstraction Layer (HAL) for the xCPS plat-
form is currently a C-based Application Programming In-
terface (API) that consists of several functions which act
as device drivers for the actuators and sensors. Given this
abstraction, it is for example possible to control the gantry
arms by sending them commands to move to 3-dimensional
(x, y, z) locations. Such location commands are used in a
high-level controller to hide the required complex series of
signals beneath the HAL.

The HAL is essential to use the xCPS platform as an ed-
ucational platform. This abstraction layer allows students
to access and execute the physical system without detailed
knowledge of the underlying realization. When desired, stu-
dents can study the underlying layers and get hands-on ex-
perience in programming and controlling a real CPS.

2.3 Virtualised platform
Especially during the early development stages, it is often
too expensive or time-consuming to develop a physical pro-
totype of each component in a system. The API introduced
in Section 2.2 captures the higher-level behaviour of the me-
chanical hardware and can therefore be defined before a real
prototype has even been developed. Such API’s are used to
simulate the mechanical hardware (Simulator-in-the-Loop)
from early development stages, to facilitate rapid prototyp-
ing and early design of control algorithms and software ap-
plications. On the other hand, Hardware-in-the-Loop sim-
ulations enable testing of individual hardware components
in circumstances that are hard to reproduce in a real en-
vironment. Students can use such simulations and visual-
izations when the real xCPS platform itself is not available
or when it is not supporting certain functionality yet. Such
visualizations may show the physical environment, or fo-
cus on specific aspects of the activities, such as Gantt chart
visualizations that focus on the ordering of activities over
time. We have created a model in Parallel Object-Oriented
Specification Language (POOSL) [17] that can simulate an
environment (for instance non-deterministic or a predefined
sequence of events) to test the robustness of controllers or
software implementations for xCPS [12].

Figure 1.4: Assembly pieces created in the xCPS platform [1].

The system layout (Figure 1.5) illustrates the main components of the platform. The platform
consists of a storage area, six conveyor belts, two indexing tables, two gantry arms, and several
actuators and sensors. The storage area is a grid where up to 25 components can be stored.

7

CHAPTER 1. INTRODUCTION

Storage
area

Turner

Conveyor
belt 1

Conveyor
belt 2

C
on

ve
yo

r
be

lt
3

Conveyor
belt 4

Conveyor
belt 5

C
on

ve
yo

r
be

lt
6

12

1

3

21

4

11 5

109

48

3

67

6

12

15

14

2
5

13

Pick&Place

3

Indexing
table 2

Indexing
table 1

Separator

4

2

Gantry
arm 2

Gantry
arm 1

Camera

Optical sensor: Gantry arm track:Switch:Stopper:

Figure 3: xCPS system layout.

System

Resources

Actuators/Sensors

Physical World

Design Analysis Implementation
Abstraction Layers

Development Stages

Combinatorial
Optimization

Timing
Analysis

Supervisory Control

Automatic
Verification

Image-based Control HAL

Virtualized
Platform

Figure 4: Positioning of the research areas that are explored
using xCPS.

3. TEACHING AND RESEARCH OPPOR-
TUNITIES IN THE XCPS PLATFORM

3.1 Introduction
Exposing students and researchers to a platform such as the
xCPS, gives them an opportunity to grasp the complexity
of cps. The overall layering of the system, from software-
level to servo-level, creates an environment where multidis-
ciplinary and cross-layers work is explored. Moreover, the
different use cases for the xCPS allow for a wide and diverse
range of areas of expertise to be explored. Figure 4 depicts
the different development stages (Design, Analysis, Imple-
mentation), abstraction layers (System, Resources, Servo,
Physical) and research areas that are investigated. In the
next sections we address a number of these areas and explain
why and how they can be used in education and research.

3.2 Supervisory Control
Supervisory control coordinates and orchestrates actuation
at the system level to achieve system goals (objects get as-

sembled / disassembled). High-level control actions at su-
pervisory control level are translated to instructions sent to
lower level controllers. The supervisor has to ensure that
the system is free of deadlocks and eliminates any unsafe
behaviour, such as gantry arms colliding.

High-tech cps, such as the xCPS platform, typically con-
sist of many sensors and actuators. Due to the number of
components and the high level of interaction among them,
proper modelling of the system and requirements is far from
trivial. Requirements have to be at the right abstraction
level, and the model should allow for local changes when the
system configuration evolves. Due to the large state space,
there are challenges in the synthesis step to automatically
derive a supervisory controller that ensures satisfaction of
the requirements.

In a bachelor level project [6] a student has modelled part
of the platform to develop a supervisory controller following
the synthesis-based model-based systems engineering pro-
cess [19, 4]. In this process the uncontrolled system and
the control requirements are modelled independently and in
a modular way, using small, loosely coupled models based
on the formal model of extended finite automata (efas) [14,
20]. The CIF 3 tool set [19] has been used to carry out the
modelling.

A high-level, abstract, model has been used that partitions
the conveyor belts into segments to simplify the control of
the product flow. Each segment will be allowed to hold
at most one object. Examples of used models for a stopper
(Stopper1), a sensor (Sensor Optical1), and an area (Area1)
are given in Figure 5. Solid edges and dashed edges represent
controllable and uncontrollable events in these automata, re-
spectively. Controllable events are those which may be pre-
vented by the supervisory controller; uncontrollable events
may not be prevented by the supervisory controller.

Requirements are formulated with respect to correct func-
tioning of the actuators, and enforcing a correct product
flow. A complete set of requirements (and requirement mod-
els) is presented in [6]. An example of such a requirement is

Figure 1.5: xCPS system layout [1].

In this platform there are six actuators called “stoppers” in strategic positions along the assembly
process that can obstruct the movement of pieces, creating buffers accumulating pieces on the
respective conveyor belts as a result. Other actuators, called “switches”, allow to change the route
of individual objects and there is also a turner that can flip pieces if they are not well oriented.
The platform also contains two actuators for assembling and disassembling of pieces. Then there
is a pick&place actuator whose function is to clamp a part and combine it with a complementary
part (a top work piece with a bottom work piece). A separator can disassemble two combined
pieces. The xCPS platform is equipped with 15 sensors that can detect the presence of an object
in the surrounding area. These sensors cannot distinguish the type of an object or its colour and
in order to detect the type, colour, and location of an object, a camera is added to the set-up.

Since this is a very large system (in terms of sensors, actuators and components) to try to model
in order to test the different tools capabilities, first a reduction had to be made resulting in a
smaller system that still had all the features of a high-tech CPS. That narrowed our focus to the
assembling area (Figure 1.6) of the platform and specifically to the Pick&Place station.

4WC00 System identification

Figure 2.2: A top view of the assembling and transporting part of the flow shop workstation which
represents the physical layout of it.

2.2 Components

The system contains a lot of components as can be seen in Figure 2.2. In this section, a closer look
will be taken on these components. For all of them it will be discussed what kind of actuators they
contain and how these need to operate in order to meet the required behavior of the component
itself. The optical sensors will directly be discussed apart and the internal sensors will be described
below the components in which they are included.

Optical Sensors

There are eleven optical sensors present in the workstation, see the red boxes in Figure 2.1. The
function of these is to recognize if a work piece is at a certain position. When it is on or off, the
component which is related to it knows if it is allowed to take an action. Initially, they are all off
and when a product appears at the front of the optical sensor, it switches on. Sensor Optical3, 5
and 6 can be seen in Figure 2.3.

Figure 2.3: Stopper3 and Optical Sensors 3, 5 and 6.

TU/e 4

Figure 1.6: A top view of the assembling and transporting part of the flow shop workstation. [23]

The Pick&Place unit is composed by three actuators and five sensors and its main function is to
pick top work pieces and drop them on the bottom work pieces that arrive from the index table.
Some models of this station were created in [23] with the Compositional Interchange Format 3
(CIF3) tool set [50] and will be used later in this thesis.

8

CHAPTER 1. INTRODUCTION

1.7 Objectives and outline

The main objective for this thesis is to analyze and compare the capabilities and possibilities of
certain languages and tools for modeling and analyzing the supervisory control structures in the
systems engineering processes to develop cyber-physical systems. The tools that are going to be
compared will be the following:

• Simulink&Stateflow [52, 53]

• Modelica [25]

• SysML [24]

• MechatronicUML [4]

The idea is to select a set of concepts that are the most relevant in the different phases during
the development process of systems with supervisory control synthesis and to see if the different
modeling languages can implement them. These concepts will be based on the CIF3 toolset since
it is a very powerful tool in terms of modeling MBSE processes with supervisory control synthesis.
This will lead to a comparison where we will see what each tool is capable of modeling/analysing
and the process that they have to follow to do it. This way we will be able to determine which
tools are more powerful when trying to develop cyber-physical systems with supervisory control
structures. A more extensive explanation on the methodology that will be used in this thesis to
compare the different languages will be presented in the next section.

To support this comparison, a case study will be presented with the modeling process of the
Pick&Place station that has been previously introduced in Section 1.6 followed by some simulation
results. This modeling process will be tried with each tool with the objective of creating a model
with the same functionality (probably with different structure or semantics) as the one modeled
with CIF3. The simulations will also tried to be run and a comparison of the results that are
obtained will be done.

Therefore, this thesis will have the following structure:

• In Chapter 2, model-based systems engineering and discrete-event system will be introduced.
This will include the fundamentals of model-based systems engineering with supervisory
controller development, behavioural models, control strategy and the models for supervisory
control.

• In Chapter 3, the case study that has been chosen for this thesis will be explained. To do
that, first of all, we will introduce the modeling tool CIF3 that has been used to build the case
in the first place. The modeling process will be explained in detail from modeling the plants
and requirements till the simulation results with the supervisory controller. Eventually, an
evaluation of CIF3 capabilities in terms of model-based systems engineering with supervisory
control synthesis will be done just like it will be done with all the other tools.

• In Chapters 4, 5, 6 and 7, the modeling languages/tools Simulink&Stateflow, Mechatronic-
UML, Modelica and SysML will be introduced and evaluated in terms of their capabilities in
model-based design. All these chapters will have the same structure. First of all, the mod-
eling language/tool will be introduced. Next, an introduction of the important syntactic
components that the language uses for modeling will be provided. After that, the evaluation
of capabilities will be done with criteria that will be defined for all the tools and that is
based on a set of fundamental concepts. Finally, each chapter will end with the modeling
process of the case study that has been chosen for this thesis along with simulation results
and its analysis.

9

CHAPTER 1. INTRODUCTION

• After having evaluated the modeling tools separately, in Chapter 8 a comparison between all
the languages will be done to assess the capabilities of the modeling tools w.r.t. each other.
The comparison will be done with a table with all the concepts that are considered important
for model-based systems engineering with supervisory control development and with all the
languages to see which language provides which concepts. Qualitative explanations regarding
the concepts will also be added in order to be capable to compare the methods that are used
in each language and their real capabilities and limitations. After the comparison, a review
will be performed to sum up the capabilities of each tool and to highlight which are the
features that outperform the other languages/tools.

• In Chapter 9, the conclusions of the work done in this thesis will be presented. This chapter
will also include some recommendations and hopefully some guidelines for future work that
could be done in relation to this thesis.

1.8 Methodology for comparing and evaluating modeling
languages

As mentioned in the previous section, the main goal of this thesis is to do an extensive comparison
between different modeling languages to see their capabilities in development of cyber-physical
systems. This comparison will be performed based on a set of features/concepts that are the
most relevant in model-based systems engineering with supervisory control synthesis. This MBSE
process can be divided in 4 main phases and the concepts that will be tested in each phase are
the following:

• Specification phase

– Plant modeling

∗ Time-driven

· Continuous-time

· Discrete-time

∗ Event-driven

· Automata

· Mode switching

· Events

· Final states

· Updates of variables during time

· Discrete variables

· Synchronization on time

· Synchronization of events

· Shared variables

· Initialization

– Requirement modeling

• Supervisory development phase

– Manual development

– Synthesis algorithm

• Validation phase

– Simulation-based visualization

– Formal verification

10

CHAPTER 1. INTRODUCTION

• Implementation phase

– Code generation

11

Chapter 2

Introduction to Model-Based
Systems Engineering and
Discrete-Event Systems

This chapter is partly based on [3] and [35].

In today’s world, developing high-tech cyber-physical systems is very difficult because of certain
factors like the system’s complexity or resource limitations. To overcome these difficulties, the
use of models is increasing during the whole development process. In the design phase formal
and executable models are built and employed to assess functional correctness and performance of
each one of the components and also for the overall system. When a high degree of confidence in
the functional correctness of the design is required formal verification is usually used, in particular
model checking. In terms of assessing design performance, people usually use simulation directly
on the model.

Figure 2.1 shows the typical control architecture of a high-tech system. This architecture can be
divided in two subsystems, the hardware and the control system. The first one is located at the
lowest level and consists of the uncontrolled physical components. The control system is subdivided
into low-level and high-level control. The low-level control usually operates in the continuous, time-
driven domain and in this layer the controlled system is observed and actuated through sensors and
actuators, respectively. The control signal for the actuators is derived from high-level commands
and low-level control loops. On the other hand, the high-level control normally operates in discrete,
event-driven domain and in this layer the monitored sensor signals are processed and combining
them with the user inputs, the low-level components are coordinated by the high level-controller
which is referred to as supervisor or supervisory controller (S).

12 CHAPTER 2. INTRODUCTION TO MODEL-BASED SYSTEMS ENGINEERING

[45].

The use of models enables application of model-based techniques and tools for thorough system
analysis and systematic testing, helping to improve system overview for engineers. Additionally,
models of components and requirements enable synthesis of supervisory controllers essential for
correct functioning of systems. Supervisor synthesis procedures are based on Supervisory Control
Theory originating in [31].

Figure 2.1 schematically illustrates a high-tech system with the focus on control. At the bottom,
the main structure is depicted, containing the physical hardware components. Sensors and actua-
tors are mounted on these hardware components to monitor their position or state and to actuate
them. The resource control layer assures that actuators reach a desired position in a desired way
(regulatory control). The supervisory control layer coordinates individual components and gives
the desired functionality to the system.

Hardware

Resource control

Interface

Supervisory control

Time-driven

Event-driven

Figure 2.1: Positioning supervisory control.

The high-tech industry is also confronted with problems related to systematic upgrades of complex
control software, necessary either for new systems or machines or for extending functionality
of the existing ones. Also in this context, system component and requirement models can be
used to speed up the supervisory control design process. To embed supervisor control design in
model-based engineering, modelling and analysis techniques are needed to handle the complexity
frequently encountered in high-tech systems and to support the evolvability in the development
process. High-tech companies are often challenged to increase the functionality and quality of
a product, while simultaneously time-to-market and product costs should be reduced. Current
practice shows that this is not straightforward. As a result, there is a need for new engineering
processes.

This chapter is structured as follows. Section 2.1 gives a short overview of engineering processes
that are based on models. In Section 2.2, we informally explain how models can be used to support
and speed up system engineering processes.

2.1 Overview

To support structured system development, several engineering processes are introduced originat-
ing from systems architecting ([33]) and systems engineering ([28]). More recently, [29] proposed
a conceptual model specifically supporting embedded systems architecting. In general, a system
engineering process starts with a global definition of the requirements that the system should
fulfill. Based on these requirements, the global system design is defined, usually partitioned into
subsystems or modules. For each module, the requirements are derived from the global design, a
design is defined and then built. Every module is tested separately to assure that its requirements

Figure 2.1: Control architecture of a high-tech system [35].

13

CHAPTER 2. INTRODUCTION TO MODEL-BASED SYSTEMS ENGINEERING AND
DISCRETE-EVENT SYSTEMS

To include supervisor control design in model-based engineering, new modeling and analysis tech-
niques are requested in order to handle the complexity that is usually faced in high-tech systems
and to support the adaptive evolution of the development process. On top of this, high-tech
companies are usually requested to increase the quality and functionality of their product while
reducing cost in matters of time-to-market and production. As a result, there is a need for new
systems engineering processes.

This section is structured as follows. Section 2.1 introduces the fundamental theory of the model-
based systems engineering approach with supervisory control synthesis. In Section 2.2 we briefly
explain the different type of models that can be used in systems engineering processes in order
to improve and speed up the development process. After introducing all the different models, in
Section 2.3 a few general control strategies which relate to continuous/discrete-time and discrete-
event systems will be introduced and briefly defined. Eventually, Section 2.4 gives an overview of
the models that are essential for supervisory control development along with the relevant process
steps and relationships between models.

2.1 Fundamentals of MBSE with supervisory control syn-
thesis

As previously stated, the industry nowadays faces an increase in complexity and is constantly
challenged in reducing cost and development time [18]. To confront these challenges, a next gener-
ation of MBSE approaches was introduced in order to reduce human mistakes and compresses the
development cycle. The MBSE method proposed in [3] enables the use of several analysis tech-
niques and tools that are based on formal models to support system development. The reduction
in cost and cycle time can be gained with the incorporation of methods and tools for supervisor
synthesis.

Synthesis [40] is a technique where a plant model and a requirement model are combined into a
supervisor which, when composed with the uncontrolled plant, has the properties expressed by
the defined requirements. These requirements are divided in terms of supervisory control (high-
level control) and regulatory control (low-level control). This new procedure brings an automatic
derivation of the control logic, replacing the manual design in the process, from the components
(plants) and requirements specifications. The resulting synthesized control logic is non-blocking
and correct with respect to safety properties. The position of these supervisor synthesis techniques
in the engineering development process are depicted in Figure 2.2.

14 CHAPTER 2. INTRODUCTION TO MODEL-BASED SYSTEMS ENGINEERING

system cost. The industry faces increasing complexity and is challenged to reduce development
time and cost. To meet these challenges, a next generation MBSE approach is required that reduces
human errors and shortens the development cycle. An overview of the state of the art commercially
available MBSE methodologies, such as IBM Telelogic Harmony-SE, INCOSE Object-Oriented
Systems Engineering Method (OOSEM), IBM Rational Unified Process for Systems Engineering
(RUP SE) for Model-Driven Systems Development (MDSD) and Vitech Model-Based Systems
Engineering (MBSE) Methodology, can be found in [13]. They include processes, methods and
tools supporting manual development of systems, therefore helping in achieving a paradigm shift
from a traditional document-based approach to a model-based approach. However, in the context
of control software design, they focus on design model formulation. To cope with industrial
challenges, more powerful techniques and tools are required. The MBSE process proposed in
[6] enables the use of various analysis techniques and tools based on formal models to support
system development. Significant development cost and cycle time reduction can be gained by the
incorporation of methods and tools for supervisor synthesis. To this end, as opposed to traditional
engineering, an explicit separation of concerns related to the plant and the supervisor is necessary.
This also means that requirements for supervisory control must be separated from requirements
for regulatory control. Supervisor synthesis techniques replace manual design of control logic by
automatical derivation from component and requirement specifications. The synthesized control
logic is nonblocking and by construction correct with respect to safety properties. In general,
liveness properties still need to be verified. The position of supervisor synthesis in the development
process is shown in Figure 2.4 ([35]).

R D

RS RS S S

RP DP P P

Interface I

define

define

define design

model

design

synthesize

model

realize

realize

integrate

integrate

integrate

integrate

Figure 2.4: Engineering process with supervisory control synthesis.

This setting partly corresponds to Figure 2.3. As previously, requirements R of the system un-
der supervision are defined first. Based on these requirements, design D of the system and a
decomposition into requirements for the uncontrolled plant and the supervisor are defined. After
decomposition, requirements RS for the supervisor and RP for the uncontrolled plant are speci-
fied. From the plant requirements, design DP and one or more plant models P can be defined.
However, instead of making a design and a model of the supervisor, the requirements for the
supervisor are formally modeled. A discrete-event model of the plant and the formal model of
RS can be used to synthesize a supervisor in the framework of supervisory control theory. Plant
models can also be used to analyse the behavior of the uncontrolled plant under supervision of the
supervisor. Formal and executable models built and employed in the design phase can be used to
assess functional correctness and performance of the design of components and the overall system.
One example of a commercially available tool used for correctness checking is the CSP-based tool
of Verum (www.verum.com). To assess performance of the design, one can use simulation directly
on the model, or use analytical or numerical methods to analyze an associated stochastic model.

In synthesis-based engineering, required system properties are used as input for generation of a
design of a supervisor that is correct by construction. As a consequence, in the analysis phase
verification can be eliminated to a large extent. This changes the development process from
implementing and debugging the design and the implementation, to defining the requirements.

Figure 2.2: Systems engineering process with supervisory control synthesis [35].

Firstly the requirements R of the system under supervision are defined first and based on these
requirements the design D of the system is created. These requirements are then decomposed in
two subdivisions and the requirements Rp for the uncontrolled plant and Rs for the supervisor are
specified. From the requirements of the plant, the design Dp is defined and a model P is created.
On the other hand, in the case of the supervisor only the requirements are formally modeled.
This results in a discrete-event model of the plant P and a formal model of the supervisor’s

14

CHAPTER 2. INTRODUCTION TO MODEL-BASED SYSTEMS ENGINEERING AND
DISCRETE-EVENT SYSTEMS

requirements Rs that can be used to synthesize a supervisor in the framework of supervisory
control theory. These plant models can be used to analyse the behaviour of the uncontrolled plant
under supervision also and the formal executable models built in the design phase can be used to
assess correctness regarding functionality and performance of the designed components and the
overall system.

In synthesis-based systems engineering, the required system features are used as input for the gen-
eration of the design of a supervisor that is correct by construction. As a consequence, verification
can be eliminated from the analysis phase to a large extent. This changes the main development
process from implementing and debugging the design and its implementation, to defining the
system’s requirements.

2.2 Behavioural models in MBSE

In this section, a brief presentation is given of all the models that can be used to define the
dynamic behaviour of a component in the system in the model-based engineering approach which
was presented in the last section. These models, also referred to as behavioural models, can be
classified by their type of state, by the time domain of their dynamic behaviour and by the cause
that makes their states change. With regard to the state of the system, the following types are
possible:

• continuous state: The state is characterized by a combination of values that belong to a
dense domain. A domain is dense if in between any two random values you can find another
value.

• discrete state: The state is characterized by a combination of values from a discrete (also
referred as countable) domain.

• hybrid state: The state is a combination of both continuous and discrete state components.

In terms of the time domain which describes the dynamic behaviour one can encounter:

• continuous time: the domain of time instants is dense, for instance the real numbers.

• discrete time: the domain of time instants is discrete, for instance the natural numbers.

At last, the main causes that make a state change are:

• time-driven: the state of the system changes on the basis of time flow.

• event-driven: the state of the system changes on the basis of events which refer to changes in
the state of the system. The amount of time between a pair of consecutive events is normally
not the same.

After the introduction of all the types of behavioural models one can now define a type of system
called hybrid systems. These systems are used when modeling an uncontrolled plant in order to
model physical quantities that change continuously over time and also modes of operation for
different continuous dynamics that are based on sporadic inputs into the system or occurrence
of combinations of state values. This leads to classifying these systems as both time-driven and
event-driven.

Components like the supervisory controllers are most of the time modeled using discrete state even
though continuous state and hybrid state are also possible and they are normally event-driven.
The controlled plants of the system are of the same type as the uncontrolled plant. They are
considered to be the composition of an uncontrolled plant and its supervisory controller. The
requirements of the system are modelled as discrete state, time-free and event-driven systems.

15

CHAPTER 2. INTRODUCTION TO MODEL-BASED SYSTEMS ENGINEERING AND
DISCRETE-EVENT SYSTEMS

They can also be modeled with the use of logical formulas but this falls out of the classification
presented here.

The complexity of the models (in terms of their dynamics) influences the simulation in a direct
way. Simulation is used for two main purposes: (1) to validate whether the uncontrolled plant is
a reliable representation of the system and (2) to validate if the controlled plant behaves in the
desired way.

2.3 Control strategies

As a general point of view, dynamic systems can be defined by a set of relations between its
inputs and outputs so that for any given input this set of relations produces a certain output.
Usually these relations are used to specify a specific purpose that the system needs to achieve
from a control view. This means that the right input needs to be introduced in order to produce
the desired output. To achieve this goal usually systems use a feedback loop resulting in what is
referred to as a closed-loop system. This feedback loop introduces a control law that for a simple
scalar case has the following expression:

u(t) = c(r(t), x(t), t)

In the above definition, r(t) stands for the reference signal (also referred to as desired behaviour),
x(t) is the state of the system in any moment and u(t) is the input signal that will be introduced
to the system in order to achieve the reference. A representation in terms of a block diagram of
this type of systems is shown in Figure 2.3.

5.1. CONTROL CONCEPTS 65

5.1 Control concepts

In general, dynamic systems can be described by a relation between its inputs and outputs. Hence
for a given input, a certain output is produced according to this relation. However, usually a
system has a specific purpose and to achieve this purpose, it needs to be controlled. That is, the
right input needs to be selected to produce the desired output. In this context, the input to a
system is referred to as a control signal that is used to achieve a behavior defined as desired. For
a simple (scalar) case, the control input to the system is defined by the control law:

u(t) = c(r(t), t)

In the above, r(t) is the reference signal (desired behavior) and u(t) is the input function for the
system. The control law can also be extended to the vector case with multiple reference signals.
A system with the control input as specified above is referred to as an open-loop system. In
such a system, unexpected disturbances cannot be taken into account, which can give rise to an
undesirable outcome. To correct for unexpected disturbances, feedback can be used, with the
following control law (again for a simple case):

u(t) = c(r(t), x(t), t)

In the above, on the right-hand side also the information about the system state, x(t), is used. A
system with the control input as specified above is referred to as a closed-loop system. A graphical
representation of the closed-loop system is shown in Figure 5.1.

x = f(x,u,t)u(t) = c(r,x,t)
y = g(x,u,t)u(t)r(t)

Figure 5.1: Closed-loop system.

As listed in [10], the use of feedback control has several advantages over open-loop control:

1. The desired system behavior is less sensitive to unexpected disturbances.

2. The desired system behavior is less sensitive to errors in the model parameter values.

3. The output can automatically follow the desired reference signal by continuously seeking to
minimize the error signal (y(t)− r(t)).

However, to monitor the output and provide information to the controller, sensors or other (pos-
sibly complex) equipment might be necessary. Furthermore, because of the effort needed for
feedback, the overall system performance could be affected in a negative way. Finally, while cor-
recting undesirable system behavior, some other problems could be created. Hence, using feedback
is subject to extensive trade-off analysis, which is the focus of control theory.

Feedback control concept can also be applied in the context of discrete-event systems, when the
system behavior must be modified for a specific purpose or according to a given set of specifications.
In the classical control theory, a system to be controlled (plant) is modelled by a set differential
equations. As opposed to that, a discrete-event system to be controlled is modelled by a network of
discrete-event automata. This network represents the uncontrolled system behavior: all possible

Figure 2.3: Closed-loop system [35].

This type of systems offer several advantages over the open-loop control system:

• The disturbances have less impact in the desired behaviour of the system.

• Errors in the parameters values of the models have also less impact in the desired behaviour
of the system.

• Through the minimization of the error signal (y(t) − r(t)) one can continuously follow the
desired reference automatically.

These are all cases of control strategies for time-driven systems but the truth is that the feedback
control concept can also be used in discrete-event systems. In these type of systems, the plant of the
system is modelled by a network of discrete-event automata, as opposed to the time-driven systems
where a set of differential equations is used. This network represents all the possible sequences of
events that can occur in the system. This is called the uncontrolled system behaviour. Normally
this behaviour has to be restricted because it is not satisfactory in some ways and this leads to the
introduction of a certain controller. A controller in the context of discrete-event systems is called
supervisor and they must impose that the specifications are not violated. These specifications are
expressed by automata or state-based expressions.

A graphical representation of the closed-loop control for a discrete-event system can be seen in
Figure 2.4. In it, P is the uncontrolled system (also known as plant), S is the supervisory controller,

16

CHAPTER 2. INTRODUCTION TO MODEL-BASED SYSTEMS ENGINEERING AND
DISCRETE-EVENT SYSTEMS

s is the sequence of events that are executed by P (and observed by S) and S(s) is the set of
events that are enabled and that P can perform in a certain state.

66 CHAPTER 5. DISCRETE-EVENT SYSTEMS

sequences of events. It can be the case that the uncontrolled behavior is not satisfactory, for
instance, because it contains undesired or inadmissible states or because it allows sequences of
events that would violate a condition that is to be imposed on the system. Hence, a controller is
needed to restrict this behavior. Similar to control theory concepts, a discrete-event system to be
controlled is called a plant. A controller in this context is called a supervisor. Specifications can
be expressed by automata or by state-based expressions. Chapter 6 explains how supervisors can
be derived from the uncontrolled system model and the specifications. A graphical representation
of the closed-loop system for supervisory control is shown in Figure 5.2. In the figure, P stands for
the uncontrolled system and S for the supervisor, s is the sequence of events executed by P (and
observed by S) and S(s) is the set of enabled events that P can perform in the state represented
by s.

PS
sS s

Figure 5.2: Closed-loop system for supervisory control.

5.2 Models for supervisory control

As mentioned in Chapter 2 and schematically shown in Figure 2.1, the control of high-tech systems
usually consists of several layers of controllers: feedback controllers as the lowest (resource) layer
through supervisory controllers as the highest (coordination) layer. The feedback control loops
are based on continuous representation of components. At higher layers, discrete-event represen-
tations are suitable for dealing with situations like system or work cycle start-up and shut-down,
task initiation and coordination, change of operation mode, exception handling, failure diagnosis
and recovery. Figure 2.1 depicts an intermediate layer, interface, between feedback controllers
designed based on continuous-time models of the system and the control logic implemented by
the supervisory controller. In this setting, the system and feedback controllers from the lower
layers can be abstracted as discrete-event models for the purpose of supervisory control. At the
interface, information from sensors and feedback controllers is abstracted in the form of events,
while command events from the supervisory controller are translated to appropriate input signals
to the actuators or set-points to feedback controllers.

In the introduction to this chapter, we explained that models play an important role in the
development process and that different kind of models can be used for different purposes. An
overview of types of models essential for supervisory control development, along with relevant
process steps and model relationships, is given in Figure 5.3. This overview can also be interpreted
as a work flow:

1. To start with, hybrid models of (physical) system components are developed, called un-
controlled hybrid plant. These models describe all possible behaviors the components can
exhibit, not restricted for a specific system function. Simulation and simulation-based visu-
alization (using an image model of the system) can be used to validate these models.

2. From the uncontrolled hybrid plant, the uncontrolled discrete-event plant can be abstracted
(possibly with the help of a hybrid observer that abstracts information from sensors and
feedback controllers by events).

3. Then models of requirements (related to the function the system should fulfil) are defined.

Figure 2.4: Closed-loop system for supervisory control [35].

2.4 Models for supervisory Control

As previously stated in Section 2 and schematically shown in Figure 2.1, the control of cyber-
physical systems normally involves several layers of controllers. At the lowest layer you find
feedback controllers which are based on the continuous representation of the systems components.
At the highest layers you find the supervisory controllers which are represented as discrete-event
systems that are suitable for dealing with situations like work cycle start-up and shut-down,
change of operation modes, exception handling and recovery. Between these two layers there is
an intermediate layer which contains an interface which is used as an abstraction of the system
and low-level controllers for the purpose of the supervisory controllers. This way, information
from the actuators and sensors is abstracted in the form of events while the commands from the
supervisory controller are transformed accordingly to inputs signals to the actuators or set-points
to the feedback controllers.

At the start of this section we explained the important role that models play in the development
process and which different models can be used for certain purposes. A general scheme of the
types of models, which are essential for supervisory control development, is presented in Figure
2.5 and explained as a workflow:

• At the start of the process the uncontrolled hybrid plant is developed in the form of several
hybrid models of the physical components of the system. These models represent all the
possible behaviours that the system can exhibit without any restrictions. Simulation and
simulation-based visualization are the common tools to validate these initial models.

• From these initial hybrid models of the systems, an abstraction process can be executed in
order to obtain the uncontrolled discrete-event plant possibly by using a hybrid observer
that allows to abstract the information from sensors and feedback controllers in the form of
events.

• The next step is the modeling process of the requirements. These requirements are related to
the function that the system is desired to perform and along with the uncontrolled discrete-
event plant, a supervisory controller can be synthesized.

• After that, the controlled system, which is the supervisory controller combined with the
uncontrolled discrete-event plant, can be subject to an extensive verification (if some desired
requirements cannot be expressed in terms of automata).

• Finally, by combining the supervisory controller and the hybrid observer, an observer-based
supervisor can be derived whose main function is to translate command events to the ap-
propriate inputs signals to the actuators or set-points to the feedback low-level controllers.
As a final step, the actual real-time control code is generated, for the implementation of the
controller in real-time.

17

CHAPTER 2. INTRODUCTION TO MODEL-BASED SYSTEMS ENGINEERING AND
DISCRETE-EVENT SYSTEMS

5.2. MODELS FOR SUPERVISORY CONTROL 67

Uncontrolled
discrete-event

plant

Uncontrolled

hybrid plant

Hybrid

observer

synthesis

Controller

requirements

Control

controller

Supervisory

Verification

Image

Observer-
based

supervisor

Code

generation

visualization

Simulation/

Figure 5.3: Overview of models in the development process.

Based on the uncontrolled discrete-event plant and the requirements, the supervisory con-
troller is synthesized.

4. The supervisory controller together with the uncontrolled discrete-event plant, called con-
trolled system, can be subjected to verification (if there are desired properties that could
not be expressed in terms of automata).

5. From the supervisory controller and the hybrid observer, observer-based supervisor can be
derived that takes care of translating command events to appropriate input signals to the
actuators or set-points to feedback controllers, if needed. Based on this model, real-time
implementation can be generated.

In the sequel, we focus on uncontrolled discrete-event models needed for supervisor synthesis.
Abstraction mechanism is explained briefly by means of a few examples.

Example 5.2.1 (Simple vehicle). Consider the following hybrid automaton representing a simple
vehicle model.

Standing still
v̇ = 0
ṫ = 1

v = 0
t = 0

Accelerating
v̇ = a
ṫ = 1

Driving
v̇ = 0
ṫ = 1

Decelerating
v̇ = −a
ṫ = 1

t ≥ T
accelerate

v = s
drive
t := 0

t ≥ T
decelerate

v = 0
stop
t := 0

Figure 2.5: Scheme of models in the development process [35].

18

Chapter 3

Case study: Pick&Place Station of
the xCPS platform

As previously stated, the system that will be used as a case study in this thesis will be the
Pick&Place unit of the assembling area of the xCPS platform. This unit contains three actuators
and five sensors in total and its main function is to pick up the top work pieces that come from a
belt and drop them on top of the bottom work pieces that come from the index table.

The first actuator that is required to perform the function that this unit has is the picker that
is used to pick up work pieces and drop them down, as can be seen in Figure 3.1. The state of
this picker can be recognized by a sensor which indicates if a work piece is picked. This picker
is connected to a robot arm whose motion is controlled by two actuators: a horizontal and a
vertical moving robot arm. The inner and outer positions of the horizontal arm and the upper
and lower positions of the vertical arm are both recognized by two sensors. In the initial position,
the vertical arm is up, the horizontal is in and the picker has no piece picked. When a work piece
comes from the belt next to the Pick&Place, the robot arm moves down so that the picker is able
to pick it up. When the work piece is picked, the robot arm moves to its upper position and then
the horizontal arm moves to the outer positions. Right after that the vertical arm moves down to
its lower position and the picker drops the top work piece. Finally, after dropping the work piece,
the robot arm moves back to its initial position using the reverse path.4WC00 System identification

Figure 2.5: The Pick&Place unit.

this required behavior is a vacuum picker, which can pick and drop work pieces, see Figure 2.5.
Its state can be recognized by a sensor which checks if a work piece is picked. Next, the picker
is connected to an arm which is controlled by two actuators: a vertical and a horizontal moving
arm. The upper and lower positions of the vertical moving arm and the inner and outer positions
of the horizontal moving arm are both recognized by two sensors. Initially, the vertical arm is
up, the horizontal arm is in and the picker is empty. When a top work piece is present below
the Pick&Place on Belt3, the vertical arm moves down, so the picker can pick it up. When it is
picked, the vertical arm moves to its upper position whereafter the horizontal arm moves to its
outer position. Then the vertical arm moves down so the picker can drop the top work piece on
a bottom work piece. When the assembling process is finished, the Pick&Place moves back to its
initial position using the reverse path.

Index Table

On the Index Table, bottom and top work pieces will be assembled. It contains just one actuator
that can rotate the Index Table or not, see Figure 2.6. Furthermore, it contains two sensors which
can recognize its position. The first one is a sensor which recognize if one of its six buffers is in
line with the adding or removing position and the other one recognize if a buffer is in line with
the Pick&Place. There is one important constraint which occurs on the Index Table. Because
Switch3 is located above it, see Figure 2.7c, no work pieces can be transported to the right side of
it. Therefore, looking at Figure 2.2, only the left side of it can be used to transport work pieces.
Initially, the Index Table is standing still in line with the adding position. When a bottom work
piece is added on it by Switch2, it rotates to the Pick&Place. Here it stops, so the Pick&Place
can put a top on a bottom work piece. When the assembling process is finished it rotates to the
removing position, where Switch3 removes the tower work piece from the Index Table.

Switches

As shown in Figure 2.2, the workstation contains three switches which are all built in the same way,
see Figure 2.7. One switch contains an actuator which can switch in or out. The inner and outer
position of it can be recognized by two sensors. Initially the switches are all in their inner position.
When a product needs to be switched, the switch moves out. When the work piece is switched,
the switch moves in to its initial position. Looking at the workstation, Switch2 and Switch3 are
pushers, when a work piece is at a certain position they push the work piece to a new position.

TU/e 6

Figure 3.1: The Pick&Place station [23].

19

CHAPTER 3. CASE STUDY: PICK&PLACE STATION OF THE XCPS PLATFORM

This Chapter is structured as follows. In Section 3.1 the CIF3 modeling language will be introduced
since it is the only language for which models for the Pick&Place unit already exist [23]. In Section
3.2 there will be a lot of subsections dedicated to the modeling process of the whole uncontrolled
system. This includes a full description of the uncontrolled hybrid plant in Section 3.2.1, a formal
definition of the requirements of the system in Section 3.2.2 and the abstraction of the discrete-
event plants in Section 3.2.3. Within Section 3.3, there will be an explanation of the synthesis
process along the presentation of the obtained supervisor in Section 3.3.1 and a simulation of the
controlled system in Section 3.3.2.

3.1 CIF3

The CIF3 toolset is an automata-based modeling language for the specification of discrete-event,
timed, and hybrid systems [50]. This tool supports the whole development process stated in 2.4
including the specification of requirements and the uncontrolled plant, supervisory controller syn-
thesis, simulation-based validation, verification, real-time testing, code generation among others.
This is the main difference between CIF and other hybrid automata-based languages and tools
that available nowadays (like Stateflow, MechatronicUML, HyVisual [33], SHIFT [19] or CHARON
[2]) since these other tools do not cover the complete integrated tool chain for the development of
supervisory controllers for complex CPS.

All the discrete models that will be presented in this section were created with the modeling
language CIF3. Any physical component of the system that is being modeled can be modeled
as an automaton, which consists of a set of different states that can be switch between the use
of events. When making models for a large number of components, they can interact through a
controller. For that to happen, the automata have to be defined as plants and within these plants
the initial states have to defined for each component. In the models that will be presented in
this section these two type of state specifications will be specified by an incoming arrow and a
marked circle respectively. In addition to this, the events have to be specified as controllable or
uncontrollable and in the latter case a dashed line will be used within the state models.

After defining the uncontrolled system, the requirements have to be specified by the means of
automata in order to describe the behaviour of the events within each one of the plants. These
requirements can be used in combination with the uncontrolled system to build a supervisor by
applying data-based synthesis. This generates a supervisor that maintains the desired functionality
for the system without letting it get into a deadlock.

Another important feature of the CIF3 toolset is its simulator. This simulator can be employed to
validate each of the CIF3 models that have been mentioned before in isolation. In addition to this,
it can also be used to validate the controllers when they are put in the context of the uncontrolled
hybrid plant. This simulator allows for automatic testing of several different use cases, and the
production of several forms of output.

3.2 Modeling the uncontrolled system

3.2.1 Uncontrolled Hybrid plant

As we saw in Section 2.4, the uncontrolled hybrid plant is used for simulation purposes along with
the supervisory controller to evaluate the performance of the system and to see if improvements
need to be made to ensure that the requirements are accomplished. This makes the model of the
hybrid plant a very important model in the engineering process and the first one to be created
during the design phase. The uncontrolled hybrid plant is a set of plant models in terms of hybrid
automata that represent each one of the components that exist in the system.

20

CHAPTER 3. CASE STUDY: PICK&PLACE STATION OF THE XCPS PLATFORM

This type of system has two distinct ways of state evolution. The first one is its progression over
time within a location when certain continuous variables change their values continuously over
time following a certain law or equation. The second one are the instantaneous transitions as a
result of the occurrence of an event or events and the corresponding change of location and maybe
of the values of the variables without any progress of time.

Therefore, the behaviour described by the hybrid automaton is a graph that consists of a certain
number of different states (which represent the system states) and edges between these states
that represent both progress in time and instantaneous transitions. The first are labelled by the
evolution of the variables and the second one by an event or events. These types of systems are
formally known as hybrid transition systems [15, 16].

Moving on to our particular system for the case study, as previously stated, the Pick&Place station
has three actuators (named Vertical Motion Ac, Horizontal Motion Ac and Picker Ac) and five
sensors (named Sensor Vup, Sensor Vdown, Sensor Hin, Sensor Hout, Sensor Picker). Each one
of the actuators or sensors within the components contains one or more states and every one
of these states is modeled as a location that can be switched by the firing of their transitions.
In addition to this, some of these models contain continuous-time equations in some states that
are used to represent the dynamic behaviour of some of the components (like the movement of
the vertical/horizontal arm manipulator). This dynamic behaviour will be modeled with a set of
dynamic variables that will be used in certain cases as the conditions guards for the transitions
of the different components. These conditions will be transformed in events, as we will see in
Section 3.2.3 when we do the abstraction of the hybrid plant to obtain the discrete-event plant.
To complete the models of each components, the initial and marked states (which are needed for
the synthesis process) are added just like it was explained in the previous section. As a result, we
will obtain models per each component in terms of hybrid automata.

Before introducing any dynamic equation, several assumptions and clarifications have to be made
about the system that is being modelled:

• The vertical and horizontal manipulators follow the same second-order differential equation
(with the same parameters but with different variables and initial conditions) even though
their real behaviour might be more complex. These differential equations will model the
trajectories that each arm manipulator follows when they move.

• The picker performs its operations of picking/dropping the work pieces instantly and there-
fore there is no dynamic behaviour associated with it.

• The sensors by themselves do not have dynamic equations in their states but they do have
control laws in terms of some dynamic variables as the guards of their transitions.

Therefore, the first things that need to be defined are the second-order differential equations used
for the two arm manipulators. The equation looks as follows:

mẍ + bẋ + kx = 0

Where x is the position of the robot arm, ẋ is the velocity and ẍ is the acceleration in its movement.
If this was the case of a body attached to a spring and a damper this equation would be Hook’s
law and the parameters m, b and k would be the mass of the body and the friction factors of
the damper and the spring. In our case, the parameters lose their physical interpretation since
the real dynamics are different from this law. Since we have two actuators (the vertical and the
horizontal one) it is convenient to set two different dynamical variables. We are going to use the
variable x in the horizontal movement and the variable y in the vertical movement.

21

CHAPTER 3. CASE STUDY: PICK&PLACE STATION OF THE XCPS PLATFORM

The CIF3 toolset does not support the definition of second-order (or higher) differential equations
to be solved by a certain solver that the tool provides. Instead, the differential equation has to
be rewritten into several systems of first order equations and then, continuous variables and their
derivatives (declared with operator der or ′) can be used to implement the equations.

This second-order equation can be rewritten into a system of two first order derivatives by sub-
stituting v for ẋ and v̇ for ẍ. The equation becomes (in the case of the horizontal movement):

ẋ = v

v̇ = − 1

m
(bv + kx)

and if you add initial conditions to the differential equations:

ẋ = v x(t0) = x0

v̇ = − 1

m
(bv + kx) ẋ(t0) = v0

In our case study the dynamical parameters that have been used for the dynamic equations of the
actuators (vertical and horizontal arm) are the following for both actuators:

• m= 5

• b= 1

• k = 1

What also needs to be added are the physical limits of the position variables that correspond to the
trajectories of the two robot arm manipulators. In both cases it has been set that the trajectory
is 10 cm long with the lowest limit set at 0 cm (inner and lower position) and the highest limit set
at 10 cm (outer and upper position). After defining these limits we can state the initial conditions
of the movements in all the possible cases:

Lower→ Upper Upper→ Lower Inner→ Outer Outer→ Inner
Position y0 = 0 y0 = 10 x0 = 0 x0 = 10
Velocity ẏ0 = 0 ẏ0 = 0 ẋ0 = 0 ẋ0 = 0

Table 3.1: Initial conditions of the different trajectories

As a result of this, now we can easily compute the trajectories of both manipulators and the
value of their dynamic variables in any point in time. After defining the initial conditions, the
only things that needs to be added into the models of the two arm manipulators is the events
that allow them to change their states. Both manipulators start in a standing position (state
Standing Still) and they needs a certain event to start moving. For the vertical manipulator, two
events are possible and this are the events move down and move up which will change his state to
the Moving Down or the state Moving Up. The same holds for the horizontal manipulator with
events move out and move in and states Moving Out and Moving In. On the other hand, a stop
events is used in both manipulators to stop the movement and get back to a standing position.The
models of this two manipulators can be seen in Figure 3.2 and 3.3.

22

CHAPTER 3. CASE STUDY: PICK&PLACE STATION OF THE XCPS PLATFORM

 Declarations

controllable move_up ;
controllable move_down ;
controllable stop;
const int[5..5] m = 5;
const int[1..1] b = 1;
const int[1..1] k = 1;
cont y = 10.0;
cont yd = 0.0;

Standing_Still

marked ;
equation y' = 0.0,
 yd' = 0.0;

Moving_Down

equation y' = yd,
 yd' = -(1 / m) * (b * yd + k * y);

Moving_Up

equation y' = yd,
 yd' = -(1 / m) * (b * yd + k * (y - 10.0));

move_down

stop
do y := 0.0, yd := 0.0

move_up

stop
do y := 10.0, yd := 0.0

Figure 3.2: Hybrid model of the vertical arm manipulator.

 Declarations

controllable move_out;
controllable move_in ;
controllable stop;
const int[5..5] m = 5;
const int[1..1] b = 1;
const int[1..1] k = 1;
cont x = 0.0;
cont xd = 0.0;

Standing_Still

marked ;
equation x' = 0.0,
 xd' = 0.0;

Moving_Out

equation x' = xd,
 xd' = -(1 / m) * (b * xd + k * (x - 10.0));Moving_In

equation x' = xd,
 xd' = -(1 / m) * (b * xd + k * x);

move_out

stop
do x := 10.0, xd := 0.0

move_in

stop
do x := 0.0, xd := 0.0

Figure 3.3: Hybrid model of the horizontal arm manipulator.

Moving on to the picker, since it does not contain any dynamic equations (due to the assumptions
that have been made), the models can be easily created by defining the states that can have and
the events that make them change. The picker has two states which are when it has a piece picked
(state Closed) or when it does not (state Open). The events used to start/stop the picking process
are the events pick and drop. The final model can be seen in Figure 3.4.

 Declarations

controllable pick;
controllable drop;

Open

marked ;

Closed

pick
drop

Figure 3.4: Hybrid model of the picker.

Once modelled the actuators, it is time to introduce the hybrid models of the sensors. To start
with, there are two types of sensors in the xCPS platform: the sensors that are initially off
and the ones that are initially on. The sensors that represent that the vertical arm is moving up
(Sensor Vup) and the horizontal arm is moving in (Sensor Hin) are initially on. On the other hand,
the sensors that represent that the vertical arm is moving down (Sensor Vdown), the horizontal
arm is moving out (Sensor Hout) or that the picker has a work piece picked (Sensor Picker) are
initially off. Some of these sensors evolve their states because of a certain dynamic variable (in

23

CHAPTER 3. CASE STUDY: PICK&PLACE STATION OF THE XCPS PLATFORM

our case the positions of the arm manipulators). The only sensor that doesn’t is the sensors of
the picker whose model can be seen in Figure 3.5.

 Declarations

controllable on;
controllable off;

Off

marked ;

On

on
off

Figure 3.5: Hybrid model of the internal sensor of the picker.

On other hand, the other four sensors (the two of the vertical manipulator and the two of the
horizontal manipulator) have conditions on the dynamic variables as guards for their transitions.
These dynamic variables are the positions x and y of the two manipulators. As a result, we obtain
4 sensors that are controlled by position and with the following control laws that allow the events
on or off of the sensors to happen:

⇒ Sensor Vup.on → V ertical Motion AC.y ≥ ymax

⇒ Sensor Vup.off → V ertical Motion AC.y <ymax

⇒ Sensor Vdown.on → V ertical Motion AC.y ≤ ymin

⇒ Sensor Vdown.on → V ertical Motion AC.y >ymin

⇒ Sensor Hout.on → Horizontal Motion AC.x ≥ xmax

⇒ Sensor Hout.off → Horizontal Motion AC.x<xmax

⇒ Sensor Hin.on → Horizontal Motion AC.x>xmin

⇒ Sensor Hin.on → Horizontal Motion AC.x ≤ xmin

With ymax = 10, ymin = 0, xmax = 10 and xmin = 0. With this, the models of the remaining
sensors are finished and can be found in the Appendix A.3. As an example, the hybrid model of
the internal sensor in the upper position can be seen in Figure 3.6.

 Declarations

controllable on;
controllable off;
const int[10..10] ymax = 10;

On

marked ;

Off

off
when Vertical_Motion_AC.y < ymax

on
when Vertical_Motion_AC.y >= ymax

Figure 3.6: Hybrid model of the internal sensor in the upper position.

With this simple steps all the components of the uncontrolled hybrid plant have been created. Now
it is time to describe the requirements that the system will have to fulfill to ensure the desired
behaviour.

3.2.2 Requirements

These actuators and sensors that have just been described have to be connected with each other
so that they work together as a unique unit (the Pick&Place station). This leads to the definition
of the requirements for the system in the form of the order of the controllable events that can

24

CHAPTER 3. CASE STUDY: PICK&PLACE STATION OF THE XCPS PLATFORM

be executed by the actuators. These requirements represent the path that the robot arm follows
from its initial position until it drops a top work piece on a bottom work piece and comes back.
One assumption that has been made in our system is that there will always be top and bottom
work pieces available so in the end when we get the controlled system there will always be one
event available to be performed. These requirements are shown in Figure 3.7.

l1

marked ;

l2

l3

l4

l5

l6

l7l8

l9

l10

l11

l12

l13

l14

Vertical_Motion_AC.move_down

Vertical_Motion_AC.stop
when Sensor_Vdown.On

Picker.pick

Vertical_Motion_AC.move_up
when Sensor_Picker.On

Vertical_Motion_AC.stop
when Sensor_Vup.On

Horizontal_Motion_AC.move_out

Horizontal_Motion_AC.stop
when Sensor_Hout.On

Vertical_Motion_AC.move_down

Vertical_Motion_AC.stop
when Sensor_Vdown.On

Picker.drop

Vertical_Motion_AC.move_up
when Sensor_Picker.Off

Vertical_Motion_AC.stop
when Sensor_Vup.On

Horizontal_Motion_AC.move_in

Horizontal_Motion_AC.stop
when Sensor_Hin.On

Figure 3.7: Definition model of the requirements for the Pick&Place.

In addition to these requirements regarding the path that the robot arm has to follow along
time there are other requirements that need to be achieved. These requirements represent the
interaction that happens between the different manipulators (vertical arm, horizontal arm and
picker) and their respective sensors during the whole production cycle. These requirements are
shown in Figure 3.8, Figure 3.9 and Figure 3.10:

l1

marked ;
l2

l3l4

Sensor_Vup.off
when Vertical_Motion_AC.Moving_Down

Sensor_Vdown.on
when Vertical_Motion_AC.Moving_Down

Sensor_Vdown.off
when Vertical_Motion_AC.Moving_Up

Sensor_Vup.on
when Vertical_Motion_AC.Moving_Up

Figure 3.8: Definition model of the requirements for the internal sensors of the vertical arm.

25

CHAPTER 3. CASE STUDY: PICK&PLACE STATION OF THE XCPS PLATFORM

l1

marked ;
l2

l3l4

Sensor_Hin.off
when Horizontal_Motion_AC.Moving_Out

Sensor_Hout.on
when Horizontal_Motion_AC.Moving_Out

Sensor_Hout.off
when Horizontal_Motion_AC.Moving_In

Sensor_Hin.on
when Horizontal_Motion_AC.Moving_In

Figure 3.9: Definition model of the requirements for the internal sensors of the horizontal arm.

l1

marked ;

l2

Sensor_Picker.on
when Picker.Closed

Sensor_Picker.off
when Picker.Open

Figure 3.10: Definition model of the requirements for the internal sensors of the picker.

After having defined the requirements that the system needs to fulfill, it is time to model the
uncontrolled discrete-event plant so that, along with the requirements, a supervisor can be syn-
thesized after the synthesis process.

3.2.3 Discrete-event plant

After defining the requirements in the previous section, the only thing that is left is the uncontrolled
discrete-event plant. This discrete-event plant is obtained by performing an abstraction of the
physical behaviour of the actuators and sensors. As a result, we obtain models without any
dynamic equations or variables neither inside the states nor in the transitions as guards. In the
second case, these condition guards are replaced with the abstracted discrete events. An example
of an abstracted discrete-event plant can be seen in Figure 3.11 where we can see the discrete-event
plant of the vertical arm manipulator.

 Declarations

controllable move_up ;
controllable move_down ;
controllable stop;Standing_Still

marked ;

Moving_Up

Moving_Down

move_up

stop

move_down

stop

Figure 3.11: Discrete-event plant model of the vertical arm manipulator.

As one can see, the remaining automaton only contains the states and the transitions labelled with
the events that enable them. The same holds for the discrete-event plant models of the sensors
where the abstraction is performed in the transitions mainly. An example can be seen in Figure
3.12 where the model of the internal sensor of the upper position is shown.

26

CHAPTER 3. CASE STUDY: PICK&PLACE STATION OF THE XCPS PLATFORM

 Declarations

controllable off;
controllable on;

On

marked ;

Off

off
on

Figure 3.12: Plant model of the sensors that are initially on.

The rest of models can be found in Appendix A.1. Here we have joined the sensors depending on
the initial state (on or off) to avoid repetition since some models are the same. Now let’s move to
the development of the controlled system which is explained in the next section.

3.3 Developing the controlled system

In this section we first focus on explaining the synthesis process that has been used in our case
study in 3.3.1. In the same section, we will explain the behaviour of the supervisory controller that
was obtained through the synthesis process and its main features. Finally, in 3.3.2 a simulation-
based validation of all the models and the supervisory controller will be performed to ensure that
the system has the desired behaviour at any time and that phenomena like deadlocks do not occur.

3.3.1 Synthesis process and supervisory controller development

As previously stated, Supervisory controller synthesis (or supervisor synthesis) is a method where
one derives a supervisor (or supervisory controller) from a certain collection of plants and require-
ments models. The plant describes the capabilities of the physical system without any type of
control strategy and the requirements model the functions that the system is supposed to perform
(in other words, requirements restrict the behaviour of the plant). The goal of supervisory con-
troller synthesis is to compute a supervisory controller that ensures the requirements, knowing the
behavior of the plants, while preventing deadlock and livelock, and without restricting the system
any further than is required.

In this thesis the synthesis algorithm that has been used is the data-based synthesis and we
will describe it briefly. The basic data-based supervisory control problem is formulated has the
following formulation. As it can be seen in [35], for a plant a supervisor is required such that:

• The controlled system is non-blocking. That is, it is possible to reach a marked state from
all reachable states in the controlled system.

• The controlled system is controllable. That is, for all reachable states in the controlled
system, the uncontrollable events that are enabled in the same state in the uncontrolled
system are still possible in the controlled system. In other words, uncontrollable events are
not restricted.

• The controlled system is maximally permissive (or simply maximal). That is, the controlled
system permits all safe, controllable, and non-blocking behaviors.

This synthesis process can be done with the CIF3 toolset in two ways which are by either executing
the data-based supervisor synthesis tool manually or with a script. On the other hand, there is an
alternative process to the synthesis which is to build the supervisor manually through programming
with the CIF3 language.

After the synthesis process, a supervisor should be obtained which might restrict the behaviour
of the system so that no deadlock exists and the system is non-blocking. In our case, because of

27

CHAPTER 3. CASE STUDY: PICK&PLACE STATION OF THE XCPS PLATFORM

the fact that all our events were controllable and the nature of the requirements and the plants
the supervisor did not have to disable any events and the resulting controlled system already
guaranteed the absence of deadlocks and the desired behaviour.

After having obtained the supervisory controller it is time now to validate its behaviour and see
if the system performs as expected.

3.3.2 Simulation

The best way to validate that the supervisor you synthesized during the supervisor synthesis phase
is correct, is through simulation. Simulation allows you to try different traces though the state
space, to observe what happens for different scenarios (use cases) so we should try many traces
and see the end-result. However in our case, because of all the requirements, there is only one
possible trace of events so there is only one possible outcome and we have to make sure that this
outcome is exactly the desired behaviour of the system.

To do this we will do the following things:

• Look at all the events in the trace and make sure that they satisfy the requirements.

• Check that there is always an event available to be performed (even if it is a time delay event
when the manipulators are moving) and therefore there are no deadlocks.

• Watch the evolution of certain dynamic variables like the position of the actuators during
time to make sure they relate to the physical reality that is happening in the Pick&Place
station.

The first two were very easy check to by using the State Visualizer that you can enable when
performing a simulation with CIF and they turned to be true. To validate the third one we used
the Plot Visualizer to plot the values of the positions of the two robot arms and a variable named
pieces that we added to the model that counts total the number of assembled pieces by the station.
The results for a simulation time of 50 seconds are:

Figure 3.13: Evolution of the position of the actuators over time and total number of pieces produced.

As can be seen, the trajectories follow the second order differential law that was previously defined
and after each cycle the value of the variable pieces is increased by one unit. Since this is a system
with a very restricted behaviour because of the requirements there is not a lot more to do in order
to validate it. One could do several tests changing the values of the dynamic variables but that
would only change the trajectories that the manipulators would do and the ratio at which a piece
is generated in the system. Therefore, we conclude that the validation process is over and that
the controlled system has the expected desired behaviour.

28

Chapter 4

Stateflow & Simulink

Within the MATLAB environment developed by the MathWorks, one can find two interactive tools
which are focused on model-based systems engineering. In its environment, MATLAB integrates
computation, visualization, and programming in an easy-to-use environment where problems and
solutions are expressed in familiar mathematical notation [11].

Simulink [52] is a block diagram environment mainly focused on multi-domain simulation and
model-based systems engineering which is used for modeling, simulating and analyzing dynamical
systems. It provides a framework that allows to perform continuous testing and simulations to
achieve the validation or verification of cyber-physical systems. In addition to this, some possibil-
ities for code generation are provided. Simulink is mostly used to work with with linear/nonlinear
time-driven systems and provides the user with a graphical editor, several block libraries for mod-
eling different behaviours and solvers to support the modeling and simulating process. In addition
to this, since it is integrated in MATLAB, this enables you to incorporate any MATLAB al-
gorithm or function previously defined into the models and also to export the simulation results
to MATLAB for a more extensive analysis.

Stateflow [53] is an environment whose main purpose is to allow he developer to create and
analyze dynamic discrete-event systems based on finite state machines. It offers several possibilities
to model your system in either a graphical or tabular representation and that includes: state
charts, state transition diagrams/tables and truth tables. In the end, with Stateflow you can
develop complex supervisory control structures to achieve the systems desired behaviour and that
includes state machines animation and static and run-time checks for testing design consistency
and completeness before implementation.

Stateflow is not an autonomous modeling tool, as mentioned before, since it is an extension of the
MATLAB tool and operates in the Simulink environment. Simulink provides the developer with
a graphical user interface for creating models as block diagrams, which can include a wide range
of blocks, such as signals, different linear/nonlinear components and sinks. Within Simulink, also
a Stateflow block (referred to as chart) is available so that a Stateflow chart can be added to a
Simulink block diagram model. A Stateflow chart interfaces with the Simulink model. At the
interface, physical connections between the chart and Simulink blocks and the exchange of data
and/or events between the chart and external sources is defined.

In this chapter we will review the potential of these tools in terms of MBSE with supervisor
synthesis capabilities. First, in Section 4.1 we will present the syntax and notation that State-
flow&Simulink use but focusing on Stateflow since that one is used for modeling and developing
charts with supervisory control structures. Then, in Section 4.2 we will evaluate the capabilities
of the Stateflow&Simulink toolset in terms of model-based systems engineering with supervisory
control synthesis development. Finally, in Section 4.3 we will build the same case study that we
did with CIF3 and will evaluate the simulations results and the modeling techniques that were
used.

29

CHAPTER 4. STATEFLOW & SIMULINK

4.1 Basic modeling concepts

4.1.1 Simulink

Both Simulink and Stateflow are graphical languages and its graphical syntax is very intuitive.
Any system modeled is described as a set of connected blocks (which communicate through the
connectors attached to their ports) that compute several input/output relationships. For the pur-
pose of modeling a system, Simulink provides with several different libraries of physical/dynamic
components. The 6 most commonly used libraries are:

• Continuous, which contains blocks to process continuous signals and complex continuous
time operators. This includes blocks like the Derivative and Integrator to derive or integrate
a signal, or blocks like the State-Space and Transfer Fcn to model dynamical systems with
state space equations or transfer functions in the s (Laplace) domain. Some of the blocks
available in this library can be seen in Figure 4.1.

Figure 4.1: Examples of blocks of the Continuous library.

• Discrete, which contains blocks to process discrete signals and other discrete time operators.
Most of them are types of transfer functions in the z (discrete-time equivalent of the Laplace
domain) domain like the Discrete Transfer Fcn, the Discrete Zero-Pole or the Discrete
State-Space blocks. Some of the blocks available in this library can be seen in Figure 4.2.

Figure 4.2: Examples of blocks of the Discrete library.

• Math Operations, which contains blocks for performing basic math operations on either
variables or arrays. Some of these operations include the Sum (of the components of an
array), Add, Divide or the Abs (absolute value of a variable) blocks. Some of the blocks
available in this library can be seen in Figure 4.3.

Figure 4.3: Examples of blocks of the Math Operations library.

• Sinks, which contains blocks for displaying and storing the results of simulations or to define
boundaries of hierarchy. Some of the most common blocks include the Scope (platform to

30

CHAPTER 4. STATEFLOW & SIMULINK

plot the results), the To File (save results to a file) or the To Workspace (save results in the
workspace) blocks. Some of the blocks available in this library can be seen in Figure 4.4.

Figure 4.4: Examples of blocks of the Sinks library.

• Sources, which contains blocks to generate several different types of signals (usually by
defining a function) that can be used as inputs in dynamic systems. Some of these pos-
sible singals include the Step, the Constant, the Ramp, the Pulse Generator or the Signal
Generator block. Some of the blocks available in this library can be seen in Figure 4.5.

Figure 4.5: Examples of blocks of the Sources library.

• Discontinuities, which contains blocks for non-linear transformations of continuous/dis-
crete signals. Some of these transformations might include the Saturation, the Dead Zone
or the Relay blocks. Some of the blocks available in this library can be seen in Figure 4.6.

Figure 4.6: Examples of blocks of the Discontinuities library.

Combinations of these blocks (and the ones of other libraries) are used in Simulink to generate
block diagrams, like the one in Figure 4.7, for modeling cyber-physical systems.

Figure 4.7: Example of a Simulink block diagram.

31

CHAPTER 4. STATEFLOW & SIMULINK

4.1.2 Stateflow

Stateflow uses mainly charts as a graphical representation of finite state machines (even though
truth tables are also possible) when trying to represent event-driven (reactive) systems. For
example, you can use Stateflow charts to control a physical plant in response to events such as
temperature and pressure sensors, clocks, and user-driven events. A Stateflow Chart can use
MATLAB or C as the action language to implement control logic.

A Stateflow chart usually contains a wide variety of graphical or nongraphical objects. Graphical
objects include components like states, transitions, junctions, truth table functions or MATLAB
functions and the nongraphical objects can include elements like events, messages or data objects.
An example of a Stateflow chart with some of these elements could be the one that is shown in
Figure 4.8.

Figure 4.8: Example of a Stateflow chart [53].

States and transitions are basically the most important building blocks within Stateflow but objects
like event, conditions, data objects, actions and junctions are also of major importance and will
also be properly introduced.

32

CHAPTER 4. STATEFLOW & SIMULINK

States

A state describes an operational mode of the event-driven system that is being modeled. These
states can either be active or inactive and this activity/inactivity changes depending on the events
and conditions that occur during the execution of the state transition diagram.

In Stateflow, states are divided in either simple states or superstates and with the root state
being the entire system. In addition to this, Stateflow allows to represent parallel processes by
using AND-superstates and exclusive processes by using OR-superstates. The difference in their
graphical representation is that the first ones are displayed with dashed lines for their contour and
the second ones use solid lines. Within a state diagram chart, the different hierarchical levels that
exist are defined by the boundaries of each one of the states.

The following is the general format for the label of a state which appears on the top left corner of
that state [53]:

name/
entry: entry actions
during: during actions
exit: exit actions
on event name: on event name actions
on message name: on message name actions
bind: events

The following table explains the labels above and some of the most commonly used state action
types:

State Action Abbreviation Description
entry en Executes when the state becomes active
exit ex Executes when the state is active and a transition

out of the state occurs
during du Executes when the state is active and a specific

event occurs
bind none Binds an event or data object so that only that

state and its children can broadcast the event or
change the data value

on event name none Executes when the state is active and it receives
a broadcast of event name

on message name none Executes when a message message name is avail-
able.

on after(n, event name) none Executes when the state is active and after it re-
ceives n broadcasts of event name

on before(n, event name) none Executes when the state is active and before it
receives n broadcasts of event name

on at(n, event name) none Executes when the state is active and it receives
exactly n broadcasts of event name

on every(n, event name) none Executes when the state is active and upon re-
ceipt of every n broadcasts of event name

Table 4.1: State action types in Stateflow [53].

Transitions

A represent the change between two operational modes of the system and it is represented with
an arrow that connects these two states. Its definition is defined by its label which contains: a
trigger event, a condition, a condition action and a transition action. Its general format is [53]:

33

CHAPTER 4. STATEFLOW & SIMULINK

event or message trigger[condition]{condition action}/{transition action}

In Stateflow, any of these components in the transition label is optional. After being defined
and during the system’s execution, a transition can fire when its source state is active and the
transition label is valid. This means that the trigger event must be enabled and the condition
must evaluate to true in order for the transition to fire. There are the following types of valid
transitions in Stateflow:

Transition Label Is Valid If...
Event only That event occurs
Event and condition That event occurs and the condition is true
Message only That message occurs
Message and condition That message occurs and the condition is true
Condition only Any event occurs and the condition is true
Action only Any event occurs
Not specified Any event occurs

Table 4.2: Possible transitions in Stateflow [53].

In a Stateflow chart, transitions can not only be between states at the same hierarchical level.
Transitions can occur between exclusive (OR) states, to and from junctions, between exclusive
(OR) superstates, to and from substates and also self-loop transitions (from one state to itself).

Connective junctions

Connective junctions are used for the representation of different possible transition paths for a
single transition and this enables the possibility to represent [53]:

• Variations of an if-then-else decision construct, by specifying conditions on some or all of
the outgoing transitions from the connective junction

• A self-loop transition back to the source state if none of the outgoing transitions is valid

• Variations of a for loop construct, by having a self-loop transition from the connective
junction back to itself

• Transitions from a common source to multiple destinations

• Transitions from multiple sources to a common destination

• Transitions from a source to a destination based on common events

Default transitions

A default transition specifies which exclusive (OR) state is entered when ambiguity exists among
two or more exclusive states during the initialization of the chart. This type of transition has
a destination state but no source state. Just like with the transitions between states, default
transition can be labeled so that they can be activated by trigger events, messages, conditions and
can perform actions. A default transition can also specify that a junction should be entered by
default before entering any exclusive state in the chart.

Events

Events are non-graphical objects that are used to drive the Stateflow chart execution. With the
occurrence of any event, the chart has to evaluate the status of its states and make the system

34

CHAPTER 4. STATEFLOW & SIMULINK

evolve if needed. As a result, an event broadcast can trigger a transition to occur and possibly
the actions in the transition label and a change of the current state.

Events can be defined in different scopes and that determines where they are going to be used and
which blocks are going to have access to its value:

Scope definition Description
Local Event that can occur anywhere in a Stateflow machine but is

visible only in the parent object (and descendants of the parent).
Input from Simulink Event that occurs in a Simulink block but is broadcast to a State-

flow chart.
Output to Simulink Event that occurs in a Stateflow chart but is broadcast to a Sim-

ulink block

Table 4.3: Types of event definition [53].

Another thing to consider when defining events is the level of hierarchy that they are defined on
since this will determine which states will have access to it and which will not. This information
is summarized in the following table:

Where you define the event To who the event is visible
Chart The chart and all states and substates
Subchart The subchart and all states and substates
State The state and all substates

Table 4.4: Types of accessibility depending on where the event is defined [53].

Conditions

Conditions are boolean expressions that are contained in the labels of the transitions and that
must evaluate to true for the transition to fire. They usually relate to the physical parameters of
the system.

Data objects

Data objects are another sort of non-graphical objects which contain numerical values for their
later use in a Stateflow chart. In terms of the scope of their definition, just like with events, data
objects can either be local to the Stateflow chart, an input from an external Simulink block/system
or an output to an external Simulink block/system. There are two basic types for data objects:
constant when their value does not change during the execution time and parameter if their value
changes due to a certain law or equation.

Condition actions

This type of condition is executed when the corresponding condition evaluates to true. This
means that the action can occur even though the transition has not fired (since it may also require
a trigger event for it to fire). Usually, actions are mathematical operations performed on data
objects.

Transition actions

This type of actions is executed only if the transition fires. This includes the trigger event to be
enabled and the condition to evaluate to true. Therefore, a transition action is performed when
the destination state becomes active.

35

CHAPTER 4. STATEFLOW & SIMULINK

4.2 MBSE capabilities

4.2.1 Specification phase

In the specification phase, when trying to model the uncontrolled system, whether it is the hybrid
or the discrete-event plant, the Simulink&Stateflow toolset does a great job in offering a lot of
options and possibilities that allow the developers to model almost anything. From a practical
point of view, Stateflow is a tool which is very easy to use and that has very few restrictions in
terms of modeling (like languages with pre-defined model hierarchy) and this gives a lot of freedom
to the end-user.

The time-driven low-level of the system can be easily modelled as block diagrams using some of the
libraries that allow to represent continuous-time or discrete-time behaviour in terms of differential
equations, transfer functions in the s or z domain or state blocks. Interactions between blocks can
be created very easily by defining input/output ports per each block and then connect them using
links (connectors) accordingly to the system’s reality. To introduce input signals (steps, sinus,
linear, etc) the source library offers a lot of blocks that can be easily used for that purpose. In
case you want to implement some control strategies there are specific blocks for certain types of
controllers (e.g. PID controller or a pole positioner) that are very intuitive and powerful for that
matter. When trying to model some non-linear phenomena the discontinuities library usually has
what is needed but if not there is always the possibility to use the MATLAB function block to
program your desired functionality and add it to the diagram.

The low-level of the system can also be modeled with a Stateflow chart if the Update Method is set
to continuous-time. Because of its nature, events cannot be defined in these types of charts but
they do allow the definition of differential equations in the states of the automaton in a syntax
very similar to the one used in CIF.

On the other hand, the developers define the discrete-event plants by using the capabilities offered
by the Stateflow charts whose syntax was stated in the previous section. This chart allows to
model the abstracted plant in terms of finite state machines (same formalism that CIF3 uses)
and through all the objects that were also introduced previously almost all the functionalities
that CIF3 offers can be achieved. Important concepts like mode switching (since states can have
dynamic equations either continuous or discrete time) and update of variables (either by evolution
of time or by changing states) are available but a concept like final states cannot be implemented.
This is due to the fact that a Stateflow chart will always keep evolving its states if the right set of
events is introduced and the data variables that trigger the conditions evolve accordingly.

Discrete variables are also available in these charts and its initialization is done manually when
building the model. Variables (discrete, continuous or constant) can be shared in different ways.
First of all, if they belong to the same chart they can be accessed by any state (in the same ways
as in 4.3). Another way of sharing variables is by declaring them in the current workspace so
they can be accessed by any block in the diagram (if they are not declared an error message will
appear). Lastly, variables can be shared between blocks through the connections that are used to
connect the different blocks of the diagram and that allow to share variables from Simulink blocks
to Stateflow charts as inputs and variables from the Stateflow charts as outputs to the Simulink
blocks as inputs.

Where Stateflow really deviates from CIF3 is in terms of synchronization. In Stateflow it is
impossible to consider that multiple component models run simultaneously. At each time instant
the parallel/exclusive (OR) component models run according to a certain order of execution that
can be defined in the top right corner of each parallel component. This can develop in delays in
terms of updating certain variables, switching modes between certain states or performing certain
actions. There is also and issue in Stateflow when synchronizing events. In Stateflow there is not

36

CHAPTER 4. STATEFLOW & SIMULINK

the restriction that CIF imposes that an event can only happen if all the parallel states that share
the event have to make a transition in that moment. Therefore in Stateflow you can have several
transitions with the same event as trigger but they can perform that transition even if the other
can’t because they are in a different state. This problem has a solution though since there is a
way to synchronize the events if wanted. This can be done with event broadcasting. You can
broadcast events directly from one state to another to synchronize parallel (AND) states in the
same chart. The following rules apply:

• The receiving state must be active during the event broadcast. Otherwise, the receiving
state machine will not change its state for that broadcasted event.

• An action in one chart cannot broadcast events to states in another chart.

Event broadcasting is possible by using the Stateflow function send which has the following general
format:

send(event name,state name)

where event name is broadcast to state name and any offspring of that state in the hierarchy. The
event you send must be visible to both the sending state and the receiving state (state name).
The state name argument can include a full hierarchy path to the state. For example, if the state
A contains the state A1, send an event e to state A1 with the following broadcast:

send(e, A.A1)

Therefore, with event broadcasting it is possible to mimic the multi-party synchronization that
we find in CIF if the right events are broadcast at the right state machines at the right time. This
is for the developer to figure out when building the model.

If you want to simulate the behaviour of the uncontrolled plant there is no GUI input to select
which event will happen at any given moment. In Stateflow there are two cases for generating
events. The first one is when the events are declared as inputs. When the events are declared as
inputs on the chart they have to be generated from external Simulink blocks or from other Stateflow
charts that have those events declared as outputs. Events can be generated from Simulink by using
the sources libraries to generate input signals with binary values. That is the common way to
generate an input trace for the discrete-event plant to evolve in time. The other way of generating
events is through broadcasting with the function send like we previously introduced. That is the
case when the events are declared as local and then the function send can be used as an state
action or transition action to generate events in a certain moment.

Those are more or less all the capabilities that Simulink&Stateflow have for modeling the plant
models. On the other side, modeling requirements in terms of automata like in CIF3 is impossible
in Stateflow and this affects directly the possibilities of having a synthesis algorithm to develop a
supervisory controller. Requirements are modeled in Stateflow by adding or modifying the plant
models. That might include changing the transitions, adding variables, adding events or adding
actions in the states or the transitions. Since by doing this we are already building the supervisory
controller we will explain it with more detail in the next subsection.

4.2.2 Supervisor development phase

As previously stated, there is no way to model the requirements in Stateflow so this affects dir-
ectly the possibility of having an algorithm for applying synthesis and developing a supervisory
controller. In fact, Stateflow does not provide any algorithm that can implement data-based or
event-based synthesis but that does not mean that there is no way to build the resulting controlled
system.

Since the supervisory controller is the one that restricts the plant’s behaviour to make sure the
requirements are fulfilled then the way to go in Stateflow is to modify the plants by adding all

37

CHAPTER 4. STATEFLOW & SIMULINK

the necessary of restrictions to implement the requirements and as a result you get the controlled
system. In other words, a state chart in the end is the desired behavior of the discrete-event system,
wherein sequences of events are controlled (by), conditions are used to specify requirements and
actions can be used as control actions. A state chart by itself is a discrete-event controller. Thus,
when building a state chart in Stateflow one in fact is constructing a supervisory controller.

For a discrete-event controller as a Stateflow state chart, the control actions are the execution of
actions, mostly updating variables. These actions are guarded by conditions, which are manually
derived from the requirements. Other control actions can be broadcasting events when certain
variables reach certain values to model the abstraction process that CIF3 does between the low-
level and the high-level control structures. Another control actions can be generating output
events to send to other blocks in the Simulink diagram that might send back other events or that
will change the dynamics of the system.

To sum up, the development of the supervisory controller and the controlled system is a manual
process that can change for any different system and that does not have common guidelines to
follow. Despite this, with all the capabilities that Stateflow offers and how intuitive the language
is, it is not a tough process to develop a chart with the plant and the supervisory controller in it.

4.2.3 Validation phase

Once the supervisor is implemented in Stateflow as a state chart, the subsequent step is to validate
the supervisor with respect to test cases by performing simulation-based visualizations in Simulink.
When simulating in order to validate a design we usually look at two things:

• The evolution of the states of the system to see if they fulfill the requirements and that
systems does not get into deadlocks when introducing a trace of events.

• The evolution of some variables of the system that might have some physical or technical
interpretations. They are usually compared with some reference values that they should
reach in a certain point in time.

Starting with the second one, any variable or parameter that is defined in a Simulink diagram or
in a Stateflow chart can be plotted and analyzed. This includes any variable that is computed in
a Simulink block (has to be defined as output), in a Stateflow chart (has to be declared as output)
or any other variable that is defined through some mathematical operations in some point in the
block diagram. The only thing that has to be done is to draw an arrow from the point where
variable is created/computed and bring it to a Scope block from the sinks library to display it
graphically.

Addressing the first one, Stateflow displays the active states from a chart (by changing the contour
of the state to a blue color) at any time instant during the simulation so you can check if the states
evolute accordingly to the requirements. You can also add breakpoints in state or conditions to
make the simulation stop when they are reached and there is a step by step simulation that stops
at any time that there is a change in the chart. This way you can check if the behaviour is
correct after introducing a trace of events of the user’s choice (with the procedure explained in
the previous subsection).

Other features that might be interesting about Simulink include choosing the solvers that are used
for solving the equations of the system, choosing the step-time of the simulation or integrating
custom C/C++ code for simulation. To conclude, Simulink has enough tools to validate the
controlled system and the supervisory controller in a graphical and intuitive way.

On the other hand, the Simulink&Stateflow toolset does not provide any methods nor possibilities
for formal verification. Several transformations of Stateflow diagrams to input languages of various

38

CHAPTER 4. STATEFLOW & SIMULINK

formal verification tools have been created, but sometimes they do not support desired features
of Stateflow or cannot be obtained. Two of the most relevant transformations that do not fall in
the latter category are the ones in [13] and [54]. Therefore, proper formal verification methods
for Simulink&Stateflow that support all the functionalities of the models have still to be properly
developed.

4.2.4 Implementation phase

The Simulink&Stateflow toolset by itself does not offer any possibilities in terms of code generation
to test the controllers in other platforms. To do that, you would need an extra license to acquire the
Simulink Coder or the Embedded Coder. If you have a Simulink Coder or Embedded Coder license,
you can generate C or C++ code from models that include Simulink diagrams and Stateflow
blocks. Simulink Coder software generates source code that you can use for real-time and non real-
time applications, including simulation acceleration, rapid prototyping, and hardware-in-the-loop
testing. Embedded Coder software generates readable, compact, and fast code to use on embedded
processors, on-target rapid prototyping boards, and microprocessors used in mass production. The
generated C/C++ code does not contain code to interface with other blocks in a Simulink model
or the MATLAB base workspace.

4.3 Case study

Following the first two phases that were mentioned in the previous section, the model of the
Pick&Place station, along with the controller that ensures that the requirements are fulfilled, was
developed and can be seen in Figure 4.9:

Figure 4.9: Stateflow model of the Pick&Place station.

As it can be seen, the model is formed by mainly 3 Stateflow Charts (Pick&Place VertActDyn

39

CHAPTER 4. STATEFLOW & SIMULINK

and HorActDyn), 4 memory blocks, and the connections that join them all together.

Pick&Place Chart

The Pick&Place chart (Figure 4.10) is the most important chart in the block diagram and the one
that involves almost all the functionality of the system. This chart is divided in 8 automata that
are used to model the 3 actuators (automaton VertMotionAc, PickAc and HorMotionAc) and the
5 sensors (automaton SensUp, SensUp, SensPicker, SensIn and SensOut). This chart uses local
variables (xmax, xmin, ymin, ymax) and input variables generated in the other charts (x and y
which represent the position of each actuator in the horizontal and vertical direction respectively)
to model the transitions for the sensors of the two manipulators (always in terms of a boolean
expression). The two manipulators also generate 4 variables (up, down, in and out) as outputs
that are used by the other two automata to switch between states and model the dynamics of the
manipulators correctly. One can see that there are a lot of events (move down, move up, pick,
drop, stop, on, off, move in and move out) defined in this chart and they are all generated by
event broadcasting with the command send that we introduced some sections ago. This chart also
uses the variable pieces as a counter for the number of assembled pieces that are produced during
the simulation. At last, the chart uses also a the variable cont as a decision factor to choose which
events execute to fulfill the requirements that were presented in Section 3.2.2. The reason for that
is that during the working cycle the vertical actuator goes up and down twice and cont counts
the times that the manipulator goes down so then by doing the module of this variable divided by
two the automaton can decide which is the correct path to take. This is modeled with a junction
once the event stop is executed when the vertical manipulator is moving.

Figure 4.10: Stateflow model of the Pick&Place unit without the manipulators dynamics.

VertActDyn Automaton

The VertActDyn automaton (Figure 4.11) is a Stateflow chart that consists basically of 3 different
states. These 3 states relate to the same states that the VertMotionAct from the Pick&Place chart
has but here what is being modelled are the different dynamic equations to control the movement
of the vertical manipulator. This can be done because the chart has the Update Method set to
continuous-time so that by adding the sufix dot one can model the derivatives of a certain variable
(in this case the vertical position y and its velocity yd). The variable y that models the position is
defined as output and is introduced as input to the Pick&Place station so that the vertical sensors

40

CHAPTER 4. STATEFLOW & SIMULINK

can change their states if that was necessary. The transitions between states are done through
some conditions that involve boolean variables (variables down and up) that are generated in the
Pick&Place and not with events because this types of charts (the ones with the update method as
continuous time) do not allow events. The last thing that one can observe is that some variables
are declared at the initialization of the chart and during some of the transition to guarantee the
initial conditions of the trajectories that where defined in 3.1.

Figure 4.11: Stateflow models of the dynamics of the vertical manipulator.

HorActDyn Automaton

The HorActDyn automaton (Figure 4.12) is just like the vertical one but in the horizontal direction
so there is nothing different about its behaviour or modeling strategy.

Figure 4.12: Stateflow model of the dynamics of the horizontal manipulator.

The last elements of the whole system that should be mentioned are the memory blocks. These
blocks are used to connect the discrete variables that are generated in the Pick&Place chart to
the two automata that run in continuous time and that model the dynamics of the manipulators.
The memory block holds and delays its input by one major integration time step and it accepts
discrete and continuous signals (in our case discrete variables).

Having already explained all the elements of the model it is time to perform the simulation and
see if the results are similar to the ones that we have obtained with CIF. To do that we will plot
the two positions (x and y) of the manipulators and the variable pieces that was also included in
this model to count the number of assembled pieces. These results can be seen in Figure 4.13.

41

CHAPTER 4. STATEFLOW & SIMULINK

Figure 4.13: Results of the simulation of the model with Stateflow.

One can see than the results are almost (if not completely) the same as the ones previously
obtained with CIF and that means that the modeling stage of the development process done
with Simulink&Stateflow is correct. With this ends the comparison and evaluation of the Sim-
ulink&Stateflow toolset and now it is time to do the same with MechatronicUML in the next
chapter.

42

Chapter 5

MechatronicUML

MechatronicUML [4] is a modeling language which uses concepts of the UML to provide a model-
driven method for the development of the software embedded in mechatronic systems. In terms
of modeling support, MechatronicUML supports the development of the structural as well as the
behavioural aspects of almost any mechatronic system. This method follows a component-based
approach [51] when it comes to software development and it specifically distinguishes component
types as well as their instances.

The MechatronicUML method is focused on the software that is used for the real-time coordina-
tion of components in complex mechatronic systems. This coordination is basically achieved with
the exchange of messages between systems components which results into complex discrete-event
based behaviour in each one of the components. In addition to this, this coordination strategy
has an impact on the dynamics of the physical components of the systems that are controlled by
continuous-time controller software. As a consequence, MechatronicUML provides an integration
process to connect the discrete-event based coordination behaviour with the continuous-time feed-
back controllers. MechatronicUML uses Real-Time Coordination Protocols (RTCP) to perform
this real-time coordination.

In order to allow mechatronic systems to adapt to a changing environment and to coordinate and
communicate with changing communication partners, MechatronicUML supports modeling the
exchange of software components at run time. Besides the precise modeling of embedded software,
another major aim of MechatronicUML is the formal verification of safety critical properties of
mechatronic systems, which often operate in safety-critical contexts.

In this chapter we will review the potential of the MechatronicUML toolset in terms of MBSE with
supervisor control development capabilities and will try to support it by trying to build the case
study. First, in Section 5.1 we will introduce the basic modeling concepts that MechatronicUML
uses when modeling complex cyber-physical systems. Then, in Section 5.2, an evaluation of the
capabilities of the MechatronicUML toolset in terms of model-based systems engineering with
supervisory control development will be performed. Eventually, in Section 5.3 we will attempt to
build the same case study that we have been building with the other languages with an attempt
to obtain the same results when simulating.

5.1 Basic modeling concepts

This section is partly based on [4].

5.1.1 Component Model

In MechatronicUML, the structure of the different elements of the system is specified by a com-
ponent model. Any component represents a software entity that has an internal structure and

43

CHAPTER 5. MECHATRONICUML

specific behaviour. That behaviour can be accessed by other entities through defined interfaces
that show/expose this internal structure/behaviour through its ports. There are two types of
components in MechatronicUML: atomic components and structured components.

Atomic Component

In MechatronicUML, atomic components represent the lowest level of abstraction of the component
model. They contain different behaviour specifications which creates the distinction between
continuous and discrete atomic components. On the one hand, the behaviour of continuous atomic
components, which is defined with differential equations, cannot be specified in MechatronicUML
and has to be specified with an external tool like Simulink. What MechatronicUML does provide
is the specification of the interface of these components to share their information through their
ports. On the other hand, the internal behaviour of discrete atomic components is specified in
a Real-Time Statechart (RTSC). An example of these two types of components can be seen in
Figure 5.1.

76 CHAPTER 3. MODELING LANGUAGE

Discrete Component
A discrete component is a software component whose behavior is specified by a discrete
component behavior specification (cf. Section 3.6.1.4). As defined in Section 3.3, discrete
components interact by means of message passing only. A discrete atomic component may
only have discrete and hybrid ports (cf. Section 3.6.1.2).

Continuous Component
A continuous component represents a feedback (closed-loop) or feed-forward (open-loop)
controller [Kil05] of a mechatronic system. In our component model, we only specify the
interface of the continuous component, i.e., its ports, but not its internal behavior [BGH+07].
The internal behavior of a continuous component is assumed to be specified in a control
engineering tool like CamelView4 or Matlab/Simulink 5. A continuous atomic component
may only have continuous ports (cf. Section 3.6.1.2).

Concrete Syntax of an Atomic Component
Figure 3.40 shows the concrete syntax of the two kinds of atomic components. They are
visualized uniformly as a rectangle with a component icon in the upper right corner and a
horizontally left aligned and vertically centered name label. The concrete syntax of ports will
be explained in the subsequent Section 3.6.1.2.

a) discrete b) continuous

 MotionCtrl

speed_in speed_out

angle_in angle_out
 Navigation

speed_target

turnAngle_target

position
sender

provider

Navigation.provider

PositionTransmission.sender

Figure 3.40.: Concrete Syntax of Different Kinds of Atomic Components

3.6.1.2. Port

A port is a directed, external interaction point of a component. A component may only interact
with other components via its ports. On the type level, all possible connections between
components are specified by assemblies (cf. Section 3.6.2.5) connecting the ports of the
components. The ports are then instantiated to port instances of component instances and
may be connected during run-time complying to the assemblies (cf. Section 3.7).

Based on the direction, we distinguish in-ports, out-ports, and in/out-ports. Information
enters the component at an in-port. At an out-port, information leaves the component. At

4http://www.ixtronics.com/ix_hist/English/CAMeLView.htm
5http://www.mathworks.de/

Figure 5.1: Concrete Syntax of Different Kinds of Atomic Components [4].

To define the interface of an atomic component, the developer has to specify a set of named ports
so that run time the component’s behaviour can be accessed. When it comes to ports, two types
of distinctions can be made:

• Based on the direction

– In-port (information flows into the port)

– Out-port (information leaves the port)

– In/out-port (combination of both)

• Based on the internal behaviour

– Discrete port (discrete-event behaviour)

– Continuous port (continuous-time behaviour)

– Hybrid port (combination of both)

Discrete ports are used to connect discrete atomic components with a message-based communic-
ation protocol (known as Real-Time Coordination Protocol) for the correct exchange of messages
during time. Continuous ports are used to connect continuous components by specifying a signal
value and a data type. Finally, hybrid ports are used to connect continuous components with
discrete components. The syntax of the different types of ports can be seen in Figure 5.2.

44

CHAPTER 5. MECHATRONICUML

3.6. COMPONENT MODEL 79

Concrete Syntax of a Port of an Atomic Component
The concrete syntax of ports of an atomic component is depicted in Figure 3.41. The
visualization depends on the kind of the port and the direction of the port. In general, ports are
placed on the border of the component such that the center of the port lies on the border line
of the component as shown in Figure 3.40. In addition, the name of the port is shown next to
the component and positioned outside of the component.

Discrete ports are depicted by squares and embed small isosceles triangles that denote the
direction of the port. For an in-port, the top of the triangle points inwards, for an out-port
it points outwards. A dashed line represents the role of a Real-Time Coordination Protocol
which is assigned to the discrete port. The name of the Real-Time Coordination Protocol and
the name of the assigned role are annotated at the dashed line (cf. Figure 3.40).

in-port out-port in/out-port

discrete

continuous

hybrid

n/A

n/A

in-port out-port in/out-port

discrete

continuous

hybrid

n/A

n/A

a) Mandatory Port b) Optional Port

Figure 3.41.: Concrete Syntax of Ports

Continuous ports are depicted by isosceles triangles. For a continuous port, the triangle
“points” into the component for an in-port and out of the component for an out-port.

A hybrid port is depicted by a square that embeds one isosceles triangle. The triangle is
fully inscribed into the square. Thus, the base of the isosceles triangle resembles one edge of
the square and the point of the triangle that is opposite to the base touches the opposite edge
of the square.

In our concrete syntax (cf. Figure 3.41), we use filled triangles to denote mandatory ports
and unfilled triangles to denote optional ports.

The concrete syntax of discrete multi ports is shown in Figure 3.42. A multi port has
a cascaded double border line and it positioned like a single-port. Again, a filled triangle
denotes a mandatory discrete multi port while an unfilled triangle denotes an optional discrete
multi port.

3.6.1.3. Port Behavior Specification

The port behavior specification specifies the run-time behavior of a port. In this section we
describe the behavior specification for all three kinds of ports.

Figure 5.2: Concrete Syntax of Ports [4].

There is another distinction for ports that classifies them as optional or mandatory ports. If a
port is optional then an instance of the port is not always active during runtime, i.e., it does not
always send or receive values. If a port is mandatory, then an instance is always active during
runtime.

Structured Component

A structured component is the result of embedding other components which can be either atomic
or structured. This type of component does not require the specification of an internal behaviour
since it is already specified by the embedded components. To create their interface, structured
components define a set of ports just like it is done with atomic components but, in contrast with
them, only continuous and discrete ports are supported. Just like with the structured components
by itself, these ports do not need to have their behaviour specified. Instead, they are delegated
to the port of the internal components by using delegation connectors so that the data type (for
continuous components) and the set of send/received messages (for discrete components) can flow
through the external interface.

5.1.2 Real-Time Statecharts

Real-Time Statecharts are models which are used to specify the behaviour of discrete atomic
components or discrete ports. They are a combination of hierarchical UML state machines and
timed automata [4]. Now we will introduce all the basic elements that are used in Real-Time
Statecharts.

States

The basic element of Real-Time Statechart is the state which is used to represent a certain op-
erational mode of the system. Apart from the normal states, per each Real-Time Statechart an
initial state (where the system starts) has to be defined and many final states can also be defined
if needed. When a final state is reached, no more operations are performed within the statechart.
The template syntax of these two types of state can be seen in Figures 5.3 and 5.4.

36 CHAPTER 3. MODELING LANGUAGE

Concrete Syntax of an Exit Event
The following EBNF grammar defines the default notation for an exit event definition. Here,
we reuse the EBNF grammar for clock resets. Elements which have the prefix “#” are
references to the meta model elements of class State.

< e x i t E v e n t > = ’ e x i t / ’ [< e x i t E f f e c t >] ’ ’ [< e x i t C l o c k R e s e t >] ;
< e x i t E f f e c t > = ’ { ’ (# e x i t E v e n t . a c t i o n . e x p r e s s i o n s |

e x i t E v e n t . a c t i o n . name) ’ } ’ ;
< e x i t C l o c k R e s e t > = ’ { ’ < c l o c k R e s e t > ’ } ’ ;

3.4.2.3. Initial State

For each Real-Time Statechart, the developer has to declare exactly one state as the initial
state. This state is the first one that is active if the parent Real-Time Statechart is active itself.

Concrete Syntax of an Initial State
Figure 3.13 shows the template for an initial state. If a state is an initial state, a black-filled
circle and a directed edge from the black-filled circle to the initial state are shown at the top
left border of this state.

<stateNameLabel>

Figure 3.13.: Concrete Syntax Template of an Initial State

3.4.2.4. Final State

The developer may declare one or more states of a Real-Time Statechart as final. This denotes
that a statechart is in a stable configuration. This implies that the embedding statechart of the
state cannot change its state or variables anymore (clocks will go on nevertheless). Thus, a
final state has no outgoing transitions. Furthermore, a final state is always a simple state (cf.
Section 3.4.2.5). We demand this to prevent changes to the stable configuration.

In contrast to the UML, reaching a final state in a Real-Time Statechart does not lead to
the statechart’s termination. Another distinction to the UML is that a developer may define
an entry-event (cf. Section 3.4.2.2) to a final state. We allow this, because the semantics
of our entry-events differ from the UML’s: in a Real-Time Statechart, a state is active after
executing the entry event. In UML statemachines, the state is already active while executing
entry events. However, like the UML, a final state must not have a do-event or exit-event to
ensure the stable configuration.

A deactivation of a parent composite state is the only possibility to leave a final state.

Figure 5.3: Syntax Template of Initial State
[4].

3.4. REAL-TIME STATECHART 37

Concrete Syntax of a Final State
Figure 3.14 shows a final state. A final state is shown as a state with a border drawn as a
double line.

<stateNameLabel>

Figure 3.14.: Concrete Syntax Template of a Final State

3.4.2.5. Simple State

A state in a Real-Time Statechart is called a simple state if it does not contain any further
states, i.e., it does not have any substates. A simple state may have invariants and state events.
Additionally, it may be an initial or final state.

Concrete Syntax of a Simple State
Figure 3.15 shows the concrete syntax template of a simple state. A simple state consists
of three compartments: (i) the name compartment, (ii) the invariant compartment, and (iii)
the state event compartment. Compartments (ii) and (iii) are only visualized if the developer
defines an invariant or state events for this state. If more than one compartment is used, solid
borders separate the compartments.

<stateNameLabel>

<stateEventLabel>

<invariantLabel>

Figure 3.15.: Concrete Syntax Template of a Simple State

The stateNameLabel contains the name of the state. The invariant compartment contains
the invariantLabel, which reuses the concrete syntax definition of an invariant. The state event
compartment contains the stateEventLabel. The following EBNF grammar defines the default
notation for a stateEventLabel. The stateEventLabel reuses the concrete syntax definition of
entry, do, and exit events.
< s t a t e E v e n t L a b e l > = [< e n t r y E v e n t >] [’ \ n ’ <doEvent >] [’ \ n ’ < e x i t E v e n t >] ;

Figure 3.16 shows an example of a simple state. The name of the state is SimpleState1. A
state invariant is defined for this state which defines that as long as this state is active clock c1
must be smaller than 15 seconds and clock c2 must be smaller or equal to 2 ·i−5 milliseconds.
Moreover, all three kinds of state events are defined. The entry event executes action action1
and resets the clock c0; the do event executes action action2 periodically (the period is 50
milliseconds); the exit event executes action action3 and resets the clocks c1 and c2.

Figure 5.4: Syntax Template of Final State
[4].

When it comes to the nature of the state, a distinction can be made between simple states,
composite states, and orthogonal composite states. The first one has no hierarchy and no embedded
components. On the other hand, a composite state can contain one or more regions which add a
hierarchical level to the statechart and that contain a Real-Time Statechart inside. As a result,
regions allow the developer to model orthogonal behaviour. In each region, one state is always

45

CHAPTER 5. MECHATRONICUML

active if the parent composite state is active. An orthogonal composite state is a composite
state with more than one regions inside. The general syntax that is used for simple states in
MechatronicUML can be seen in Figure 5.5 along with an example in Figure 5.6.

3.4. REAL-TIME STATECHART 37

Concrete Syntax of a Final State
Figure 3.14 shows a final state. A final state is shown as a state with a border drawn as a
double line.

<stateNameLabel>

Figure 3.14.: Concrete Syntax Template of a Final State

3.4.2.5. Simple State

A state in a Real-Time Statechart is called a simple state if it does not contain any further
states, i.e., it does not have any substates. A simple state may have invariants and state events.
Additionally, it may be an initial or final state.

Concrete Syntax of a Simple State
Figure 3.15 shows the concrete syntax template of a simple state. A simple state consists
of three compartments: (i) the name compartment, (ii) the invariant compartment, and (iii)
the state event compartment. Compartments (ii) and (iii) are only visualized if the developer
defines an invariant or state events for this state. If more than one compartment is used, solid
borders separate the compartments.

<stateNameLabel>

<stateEventLabel>

<invariantLabel>

Figure 3.15.: Concrete Syntax Template of a Simple State

The stateNameLabel contains the name of the state. The invariant compartment contains
the invariantLabel, which reuses the concrete syntax definition of an invariant. The state event
compartment contains the stateEventLabel. The following EBNF grammar defines the default
notation for a stateEventLabel. The stateEventLabel reuses the concrete syntax definition of
entry, do, and exit events.
< s t a t e E v e n t L a b e l > = [< e n t r y E v e n t >] [’ \ n ’ <doEvent >] [’ \ n ’ < e x i t E v e n t >] ;

Figure 3.16 shows an example of a simple state. The name of the state is SimpleState1. A
state invariant is defined for this state which defines that as long as this state is active clock c1
must be smaller than 15 seconds and clock c2 must be smaller or equal to 2 ·i−5 milliseconds.
Moreover, all three kinds of state events are defined. The entry event executes action action1
and resets the clock c0; the do event executes action action2 periodically (the period is 50
milliseconds); the exit event executes action action3 and resets the clocks c1 and c2.

Figure 5.5: Syntax Template of a Simple
State [4].

38 CHAPTER 3. MODELING LANGUAGE

SimpleState1

invariant c1 < 15 s, c2 <= 2∙i-5 ms

entry / {action1} {reset: c0}

do / {action2} [period: 50 ms]

exit / {action3} {reset: c1,c2}

Figure 3.16.: Concrete Syntax Example of a Simple State

3.4.2.6. Composite State

A state in a Real-Time Statechart is called a composite state if it contains further states, i.e. if
it has substates. A composite state is an extension of a simple state. Thus, it may also have
invariants and state events, and it may be an initial or final state.

To enable the composition of states within a composite state, we use the concept of regions.
Each region contains exactly one Real-Time Statechart (the so-called embedded statechart)
that contains the substates. As composite states may contain more than one region, composite
states do not only enable hierarchical statecharts, but also concurrent behavior within a Real-
Time Statechart.

We distinguish non-orthogonal composite and orthogonal composite states. A non-
orthogonal composite state contains exactly one region. An orthogonal composite state
contains two or more orthogonal regions and defines concurrent behavior.

Each region of a composite state has a name, which is the same as the name of the embedded
Real-Time Statechart. Hence, the names of all regions of an orthogonal composite state and
thus of all embedded statecharts at this level must be unique.

In contrast to the submachine states defined in the UML, we do not permit to reference
the same Real-Time Statechart from more than one region [Gro10b, p. 551]. We impose
this restriction to avoid additional complexity concerning the scopes of clocks and variables.
As we already offer explicit support for re-using components and Real-Time Coordination
Protocols, we consider a reuse of single Real-Time Statecharts as unnecessary. Thus, an
embedded statechart has exactly one embedding region. As a consequence, the structure of a
Real-Time Statechart is always a tree with one root.

Currently, the regions of an orthogonal composite state may not be executed in parallel
because we currently assume that the root Real-Time Statechart is executed within one task.
Thus, we enforce sequential semantics as defined by Zündorf [Zü01, p. 159]. Therefore, a
developer has to define the processing sequence of the regions for each composite state. For
this purpose, each region has a fixed priority defined by means of a natural number (excluding
zero). A larger number indicates a higher priority. Thus, the lowest priority is 1. The highest
possible priority is the number of regions of the affected composite state.

Within an orthogonal composite state, embedded statecharts can synchronize the firing of
their transitions via synchronization channels (cf. Section 3.4.10). A developer defines these

Figure 5.6: Example of a Simple State [4].

In order to avoid the system to stay too much time in a particular state, in MechatronicUML it is
possible to specify time invariants to set the maximum time of stay in that particular state. This
is defined with an upper time bound. If this upper time bound is reached before the outgoing
transition fires, then the system will enter a deadlock.

Apart from invariants, the developer can also specify state actions. MechatronicUML supports
these types of state actions:

• Entry-Action. The entry-action belongs to a state and is executed as soon as the state is
activated.

• Do-Action: The do-action belongs to a state and is executed as soon as the execution of
the entry-action is finished and has a period of execution specified in square brackets using
a lower and an upper bound.

• Exit-Action: The exit-action belongs to a state and is executed as soon as the state is
deactivated.

Actions are used to manipulate the values of certain variables or call operations that are allowed in
the MechatronicUML action language. Other behaviour that can be implemented with an action
is the following: resetting clocks, sending asynchronous messages and consuming asynchronous
messages.

Transitions

Transitions are use to let the system switch between states. They are represented with and arrow
that goes from the source state till the target state. These transitions can be labeled with features
like guards, clock constraints, synchronizations, trigger and raise messages, transition-actions, and
priorities.

The change from a source state to a target state happens when the transition is enabled (also
referred to as transition fires). For that to happen, first of all, the guard and clock conditions
must evaluate to true. In addition to this, if specified, must the asynchronous trigger message-
event be available in the message-event pool and the synchronization channel be enabled. When
the transitions fires, the exit-action of the source state is performed, the transition action is also
performed, the entry-action of the target state is performed and the raise message-event of the
transition is released [4]. Ultimately, a deadline can be added to the transition in the form of a
lower and upper bound to specify the time interval where the transition must fire. An example of
a transition in MechatronicUML can be seen in Figure 5.7.

46

CHAPTER 5. MECHATRONICUML

48 CHAPTER 3. MODELING LANGUAGE

5 (we refer to the forthcoming Section 3.4.10.1 for details on synchronizations with selector).
The effect label comprises (i) an increment of variable i, (ii) the sending of a message with type
m2 and parameter value i, and (iii) the reset of clock c0 to zero. The deadline label comprises
an absolute deadline which states that the value of clock c1 must be between 5 and 15 seconds
when the firing finishes.

State1 State2

[c1<=10] [i<5] msg1 ch1[5]?

/ {i++;} m2(i) {reset: c0}

clock

constraint guard

trigger

message

synchronization with

selector expression

raised

message with

parameter value

action clock

reset absolute

deadline

c1∈ [5s;15s]
1

Figure 3.24.: Concrete Syntax Example of a Transition

3.4.4. State Connection Point

The activation and deactivation of composite states via composite transitions faces certain
limitations. On activation of a composite state using an incoming composite transition, all
embedded statecharts are activated by setting their initial states active. Thus, there is only
one possible initial configuration of active substates, regardless of which transition causes the
activation. As an example, the composite state State2 in Figure 3.25 can be entered via State0
or State1. However, in both cases, the internal start configuration corresponds to the initial
substates State2a and State2c.

State0 State3

State2

region1

region2 1

2

State2a State2b

State2c State2d
State1

Figure 3.25.: Activation and Deactivation via Composite Transitions

On deactivation of a composite state using an outgoing composite transition, all embedded
statecharts are deactivated as well. The deactivation is independent from the internal state
configuration, i.e., the combination of currently active substates. In Figure 3.25, State2 can

Figure 5.7: Syntax Example of a Transition [4].

Regions

As we previously introduced, the states of a Statechart can embed other Statecharts by using
regions. A state can embed a set of regions while each region contains one Real-Time Statechart.
That enables to specify hierarchical Real-Time Statecharts comparable to hierarchical UML state
machines. The Real-Time Statecharts in all regions of a composite state are active if and only if
a composite state is active. Each region has a name and if a state contains more than one region,
each name of each region must be different.

Since regions embed Real-Time Statecharts, they may define own clocks as well as variables and
operations. In addition, each region defines a priority that defines in which order the embedded
Real-Time Statecharts of a composite state are executed. As for transitions, higher numbers
indicate higher priorities.

Clock

In order to model time-dependent behaviour, Real-Time Statecharts use variables whose value
increases continuously and synchronously at the same rate called clocks. Clocks are used for storing
the elapsing of time during the systems execution. Every single clock within a statecharts must
start at zero and must have a specific unique name. These clocks are mostly used in invariants,
time guards, clock resets, and deadlines.

Constraints can be set on clocks in order to restrict the values of a particular clock to a certain
range when defining a state invariant or restricting the enabling conditions of a transition. Clocks
also allow reset in order to start running from zero again in some point during the execution of
the system.

Variables and Operations

Another feature offered by MechatronicUML for the Real-Time Statecharts are the variables and
the operations. A variable is a data-object with a unique name and specific value which can be
restricted by the type of the variable (Real, integer, etc). The value of a variable can be changed
by an action and it is also possible to define its initial value (even though it is not mandatory).
Lastly, a variable can be set to constant so that its initial value is maintained during the execution
of the system.

An operation is a callable behavioral feature that contains an implementation in a Real-Time
Statechart [4]. Its definition is specified with its name, a set of input parameters and a return
type. Each input parameter from the set is defined by its name and a data type and so is the
return type. An operation can be called from the statechart that defines it and all the embedded
components inside the same statechart. Like with actions, the specification of an operation is
defined by an expression using the MechatronicUML action language.

Action Language

MechatronicUML defines an action language that enables the textual specification of imperative
behavior. It supports the basic features of an imperative programming language including as-

47

CHAPTER 5. MECHATRONICUML

signments, comparisons, boolean and arithmetic operations, loops, and if statements. This action
language is used for defining transition guards and actions.

Asynchronous Message-Event

In MechatronicUML, messages are used to support the asynchronous communication between
the interaction points of two discrete atomic components. A discrete interaction endpoint either
corresponds to the role of a Real-Time Coordination Protocol (which will be introduced in the next
section) or to a discrete port that refines a roles behavior [4]. Each one of these discrete interaction
endpoints refers to a specific set of message types that might receive or send. In addition to this,
message buffers can be declared to store the messages that the endpoint receives during execution
time.

As we have seen, in MechatronicUML Real-Time Statecharts are used to model the behaviour of the
interaction points between discrete components. This includes the supervision of the asynchronous
messages that are send/received which are specified in the transitions of the Real-Time Statecharts
as raise messages or trigger messages.

As we have seen, a trigger message is one of the requirements for a transition to fire. The transition
will only fire if the specified trigger message of the specified type is available in the message buffer
of the interaction point of the discrete atomic component. In addition to this, the transition that
is going to fire can also get access to the message’s parameters and these might be used to define
the values for certain parameters of the transition’s raise message.

On the other hand, raise messages are one of the possible effects when a transition fires. There-
fore, when fired, a certain message of a specified type is sent through the associated interaction
endpoint and transfer over the connector attached to it. Additional information can be send from
the sender to the receiver by specifying several parameter types in the particular message type.
These concrete parameter values can be accessed by the receiver once the transmission has been
performed successfully.

Synchronizations

Synchronizations are used in MechatronicUML to allow two Real-Time Statecharts from two
orthogonal composite states (embedded in their respective regions) to change their state at the
same time. This leads to the possibility of defining a constraint that ensures that a transition does
not fire alone, but along with another transition from another orthogonal statechart. We refer to
this constraint as synchronization.

The first thing to do to define a synchronization is to specify the synchronization channel at an
orthogonal state. This must be the parent state of orthogonal regions that contain the statecharts
with the transitions that are going to be synchronized. After defined, the channel can be added
to the transition label to specify the synchronization. Both transitions do not fire at the same
time. The first one to fire is the sender transition and the second to fire is the receiver transition.
Per each transition in a statechart only one synchronization channel (with one receiver and one
sender) can be specified. There is another type of transition which includes a selector that is
used to restrict the synchronization between two transitions from happening unless the evaluation
of the selector’s expressions are equal. This leads to the distinction of synchronization between
plain synchronization (synchronizations without selector) and synchronization with selector. An
example of the syntax of each of the two types of synchronizations can be seen in Figure 5.8 and
5.9.

48

CHAPTER 5. MECHATRONICUML

3.4. REAL-TIME STATECHART 55

A1

B 2

channel sync

B1
sync!

B2

C 1

C1
sync?

C2

Figure 3.29.: Concrete Syntax Example for a Plain Synchronization

only synchronize if both, the sending and the receiving synchronization, provide the same
value in their selector expression.

In general, we support the selector expressions of types Boolean and Integer. In case of
multi roles, we also support to use selector expressions of type Role and Port as explained in
Section 3.4.11.

Using the selector type Integer, we can model UPPAAL’s synchronization arrays. As
mentioned before, a synchronization channel array of a given size is an ordinary array whose
elements are synchronization channels.

Concrete Syntax of a Synchronization with Selector
The concrete syntax of a synchronization with a selector extends the concrete syntax of a plain
synchronization. If a selector type is defined for a synchronization channel, then we write the
type in square brackets after the name of the channel.

For example, Figure 3.30 shows a Real-Time Statechart that has one state A1 and a variable
i of type int with the initial value zero. The state A1 defines a synchronization channel named
sync with the selector type Int.

A specific synchronization channel can be used by specifying an integer expression in
square bracket just like the selector expression used in Figure 3.30. In contrast to UPPAAL,
however, our specification does not require to specify a number of channels as an array size,
because we only use one channel with a condition that may use arbitrary integers.

3.4.10.2. Execution Semantics of Synchronizations

In contrast to older publications, the synchronizing transitions do not get the minimum
(absolute) priority of both (cf. [GB03, p. 18]). Instead a synchronization affects the
prioritization and execution order of orthogonal Real-Time Statecharts as described in the
following.

Figure 5.8: Syntax Example for a Plain Syn-
chronization [4].

56 CHAPTER 3. MODELING LANGUAGE

A1

B 3

channel sync[int]

B1
sync[i]!

B2

C 2

C1
sync[0]?

C2

D 1

D1
sync[1]?

D2

variable int i = 0;

Figure 3.30.: Concrete Syntax Example for Synchronization with Integer Selector

Sender Transition Fires First Despite Region Priority
Per default, the region priority defines the execution order of the regions of an orthogonal
state. However, synchronization may overrule region priorities when the sender transition is in
a region with a lower priority than the region of the receiver transition. Then, the region with
the sender transition is executed first and the region with the receiver transition is executed
afterwards (without any other region execution inbetween) because a synchronization is
directed from sender to receiver. Thus, the effects of the sender transitions are executed
completely before executing the effects of the receiver transition.

An example for this special case is shown in Figure 3.31. It consists of an orthogonal
composite state A1 that embeds the two regions B and C. Moreover, A1 defines the channel
sync. In region B, the transition from initial state B1 to state B2 waits for / receives a
synchronization via the channel sync and assigns the value 1 to variable i while firing.
Similarly, in region C, the transition from initial state C1 to state C2 sends a synchronization
via the same channel and assigns the value 2 to i while firing. The initial active state
configuration is (A1,B1,C1). Without the synchronization, the transition B1→B2 would be
executed before C1→C2 because of the higher priority of region B. This would result in the
assignment order i:=1; i:=2;. However, due to the synchronization, the sender transition is
executed first leading to the assignment order i:=2; i:=1; instead. This results in the final value
1 for i and the final state configuration (A1,B2,C2).

Receiver Transition Are Only Indirectly Evaluated For Enabling
Receiver transitions are not evaluated directly if they may get enabled. Instead, they are
checked immediately (in descending priority order) as soon as a sender transition of an
orthogonal region with the same channel is evaluated.

Figure 3.32 gives an example for this behavior. The initial composite state A1 declares the
synchronization channels syncBE and syncCD and contains the four regions B, C, D and E with

Figure 5.9: Syntax Example for Synchroniz-
ation with Integer Selector [4].

A very important thing that should be noted is that MechatronicUML only allows one-to-one
synchronizations and in particular no broadcast synchronizations. This means that in case of
more than one sending and/or receiving transition, only pairs of one sender and one receiver
transition are executed (which is chosen randomly).

5.2 MBSE capabilities

5.2.1 Specification phase

MechatronicUML follows a component-based approach for modeling the software that is embedded
in high-tech cyber-physical systems. The modeling process is done with a visual component editor
that provides the developers with components as building blocks for the construction of system
architectures. From a practical point of view, the GUI that MechatronicUML offers is very intuitive
to use, offering a certain amount of freedom when modeling and providing constant messages that
allow the developer to see if he is doing something wrong.

As previously introduced, MechatronicUML is a modeling language for the model-driven develop-
ment of the software embedded in high-tech cyber physical systems. This has a direct implication
when trying to model the uncontrolled hybrid-plant of the system.

On the one hand, the time-driven part of the system (the low-level layer of the system) cannot be
modeled in MechatronicUML. This results in developing the continuous/discrete-time plants and
low-level controllers in a modeling tool like MATLAB/Simulink or Modelica/Dymola since they
allow simulation by numerical integration. The only thing that MechatronicUML provides is the
possibility of defining an atomic component as continuous-time in terms of its behaviour and to
specify its ports and the type of variables that flow through those ports. The evolution of these
variables or the dynamics of these components is developed in the same external tool.

On the other hand, MechatronicUML is a very powerful tool when modeling the event-driven part
of the system (the high-level layer of the system). The behaviour of discrete components and
their respective discrete ports is defined by Real-Time Statecharts (RTSC). These Statecharts are
a combination of hierarchical UML state machines and timed automata so they model discrete-
event systems with the automata formalism. Each component has exactly one RTSC that embeds
the RTSCs of each one of the discrete ports in parallel regions. By the own nature of the Real-
Time Statecharts, mode switching is guaranteed through the definition of the set of states and
the set of transitions for each statechart that represent the discrete-event behaviour of a certain
component.

49

CHAPTER 5. MECHATRONICUML

RTSCs in MechatronicUML support event handling through the use of asynchronous message-
events that are exchanged between the different ports of the different components in the system.
Messages can be raise messages or trigger messages depending on if they are the result of firing a
transition or a condition for the transition to fire. In each RTSC of the model, the developer has
to specify an initial state and also has the possibility to define a final state where the statechart
will end its execution (always regardless of any input event).

Continuous-time evolution is not supported in MechatronicUML and therefore updating variables
in time following a certain dynamic law is not possible and neither is the synchronization on time
since RTSCs do not implement Hybrid Automata. On the other hand, discrete variables can be
declared in any RTSC and they can change their values by using the operations that are supported
in the MechatronicUML action language. Variables do not need to be initialized before the execu-
tion of the system but it can be done if needed. Variables can be shared between statecharts if the
ports of the statecharts share the variables through their connection. Finally, synchronization of
events is supported in MechatronicUML through the use of plain synchronization and synchron-
ization with selector depending on which one is required in a certain case. However, we have
to be aware of the limitations that MechatronicUML has in terms of synchronization since they
only allow one-to-one synchronization (one sender and one receiver) and only one synchronization
channel per transition so broadcasting synchronization is not possible.

These are all the capabilities in terms of modeling the uncontrolled plant of the system. When
trying to model the systems requirements the capabilities of the MechatronicUML toolset are
very few. Just like with Simulink&Stateflow, MechatronicUML does not provide any possibility
to model the requirements of the system in terms of finite state machines. This also leads to the
absence of a synthesis algorithm for supervisory controller development but there is still a manual
procedure to obtain the desired supervisor for the system. This procedure will be explained in the
following section.

5.2.2 Supervisor development phase

Just like the other modeling languages/tools, MechatronicUML does not provide any sort of al-
gorithm procedure to obtain a supervisory controller through event-based or data-based synthesis.
However, this tool provides with a manual method that ensures the fulfillment of the requirements
by using asynchronous communication and messages that represent events.

As we already know, the discrete interaction of components in MechatronicUMl takes place via
its discrete ports that exchange asynchronous messages. Therefore, with the right coordination
of the exchanged messages between the respective components the developer could obtain a con-
trol strategy that fulfills the desired requirements. To do that, MechatronicUML provides con-
tracts that focus on the whole coordination via message-based communication that can guarantee
hard real-time constraints and safety-critical aspects. These contracts are known as Real-Time
Coordination Protocols (RTCP). Real-Time coordination Protocols define the behaviour of the
coordination, defined using communication, which results in which message must be sent/received
by which statechart at any given time during the execution of the system.

Therefore, the main objective of Real-time Coordination Protocols is to ensure correct message-
based coordinations between discrete components. This results in every discrete port having their
own contract/RTCP for the overall desired coordination. The MechatronicUML toolset provides
with a visual editor, which is quite intuitive and easy to use, to perform this modeling task.

A Real-Time Coordination Protocol consists of the participants of the coordination (which we call
them roles) and the role connector that defines the message transmission assumptions. Each role
represents a discrete port. Within the graphical editor, due to the asynchronous communication,
the developer has to specify the exchanges messages, the properties of the incoming message

50

CHAPTER 5. MECHATRONICUML

buffers, and specific quality of the service assumptions of the RTCP like the message delay. On
the other hand, in what the behaviour of the Real-time Coordination Protocols concerns, the
developer has to model which role has to send/receive which message at which instant during
execution time. To achieve this, Real-Time Statecharts have to be assigned to each one of the
roles for them to be able to perform the correct message exchange communication.

Eventually, by using Real-Time Coordination Protocols, we can obtain a model where we have all
our components with their respective ports connected, whose behaviour is described by RTSCs,
connected with RTCPs to ensure that the end behaviour of the whole the system is the desired.
This is the way that MechatronicUML has to obtain their supervisory controller. Once obtained,
the process of validation is next and will be described in the following section.

5.2.3 Validation phase

MechatronicUML by itself doesn’t provide a simulation environment to test the controllers in order
to validate the behaviour of the modeled system. Therefore, in the case of MechatronicUML mod-
els, the component model and the corresponding Real-Time Statecharts must be transformed to
the modeling formalism of an appropriate simulation tool (like Simulink or Modelica). Addition-
ally, also the models that are developed in other disciplines such as the continuous-time controller
or the continuous-time plant of the system must be integrated into the simulation model (unless the
tool is the same). At the moment, MechatronicUML provides the translation of MechatronicUML
models to MATLAB/Simulink and Stateflow and to Modelica.

The translation of MechatronicUML models to MATLAB/Simulink and Stateflow is properly
defined in [28] and will be summarized briefly here. An overview of this transformation can be
seen in Figure 5.10.

20 CHAPTER 3. TRANSFORMATION

well as their connections. In the first step, our model transformation transforms the compo-
nent instance configuration of MECHATRONICUML into a Simulink block diagram. In this
transformation, we replace assemblies of MECHATRONICUML by a communication switch
implementation in Simulink which enables to deliver asynchronous messages from the send-
ing component instance to the receiving component instance. In addition, we extend atomic
components by so-called link layer blocks that implement asynchronous communication with
message buffers in Simulink. We discuss this step of the transformation in detail in Section 3.2.

Environment Model

Controller Model

Discrete Software Model

Simulink Block Diagram

Stateflow Chart

Component Instance

Configuration

Real-Time Statechart

Model

Transformation

Model

Transformation

Figure 3.1: Overview of the Transformation

In the second step of the transformation, we translate the Real-Time Statecharts that define
the behavior of the component instances into Stateflow charts. The Stateflow charts are em-
bedded into the Simulink subsystems that are created for atomic component instances. This
includes the generation of helper functions for sending and receiving asynchronous messages
which is not natively supported by Stateflow. We provide details on this step of the transfor-
mation in Section 3.3.

The result of the transformation is a (hierarchical) Simulink block diagram with embedded
Stateflow charts that specifies the discrete behavior of the mechatronic system. The interfaces
of the controller model are contained in the MECHATRONICUML model in terms of continu-
ous components. We generate corresponding subsystems for the controller model in our trans-
formation such that the integration of the discrete software with the controller model is facili-

Figure 5.10: Overview of the MechatronicUML - Simulink&Stateflow transformation [28].

The transformation consists of two steps basically. In the first step, the model transformation
transforms the component instance configuration of MechatronicUML into a Simulink block dia-
gram. In this transformation, the assemblies of MechatronicUML are replaced by a communication
switch implementation in Simulink which enables to deliver asynchronous messages from the send-
ing component instance to the receiving component instance. In addition, the atomic components

51

CHAPTER 5. MECHATRONICUML

are extended by the so-called link layer blocks that implement asynchronous communication with
message buffers in Simulink.

In the second step of the transformation, the Real-Time Statecharts that define the behavior of
the component instances are translated into Stateflow charts. The Stateflow charts are embedded
into the Simulink subsystems that are created for atomic component instances. This includes
the generation of helper functions for sending and receiving asynchronous messages which is not
naturally supported by Stateflow.

The result of the transformation is a (hierarchical) Simulink block diagram with embedded State-
flow charts that specifies the discrete behavior of the mechatronic system. The interfaces of the
controller model are contained in the MechatronicUML model in terms of continuous components.
We generate corresponding subsystems for the controller model in our transformation such that
the integration of the discrete software with the controller model is facilitated. The integration of
the controller model with the environment model, however, needs to be carried out manually in
Simulink by the developer.

For the translation of MechatronicUML models to Modelica there is no transformation procedure
but a Modelica library that allows to build MechatronicUMl related models and use Real-Time
coordination Protocols [56]. Once built, the models in the OpenModelica library, one can use its
simulation features to validate the supervisory controllers developed.

The two transformations that we just mentioned provide a way of validating the controllers through
simulation. However, MechatronicUML models and their Real-Time Coordination Protocols can
be validated in another way in order to ensure that they fulfill the requirements that are needed for
the safety of the whole system. This alternative for validation is by using model-checking [14]. This
formal analysis technique checks that all the possible execution traces against the requirements.
For each requirement of the accepted requirement language, the model checker is able to state if
the requirement is fulfilled on all execution traces or not.

In MechatronicUML, real-time model checking of the Real-Time Coordination Protocols is sup-
ported via a model transformation to the model checker UPPAAL [5]. The procedure goes as
follows: first there is a transformation from a MechatronicUML model to a UPPAAL model, then
an automated execution of a model checking procedure is executed and finally a back-translation
to a MechatronicUML is performed with all the details regarding the results. Therefore, the de-
veloper does not have to understand the UPPAAL language nor how the model checking procedure
works because he only has to check the returning model that is the result of the back-translation.
In the future it is expected that MechatronicUML will have its own model checking validation
method.

Once validated the supervisory controller, either via simulation or model checking, the validation
phase is over and it is time to see if MechatronicUML models can be implemented in certain
platforms.

5.2.4 Implementation phase

The MechatronicUML approach, which consists of components and Real-Time Statecharts, allows
to specify complex real-time systems following UML notations and the model-driven architecture
(MDA) approach at the platform independent level (PIM). This platform independent description
can then be mapped automatically to a platform specific model (PSM), provided that a target
platform description in form of annotations describing real physical behavior is given [10]. There-
fore, any programming language that supports real-time priority scheduling can be suitable for
the implementation. Currently, MechatronicUML supports the code generation of Real-Time Java
and C++ for an appropriate real-time operating system.

52

CHAPTER 5. MECHATRONICUML

5.3 Case study

Since MechatronicUML does not support continuous-time modeling, the idea for the case study is
to build the abstracted discrete event system resulting from the abstraction process of the uncon-
trolled hybrid plant. After building it, it would be interesting to explore one of the transformations
that we talked about in section 5.2.3 in order to try to validate the controlled system. If we wanted
to validate the models through simulation we would have to introduce the continuous-time part
of the system that is missing in the MechatronicUML model in order to perform the complete
simulation.

In order to model the Pick&Place station, the first thing to do would be to create the atomic
components that represent the discrete-event system (actuators and sensors). The next thing
would be to build the Real-Time Statecharts that represent the discrete behaviour of the atomic
components and their respective ports. After that, Real-Time Coordination Protocols would be
created in order for the different ports to exchange the messages during the execution.

In order to see how many Real-Time Coordination Protocols should be created let’s take a look
at the message-event exchange that each pair of components should have in order to fulfill the
requirements. Per each pair of components that exchanges at least 1 message in one direction a
Real-Time Coordination Protocol will be needed:

• VertMotionAct → Sensor Up: events on, off / Sensor Up → VertMotionAct: event stop

• VertMotionAct → Sensor Down: events on, off / Sensor Down → VertMotionAct : event
stop

• VertMotionAct → HorMotionAct : events move in, move out / HorMotionAct → VertMot-
ionAct: event move down

• VertMotionAct → Picker : events drop, pick

• HorMotionAct → Sensor In: events on, off / Sensor In → HorMotionAct : events stop

• HorMotionAct → Sensor Out : events on, off / Sensor Out → HorMotionAct : event stop

• Picker → Sensor Picker : events on, off

• Sensor Picker → VertMotionAct : event move up

As we can see, there are certain components that will need several Real-Time Coordination Proto-
cols since they interact with more than one different component (in a unidireccional or bidireccional
way). Therefore, certain components will have more than one discrete ports in order to allow all
the needed protocols (for example, the VertMotionAct will need 5). What we have to remember
also is that every single discrete port has to have a Real-Time Statechart that defines its behaviour
and they cannot be the same since MechatronicUML does not tolerate that.

As a result, several Real-Time Statecharts with the same structure (states and transitions) will
have to be build in order to represent the behaviour of each one of the discrete ports. Each one of
these parts will have different trigger and raise messages since they are part of different Real-Time
protocols and therefore exchange different messages with different statecharts. Finally, the final
step towards getting the controlled system would be to synchronize all the statecharts of the same
ports in order for them to evolve together in time.

Here is where the problem begins. As previously stated, MechatronicUML only supports one-to-
one synchronization and therefore the discrete ports of components like the VertMotionAct would
need more than one synchronization channel per transition in their Real-Time Statecharts for
them to evolve together. As we know, that is also not possible since MechatronicUML restricts

53

CHAPTER 5. MECHATRONICUML

the number of synchronization channels per transition to one and therefore the there is no way to
synchronize all the transitions of the discrete ports of a component if that component has more
than two ports.

This restrictions that MechatronicUML has in terms of event broadcasting suppose a major im-
pediment to building the supervisory controller that implements the desired behaviour for the
Pick&Place station. Therefore, no modeling results can be presented for the MechatronicUML in
this particular case study and of course no simulation results can be presented either.

54

Chapter 6

Modelica

Modelica [25] is an object-oriented equation-based programming language commonly used to
design, develop and analyze high-tech complex cyber-physical systems. This language is different
from modeling tools like Simulink in certain features. Modelica’s modeling method is based on
equations instead of assignments and this allows for acausal modeling with equations that do not
specify the data flow direction which causes a re-usability of the Modelica classes. Modelica also
offers a multidomain modeling capability which results in models that contain several components
from different physical domains like electrical, hydraulic, mechanical, biological and control and
that are well connected and defined. In addition to this, Modelica is an object-oriented language
with a general class concept that unifies classes, generics known as templates in C++ and general
subtyping into a single language construct [25]. Finally, Modelica also offers several features/con-
structs for creating, describing and connecting many types of components which makes Modelica
a great language for describing the architecture of complex cyber-physical systems.

From the developer’s point of view, models in Modelica are basically described by object diagrams
that contain mainly components and their connections. A component usually represents a physical
element (like a resistor in a electric circuit) which has ports (in the case of the resistor it would
be the two pins) that allow for interactions (in the case of the resistor it could be an electrical
flux) with other components through connectors. By joining all the components all together the
developer obtains the physical system that he wants to study in the form of an object diagram
model. It is worth to note that each one of the components has a specific internal behaviour which
is defined in a bottom level by a set of equations written with the Modelica syntax.

To help the developer during the modeling process, Modelica structures the different types of
components regarding their nature (electrical, hydraulic, etc) in different libraries (also referred
to as packages) which make them more accessible when modeling. It is worth remembering that
Modelica is only a language, and therefore a proper simulation environment is needed to graphically
edit and define a Modelica model and to perform different simulations and analysis techniques to
analyze its behaviour.

In this thesis the implementation environment for Modelica models has been OpenModelica [26].
This environment consists of several interconnected subsystems, as depicted in Figure 6.1.

55

CHAPTER 6. MODELICA

OpenModelica User’s Guide, Release v1.9.4-dev-610-g940da3e

1.1 System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1.1.

Modelica
Compiler

Interactive
sessionhandler

Execution

GraphicalModel
Editor/Browser

Textual
Model Editor

Modelica
Debugger

OMNotebook
DrModelica

Model Editor

MDT Eclipse Plugin
Editor/Browser

OMOptim
Optimization
Subsystem

Figure 1.1: The architecture of the OpenModelica environment. Arrows denote data and control flow. The
interactive session handler receives commands and shows results from evaluating commands and expressions
that are translated and executed. Several subsystems provide different forms of browsing and textual editing of
Modelica code. The debugger currently provides debugging of an extended algorithmic subset of Modelica.

The following subsystems are currently integrated in the OpenModelica environment:

• An interactive session handler, that parses and interprets commands and Modelica expressions for
evaluation, simulation, plotting, etc. The session handler also contains simple history facilities, and
completion of file names and certain identifiers in commands.

• A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing defini-
tions of classes, functions, and variables. Such definitions can be predefined, user-defined, or obtained
from libraries. The compiler also includes a Modelica interpreter for interactive usage and constant ex-
pression evaluation. The subsystem also includes facilities for building simulation executables linked
with selected numerical ODE or DAE solvers.

• An execution and run-time module. This module currently executes compiled binary code from trans-
lated expressions and functions, as well as simulation code from equation based models, linked with
numerical solvers. In the near future event handling facilities will be included for the discrete and
hybrid parts of the Modelica language.

• Eclipse plugin editor/browser. The Eclipse plugin called MDT (Modelica Development Tooling) pro-
vides file and class hierarchy browsing and text editing capabilities, rather analogous to previously
described Emacs editor/browser. Some syntax highlighting facilities are also included. The Eclipse
framework has the advantage of making it easier to add future extensions such as refactoring and cross
referencing support.

• OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor, com-
pared to the more advanced Mathematica notebooks available in MathModelica. This basic function-
ality still allows essentially the whole DrModelica tutorial to be handled. Hierarchical text documents
with chapters and sections can be represented and edited, including basic formatting. Cells can contain
ordinary text or Modelica models and expressions, which can be evaluated and simulated. However,
no mathematical typesetting facilities are yet available in the cells of this notebook editor.

• Graphical model editor/browser OMEdit. This is a graphical connection editor, for component based
model design by connecting instances of Modelica classes, and browsing Modelica model libraries

4 Chapter 1. Introduction

Figure 6.1: The architecture of the OpenModelica environment. Arrows denote data and control flow [26].

In this chapter we will review the potential of the Modelica language in terms of MBSE with
supervisor synthesis capabilities and we will try to support it by trying to build the case study.
First, in Section 6.1, a description of the basic syntactic statements and modeling concepts that
the Modelica language uses in the context of hybrid systems with supervisory control structures
will be provided. It is not a complete reference but only a selection of the basic constructs of
the language. Then, in Section 6.2, an evaluation of the capabilities of the Modelica language in
terms of model-based systems engineering with supervisory control development will be performed.
Eventually, in Section 6.3, we will attempt to build the same case study that we have been building
with some of the other languages/tools with an attempt to obtain the same (or similar) results
when simulating.

6.1 Basic modeling concepts

This section is partly based on [25].

Modelica is a typed language for hierarchical physical systems that programmers that work with
Java or C++ will find a lot of similarities with. Modelica provides with some primitive data types
like String, Boolean, Integer, Real and Enumeration and, just like in C++ and Java, it is possible
to build more complicated data types through the definition of classes. Classes are the basic
construct of Modelica and they define how an object works. This modeling language provides
with many types of classes: models, blocks, functions, packages, types and records.

Modelica also provides control statements and loops. The two basic control statements are the if
and when statements and the two basic loop statements are the while and for statements. Only
the syntax of the if statement will be presented since it is the only one that has been used in this
thesis:

if expression then
equation/algorithm

elseif expression then
equation/algorithm

else
equation/algorithm

end if

When attempting to describe complex hierarchical system architectures, Modelica uses its power-
ful component model with components that can be connected through the Modelica connection
mechanism and that can be visualized as connection diagrams. This framework focuses on com-
ponents and its connections and makes sure that the communication works over the different
connections.

56

CHAPTER 6. MODELICA

In order to add certain functionalities to the cyber-physical systems designed with Modelica, there
are some libraries that should be mentioned. The first one is the EmbeddedSystems library which
contains special communication block implementations that allow simulation of non-ideal commu-
nication between controllers and plants. Some of the features that can be simulated are: sampling,
computational delay (fraction of sample period), communication delay, noise measurement and sig-
nal limitations. The second one is the LinearSystems which contains several functions that provide
with different representations of linear, time-invariant differential and difference equation systems
along with several typical blocks to define different control loops and strategies. Finally, the last
library to be mentioned is the Synchronous library which extends the scope of the Modelica lan-
guage to allow the modeling of synchronous control systems with variable sampling rates and by
enabling an automatic code generation for embedded systems.

6.1.1 State Machines

Originally, Modelica was intended as a language primarily used for physical systems modeling but
with Modelica 3.3 the scope has been extended to complete systems that include state machines
in their behaviour [20]. In Modelica, a state of a state machine is any block that does not
have continuous-time algorithms or equations in it. A cluster of block instances at the same
hierarchical level which are coupled by transition equations constitutes a state machine. The
transitions between these blocks contain conditions (also referred to as guards) that allow the
transitions to fire. State machines are modelled in Modelica with the state machine extension
which is a substitute for the StateGrap library [39] that was used before.

Before introducing the basic syntactic elements that are used in Modelica for building state ma-
chines, an example of a hierarchical state machine created with Modelica will we introduced an
explained to show the scope of capabilities that Modelica offers. We will talk capabilities but we
will not mention the specific syntactic declarations that are used for them, that will come later.
This example can be seen in Figure 6.2:

 207

u2 = v
…

17.3.7 Example

[Consider the following hierarchical state machine:

The model demonstrates the following properties:

 state1 is a meta state with two parallel state machines in it.
 stateA declares v as outer output. state1 is on an intermediate level and declares v as inner outer

output, i.e. matches lower level outer v by being inner and also matches higher level inner v by being
outer. The top level declares v as inner and gives the start value.

 count is defined with a start value in state1. It is reset when a reset transition (v>=20) is made to
state1.

 stateX declares the local variable w to be equal to v declared as inner input.
 stateY declares a local counter j. It is reset at start and as a consequence of the reset transition

(v>=20) to state1. However, this reset is performed when stateY is entered by transition (stateX.i>20)
although this transition is not a reset transition.

 Synchronizing the exit from the two parallel state machines of state1 is done by checking that stated
and stateY are active using the activeState function.

Figure 6.2: Example of Hierarchical State Machine in Modelica 3.3 [20].

57

CHAPTER 6. MODELICA

The model of the state machine demonstrates some features that should be noted. First of all,
with the Modelica state machine extensions, there is the possibility of building hierarchical state
machines with orthogonal states with their basic elements like states and transitions. Therefore,
there are meta states (like state1) with one or more state machines in it working in parallel. As it
can be seen, states are instances of ordinary blocks with data-flow equations and the transitions
between such blocks are represented by connections associated with transition conditions. Even
though it cannot be seen, the transitions can be immediate (strong) or delayed (weak) when it
comes to them firing. Another thing that cannot be seen but it is very important is that all parts
of the state machine have the same clock and, therefore, the variables of active/inactive states can
be accessed/read whenever the clock ticks. Finally, the possibility of sharing variables through the
different levels of hierarchy is supported in Modelica with some syntactic declarations that will be
introduced later.

Defining a state machine

When creating state machines in Modelica, not many declarations have to be used in order to
obtain the desired functionality. The main declarations are: parameter definition, state definition,
transition definition, sharing variables, and some other useful declarations.

The first declaration that is usually done is the definition of the global variables/parameters that
will be (probably) accessed by the states machines. These are defined with a syntax like (para-
meter) type name(start=value) where parameter is optional (if not used it is considered a
variable with a value that changes following a certain law), type refers to the type of the variable
(Real, Boolean, etc) with name name and starting value value. This declarations can also be
made in local states if needed.

Next, the definition of any state is done with the following declaration:

block NameState
<parameters definition>

equation
<statements>

end NameState;

Where NameState is the name of the state, the parameter definition is done just like we have
introduced and in the equation compartment, the dynamic equation are typed and the state
definition is always encapsulated with the block NameState end NameState; clause. Following
state definition, the definition of transitions is also quite easy and it has a single declaration for it
which is:

transition(from,to,condition,immediate,reset,synchronize,priority)

Where from and to are the source and target states, condition is a boolean condition that must
evaluate to true for the transition to fire, immediate is a parameter that if evaluates to true it
creates an immediate transition but if evaluates to false it creates a delayed transition, reset is a
boolean variable that if evaluates is true it resets the current state machine and the values of all
its variables, synchronize is used to disable the firing of the transition unless all the other state
machines have reached a final state (state without outgoing transitions) and priority is used to
set the different priorities when a state has more than one outgoing transitions.

Variables are shared among different hierarchical levels by using the inner/outer input/output
notation. The outer declaration is used in states to access a variable that is defined in the above
hierarchical level and that is defined as inner in that level. In Figure 6.2, stateA accesses the
value of the variable v with the outer declaration for example. On the other hand, the input
declaration is used when a variable which is accessed with an outer declaration and is going to be
used in the current state but will not change its value (it might part of an equation/transition).

58

CHAPTER 6. MODELICA

This is the opposed case than the output declaration following an outer declaration which is
used to access a variable of a parent state and change its value in the process. When modeling
intermediate level states one will use a combined declaration like inner outer output which is
the only case where the inner/outer are combined. Also, the inner declaration is never followed
by input/output unless it is in an intermediate state.

The last useful declarations that are used in Modelica are the declaration initialState(state)
which is used in each state machine to set the initial state and activeState(state) which is used
to know if a state from a certain state machine is active at the moment where the clock ticks. A
last thing that should be noted is that the transition, initialState equations can only be used
in equation compartments and cannot be used in if -equations with non-parametric conditions or
in when-equations.

Modelica extensions for state machines

As previously stated, any block without continuous-time equations or algorithms can be a state of
a state machine in Modelica 3.3 [20]. This restriction eliminates the possibility of having Hybrid
Automata in Modelica. However, an extension for the Modelica 3.3 state machines is presented
in [21] to overcome this through multi-mode modeling. The basic idea for multi-mode modeling
is to extend the Modelica 3.3 synchronous state machines to continuous-time state machines that
have continuous-time models as states. No new Modelica language element is needed, only a
generalized semantics for state machines has to be introduced. The concepts have been evaluated
with a Dymola prototype.

To sum up, a proposal is presented in [21] for modeling variable structure systems with dynamically
changing number of states in Modelica by extending the synchronous clocked state machines
to continuous-time state machines. With this extension it is straightforward to model hybrid
automata. However, hybrid automata are not practical to use for physical system modeling. A
novel extension is proposed to use continuous-time acausal models as states of a state machine.
By mapping connections to connectors on a state machine in a particular way on equations, the
standard symbolic processing for Modelica models can be applied. This approach allows already
handling a large class of useful variable structure systems with dynamically changing sizes of
continuous-time states.

Models cannot be handled with this new method, if connections between state and non-state
components lead to constraints on continuous-time state variables that vary for the different state
machine states.

The proposal is not yet complete. Especially, mappings for all connector types of Modelica need
to be still defined. The proposed extension is also still not supported in terms of simulation in
platforms like OpenModelica (since the prototype was tested in Dymola) and therefore this makes
it reach less people that program with the Modelica language.

6.2 MBSE capabilities

6.2.1 Specification phase

Modelica is a typed object-oriented modeling language oriented towards complex cyber-physical
systems which are modeled in a graphical equation-based approach. Within this approach, each
graphical icon represents a physical component like an hydraulic pump, a DC motor or a spring.
These icons are connected with composition lines that represent the actual physical connections
like a heat flow or an electrical line. The variables in the interfaces of these icons describe the

59

CHAPTER 6. MODELICA

interaction between the different components whose behaviour is described with equations. Be-
cause of these features and more, Modelica becomes a very graphical and intuitive language for
modeling and simulating (with a simulation environment) high-tech systems.

When it comes to modeling the uncontrolled system, Modelica offers several interesting features.
The time-driven part of the system can be modeled with component diagrams that can mix com-
ponents from multiple disciplines like electrical, mechanical, hydraulic or thermal. This component
diagram approach deviates from a block diagram approach like in Simulink in the way that is way
more intuitive to see how the system looks and what you are modeling. Control strategies can be
easily implemented with the Controller library that was previously introduced and that provides
with different control strategies depending on the needs of the developer. Both continuous-time
and discrete-time operating modes are supported in all the components and in all the features
regarding the control strategies to be applied. As a whole, the low-level of the system can be fully
modeled with a high degree of detail with all the capabilities that Modelica provides.

On the other hand, the high-level part of the system (the discrete-event plant abstracted from the
uncontrolled hybrid plant) can be modelled by using the state machine extension that Modelica
3.3 provides. Therefore, Modelica supports the automata concept (the timed one) and with the
extension [21] the hybrid version of the automata is also supported. As a result, basic components
such as states, transitions and actions can be implemented with Modelica. When it comes to the
states, one has to define the initial state of each one of the state machines in the system but the
concept of final states, which tools like MechatronicUML offer, cannot be defined. The transitions
between these states can be easily created with a simple function that offers features (apart from
the source state, destination state and the condition) like the priority of the transition or the
synchronization parameter.

However, when comparing Modelica with tools like CIF or Stateflow, the first feature in which
Modelica is lacking is when modeling events. In Modelica you cannot model a system in terms
of automata in which the transitions are guarded by the events that result from the abstraction
process. Modelica only supports the events directly from the low-level part of the system, i.e. when
the variables reach certain limits that make the system evolve in a certain way. Another way to
represent events is by defining boolean variables that are used as conditions for the transitions
and that they change their value in a certain state of the state machine. As previously stated,
mode switching is supported (even though with certain limitations) thanks to the extension [21]
that is still under development.

The state machines in Modelica can also have variables which can have a continuous-time or
discrete-time evolution, depending on the equations that are used for each one. Therefore, the
variables can be updated upon time in any state of the system. It has also been seen that thanks
to the inner and outer output notation it is possible to share variables among different levels of
hierarchy of the state machines of the system as long as the variables are well declared in the
states where they are used. Every single variable has to be assigned an initial value.

Synchronization in time is provided but the synchronization of events is not and it should not
be confused with the synchronize parameter that can be used when modeling transitions. This
parameter is used to disable that transition until all the state machines within the from-state have
reached their final states and not to make two or or more transitions evolve together at the same
moment.

To conclude, even though it has some limitations, the Modelica language still offers several pos-
sibilities when trying to model the uncontrolled hybrid plant of the system. On the other side,
just like in Simulink&Stateflow, there are no possibilities regarding modeling the requirements in
terms of automata or any other formalism. Therefore, this will directly affect the possibilities of
having an algorithm for the synthesis process and obtain a supervisory controller through this
process.

60

CHAPTER 6. MODELICA

6.2.2 Supervisor development phase

The fact that the Modelica language does not offer any possibilities in terms of modeling the
requirements, just like the other modeling tools, affects directly the possibility of having a synthesis
algorithm for supervisory controller development. However, there is still a possible manual process
to obtain the desired supervisor even though it may have some limitations.

The manual process for obtaining the supervisory controller in Modelica resembles a lot to the one
used with Stateflow but with less possibilities. In Modelica, the supervisor needed for the plant
to have the desired behaviour is basically built by addressing the transitions between states, and
in particular their conditions. The conditions of each one of the transitions are built to represent
the events of the low-level system and in a way that they fulfill the requirements. One difference
with Stateflow is that in Modelica there are no actions to be performed when a transition is fired
and neither when a state is entered or is left. Actions are only performed during the whole period
in which a state is active and that represents a limitation and also a change in functionality in
comparison with Stateflow for example. Since event broadcasting is not supported, a way to
represent events that allow to fire transitions is to create boolean variables used as the conditions
of the transitions and change their value when it is needed.

Overall, the manual process for obtaining a supervisor is quite simple but limited at the same
time and this results that for very complex high-tech systems it is almost impossible to obtain a
supervisor that is able to supervise the uncontrolled hybrid plant since a lot of features that are
needed (event broadcasting or actions for example) are not implemented or are lacking.

6.2.3 Validation phase

Since Modelica is a modeling language and not a tool, the validation phase is closely conditioned
on the simulation environment that is chosen to perform the model simulations and analysis. Two
of the most popular simulation environments used for Modelica models are OpenModelica and
Dymola and the first one is the one that has been used in this thesis.

The OpenModelica environment has several subsystems (as can be seen in Figure 6.1) and its
main parts are:

• OMEdit: this is the graphical model editor/browser that OpenModelica uses for component
model design by connecting the instances of each Modelica class and browsing Modelica
model libraries for picking components models. It also includes a textual editor to manually
edit any model and a window for interactive command evaluation.

• Interactive session handler: this is used to type and interpret commands and expressions
from Modelica to evaluate, simulate, plot among other operations. It also contains a simple
history facility and completion of file names and certain identifiers in commands.

• OMOptim: this is an optimization subsystem for OpenModelica used for design optimiz-
ation allowing to choose an optimal set of design parameters for a model. It provides an
intuitive graphical user interface to work with.

• OMC: this is the advanced interactive OpenModelica compiler which is used mainly to
compile Modelica code to C for simulation. There are also other language platforms to
generate code to. This subsystem also includes facilities to build simulation executables.

• Execution and run-time module: this subsystem is used to execute/run the compiled
code (which comes from the translated functions and expressions) and the simulation code
(which comes from the equation-based models linked with the numerical solvers that are
going to be used).

61

CHAPTER 6. MODELICA

With all these subsystems, OpenModelica provides a friendly and intuitive environment that allows
a lot of plotting possibilities that can be used when trying to validate if the behaviour of the system
under the control of the supervisor is the desired one. However, we have to remember that this will
be used for complex cyber-physical systems but still with some limitations or assumptions since
the supervisory controller will probably not be able to restrict the systems behaviour strictly as
desired. But for all the cases when the supervisor is built completely, OpenModelica offers enough
tools to validate its performance.

On the other, neither Modelica nor OpenModelica offer any possibilities in terms of formal veri-
fication of the requirements of the models. The reason behind this reality is that there are certain
Modelica practices that directly make Modelica unable to support formal methods. These Modelica
practices are stated with detail in [31]. Some of these problematic features are: compiler inter-
action, artifacts for numeric simulation, unnecessary component model complexity, algorithms,
sequential states, and incomplete models.

6.2.4 Implementation phase

In OpenModelica, as it has been seen, there is a subsystem called the OMC compiler which is
the one in charge for the code generation. The OpenModelica compiler has a series of options in
terms of its execution which are referred to as flags. One of these flags is the flag -simCodeTarget
that is used to set the target language for the code generation. The valid options as far as target
language is concerned are:

• C (default option)

• CSharp

• C++

• Adevs

• sfmi

• XML

• Java

• Javascript

Therefore, OpenModelica offers a lot of possibilities when it comes to generating code to implement
in a certain platform. From an overall point of view, the code generation process done with
OpenModelica is a very simple and intuitive process and with the additional help that the platform
offers even more.

6.3 Case study

To build the Pick&Place station of the xCPS platform in Modelica, the code in Appendix C has
been used. This code models the system and works in the following way:

• The model has 8 state machines in total, just like in the other languages. The state machines
have the same states than in the other languages with the exception of the one that models
the vertical manipulator. Just like in Stateflow, a variable count was used to allow the
automata to know at which part of the production cycle was at and, because of the nature
of the actions in Modelica (they execute during the whole time that the state is active) a state
had to be added between the states StandingStill and MovingDown to allow this variable to
increase 1 unit. This state, named Intermediate, has the same dynamic equations than the
state MovingDown since it represents the moment when the arm starts movign down. For
the rest, the system has the same components and the same dynamic equations.

62

CHAPTER 6. MODELICA

• The model has a total of 22 variables. These variables have the following functionalities:

– Real variables x, y, xd and yd represent the positions and velocities of the horizontal
and the vertical arm.

– Real variables xmin, xmax, ymin, ymax, m, k and b are constant variables that are
used to represent the limits of the trajectories (the first 4 variables) and the dynamic
parameters of the differential equations that the manipulators follow.

– Boolean variables up, down, inn, out, pick, drop, ON , OFF and act represent some
of the events. The first 4 represent the events move up, move down, move in and
move out. The next 4 represent the two events of the picker and the two events of the
sensor of the picker. The variable act is used to transition from state Intermediate to
state Movingdown in the vertical manipulator.

– Integer variable count has the same use that the one in the Stateflow model. It is used
so that the vertical manipulator knows which signal has to send to the picker (either
pick or drop) once the manipulators has reached the lower position.

– Integer variable res is used to compute an internal operation with the variable count
to decide which signal has to be sent to the picker.

• Variables are shared between state machines by using the inner, outer output and outer
input notation that were explained previously.

• Operators der() and previous() are used to obtain the derivatives of a variable and its
previous value (respect the actual time instant).

• As usual, every state machine has an initial state defined with the function initialState and
several transitions defined with the function transition.

With this code that we just described, the Pick&Place station has been built and a simulation to
verify its behaviour has been done. In this case the only variables that are used for the plotting
visualization have been the variables x and y that represent the positions of the horizontal and
vertical manipulators. The results of the simulation can be seen in Figure 6.3.

Figure 6.3: Results of the simulation of the model with Dymola.

As can be seen, the trajectories followed by the two manipulators during the time are very similar
to the ones that we obtained with the other languages. Therefore, the controlled system behaves
just as expected. With this validation ends the evaluation of the capabilities of the Modelica
modeling language when it comes to model-based systems engineering with supervisory control
development.

63

Chapter 7

SysML

The Systems Modeling Language (SysML) is a general-purpose graphical modeling language for
specifying, analyzing, designing, and verifying complex systems that may include hardware, soft-
ware, information and procedures among others [24]. SysML is primarily used to combine 4
different aspects of a system including its requirements, behavior, structure and parametrics.

SysML has its roots from the Unified Modeling Language (UML). One of the objectives with
SysML was to develop a modeling language that could be applied to a wide range of systems. This
differs from its UML predecessor, which is more commonly used for software modeling. SysML
represents a subset of UML with new features to specifically support systems engineering, including
the addition of requirements modeling and enhancements to the structural representation of the
system, among others. The interrelationship between SysML and UML can be seen in Figure 7.1.

OMG SysML™, v1.4 7

4 Language Architecture

4.1 General

SysML reuses a subset of UML 2 and provides additional extensions needed to address requirements in the UML for
Systems Engineering RFP. This specification documents the language architecture in terms of the parts of UML 2 that are
reused and the extensions to UML 2. This clause explains design principles and how they are applied to define the SysML
language architecture.

To visualize the relationship between the UML and SysML languages, consider the Venn diagram shown in Figure 4.1,
where the sets of language constructs that comprise the UML and SysML languages are shown as the circles marked
“UML” and “SysML,” respectively. The intersection of the two circles, shown by the region marked “UML reused by
SysML,” indicates the UML modeling constructs that SysML reuses, called the UML4SysML subset. The region marked
“SysML extensions to UML” in Figure 4.1 indicates the new modeling constructs defined for SysML that have no
counterparts in UML, or which replace UML constructs. Note that there is also a part of UML 2 that is not required to
implement SysML, which is shown by the region marked “UML not required by SysML.”

Figure 4.1- Overview of SysML/UML Interrelationship

SysML

UML
not required

by SysM L
(UM L – UM L4SysM L)

UML
reused by

SysM L
(UM L4SysM L)

SysM L
extensions

to UM L
(SysM L Profile)

UML 2

Figure 7.1: Overview of the SysML-UML relationship [24]

SysML includes a subset of the UML 2 and provides additional extensions to address new functional
aspects for systems engineering modeling. SysML captures the multidisciplinary knowledge by
providing various diagrams: block definition, internal block, parametric and package diagrams to
present the structure of the system. It further delivers activity, sequence, state machine and use
case diagrams to describe the behavior of the product. Finally, with its major contribution, it
allows for modeling the requirements of a system with the help of its requirements diagrams. It
also integrates the previous three aspects (i.e., structure, behavior, and requirements) through
allocations across their corresponding elements. SysML further offers a profile mechanism, where
a profile is formed from a set of stereotypes of its elements. These stereotypes extend the syntax
of SysML allowing it to be more applicable in concrete applications.

SysML enlarges the scope of possibilities for systems engineers and adds several improvement with
respect UML, which is more focused on the software side of high-tech systems. These improve-
ments, as it can be seen in [55], include the following:

65

CHAPTER 7. SYSML

• SysML’s semantics are more flexible and expressive. SysML reduces UML’s software-centric
restrictions and adds new diagrams/extensions that allow to model a wide range of systems,
which may include hardware, software, information, processes, personnel, and facilities.

• SysML is a comparatively little language that is easier to learn and apply.

• SysML model management constructs support models, views, and viewpoints.

In this chapter we will review the potential of the SysML modeling language in terms of MBSE with
supervisor synthesis capabilities. First, in Section 7.1 we will present the syntax and notation of
the main elements that are used in SysML and its diagrams when modeling cyber-physical systems.
Then, in Section 7.2 we will evaluate the capabilities of SysML in terms of model-based systems
engineering with supervisory control synthesis development. Finally, in Section 7.3 we will try to
build the same case study that we did with previous tools/languages.

7.1 Basic modeling concepts

As previously stated, SysML is a modeling language that provides a general purpose to support
the specification, design, analysis and verification of complex system by using a subset of UML
2 with extensions. Its 4 main pillars include the modeling of the structure (Section 7.1.1), the
requirements (Section 7.1.2), the behaviour (Section 7.1.3) and the parametrics (Section 7.1.4).

7.1.1 Structure

There are three types of diagrams for depicting the structural architecture including the block
definition diagram, the internal block diagram, and the package diagram.

Block Definition diagram

The block definition diagram (BDD) in SysML is used to define the features of certain blocks in
terms of their properties and operations, and the relationships between them such as the hierarchy
of the system. The view is powerful for communicating domain, system and component structural
hierarchy to a wide range of audiences. The basic notation of the block definition diagram can be
seen in Figure 7.2.

Block definition diagrams mainly are made up of two basic components: blocks and relationships.
These are the two only elements that can be found at the highest level of abstraction of the system.
In addition to these two elements, a block definition diagram can also contain different kinds of
ports, item flows and interfaces.

Blocks are used to describe the types of things that are part of the system, and the relationships
are used to describe how these blocks are related. Each relationship can be used to relate one
or two blocks so the possibility of relating a block to itself exists. A very used kind of block
is the interface block, which is used to define interfaces for the blocks to interact. An instance
specification defines an instance of a block.

66

CHAPTER 7. SYSML

● ‘Dependency’, which is used to show that one block (often referred to as the
client) somehow depends on another block (often referred to as the supplier)
such that a change to the supplier may impact the client. ‘Dependency’ can be
considered to be the weakest of the relationships since it simply shows that there
is some kind of (usually) unspecified relationship between the connected blocks.

A summary of the notation used in the block definition diagram is shown in
Figure 5.14.

Instance specification

1..*1

«block»

Block1

«block»

Block2

references

RoleName1 : Block3 [1..*]

«block»

Block3

parts

RoleName2 : Block5 [*]

«block»

Block4

operations
prov Operation1 ()

flowProperties

in FlowProperty1 : Block6

out FlowProperty2: Real

«block»

Block5

values
reqd BlockProperty1 : Real

BlockProperty2 : Real

«block»

Block6

«block»

Block7

RoleName1

0..1

1

*

1

RoleName2

1

1

Block

Block with reference

properties

Block with provided

operation and flow

properties

Specialisation/

generalisation

Aggregation
Association showing

role name

Block with part

property

Block with value

properties, one

marked as a

required feature

Composition

Dependency

Association block

«InterfaceBlock»

Interface

operations

Operation1 () : Real

Operation2 () : Block7

Interface block

«block»

Block6

Port : Block11

Port1 : Block4

Port2 : Block3

Port1 : Block4

Port2 : Block3

Port with two nested ports

«block»

Block9

Interface

Interface

Provided interface

Required interface

«block»

Block12

Port2 : ~Block4Port2 : ~Block4

«block»

Block11

Port1 : Block4

FlowProperty2 : Real

FlowProperty1 : Block6FlowProperty1 : Block6

Port with flow properties–

Port2 is conjugated
Port with flow properties–

Item flow

Instance2 : Block5

BlockProperty2 : Real = 123.4

is associated with

Figure 5.14 Summary of block definition diagram notation

The SysML notation 133

©
 H

ol
t,

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

T
he

 I
ns

tit
ut

io
n

of
 E

ng
in

ee
ri

ng
 a

nd
 T

ec
hn

ol
og

y,
 S

te
ve

na
ge

, I
SB

N
: 9

78
18

49
19

65
29

Figure 7.2: Notation of the block definition diagram [24].

Any block can have interaction points by defining ports. Each port is typed by a block and can
be nested with other ports [24]. There are basically two types of ports:

• full port, which is used to represent an interaction point that has its own internal struc-
ture/parts and behaviour and, therefore, is a separate part of the model.

• proxy port, which is used to transfer the information about the features of its owning block
to other external blocks.

To use along with the ports is the item flow, which is used to transfer a certain flow property
(property of a block) between two ports. The different types of properties for a block are: part
property, reference property, value property and flow property. Finally, to end with the breakdown
of the components of the block definition, there are three main types of relationships:

• Association, which is used to represent a simple relationship between one or more blocks.
It has two types which are referred to as aggregation and compositions which show shared
parts and owned parts respectively.

• Generalisation, which is used to represent hierarchical relationships by showing the parent
and child blocks.

• Dependency, which is used to represent the impact that a certain block may have on
another block that depends on it.

Internal Block diagram

The internal block diagrams are used to model the internal structure of a block basically in terms
of their properties and the connections between these properties. Some of these block’s properties

67

CHAPTER 7. SYSML

allow to specify its values, parts and references to the blocks. One additional type of property
is the port which is used to allow interactions between blocks. In the internal block diagram,
an emphasis is put on the logical relationships between the different components rather than the
structural breakdown itself. The basic notation of the internal block diagram is shown in Figure
7.3.

the connections between the blocks rather than on the composition. From a block
that is decomposed into sub-blocks it is possible to automatically create an internal
block diagram for that block and, indeed, many SysML tools will do this for you.
The internal block diagram in Figure 5.23 has been created for ‘Block10’, based on
the block definition diagram in Figure 5.24.

The internal block diagram in Figure 5.23 is owned by ‘Block10’ and can be
thought of as being inside, or internal to (hence the name) ‘Block10’. ‘Block10’ is
shown as containing block with the blocks that it is composed of shown as parts.
(Note that the ports in Figure 5.23 could have also been shown in Figure 5.24 but
have been omitted for clarity). So, a block that is composed of sub-blocks, as
detailed on a block definition diagram, can have its internal structure modelled on
an internal block diagram owned by the block. The blocks that it is composed of are
shown as parts on the internal block diagram.

«block»

Block10

1

: Block11

Port1 : Block4

Port3

1..3: Block12

Port2 : ~Block4

«full»

Port1

: Block13

«proxy»

Port3 : Interface

1

Interface

Interface

FlowProperty1 : Block6

FlowProperty2 : Real

Port with flow properties

Port with flow properties

Port2 is conjugated

Binding connector

with two item flows

Port with provided interface

Part

Part with nested

part and multiplicity

shown

Nested part

Full port with

required interface

Proxy port typed

by an interface

block

«block»

:Block6

Port : Block11

Port1 : Block4

Port2 : Block3

Port with two nested ports

Figure 5.23 Summary of internal block diagram notation

The SysML notation 143

©
 H

ol
t,

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

T
he

 I
ns

tit
ut

io
n

of
 E

ng
in

ee
ri

ng
 a

nd
 T

ec
hn

ol
og

y,
 S

te
ve

na
ge

, I
SB

N
: 9

78
18

49
19

65
29

Figure 7.3: Notation of the internal block diagram [24].

The basic element that forms an internal block diagram is the part that describes blocks in the
context of an owning block. An internal block diagram defines the different parts and their internal
structures, showing how they are connected together through ports and showing the item flows
that flow between them.

Just like with blocks, parts define interaction points through the use of ports which they come in
the same two types: full port and proxy port. Also, a part can be connected to another part or
itself by using a binding connector, where an item flow can flow across it. In addition to this, a
part can be connected to a port on another part just like a port can be connected to zero or more
ports.

Before moving to the next diagram, let us first consider the relationship between internal block
diagrams and block definition diagrams, and therefore of parts and blocks. The first thing that has
to be stated is that an internal block diagram is owned by a particular block. It is used when a
block has an internal structure composed of other blocks and that allows the developer to focus on
the connections between the blocks rather than the composition (block definition diagram) of each
one of the blocks. For any block that is decomposed into sub-blocks an internal block diagram
can be defined which is owned by that block.

The internal block diagram in 7.3 is owned by Block10 and can be thought of as being its in-
ternal structure decomposition. Block10 is shown as a containing block with the blocks that it is
composed of shown as parts.

68

CHAPTER 7. SYSML

Package diagram

The package diagram is used to identify and relate together different sets of packages. A package
contains a collection of diagram elements and implies some sort of ownership. They can be used on
the package diagram as well as on other diagrams and they can be related to each other through
the use of different types of dependency relationships. The basic notation of the package diagram
is shown in Figure 7.4.

but with the target package remaining its own package. Any name clashes are
resolved with the source package taking precedence over the target package.

Public package import and private package import differ in the visibility of the
information that is imported. What does this mean? Consider the two examples in
Figure 5.38.

1..* *

2 1

«diagram»

Package Diagram

«graphic node»

Package

«graphic path»

Dependency

«graphic path»

Package Import

«graphic path»

Public Package Import

«graphic path»

Private Package Import

1..* *

2 1

shows relationship between

Figure 5.36 Partial meta-model for the package diagram

Package1

Package2 Package3

«import»

«access»
Package

Private package import

Dependency

Public package import

Figure 5.37 Summary of package diagram notation

154 SysML for systems engineering

©
 H

ol
t,

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

T
he

 I
ns

tit
ut

io
n

of
 E

ng
in

ee
ri

ng
 a

nd
 T

ec
hn

ol
og

y,
 S

te
ve

na
ge

, I
SB

N
: 9

78
18

49
19

65
29

Figure 7.4: Notation of the package diagram [24].

As one can see, the two main elements of a package diagram are the package and the dependency.
Packages are used to structure a model in a similar way like directories organize files in a computer.
On the other hand, there is one type of dependency and that is the package import. This can
be further divided into the public package import and the private package import. The type of
import package (public or private) infers on the visibility of the information that is being imported
from the package.

A package import means (regardless of the type) that the package which is being pointed to
(referred to as target) is imported into the other package (referred to a source) but with the target
package remaining its own package.

7.1.2 Requirements

One of the major improvements SysML with respect to UML 2 is its support for representing
requirements and relating them to the model of a system. SysML has a dedicated requirement
diagram that is used to represent requirements and their relationships. The basic notation of the
requirement diagram is shown in Figure 7.5.

69

CHAPTER 7. SYSML

An example of this is shown by the trace relationship between ‘Requirement2’
and ‘Source Element’ in Figure 5.54.

● Refine relationship. This is used to show how model elements and requirements
can be used to further refine other model elements or requirements. This could
be, for example, one requirement refining another as shown in Figure 5.54
where ‘Requirement4’ refines ‘Requirement3’.

● Verify relationship. This is used to show that a particular test case verifies a
given requirement and so can only be used to relate a test case and a
requirement. However, a test case is not a specific type of SysML element.
Rather it is a stereotype, «testCase», which can be applied to any SysML
operation or behavioural diagram to show that the stereotyped element is a test
case intended to verify a requirement. This stereotyped element – the test
case – can then be related to the requirement it is verifying via the verify
relationship. The test case is shown on a requirement diagram as a SysML
note containing the name of the SysML element or diagram that is acting as a
test case along with the stereotype «testCase». This is shown in Figure 5.54 by
the verify relationship between the test case called ‘Sequence Diagram’ and
‘Requirement2’.

«block»

Source Element
«block»

Block

«requirement»

Requirement1

id#
ID007

txt
The System shall do ...

«requirement»

Requirement2

Trace relationship

«testCase»

Sequence Diagram

«requirement»

Requirement3

«requirement»

Requirement4

«trace»

«deriveReqt»

«satisfy»

«verify»

«refine»

Requirement showing id

and text properties

Nesting

Satisfy relationship

Verify relationship

Derive relationship

Refine relationship

Figure 5.54 Summary of requirement diagram notation

The SysML notation 171

©
 H

ol
t,

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

T
he

 I
ns

tit
ut

io
n

of
 E

ng
in

ee
ri

ng
 a

nd
 T

ec
hn

ol
og

y,
 S

te
ve

na
ge

, I
SB

N
: 9

78
18

49
19

65
29

Figure 7.5: Notation of the requirement diagram [24].

The requirement diagram has three basic components which are the requirements, its relationships
and the test cases. A requirement is used to specify a capability or functionality that the system
must (or should) satisfy. That can be defined as a function that the system must perform or
a performance condition that the system must achieve. The requirement diagram that is being
described in this section can depict the requirements in a graphical, tabular or tree structure
format. The relationships are used to relate the requirements to each other or to other elements
(like blocks) and the test cases can be linked to the requirements to show how the requirements
are verified.

The different types of relationships that SysML provides for the requirement diagram are:

• Satisfy relationship, which is used to relate elements of a design or implementation model
to the requirements that they are supposed to satisfy.

• Trace relationship, which is used to allow model elements and requirements to be related
to each other (to imply a condition on a certain parameter of the model elements).

• Refine relationship, which is used to show how model elements and requirements can be
used to further refine other model elements and requirements.

• Verify relationship, which is used to ensure that a certain test case verifies a given re-
quirement.

• Derive relationship, which is used to relate a derived requirement to its source require-
ment. The derived requirements correspond to the requirements at the next level of the
hierarchy of the system.

These various types of relationship allow the modeller to explicitly relate different parts of a model
to the requirements as a way of ensuring the consistency of the model.

7.1.3 Behaviour

This subsection is used to specify the dynamic, behavioral constructs that are used in SysML’s
behavioral diagrams of the system or an element in its own domain. This is done by using the

70

CHAPTER 7. SYSML

following 4 diagrams: the activity diagram, the sequence diagram, the state machine diagram and
the use case diagram.

Activity Diagrams

The activity diagrams are the ones that model the lowest-level part of the behaviour of the system
in comparison with the rest of behavioural diagrams. Just like state machine diagrams model the
behaviour within elements, activity diagrams are used to model the behaviour within a certain
operation or process. The basic notation for the activity diagram can be seen in Figure 7.6.

and the ‘Event’. See Figure 5.79. The ‘Object Node’ is used to represent informa-
tion that has been represented elsewhere in the model by a block and which is
forming an input to or an output from an action. It can be thought of a representing
an instance specification. The ‘Event’ symbol is used to show an event coming into
an activity diagram, whereas a ‘Signal’ is used to show an event leaving an activity
diagram. They correspond to receipt events and send events of a state machine
diagram. There is a special type of ‘Event’, known as a ‘Time Event’ that allows
the visualisation of explicit timing events.

Each of these diagram elements may be realised by either graphical nodes or
graphical paths, as indicated by their stereotypes, and is illustrated in Figure 5.80.

In addition to the elements mentioned so far, SysML has notation that can be
applied to an ‘Activity Edge’ and an ‘Object Node’. This notation makes use of the

Activity Partition

...

Action

Action

Activity Partition

Signal

Action

Signal

«continuous»...

[condition]

[condition] {Probability = value %}

«discrete»

{rate = expression}...

Initial node

Control flow

Merge node

Fork

Action

Join

Object node

Object flow

Continuous object flow

Decision node

Final node Control flow with

guard and probability

Signal

Discrete control

flow with rate

Activity partition

Action

Object Name:Object Node

Figure 5.80 Summary of activity diagram notation

200 SysML for systems engineering

©
 H

ol
t,

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

Figure 7.6: Notation of the activity diagram [24].

The activity diagram has three main elements which are the activity nodes, activity edges and
regions. Activity nodes can be divided in three: action, object and control node. The action
element is the focus on these diagrams since it represents a possible behaviour. There are several
types of actions available but they will not be introduced in the scope of this thesis. Any action
has the possibility of having a pin that can be used to show the object flow that an object carries.
When it comes to control nodes, they can be grouped in the following:

• The initial/final nodes are used to represent when the activity starts/ends. In addition to
this, the flow final node is used to terminate a particular flow without finishing the diagram.

• Flow can be split into several paths and then re-joined together at a particular point by
using the fork and join nodes.

• A decision node which permits a flow to branch into different routes according to several
different guard conditions and a merge node which allows to join different flows back together
into a single one.

Activity edges are used to connect an activity node to another one or also to itself. It has two
main types: the control flow and the object flow. The first one is used to represent the main
routes that exist in the activity diagram and that connect one or two activity nodes. On the other
hand, the second one represents the information that flows between one or more activity nodes

71

CHAPTER 7. SYSML

and does it by carrying the object type of the activity node. When it comes to representing flow of
information, SysML uses these three elements: the object node, the event and the signal. The first
one is used to model the information that has been represented elsewhere in the model by a block
and which is forming an input to or an output from an action. The event and the signal work
complementary. The first one represents an input event in the activity diagram and the second
one an output event leaving the diagram. They correspond to receipt events and send events of a
state machine diagram.

Finally, the other main element in an activity diagram is the region. It is divided into two subtypes:
the interruptible region and the activity partition. The first one represents a boundary that can
be introduced in the diagram that contains all the actions that can be interrupted. The second
one is used to allow different actions to be grouped together for a certain reason, usually to show
responsibility among the actions.

Sequence diagrams

Sequence diagrams are used to model message-based exchange behaviour of the system. That is
basically the definition of the flow control between the actors and the blocks of the system or
the interaction between different parts of the system. It provides with mechanisms that support
highly complex interactions with special constructs to model several types of control logic, refer-
ence interactions on other sequence diagrams among others. The basic notation for the sequence
diagram can be seen in Figure 7.7.

The notation for the sequence diagram is shown in Figure 5.67.

The main element of a sequence diagram is the life line, representing a parti-
cipant in a Scenario over a period of time. It is represented by a rectangle with a
dashed line hanging below it, as shown in Figure 5.67. The dashed line represents
logical time extending down the diagram, with earlier times at the top and later times
at the bottom. The sequence diagram is the only SysML diagram in which layout is
important, as indicated by this time dimension. A life line will refer to an element
from another aspect of the model, such as a block or an actor; it can be thought of as
an instance of that element that is taking part in the Scenario. This is reflected in the
labelling of the life line, placed inside the rectangle, which takes the following form:

name : type

The name part of the label is optional and is used to give the life line a unique
identifier in the case where multiple life lines of the same type are used on the same
diagram. The type indicates the block or actor that the life line is an instance of and

ref Another Sequence Diagramref Another Sequence Diagram

loop (min, max)loop (min, max)

parpar

altalt

Life Line

Execution specification

Call message

Interaction use

Loop combined fragment

Parallel combined fragment

Alternative combined fragment

Reply message

Asynchronous message

:Life Line 1 :Life Line 2 :Life Line 3

Figure 5.67 Summary of sequence diagram notation

188 SysML for systems engineering

©
 H

ol
t,

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

T
he

 I
ns

tit
ut

io
n

of
 E

ng
in

ee
ri

ng
 a

nd
 T

ec
hn

ol
og

y,
 S

te
ve

na
ge

, I
SB

N
: 9

78
18

49
19

65
29

Figure 7.7: Notation of the sequence diagram [24].

There are two main elements in sequence diagrams which are the life lines and the messages.
Additional elements can be used to permit other diagrams to be referenced, interaction uses and
constructions such as looping and parallel behaviour to be represented using combined fragments.

Life lines are used to model any participant that takes place in a scenario over the execution
time. It will refer to an element from another aspect of the model like a block or an actor. The
interaction sequence between life lines is done with the sending and receiving messages which are
drawn between life lines.

72

CHAPTER 7. SYSML

Complex Scenarios can be represented containing looping, parallel and alternative behaviour,
shown using various types of combined fragment. In addition to this, a sequence diagram can
refer to another via the interaction use notation, allowing more and more complicated scenarios to
be developed. However, it is worth noting that the various combined fragment notations can be
nested, allowing very complicated scenarios to be modelled. In particular, the use of the alternative
combined fragment notation allows alternative paths through a scenario to be shown.

State Machine Diagrams

State machine diagrams are used to model the event-based behaviour of the system. They model
the changes of the system and the logical conditions under which they happen for instances of
blocks, which are known in SysML as instance specifications. They realise such behaviour by
relating it to states that the components of the system, modelled as blocks, can be at any given
time. They concentrate on the events that cause that change of the state (known as transition)
of the system and the behaviour is associated with that transition or inside the new state. The
basic notation of a state machine diagram can be seen in Figure 7.8.

Simple State

Composite State (Concurrent)

Exit/op3

Simple State

do : op1

Simple State

Simple State

do : op1

Simple State

do : op1

Simple StateSimple State

Simple State 1

Entry/ op2
Simple State 2

Composite State (Sequential)

Simple State 1

Entry/op2
Simple State 2

Event1[Attribute1 = VALUE]/op4

Event2/

/Event3

Initial state

Simple state

Transition with event

(Event1), guard ([Attribute1 =

VALUE]) and action (op4)

Transition with event only

State with entry activity

State with do activity
Composite state with exit

activity

Final state

Region

Completion transition with

action only

Figure 5.61 Summary of state machine diagram notation

© Holt, Jon; Perry, Simon, Jan 01, 1753, SysML for Systems Engineering. 2nd Edition : A Model-Based Approach
The Institution of Engineering and Technology, Stevenage, ISBN: 9781849196529

Figure 7.8: Notation of the state machine diagram [24].

Overall, state machines diagram have to basic components: states the transitions between them.
States show what is happening at a particular instant in time when an instance specification typed
by a block is active. Transitions are used to change between the different states that a system has.

In SysML, there are four types of state: initial state, simple state, composite state and final state.
All these types of states have the same nature than in MechatronicUML. Each state allows for
an activity to be defined even though it is not mandatory for a state to have one. An activity
represents a non-atomic unit of behaviour which is related to the operations on a block and that
can be interrupted during its execution. SysML supports entry activities, during activities and
exit activities as the types of activities to be performed in a state. As stated, composite states
have the same nature than in MechatronicUML: they are states that have their own state machine
diagrams inside.

The syntax for transitions is also very similar than with Stateflow or MechatronicUML. Each
transition can have a boolean condition (also referred to as guard condition) that must evaluate
to true for the transition to fire. Usually this guard condition relates to certain properties of a
block. A transition can also have an action, which is an activity whose behaviour is atomic and
therefore can never be interrupted and will always be completed. Finally, a transition can have a
trigger event that may also be needed for the transition to fire. This type of event is also known as
receipt event. Per each receipt event, there has to be a complementary send event. A send event

73

CHAPTER 7. SYSML

represents the broadcast of a message being send from a state machine to another. In SysML, it
is generally assumed that a send event is broadcast to all elements in the system and therefore
each of the other components has the possibility to receive and evolve according to that event. A
send event is usually modelled as the action on a certain transition.

Use Case diagram

The use case diagram is used to realise the behaviour of the system but with an emphasis on
the functionality rather than the control and logical timing of the system during its execution.
This diagram represents the highest level of abstraction in terms of behaviour that is available in
SysML. The notation that is used on the use case diagrams is shown in Figure 7.9.

The notation that is used on use case diagrams is shown in Figure 5.87.

Use case diagrams are composed of four basic elements: use cases, actors,
relationships and a system boundary. As a minimum a use case diagram must
contain at least one use case; all other elements are optional.

Each use case describes behaviour of the system that yields an observable
result to an actor. It is with the actor that the SysML notation is at its weakest, in
terms of both the symbol and the name. The stick man symbol and the name actor
suggest that this concept represents that of a person. This is not the case. An actor
represents the role of a Person, place or thing that interacts with, is impacted by or
has an interest in the System. So, while an actor can, indeed, represent a Person, it
can also be used to represent an Organisation, other System or even a piece of
legislation or a Standard. Furthermore, it is essential to understand that it is the role
that is represented. This means that you should never see the names of People or
Organisations or Standards, etc., on a use case diagram, but the role that they are
playing. An actor named ‘ISO15288’ would be wrong, but one named ‘Systems
Engineering Standard’ would be correct. It is also worth noting that a given role
may be taken by more than one person, place or thing and that a given person, place
or thing may take on more than one role.

In terms of the MBSE Ontology, the actor is directly analogous to the concept
of the Stakeholder Role rather than the concept of the Person. The use case is
directly analogous to the concept of the Use Case that represents a Need that has
been put into Context.

Boundary Name

Actor1

Actor2

Actor3

Use Case1

Use Case2 Use Case3

Use Case4

«include»

«extend»

System boundary

Use case

Include relationship

Specialisation/Generalisation

Actor

Extend relationship

Association

Figure 5.87 Summary of use case diagram notation

The SysML notation 209

©
 H

ol
t,

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

T
he

 I
ns

tit
ut

io
n

of
 E

ng
in

ee
ri

ng
 a

nd
 T

ec
hn

ol
og

y,
 S

te
ve

na
ge

, I
SB

N
: 9

78
18

49
19

65
29

Figure 7.9: Notation of the use case diagram [24].

There are four basic components in the use case diagrams and these are the use cases, the actors,
the relationships and the system boundary. The only mandatory component for a use case diagram
is the use case while all the others are optional. Each use case represents the behaviour of the
system that has an impact on an actor. An actor represents the role of a person, place, thing that
interacts with the system and that is impacted or has an interest on it.

Use cases are related to actors and to other use cases using a number of different types of rela-
tionships:

• Association relationship, which is used to relate use cases to actors.

• Include relationship, which is used to represent when a certain functionality may be split
from the main use case to be used by another use case.

• Extend relationship, which is used to extend the functionality of the use case in some
way. This usually is due to the fact that the functionality of a use case may change during
the execution time of the system.

• Specialisation/generalisation relationship, which are used in the same as in a block
definition diagram. Specialization is used when one use case is a specialization of another
and generalisation between use cases allows inheritance of behaviour and relationships.

Finally, the last element that can appear in a use case diagram is the system boundary. This is
used to describe the context of the system. Everything that is inside the system boundary is part
of the system and everything outside is external to it. Actors are components that are always
outside the system boundary and, therefore, each interaction between an actor and a use case
indicates that there is an interface between the actor and the system. System boundaries are not
mandatory on a use case diagram.

74

CHAPTER 7. SYSML

7.1.4 Parametrics

Parametrics is the aspect of modeling that deals with defining constraints to give system paramet-
ers or value properties additional meaning in the model. In SysML this is done with the constraint
block and associated parametric diagram which allows the definition and use of networks of con-
straints which represent the rules that constrain the properties of a given system. The most
common examples of parametrics can include: a certain law that a group of variables/parameters
must satisfy (e.g. Newton’s laws) or inequalities that a group of variables/parameters must fulfill
(e.g. the maximum speed of the car has to be 120 km/h).

The parametric diagrams are basically made up of three components that are the constraint blocks,
the parts and the connectors. The only component that is always needed is the constraint block
while the other two are optional. Constraint blocks can be connected to constraint blocks and to
parts through the use of connectors and, even though they are used in the parametric diagram,
they are defined in a block definition diagram.

There are two important aspects regarding parametric constraints in SysML: their definition and
their use. The notation for the definition of the constraint block is shown in Figure 7.10.

A constraint block is defined using a block with the «constraint» stereotype
and is given a name by which the constraint can be identified. The constraint block
has two compartments labelled ‘constraints’ and ‘parameters’. The constraints
compartment contains an equation, expression or rule that relates together the
parameters given in the parameters compartment. Figure 5.43 defines a constraint
block called ‘ConstraintBlock1’ with two parameters ‘ConstraintParameter1’
and ‘ConstraintParameter2’, both of which are defined to be of type ‘Real’.
These parameters are related together by the expression ‘ConstraintParameter1 =
f(ConstraintParameter2)’, with ‘f’ representing a function taking ‘Constraint-
Parameter2’ as a parameter.

Such constraint blocks are defined on a block definition diagram. A concrete
example of a constraint block can be seen in Figure 5.44.

The example in Figure 5.44 defines a constraint block called ‘Newton’s Sec-
ond Law’ that relates the three parameters ‘f’, ‘m’ and ‘a’ given in the parameters
compartment by the equation ‘f = m * a’, as shown in the constraints compartment.

«constraint»

ConstraintBlock1

constraints

{ConstraintParameter1 = f(ConstraintParameter2)}

parameters

ConstraintParameter1 : Real

ConstraintParameter2 : Real

Constraint definition

Figure 5.43 Summary of parametric diagram notation – definition of constraint
block

bdd [Package] Constraint Definitions [Newton’s Second Law]

«constraint»

Newton’s Second Law

constraints
{f = m * a}

parameters

a : m/s^2
f : N
m : kg

Figure 5.44 Example block definition diagram showing constraint block
definition

The SysML notation 159

©
 H

ol
t,

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

T
he

 I
ns

tit
ut

io
n

of
 E

ng
in

ee
ri

ng
 a

nd
 T

ec
hn

ol
og

y,
 S

te
ve

na
ge

, I
SB

N
: 9

78
18

49
19

65
29

Figure 7.10: Notation of the parametric diagram - definition of the constraint block [24].

A constraint block is defined using a block which has two main compartments that are the con-
straints and the parameters compartment. The constraints compartment contains an equation/-
expression/law/rule that relates together all the parameters that are given in the parameters
compartment.

Such constrain blocks are defined on a block definition diagram. Even though constraint blocks
are defined on a block definition diagram, such definitions are not mixed with regular blocks on
the same diagram. Once defined, constraint blocks can be used any number of times on one or
more parametric diagrams diagrams, the notation for which is shown in Figure 7.11.

Although constraint blocks are defined on block definition diagrams, it is conven-
tion that such definitions are not mixed with regular blocks on the same diagram.

Once constraint blocks have been defined they can be used any number of
times on one or more parametric diagrams, the notation for which is shown in
Figure 5.45.

Each constraint block can be used multiple times on a parametric diagram.
The use of a constraint block is shown as a round-cornered rectangle known as a
constraint property. Each constraint property is to be named thus:

Name : Constraint Name

This allows each use of a constraint block to be distinguished from other uses of the
same constraint block. In Figure 5.45 a single constraint block, ‘ConstraintBlock1’,
is being used and it has been given the name ‘ConstraintProperty1’.

Small rectangles attached to the inside edge of the constraint property repre-
sent each constraint parameter. These are named and their names correspond to the
parameters defined for the constraint block in its definition.

These constraint parameters provide connection points that can be connected,
via connectors, to other constraint parameters on the same or other constraint
properties or to block properties. When connecting a constraint parameter to a
block property, this block property is represented on the diagram by a rectangle
known as a part. In Figure 5.45 a single part is shown, with the name ‘Parametric
Constraints Diagram.Block1.Property1’. This shows that this is the ‘Property1’
property of the block ‘Block1’ in the package ‘Parametric Constraints Diagram’.
Packages are used to structure SysML models as discussed in the previous section.

In Figure 5.45, the part ‘Parametric Constraints Diagram.Block1.Property1’
is connected to ‘ConstraintParameter1’. There is nothing connected to ‘Con-
straintParameter2’ and therefore the diagram is incomplete.

Property1 : Real

ConstraintProperty1 : ConstraintBlock1

ConstraintParameter1 : Real

Constraint parameter

Constraint property

Part

Connector
ConstraintParameter2 : Real

Figure 5.45 Summary of parametric diagram notation – use of constraint block

160 SysML for systems engineering

©
 H

ol
t,

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

T
he

 I
ns

tit
ut

io
n

of
 E

ng
in

ee
ri

ng
 a

nd
 T

ec
hn

ol
og

y,
 S

te
ve

na
ge

, I
SB

N
: 9

78
18

49
19

65
29

Figure 7.11: Notation of the parametric diagram use of constraint block [24].

Each constraint block can be used multiple times on a parametric diagram. The use of a constraint

75

CHAPTER 7. SYSML

block is shown as a round-cornered rectangle known as a constraint property. Each constraint
property is has to be named:

Name : Constraint Name

This allows each use of a constraint block to be distinguished from other uses of the same constraint
block. Small rectangles attached to the inside edge of the constraint property represent each
constraint parameter. These are named and their names correspond to the parameters defined for
the constraint block in its definition.

These constraint parameters provide connection points that can be connected, via connectors, to
other constraint parameters on the same or other constraint properties or to block properties.
When connecting a constraint parameter to a block property, this block property is represented
on the diagram by a rectangle known as a part.

7.2 MBSE capabilities

7.2.1 Specification phase

Before starting with the evaluation of the capabilities of the SysML language in the specification
phase, it should be interesting to explain how the basic modeling constructs of simulation tools like
Simulink (models, components, ports, links and dynamic equations) translate to SysML constructs.
To start with, models in simulation tools are blocks in SysML which have an internal structure
and that are not a component of other blocks. These blocks are defined with the block definition
diagram. The internal structure of these blocks (which relates to the block diagrams of models in
Simulink) are modeled with internal block diagrams. In the same way, a subsystem in Simulink
corresponds to a SysML block with internal structure and an atomic block in Simulink corresponds
to a SysML block without internal structure.

In addition to this, block properties such as parts, connectors, values, ports (and flow properties
to be more specific) or constraint properties in SysML correspond to the components of a model
(in Simulink) and their interactions. Being more specific:

• Parts correspond to blocks in a Simulink model

• Connectors correspond to the links that are used to join different blocks. However, connectors
in SysML miss some functionalities like the direction of the signal-flow (which is not defined).

• Value properties correspond to the variables and parameters that are used in the blocks
of the block diagram. However, the value properties of SysML cannot distinguish between
variables (variable value) and parameters (fixed value), and between continuous and discrete.

• Flow properties are used as the interaction points (input/output ports) of blocks in the
block diagram. However, there are some semantic inconsistencies since flow properties spe-
cify things like the kind of things that flow (which the interaction points do not) and the
interaction ports specify things like the flow rate (which the flow properties do not).

• Differential/difference equations can be described by using constraint blocks with constraint
properties that represent these mathematical constraints (operator der() used to model the
derivative of a variable).

Having said that, it is clear that the low-level time-driven part of the system can be modeled by
using the block definition diagram, the internal block diagrams and constraint blocks from the
parametric diagram.

On the other hand, when modeling the high-level event-driven part of the system there are some
things that need to be considered. First of all, and the most important, the SysML language

76

CHAPTER 7. SYSML

does support the automaton concept (with basic features like states and transitions) but it does
not support the hybrid automaton formalism since the states in the state machine diagrams do
not provide ways to represent the continuous dynamics in a particular state. The dynamics for
a certain set of variables are defined in a constraint block and therefore are unique and cannot
be changed. As a result, switching between operational modes is not possible since it is not even
possible to describe all the operational modes in terms of their dynamics (even though there might
exist certain states that represent those operational modes).

On the other hand, events are easily modelled in the state machine diagrams by either declaring
them as receipt or send events depending on their source/destination. As it has been seen in the
previous section, event broadcasting is possible since at any time a send event is defined as the
action of a transition and this transition broadcasts this event to any state machine in the system
so that it has the possibility to evolve. Because of this reality, synchronization of events cannot
be guaranteed since every time an event is broadcasted it will only make the other state machines
evolve if they are at a particular state that is fired for that particular event. The concept of final
states is supported and can be declared for in any state machine diagram.

Just like with the continuous-time equations, discrete variables cannot be declared in any particular
state and, therefore, shared variables, initialization of variables and updates of variables in time
are not supported. Finally, the synchronization in time exists between all the constraint blocks
but this approach differs from the other languages approaches where the synchronization in time
is between the different dynamics of the different states that are active during the execution of
the system.

That is all the evaluation in terms of modeling the uncontrolled plant. When it comes to modeling
requirements for the system, SysML offers some features. However the type of requirements
that can be modelled with SysML are different than the ones that are modelled with the CIF3
toolset. With CIF3, the developer creates models in the form of state machines for the high-level
requirements of the system. On the other hand, in SysML requirements are always related with the
low-level part of the system, so they are related with the variables that are used in the constraint
blocks. Examples of requirements in SysML would be the maximum time that a car has to take to
accelerate from between two velocities or the maximum flow rate that can go through an hydraulic
pump. Therefore, since the nature of both requirements is not the same, it is better to say that
SysML does not offer any features for modeling the requirements of the high-level system to avoid
phenomena like a deadlock.

7.2.2 Supervisor development phase

From what we have seen in the last section, after realizing the nature of the requirements that are
specified in the requirement diagrams, it is obvious that SysML cannot provide with any synthesis
algorithm for the development of any sort of supervisory controller. However, just like with the
other languages/tools, there are some possibilities for manual development of the supervisory but
there are some things that have to be pointed out.

Just like in Stateflow or Modelica, by modifying the transitions between the states in the state
machine diagrams, the developer can obtain a controlled system with (sometimes) the desired
behaviour. However, there are some things that are done differently in SysML and have to be
explained. First of all, we have seen that event broadcasting is possible thanks to the receipt/send
events that can be used in the diagrams as part of the transitions of the states. But, it is important
to note that events can only be send as an action of a transition and not like an activity in a state.
Remember that activities in states (regardless of their type) are always associated with operations
on a block. Therefore, some possibilities that tools like Stateflow offer are not possible with
SysML. In addition to this, since mode switching is not possible in terms of changing the dynamic
equations, some of the guard conditions might never be enabled and therefore this could make the

77

CHAPTER 7. SYSML

design fail already. Limitations like this might have to be considered whenever a developer wants
to study a certain cyber-physical system with SysML.

7.2.3 Validation phase

SysML is a modeling language with several strong modeling capabilities, but just as it happens with
Modelica, it does not provide a simulation platform to perform dynamic solver-based simulations.
These missing capabilities are crucial for the validation phase of the systems engineering process
and therefore support for these capabilities needs to be provided.

Currently, nowadays, simulations and optimizations are conducted in separate and particular
simulation tools. The two main combinations between SysML and simulation tools during the last
years have been with the Simulink toolset and the Modelica language. On the one hand, In [30], the
authors propose an extension of SysML which enables description of continuous-time behavior.
They also develop its execution tool integrated on an Eclipse-based platform by exploiting co-
simulation of SysML and Matlab/Simulink. Another integration between SysML and Simulink
was done in [48], where the authors use SysML to capture the architecture of a system, and to
transform the behavior representation of the architecture into a Simulink model ready to simulate.

On the other hand, a SysML-Modelica transformation is described in [6], where a SysML profile is
defined to represent the Modelica constructs. This transformation was standardized by the Object
Management Group and the specification can be found in [37]. We would like to point out that
some previous integration efforts were made with respect to the SysML version 1.2.

Just like with simulation-based validation of the models, SysML by itself does not provide any
possibilities in terms of formal verification of the models developed with the language. Way less
effort has been put in this, in comparison with the SysML transformations to simulation tools, but
there is some work to be mentioned. In [34] an approach was introduced to support the modeling
and verification process of SysML models with the objective of verifying the requirements before
the implementation. In [41] a SysML-based environment named AVATAR is presented and which
has a direct translation to the well established UPPAAL toolset for model checking and formal
verification.

7.2.4 Implementation phase

Once again, since SysML is a modeling language and not a toolset, and therefore there are no
possibilities available for the Systems Modeling Language in terms of code generation for platform
implementation. However, just like in the previous phase, there are some possibilities of gener-
ating code from SysML models by using other modeling tools that support the SysML language.
One possibility could be to use the IBM Rational Rhapsody Designer toolset [27] for Systems
Engineers which supports fully the SysML language. It provides code generation for C, C++ and
Java. Another viable possibility could be the Enterprise Architect Systems Engineering Edition
toolset [45] which is another tool that supports the SysML modeling language. It provides code
generation for C, C++, C#, Java and VBNet. This last one (Enterprise) might have SysML
version limitations (code generation for SysML up to a certain version).

7.3 Case study

As we have seen in previous sections when building the case study with different languages/tools,
there are components that have states with dynamic equations in them that refer to the operational
mode in that particular state. These are the cases of the two arm manipulators when they are not
standing still. However, as we have seen when does its evaluation, SysML does not support the
concept of hybrid automata because the dynamics cannot be associated with states. Instead, they

78

CHAPTER 7. SYSML

have to be defined in the constraint blocks of the parametric diagram where they remain static
following a single law that cannot be changed. This is definitely a problem since the trajectories
of the two manipulators change their directions and, therefore, their initial conditions and there
is no way to switch between conditions during the execution of the system. One could thing that
this could be solved by using two sets of variables to model the two directions of the movement
(moving up and down or out and in) but this would not solve the problem since the dynamics run
all the time and therefore the resulting system would not be the desired one. It would be a system
that is moving regardless of its state and it would also not respect the physical limitations of the
manipulators (minimum and maximum values for the positions).

In addition to this, it has been stated that the state machines from SysML lack in a lot of the
important concepts for developing supervisory control structures that have been mentioned in
this thesis. Not being able to provide discrete variables or the impossibility of having event
synchronization really hurts the chances of developing a model of the xCPS platform with SysML.

To conclude with, with the features that the modeling language SysML provides nowadays, it is
not possible to develop a (not so complex) system like the xCPS platform with its correct dynamics
and the supervisor that ensures the desired behaviour.

79

Chapter 8

Comparison between modeling
languages/tools

The previous four chapters have been used to introduce, describe, analyze and evaluate (within
a certain criteria) the modeling languages/tools Simulink&Stateflow, MechatronicUML, Modelica
and SysML. This process has been done individually for each one of the languages but it is also
very important to see where they stand when compared against each other and see who outper-
forms who in which subjects. This chapter is fully dedicated to compare the four languages/tools
extensively so that any possible future user can realize of the scope of each one and their capabil-
ities. To do this, we have divided it in two main sections. In 8.1, the overall comparison between
languages/tools will be done with a table that contains all the tested concepts that have been
used. Apart from the table, several qualitative explanations will be added to complement the
information that the table does not provide and to allow the reader to have a better idea of the
true potential of each tool/language. In 8.2, a final review of the different tools/languages will be
done.

8.1 Overall comparison

Each one of the modeling tools that has been evaluated in this thesis was created for a similar
purpose but the methods that they use and the scope of their real capabilities is very different.
Therefore, it is just as important to know if a language provides/supports a certain concept than
the scope of the capabilities of the same language regarding the same concept.

To start with the overall comparison, Table 8.1 has been built to collect all the information
regarding the concepts that each modeling language/tool features or not. This is an easy way to
see if any concept is not supported by a certain language and to see the first differences in terms
of capabilities between the different tools. After introducing the table, a discussion will be done
for every single one of the development phases and between all the different languages/tools. This
table can be seen below:

81

CHAPTER 8. COMPARISON BETWEEN MODELING LANGUAGES/TOOLS

Modeling languages
Simulink&Stateflow MechatronicUML Modelica SysML

Specification phase
Time-driven system

Continuous-time 3 7 3 3

Discrete-time 3 7 3 3

Event-driven system
Automata 3 3 3 3

Mode-switching 3 3 3 7

Events 3 3 7 3

Final states 7 3 7 3

Discrete variables 3 3 3 7

Updates of variables 3 31 3 7

Synchronization in time 7 7 3 7

Synchronization of events 3 3 7 7

Shared variables 3 3 3 7

Initialization 3 3 3 7

Requirements 7 7 7 7

Supervisor development phase
Manual development 3 3 3 3

Synthesis algorithm 7 7 7 7

Validation phase
Simulation-based visualization 3 32 33 34

Formal verification 7 35 7 36

Implementation phase
Code generation 7 3 37 38

1 Only for discrete variables.
2 A transformation to an external tool is required.
3 With OpenModelica or another simulation environment.
4 A transformation to an external tool is required.
5 A transformation to an external tool is required.
6 A transformation to an external tool is required.
7 With OpenModelica or another simulation environment.
8 A transformation to an external tool is required.

Table 8.1: Comparison between the different modeling languages/tools.

Specification phase

The first differences between the different languages tools appear in the specification phase and,
in particular, when modeling the time-driven part of the system. As we have previously seen, the
atomic components that MechatronicUML uses to model components with time-driven behaviour
do not have an own behaviour specified since this has to be specified by a outside tool like Simulink
or Modelica. Therefore, MechatronicUMl’s capabilities in this field are only the communications
between the interfaces of these components and the rest of components in the system. On the other
side, Simulink’s and Modelica’s capabilities when modeling continuous/discrete-time systems are
very powerful because of the large amounts of libraries that each one has dedicated to this subject.
The only difference between them is the modeling approach. Simulink uses a block diagram
approach and Modelica a graphical object-oriented equation-based approach. Both approaches
are very intuitive when it comes to modeling but Modelica’s is more intuitive because, since it’s
object-oriented nature, the developer can see the physical appearance of the system that is being
modeled. Finally, SysML uses the block definition diagram, the internal block diagram and the
parametric diagram to model this part of the system. The models are divided in blocks (defined

82

CHAPTER 8. COMPARISON BETWEEN MODELING LANGUAGES/TOOLS

with block definition diagrams) which may have an internal structure (defined with the internal
block diagram) and whose dynamic behaviour can be specified using the constraint block of the
parametric diagram when applied to certain properties of the blocks.

Switching to the event-driven part of the system, the differences between languages/tools and its
magnitudes increase significantly. The automata formalism is supported by all the languages/tools
but the scope of its functionality really depends on the case. A basic concept like the events (result
of the abstraction process) is not supported in Modelica. We have to remember that events in
Modelica correspond to the physical reality of the events at the low-level part of the system. On
the other hand, Stateflow and MechatronicUML support events in a different ways: Stateflow can
declare them as input, outputs or locals to a chart and MechatronicUML uses messages to be
exchanged between the statecharts of the discrete components. Eventually, SysML supports the
automata concept (even though not the hybrid automata) and also the concept of events thanks
to the receipt/send event entities that are used in the state machine diagrams. Among all the
tools/languages, Stateflow and Modelica do not offer the possibility of defining final states in its
charts and even though this is not a huge inconvenient, it needs to be remembered.

When it comes to variables, all the modeling languages/tools (except the SysML language) sup-
port discrete variables and their updating method upon time. As previously stated, there is no
possibilities in SysML when it comes to defining continuous-time behaviour or discrete variables
(and their corresponding updates in time) in the states of the state machine diagrams. In addition
to this, any concept regarding discrete variables nor mode switching is obviously not supported
in SysML. Going back to the other 3 languages/tools, this case changes when the variables have
a continuous-time evolution. In Stateflow, variables can have an evolution in three cases: if they
come from a Simulink block that has continuous-time dynamics, if they come from a Simulink
function that runs in continuous-time, when is created in a Stateflow chart with an update method
as continuous-time. Modelica’s state machines can have continuous-time evolution thanks to the
extension that we presented earlier. On the other side, MechatronicUML does not have variables
that evolve in continuous time since this variables come from components with time-driven be-
haviour and these are modeled in an external tool. Variables can be shared among statecharts
of the different languages/tools but in different ways. In Stateflow and in Modelica this is done
through the hierarchical structure of the charts and in MechatronicUML it is done through the
ports that communicate the components. Finally, the initialization of the variables is mostly very
similar in all the languages/tools. In both Simulink&Stateflow and Modelica, the variables need
to be initialized before the chart is instantiated and the same can be done in MechatronicUML
even though is not mandatory.

In another subject where the languages kind of differ is in terms of synchronization in time. First
of all, synchronization in time is not supported in MechatronicUML because of the nature of its
components (they have discrete event-driven behaviour). This concept is also not supported in
Stateflow since the different parallel/exclusive (OR) components run according to a certain order
of execution. On the other side, the state machines in Modelica do synchronize in time since they
usually have the same clock. In SysML, since there is no possibilities of declaring continuous-
time behaviour in states, there is obviously no support for synchronization in time of continuous
variables.

The last thing in the specification phase in which all the languages (except SysML) share similar-
ities is that none of them offer any possibilities to model the system’s requirements either in terms
of automata or in another way. We have to remember that the requirements that are modeled
with the requirement diagram of SysML always represent goals/functions which are always related
with a set of constraint blocks of the system.

Supervisor development phase

In the supervisor development phase is where the tested languages share more similarities. That’s
because none of the languages provides with any type of algorithm to apply the synthesis technique

83

CHAPTER 8. COMPARISON BETWEEN MODELING LANGUAGES/TOOLS

to obtain a supervisor. Therefore, each one of the languages/tools has to offer a manual procedure
to develop the desired supervisor to control the system. Here is where the similarities end.

On the one side, the method that Stateflow uses is based on the translation of the requirements
into changes in the main chart. This includes the execution of actions (that are mostly used for
updating variables) or the broadcast of events in any point in the chart to allow the evolution
of a certain state machine. This actions can be performed in the transitions or in the states
(entry, during and exit actions). This approach is quite similar to the one that can be done
with Modelica. However, we have to remember that the scope of functionalities that are provided
with Modelica in terms of the supervisory controller are less than in Stateflow. This is basically
due to the restriction that Modelica has in terms of actions and transitions. On the other hand,
MechatronicUML builds the supervisory controller with asynchronous message communication
between the discrete ports of the components by following a certain Real-Time Coordination
Protocol. This method, in comparison with the one used with Stateflow or Modelica, is more
structured as a method since the steps are always the same (specify the roles, their behaviour
and properties, the role connector and the messages that are going to be exchanged). However,
in terms of the functionalities and supervisory control possibilities, the MechatronicUML method
offers more or less the same as Stateflow. Eventually, SysML uses a notation for event-exchange
similar to the one used in MechatronicUML by using the receipt/send events to trigger transitions
and to allow implement the desired control logic.

Validation phase

The differences between languages/tools in the validation phase are strictly related to the simu-
lation environment that each one uses. To start with, it has to be noted that MechatronicUML
does not have a simulation tool by itself. However, as it has been seen, there exists several
transformations that allow the developer to validate his models/controllers. One way is through
model-checking via the model transformation to the model checker UPPAAL and the other way
is through simulation-based validation with transformations to Simulink (with the Simulink Ad-
apter) or to Modelica (with the Real-Time Coordination library).

In contrast with MechatronicUML, Simulink&Stateflow and Modelica (through the use OpenMod-
elica) have their own graphical simulation environment. Both of the are based on a graphical user
interface that provides with multiple features and possibilities either for the modeling process or
for the simulation afterwards. Both of them are very user-friendly and intuitive to use and provide
with the necessary tools to perform a complete analysis of the system behaviour by allowing to
change the set of simulation parameters and plot the results in different ways. Therefore, each
one these two tools/languages provide a simulation-based validation platform. On the other hand,
the two tools/languages also share a lot of similarities when it comes to the formal verification of
the models. With Simulink&Stateflow, despite the efforts that have been put in the area, proper
formal verification methods that support all the functionalities are still to be developed. In the
case of Modelica, as previously stated, because of some of the modeling practices that the language
has, there is no possibility to support formal verification methods.

Eventually, just like it happens with Modelica, since SysML is a modeling language and not a
tool, SysML needs of a simulation tool or a tool for formal verification case. In the first case, the
two main possibilities are two transformations for SysML models to be executed and simulated in
Simulink and Modelica (and its respective simulation environment). In the second case, when it
comes to formal verification, there are fewer possibilities but the most outstanding is the SysML-
based modeling environment AVATAR that has a direct translation of its models to the model-
checker UPPAAL for straight formal verification.

Implementation phase

In the implementation phase, just like it happens with the validation phase, the main differences
come from the nature of the tools/languages. Tools like Simulink&Stateflow or MechatronicUML
are available to generate code for a certain specific platform by themselves (with extensions of the

84

CHAPTER 8. COMPARISON BETWEEN MODELING LANGUAGES/TOOLS

tools like the Simulink Coder) and languages like Modelica or SysML need of other toolsets for the
implementation phase. Starting with the tools, Simulink&Stateflow are able to generate code with
help of the extension Simulink Coder or Embedded Coder for C, C++ while MechatronicUML
can generate code for Real-Time Java and C++. On the other hand, Modelica can generate
code by using the OpenModelica environment for C, CSharp, C++, Adevs, sfmi, XML, Java
and Javascript. Finally, for SysML there are some options but the most remarkable are the
IBM Rhapsody Designer toolset which generates code for C, C++ and Java and the Enterprise
Architect Systems Engineering Edition toolset which generates code for C, C++, C#, Java and
VBNet.

8.2 Comparison review

8.2.1 Simulink&Stateflow review

The MATLAB toolbox with Simulink and Stateflow provides excellent modeling and simulation
capabilities for complex cyber-physical systems that mix time-based and event-based domains.
From the start of the design in the specification phase till the code generation in the implement-
ation phase, this toolset provides with a very wide variety of features that support the whole
systems engineering process. All the modeling process is supported by a very friendly and easy
to use graphical user interface that helps the developer create almost any system with the desired
functionality that it requires.

From the 4 modeling languages/tools that have been reviewed in this thesis, Simulink&Stateflow
bring the most complete overall package for the MBSE process. Simulink is mainly used to
model the low-level part of the system (its inner structure and behaviour) through the definition
of block diagrams. For that purpose, Simulink provides with a large number of libraries which
contain several blocks that allow the developer to model almost any physical reality that a system
can experience. This approach, when used correctly, results in models that can combine several
engineering disciplines such as mechanical, electrical, electronic or control in a block-based fashion.
On the other hand, Stateflow provides with a wide variety of features to model and implement
the supervisory control logic that is used at the high-level of the system. This can be achieved
in different ways but the most common is by using the Stateflow’s charts to represent the state
machines that end resulting (after all the modeling process) in the supervisory controller and the
controlled hybrid plant.

As previously stated, Stateflow models are a type of Simulink blocs and, therefore, the process of
integrating both models (Simulink’s block diagram with Stateflow charts) is done almost instantly.
That is all for the specification phase and supervisory controller phase.

For the validation phase, the Simulink&Stateflow toolset by itself only provides one of the two main
approaches (simulation-based visualization and formal verification) for validation of the behaviour
of the controlled system. The Simulink toolbox provides with one of the most powerful simulation
environments that is out there for modeling tools which allows for different analysis techniques and
simulation possibilities. One the other hand, the only main drawback for the Simulink&Stateflow
toolset is the lacking of a formal verification method for its models. The lack of formal semantics of
the models used in this toolset has created a strong need to develop automatic semantic translators
that can translate Simulink&Stateflow models into models of different analysis tools for the formal
verification or model-checking process.

Finally, looking in to the implementation phase, it is true that the Simulink&Stateflow toolset do
not provide any possibilities of code generation by themselves. However, the two toolboxes used
for this purpose (Simulink Coder and Embedded coder toolbox) are usually included in the list
of toolboxes provide with MATLAB when a company purchases the software. Therefore, a lot of
the times the code generation and implementation process is supported without having to buy the
new toolboxes in addition to the software.

85

CHAPTER 8. COMPARISON BETWEEN MODELING LANGUAGES/TOOLS

8.2.2 MechatronicUML review

MechatronicUML is a modeling tool that is mainly used to model and develop the software that
is embedded in the high-tech cyber-physical systems that are found in today’s world [47]. As
we have seen, this approach does not provide any possibilities when it comes to modeling and
simulating the time-driven low-level part of the system including the physical components and
the control strategies. Therefore, this reality should be the first thing to consider when choosing
MechatronicUML as a tool for model-based systems engineering.

However, one the other hand, this tool offers several capabilities when it comes to the high-level
of the system. Through the use of Real-Time Statecharts to model the discrete-event behaviour
of atomic components and Real-Time Coordination Protocols, one can develop a supervisory
controller that guarantees the correct message-exchange between all the discrete entities that
the system has. In addition to this, it should be highlighted that, in comparison with the other 3
tools/languages, MechatronicUML is the only one that provides a structured method that is always
the same which basically consists of selecting both ports that will be used for the asynchronous
communication and the messages that each statechart will send/receive. MechatronicUML also
allows the interaction with atomic components with continuous-time behaviour (even though only
through its external interface) so that the physical variables from those components can have
an impact on the statecharts of the discrete components. Despite small lacks in features like
the synchronization between statecharts, MechatronicUML provides with enough possibilities to
develop the supervisory control structure of the controlled system.

Moving on to the validation phase, even though neither of them are performed with the same
tool (and that implies problems like getting the other tools which maybe not be free to get the
results), there are several ways of validation for the models created in MechatronicUML. When
it comes to formal verification, a standard transformation from MechatronicUML models to the
model checker UPPAAL is possible and a back translation is send in return to the developer to
see if there are any failures in the system. On the other hand, two well developed transformations
from MechatronicUML to Simulink&Stateflow and to Modelica are the main attraction to validate
the models through simulation. The first transformation to Simulink is done directly from the
MechatronicUML toolset and the second one is done with a library in Modelica which features
the same functionalities than the original one. As a result, the validation phase of the systems
engineering process with MechatronicUML can be well performed in different ways.

Finally, the code generation can be done directly from the MechatronicUML tool and currently
only the Real-Time Java and C++ platforms are supported. It should be interesting to see the
features that are included in the next versions of MechatronicUML: maybe some features for
low-level modeling, more ways of validation of the models or just new platforms for the code
generation. The main concern that a developer has to have with this tool is the fact that all the
simulations and validation process for the low-level part of the system will have to be performed
with an external tool and, if after that the validation of the overall supervisory control structure
can be done with another simulation tool, maybe the modeling process should have been directly
with the other tool (depending on the tool and the system of course).

8.2.3 Modelica review

The Modelica language is a modeling language with an object-oriented and equation-based ap-
proach mainly used to model complex cyber-physical systems. This is a language based on com-
ponent models which are formed by several constructs that allow for the creation of physical
components and the connections between them. Modelica is special because of its graphical
multi-domain capabilities that allow the developer to combine physical components from several
engineering disciplines and represent them with their real appearance when modeling. This differs
from a tool like Simulink since the block diagram approach results in more difficulties to see the
physical reality that is being modeled.

86

CHAPTER 8. COMPARISON BETWEEN MODELING LANGUAGES/TOOLS

Considering all the features of the language, Modelica should be mainly used for modeling and
simulating the low-level aspect of the system. It provides with a very large number of libraries
that allow the developer to create very complex systems with different blocks that allow for
different possibilities regarding their physical behaviour and a lot of control strategies that can be
implemented either in continuous-time or discrete-time. On the other hand, when modeling the
high-level of the system, Modelica has several capabilities if compared with tools like Stateflow due
to simplicities in their approach towards state machines and hybrid system modeling. This is also
an aspect of the language that the company is improving with any new version of the Modelica
language that comes out so it will be interesting the added features that will be presented in the
future. However, it should be after a few years that the Modelica language can compete with other
more advanced tools when it comes to modeling the high-level supervisory control structures.

When it comes to the validation phased, the Modelica language is quite polarized in terms of the
possibilities between the simulation-based visualization and the formal verification procedures.
The first one is supported by using a proper simulation environment (which is also the modeling
environment) like OpenModelica (which is free) or Dymola (which is not free). The capabilities
between the two are quite similar. With a tool like OpenModelica, several simulation possibilities
are offered so that the developer can see in a graphical way almost any aspect of the physical
system or the control structure to see if the behaviour is acceptable. On the other hand, it has
already been stated that because of some of the practices that are used with this language, there
will be no possibilities to apply any formal methods for verification. It will be interesting to
see if this changes in the future and, if so, how does the Modelica language adapt to support
this formal methods. It should also be interesting to see if there will be any development of a
translation procedure for Modelica methods into another tool. This lacks of formal methods for
verification should also be considered in the future version of the language because if features like
the state machines and the supervisory control logic development improves, there should be more
possibilities to validate their behaviour and formal methods are usually the best.

Finally, the implementation phase is always related to the simulation environment. In the case of
this thesis, OpenModelica provides with the possibilities for code generation for several platforms
which include: C, CSharp, C++, Adevs, sfmi, XML, Java and Javascript. If a developer is
thinking of using the Modelica language for MBSE, a research of the capabilities of other simulation
environment like Dymola should be studied and a decision should be made in terms of it is worth
to pay for that toolset to obtain better/different features than with a free tool like OpenModelica.

8.2.4 SysML review

The Systems Modeling Language is a graphical modeling language which reuses a subset of the
UML 2 for defining, specifying and developing complex high-tech cyber-physical systems. The
SysML modeling method/approach is quite different than the ones that the previous tools/lan-
guages use. The SysML approach is based in the 4 main aspects of the system (also referred to as
pillars) which are the requirements, the behaviour, the structure and the parametrics. With this,
a developer should be able to model with a high degree of detail and accuracy any cyber-physical
system and its behaviour.

The modeling process is done by using a set of 9 diagrams in total which are used to design the 4
pillars of any system: the structure is defined with the block definition diagram, the internal block
diagram and the package diagram, the behaviour is specified with the activity diagram, the use
case diagram, the state machine diagram and the sequence diagram, the requirements are defined
with the requirements diagram and the parametrics with the parametric diagram. With this
modeling process, a developer can design the different aspects of the system separately and, when
finished, relate them to each other to obtain the whole system with the desired functionality. This
approach used by the SysML language allows to obtain models with several levels of abstraction
in terms of their structure and behaviour that cannot be obtained with other languages. This

87

CHAPTER 8. COMPARISON BETWEEN MODELING LANGUAGES/TOOLS

is very important when modeling huge complex high-tech systems with a very large number of
components. The separation in 4 pillars also allows for independent modeling processes and
therefore, alternative design can be created by changing certain aspects and addressing particular
diagrams.

However, when compared to the other tools/languages that were evaluated in this thesis, the
SysML also lacks in certain areas where the others do not. For example, the dynamics of the
continuous/discrete time system are always static, and for static we mean that they always have
the same equations just like they are defined in the constraint blocks of the parametric diagram.
This reality has quite an effect when trying to build the supervisory control structure and the
event-driven level of the system with state machines. The fact that it is not possible to assign
variables or dynamic equations to the states of the statecharts supposes quite a drawback when
trying to model systems with different operating modes where the equations/laws that define
certain variables change depending on the state. This concepts lacking along the others that have
been mentioned in Section 8.1 implies that SysML is (probably) not the most suitable language
for supervisory controller development.

Moving on to the validation and implementation phase, since SysML is a language and not a tool,
it does not provide with any sort of validation method nor code generation possibilities. However,
just like with Modelica, if the engineers have the adequate platforms/tools, that is definitely
not a problem since there exist transformations and modeling environment for SysML models
to perform validation/verification and code generation procedures. Transformations to tools like
Simulink or Modelica for simulation-based validation or the SysML based environment AVATAR
which translates models to UPPAAL for formal verification are well developed and available to
any engineer that uses SysML for MBSE. On the other hand, environment like the Rhapsody
Designer toolset of the Enterprise Architect Systems Engineering toolset are very viable options
for code generation to platforms like C, C++ or Java. Therefore, even though SysML by itself
cannot provide them, with some many external possibilities available, no one that uses SysML
and be scared to not be able to validate/implement the designed models.

To sum up, even though SysML might be less powerful to develop complex supervisory control
structures, it is still a very powerful language for model-based systems engineering thanks to the
decomposition of the systems that he does in different pillars/diagrams which allow for local design
and investigating alternatives in different aspects to be integrated later as the overall system.

88

Chapter 9

Conclusions and
Recommendations

The goal of this thesis is to evaluate and compare the capabilities in terms of model-based systems
engineering with supervisory control development of modeling languages/tools Simulink&Stateflow,
MechatronicUML, Modelica and SysML. To support this comparison, the Pick&Place station of
the xCPS platform has been chose as a representative case study. In Section 9.1, the overall con-
clusions of this thesis are presented. In Section 9.2, suggestions for future work and research are
made.

9.1 Conclusions

The goal of this Masters Thesis was to investigate, analyze, evaluate and compare the capabilities
and possibilities of the modeling tools/languages Simulink&Stateflow, MechatronicUML, Modelica
and SysML in terms their support on model-based systems engineering with supervisory control
development. The xCPS platform was chosen as a case study to support the analysis/evaluation
process and to try to present an example of system build with models of each tool/language.

To achieve this goal, first of all, in Chapter 2 an introduction to the topic of the model-based
systems engineering process is presented to get familiar with the process and concepts that the
different tools/languages will be evaluated. Next, in Chapter 3, the first case study including the
whole modeling process (from specification until validation) of the xCPS platform is presented
by using the CIF3 toolset. Later, in Chapters 4, 5, 6 and 7 the partial individual evaluation of
each one of the languages/tools has been performed in a detailed but brief way. This evaluation
is in terms of modeling, simulation, verification and implementation. In addition to this, per each
language/tool a small foundation of the basic modeling concepts used by those languages/tools
for modeling cyber-physical systems is provided and the case study was developed in some of
the languages/tools as well. After that, in Chapter 8 the comparison between the different lan-
guages/tools has been done to see the scope of capabilities of each one and how exactly do they
do against each other. In addition to this, a review section is provided to review each one of the
languages/tools addressing their capabilities, main uses and possible future development. Eventu-
ally, the conclusions regarding the different modeling languages/tools are presented in this section
in the following paragraphs with a summary for each modeling language/tool.

The Simulink and Stateflow toolboxes, integrated in the MATLAB environment, provides a very
powerful framework for modeling and developing complex high-tech cyber-physical systems. As a
result, this combination of tools is probably the one that offers more capabilities in terms of the
specification phase. Just like the other languages/tools, a manual process is possible to develop the
supervisory control structures that the system requires and with Simulink, a great environment for

89

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS

simulation-based validation (we have to remember that formal methods for these models are still
to be properly developed). Finally, code generation and implementation possibilities are usually
also available (even though Simulink&Stateflow do not provide them) since the required toolboxes
are usually integrated with the MATLAB toolset that each company purchases.

The MechatronicUML method was developed to mainly focus on modeling and developing the soft-
ware (and communications) that are embedded in the high-tech systems that are exist nowadays.
As a result, because of its nature, there exist very low possibilities when it comes to modeling
the low-level time-driven side of the system since it is supposed to be developed in an external
tool (like Modelica or Simulink). However, MechatronicUML provides a strong and structured
method for modeling the high-level event-driven side of the system with Real-Time Statecharts
for modeling the behaviour and Real-Time Coordination Protocols to develop the supervisors in
a structured and compact way. When it comes to model validation, no direct possibilities are
provided with MechatronicUML but, however, direct translations/transformations (well suppor-
ted) exist to either validate the models through simulation or formal verification. Finally, code
generation for platforms like C++ or Java are provided.

The Modelica language is an object-oriented equation-based modeling language that offers a wide
variety of capabilities for modeling complex cyber-physical systems. This language supports the
first two phases (specification and supervisor development) almost like the pair Simulink&Stateflow
does but with less capabilities in terms of the automata formalism for the high-level event-driven of
the system. It also differs from Simulink because of its graphical component-based approach used
to model the hierarchical structure of systems. After modeling, to be able to validate the models
and generate code to implement the controllers in a given platform, a simulation environment
is required and one of the most commonly used is OpenModelica. With OpenModelica, a very
powerful simulation-based environment with several analysis methods is provided to validate the
models. However, it is very important to remember that with the Modelica language, because of
some of its practices, formal methods for model verification do not exist. Eventually, OpenModelica
offers code generation possibilities for platforms like C, C++ and Java among others.

The SysML modeling language provides a quite different approach (with respect to the other
three) when it comes to modeling cyber-physical systems. Its basic approach is based in the
4 main aspects of the systems that is modeled and that are the structure, the behaviour the
requirements and the parametrics. Each one of this aspects is modeled with one or more specific
diagrams that allow the developer to model each aspect of the system independently allowing
a lot of freedom and facilities to design and generate alternative models. However, despite this
high degree of independence and detail that can be used to model a system, SysML lacks in
some aspects/features (when compared to the other tools/languages) when modeling the dynamic
behaviour of the system or when developing the supervisory control structures that control the the
overall system. Furthermore, just like Modelica, validation and implementation possibilities are
provided with external tools that support the SysML language and that provide either simulation-
based or formal verification methods and further code generation and implementation to specific
platforms.

9.2 Recommendations and future work

The modeling languages/tools that have been analyzed and evaluated in this thesis represent
only a small portion of all the modeling tools that are available out there when trying to model
high-tech cyber-physical systems. These other languages/tools, just like the ones that we studied,
might have special capabilities that cannot be found in the first ones (an the other way around)
so depending on the case study they might be worth being considered.

In [9], a survey of some of the languages/tools that exist for general model-based systems engineer-
ing are presented and briefly compared against each other. It is only a basic high-level comparison

90

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS

but it maybe be a first step when looking for new modeling languages/tools and can give the
reader quite an accurate idea of where each language is exactly at. For specific details, like the
capabilities in terms of supervisory control development, further research is required. Therefore,
there are a lot of tools that might be worth a try or at least some consideration when modeling
cyber-physical systems. Some of these tools are:

• CHARON [2]: CHARON, which is an acronym for coordinated control, hierarchical design,
analysis and run-time monitoring of hybrid systems, is a high-level language for modular
specification of multiple interacting hybrid systems. It is based on the notions of mode and
agent and it supports hierarchical modeling at the architectural and at the behavioural level.
Agents model distinct components of the system whose executions are all active at the same
time. Modes represent the discrete and continuous behaviors of an agent.

• Masaccio and Giotto [29]: Masacio is a high-level modeling language that builds complex
component-based systems by using discrete/continuous atomic components and the serial
and parallel composition between them. Per each component it defines an interface which
contains the dependency relations which describe which continuous output signals are pro-
duced depending on which continuous input signals are used. In addition to this, the Giotto
programming language provides the different models of operation and the mode switches
(similar to automata models). The behaviour of a mode is described in C code and each
mode is associated with a certain period which specifies how often its behaviour is executed.

• Ptolemy II [17]. Ptolemy is a modeling tool that, similar to CHARON, distinguishes
between architectural and behavioural design when modeling. In contrast to Charon though,
Ptolemy provides different semantic domains which are referred to as models of computa-
tion. These include semantics for continuous-time, discrete-time, discrete-event, finite state
machines, synchronous dataflow among others. This toolset even supports the combination
and integration of these models of computation.

Exploring new possibilities in terms of the modeling languages is always a viable option but it is
also very important to keep an eye on the evolution of the languages that one already knows. Tools
like Simulink&Stateflow and languages like Modelica are in constant development and releasing
new versions of their software and therefore they might be able to perform better in certain areas
where they lack at the moment. It should also be considered the modeling languages/tools that
might still not be available out there but that may appear in the future and that could represent
a change/step forward in what model-based systems engineering is concerned. The last thing that
could be done in terms of research would be to study the integration of the languages/tools that
have been studied with other modeling languages (if they support those integrations of course).

91

Bibliography

[1] Adyanthaya, S., Ara, H. A., Bastos, J., Behrouzian, A., Snchez, R. M., van Pinxten, J., ... &
Frijns, R. (2015, October). xCPS: A tool to eXplore Cyber Physical Systems. In Proceedings
of the WESE 15: Workshop on Embedded and Cyber-Physical Systems Education (p. 3).
ACM. 6, 7, 8

[2] Alur, R., Grosu, R., Hur, Y., Kumar, V., & Lee, I. (2000, March). Modular specification of
hybrid systems in CHARON. In International Workshop on Hybrid Systems: Computation
and Control (pp. 6-19). Springer Berlin Heidelberg. ISO 690 20, 91

[3] Baeten, J. C. M., van de Mortel-Fronczak, J. M., & Rooda, J. E. (2011). Integration of
supervisory control synthesis in model-based systems engineering. 6, 13, 14

[4] Becker, S., Dziwok, S., Gerking, C., Heinzemann, C., Thiele, S., Schfer, W., ... & Tichy, M.
(2014). The MechatronicUML design methodprocess and language for platform-independent
modeling. Software Engineering Group, Heinz Nixdorf Institute, University of Paderborn,
Tech. Rep. tr-ri-14-337. 9, 43, 44, 45, 46, 47, 48, 49

[5] Behrmann, G., David, A., & Larsen, K. G. (2004). A tutorial on uppaal. In Formal methods
for the design of real-time systems (pp. 200-236). Springer Berlin Heidelberg. 52

[6] Bernard, Y., Burkhart, R. M., de Koning, H. P., Friedenthal, S., Fritzson, P., Paredis, C., ...
& Schamai, W. (2010). An Overview of the SysML-Modelica Transformation Specification.
In Proc. of INCOSE (pp. 11-15). 78

[7] Bhave, A., Krogh, B., Garlan, D., & Schmerl, B. (2010). Multi-domain modeling of cyber-
physical systems using architectural views. 2

[8] Brandin, B. A., & Wonham, W. M. (1994). Supervisory control of timed discrete-event sys-
tems. Automatic Control, IEEE Transactions on, 39(2), 329-342. 6

[9] Burmester, S., Giese, H., & Henkler, S. (2005, September). Visual model-driven development
of software intensive systems: A survey of available techniques and tools. In Proc. of the Work-
shop on Visual Modeling for Software Intensive Systems (VMSIS) at the the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC05), Dallas, Texas, USA (pp.
11-18). 90

[10] Burmester, S., Giese, H., & Schfer, W. (2005, November). Model-driven architecture for
hard real-time systems: From platform independent models to code. In European Conference
on Model Driven Architecture-Foundations and Applications (pp. 25-40). Springer Berlin
Heidelberg. 52

[11] Carloni, L. P., Passerone, R., Pinto, A., & Sangiovanni-Vincentelli, A. (2006). Languages and
tools for hybrid systems design. now Publishers Inc. 29

[12] Cassandras, C. G., & Lafortune, S. (2009). Introduction to discrete event systems. Springer
Science & Business Media. 6

93

BIBLIOGRAPHY

[13] Chen, C., Sun, J., Liu, Y., Dong, J. S., & Zheng, M. (2012). Formal modeling and validation
of stateflow diagrams. International Journal on Software Tools for Technology Transfer, 14(6),
653-671. 39

[14] Clarke, E. M., Grumberg, O., & Peled, D. (1999). Model checking. MIT press. 52

[15] Cuijpers, P. J., & Reniers, M. A. (2008, April). Lost in translation: Hybrid-time flows vs. real-
time transitions. In International Workshop on Hybrid Systems: Computation and Control
(pp. 116-129). Springer Berlin Heidelberg. 21

[16] Cuijpers, P. J. L., Reniers, M. A., & Heemels, W. P. M. H. (2002). Hybrid transition systems.
Technische Universiteit Eindhoven, Department of Mathematics and Computer Science. 21

[17] Davis II, J., Goel, M., Hylands, C., Kienhuis, B., Lee, E. A., Liu, J., ... & Smyth, N. (1999).
Overview of the Ptolemy project (No. M99/37). ERL Technical Report UCB/ERL. 91

[18] Derler, P., Lee, E. A., & Vincentelli, A. S. (2012). Modeling cyberphysical systems. Proceed-
ings of the IEEE, 100(1), 13-28. 1, 14

[19] Deshpande, A., Gll, A., & Varaiya, P. (1996, October). SHIFT: A formalism and a program-
ming language for dynamic networks of hybrid automata. In International Hybrid Systems
Workshop (pp. 113-133). Springer Berlin Heidelberg. 20

[20] Elmqvist, H., Gaucher, F., Matsson, S. E., & Dupont, F. (2012, November). State machines
in Modelica. In Proceedings of the 9th International MODELICA Conference; September 3-5;
2012; Munich; Germany (No. 76, pp. 37-46). Linkping University Electronic Press. 57, 59

[21] Elmqvist, H., Mattsson, S. E., & Otter, M. (2014). Modelica extensions for multi-mode DAE
systems. In Modelica’2014 Conference, Lund, Sweden, March (pp. 10-12). 59, 60

[22] Estefan, J. A. (2007). Survey of model-based systems engineering (MBSE) methodologies.
Incose MBSE Focus Group, 25(8). 2, 5

[23] Fransen, R. Modeling a flow shop workstation using CIF. Bachelor thesis, 2015. CST 2015.077.
7, 8, 19, 20

[24] Friedenthal, S., Moore, A., & Steiner, R. (2006, July). OMG systems modeling language
(OMG SysML) tutorial. In INCOSE Intl. Symp. 9, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75

[25] Fritzson, P. (2014). Principles of object-oriented modeling and simulation with Modelica 3.3:
a cyber-physical approach. John Wiley & Sons. 9, 55, 56

[26] Fritzson, P., Aronsson, P., Lundvall, H., Nystrm, K., Pop, A., Saldamli, L., & Broman,
D. (2005). The OpenModelica modeling, simulation, and software development environment.
Simulation News Europe, 44, 8-16. 55, 56

[27] Gery, E., Harel, D., & Palachi, E. (2002, May). Rhapsody: A complete life-cycle model-based
development system. In International Conference on Integrated Formal Methods (pp. 1-10).
Springer Berlin Heidelberg. 78

[28] Heinzemann, C., Rieke, J., Brggelwirth, J., Pines, A., & Volk, A. (2013). Translating mechat-
ronic uml models to matlab/simulink and stateflow. Software Engineering Group, University
of Paderborn, Tech. Rep. tr-ri-13-330. 51

[29] Henzinger, T. A., Horowitz, B., & Kirsch, C. M. (2001, October). Giotto: A time-triggered
language for embedded programming. In International Workshop on Embedded Software (pp.
166-184). Springer Berlin Heidelberg. 91

94

BIBLIOGRAPHY

[30] Kawahara, R., Nakamura, H., Dotan, D., Kirshin, A., Sakairi, T., Hirose, S., ... & Ishikawa,
H. (2009). Verification of embedded systems specification using collaborative simulation of
SysML and simulink models. Model-Based Systems Engineering, 21-28. 78

[31] Klenk, M., Bobrow, D. G., De Kleer, J., & Janssen, B. (2014, March). Making modelica
applicable for formal methods. In Proceedings of the 10 th International Modelica Conference;
March 10-12; 2014; Lund; Sweden (No. 096, pp. 205-211). Linkping University Electronic
Press. 62

[32] Kornai, A. (1996). Extended finite state models of language. Natural Language Engineering,
2(04), 287-290. 6

[33] Lee, E. A., & Zheng, H. (2006). HyVisual: A hybrid system modeling framework based on
Ptolemy II. IFAC Proceedings Volumes, 39(5), 270-271. 20

[34] Linhares, M. V., de Oliveira, R. S., Farines, J. M., & Vernadat, F. (2007, September). Introdu-
cing the modeling and verification process in SysML. In 2007 IEEE Conference on Emerging
Technologies and Factory Automation (EFTA 2007) (pp. 344-351). IEEE. 78

[35] J.M. van de Mortel-Fronczak & M.A. Reniers. Model-Based Systems Engineering — Lecture
Notes 4TC00. 2014. 3, 13, 14, 16, 17, 18, 27

[36] Object Management Group (2006-05-24). “OMG Trademarks”. Retrieved 2008-02-26 4

[37] OMG SE DSIG SysML-Modelica Working Group. (2009). SysML-Modelica transformation
specification. 78

[38] Osborne, L., Brummond, J., Hart, R. D., Zarean, M., & Conger, S. M. (2005). Clarus:
Concept of operations (No. FHWA-JPO-05-072). 4

[39] Otter, M., rzn, K. E., & Dressler, I. (2005). StateGrapha Modelica library for hierarchical
state machines. In Proceedings of the 4th international Modelica conference (pp. 569-578).
57

[40] Ouedraogo, L., Kumar, R., Malik, R., & Akesson, K. (2011). Nonblocking and safe con-
trol of discrete-event systems modeled as extended finite automata. IEEE Transactions on
Automation Science and Engineering, 8(3), 560-569. 14

[41] Pedroza, G., Apvrille, L., & Knorreck, D. (2011, May). Avatar: A sysml environment for
the formal verification of safety and security properties. In New Technologies of Distributed
Systems (NOTERE), 2011 11th Annual International Conference on (pp. 1-10). IEEE. 78

[42] MLA Radack, Shirley. “The System Development Life Cycle (SDLC).” Communications
(2002). 5

[43] Rajkumar, R. R., Lee, I., Sha, L., & Stankovic, J. (2010, June). Cyber-physical systems: the
next computing revolution. In Proceedings of the 47th Design Automation Conference (pp.
731-736). 1

[44] Rayshouny, J., Chandler, J., Sarabia, E., Sysavath, H., Ortiz, L., Wheeler, P., ... & Isaian,
J. (2009). Application of model based systems engineering methods to development of com-
bat system architectures (Doctoral dissertation, Monterrey, California. Naval Postgraduate
School). 5

[45] Rosenberg, D., & Mancerella, S. (2010). Embedded systems development using SysML: an
illustrated example using enterprise architect. Sparx Systems Pty Ltd and ICONIX, 4-14. 78

[46] Rumbaugh, J., Jacobson, I., & Booch, G. (2004). Unified Modeling Language Reference
Manual, The. Pearson Higher Education. 2

95

BIBLIOGRAPHY

[47] Schfer, W., & Wehrheim, H. (2010). Model-driven development with mechatronic uml. In
Graph transformations and model-driven engineering (pp. 533-554). Springer Berlin Heidel-
berg. 86

[48] Snyder, R., Bocktaels, D., & Feigenbaum, X. (2010). Validation fonctionnelle l’aide d’une
transformation SysML/Simulink. Gnie logiciel, (93), 49-53. 78

[49] Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008). EMF: eclipse modeling
framework. Pearson Education. 4

[50] Systems Engineering group of the Mechanical Engineering department at the Eindhoven Uni-
versity of Technology. Cif3. http://cif.se.wtb.tue.nl/index.html, 2015. 8, 20

[51] Szyperski, C., Bosch, J., & Weck, W. (1999, June). Component-oriented programming. In
European Conference on Object-Oriented Programming (pp. 184-192). Springer Berlin Heidel-
berg. 43

[52] The MathWorks. Simulink R© Design VerifierTM 8.7 - Users Guide, March 2016. 9, 29

[53] The MathWorks. Stateflow R© and Stateflow R© coderTM 8.7 - Users Guide, March 2016. 9, 29,
32, 33, 34, 35

[54] Zou, L., Zhan, N., Wang, S., & Frnzle, M. (2015, October). Formal verification of sim-
ulink/stateflow diagrams. In International Symposium on Automated Technology for Verific-
ation and Analysis (pp. 464-481). Springer International Publishing. 39

[55] https://en.wikipedia.org/wiki/Systems Modeling Language 65

[56] https://github.com/modelica-3rdparty/RealTimeCoordinationLibrary 52

[57] http://www.sysml.org/ 5

96

Appendix A

CIF3 Models

This appendix contains all the CIF3 models that were developed to build the case study of this
thesis.

A.1 Plant Models of the System

 Declarations

controllable move_up ;
controllable move_down ;
controllable stop;Standing_Still

marked ;

Moving_Up

Moving_Down

move_up

stop

move_down

stop

Figure A.1: Plant model of the vertical arm manipulator.

 Declarations

controllable move_out;
controllable move_in ;
controllable stop;

Standing_Still

marked ;

Moving_Out

Moving_In

move_out

stop

move_in

stop

Figure A.2: Plant model of the horizontal arm manipulator.

 Declarations

controllable pick;
controllable drop;

Open

marked ;

Closed

pick
drop

Figure A.3: Plant model of the picker.

97

APPENDIX A. CIF3 MODELS

 Declarations

controllable on;
controllable off;

Off

marked ;

On

on
off

Figure A.4: Plant model of the sensors that are initially off.

 Declarations

controllable off;
controllable on;

On

marked ;

Off

off
on

Figure A.5: Plant model of the sensors that are initially on.

A.2 Models of the requirements

l1

marked ;

l2

l3

l4

l5

l6

l7l8

l9

l10

l11

l12

l13

l14

Vertical_Motion_AC.move_down

Vertical_Motion_AC.stop
when Sensor_Vdown.On

Picker.pick

Vertical_Motion_AC.move_up
when Sensor_Picker.On

Vertical_Motion_AC.stop
when Sensor_Vup.On

Horizontal_Motion_AC.move_out

Horizontal_Motion_AC.stop
when Sensor_Hout.On

Vertical_Motion_AC.move_down

Vertical_Motion_AC.stop
when Sensor_Vdown.On

Picker.drop

Vertical_Motion_AC.move_up
when Sensor_Picker.Off

Vertical_Motion_AC.stop
when Sensor_Vup.On

Horizontal_Motion_AC.move_in

Horizontal_Motion_AC.stop
when Sensor_Hin.On

Figure A.6: Definition model of the requirements for the Pick&Place.

98

APPENDIX A. CIF3 MODELS

l1

marked ;
l2

l3l4

Sensor_Vup.off
when Vertical_Motion_AC.Moving_Down

Sensor_Vdown.on
when Vertical_Motion_AC.Moving_Down

Sensor_Vdown.off
when Vertical_Motion_AC.Moving_Up

Sensor_Vup.on
when Vertical_Motion_AC.Moving_Up

Figure A.7: Definition model of the requirements for the internal sensors of the vertical arm.

l1

marked ;
l2

l3l4

Sensor_Hin.off
when Horizontal_Motion_AC.Moving_Out

Sensor_Hout.on
when Horizontal_Motion_AC.Moving_Out

Sensor_Hout.off
when Horizontal_Motion_AC.Moving_In

Sensor_Hin.on
when Horizontal_Motion_AC.Moving_In

Figure A.8: Definition model of the requirements for the internal sensors of the horizontal arm.

l1

marked ;

l2

Sensor_Picker.on
when Picker.Closed

Sensor_Picker.off
when Picker.Open

Figure A.9: Definition model of the requirements for the internal sensors of the picker.

A.3 Hybrid System Models

 Declarations

controllable move_up ;
controllable move_down ;
controllable stop;
const int[5..5] m = 5;
const int[1..1] b = 1;
const int[1..1] k = 1;
cont y = 10.0;
cont yd = 0.0;

Standing_Still

marked ;
equation y' = 0.0,
 yd' = 0.0;

Moving_Down

equation y' = yd,
 yd' = -(1 / m) * (b * yd + k * y);

Moving_Up

equation y' = yd,
 yd' = -(1 / m) * (b * yd + k * (y - 10.0));

move_down

stop
do y := 0.0, yd := 0.0

move_up

stop
do y := 10.0, yd := 0.0

Figure A.10: Hybrid model of the vertical arm manipulator.

99

APPENDIX A. CIF3 MODELS

 Declarations

controllable move_out;
controllable move_in ;
controllable stop;
const int[5..5] m = 5;
const int[1..1] b = 1;
const int[1..1] k = 1;
cont x = 0.0;
cont xd = 0.0;

Standing_Still

marked ;
equation x' = 0.0,
 xd' = 0.0;

Moving_Out

equation x' = xd,
 xd' = -(1 / m) * (b * xd + k * (x - 10.0));Moving_In

equation x' = xd,
 xd' = -(1 / m) * (b * xd + k * x);

move_out

stop
do x := 10.0, xd := 0.0

move_in

stop
do x := 0.0, xd := 0.0

Figure A.11: Hybrid model of the horizontal arm manipulator.

 Declarations

controllable pick;
controllable drop;

Open

marked ;

Closed

pick
drop

Figure A.12: Hybrid model of the picker.

 Declarations

controllable on;
controllable off;
const int[10..10] ymax = 10;

On

marked ;

Off

off
when Vertical_Motion_AC.y < ymax

on
when Vertical_Motion_AC.y >= ymax

Figure A.13: Hybrid model of the internal sensor in the upper position.

 Declarations

controllable on;
controllable off;
const int[0..0] ymin = 0;

Off

marked ;

On

on
when Vertical_Motion_AC.y <= ymin

off
when Vertical_Motion_AC.y > ymin

Figure A.14: Hybrid model of the internal sensor in the lower position.

 Declarations

controllable on;
controllable off;
const int[10..10] xmax = 10;

Off

marked ;

On

on
when Horizontal_Motion_AC.x >= xmax

off
when Horizontal_Motion_AC.x < xmax

Figure A.15: Hybrid model of the internal sensor in the outter position.

100

APPENDIX A. CIF3 MODELS

 Declarations

controllable on;
controllable off;
const int[0..0] xmin = 0;On

marked ;

Off

off
when Horizontal_Motion_AC.x > xmin

on
when Horizontal_Motion_AC.x <= xmin

Figure A.16: Hybrid model of the internal sensor in the inner position.

 Declarations

controllable on;
controllable off;

Off

marked ;

On

on
off

Figure A.17: Hybrid model of the internal sensor of the picker.

101

Appendix B

Stateflow Models

This appendix contains all the Stateflow models that were needed to build the case study of this
thesis.

Figure B.1: Stateflow model of the Pick&Place station.

103

APPENDIX B. STATEFLOW MODELS

Figure B.2: Stateflow model of the Pick&Place unit without the manipulators dynamics.

Figure B.3: Stateflow model of the dynamics of the vertical manipulator.

Figure B.4: Stateflow model of the dynamics of the horizontal manipulator.

104

Appendix C

Case study: Modelica Code

The following code has been used in this thesis to model the Pick&Place station with the model
language Modelica.

model PickPlace

inner Real y (s t a r t =10.0) ;
inne r Real yd (s t a r t =0.0) ;
inne r Real x (s t a r t =10.0) ;
inne r Real xd (s t a r t =0.0) ;
inne r Boolean inn (s t a r t=f a l s e) ;
i nne r Boolean down(s t a r t=true) ;
inner Boolean up(s t a r t=f a l s e) ;
i nne r Boolean out (s t a r t=f a l s e) ;
i nne r Boolean pick (s t a r t=f a l s e) ;
i nne r Boolean drop (s t a r t=f a l s e) ;
i nne r Boolean ON(s t a r t=f a l s e) ;
i nne r Boolean OFF(s t a r t=f a l s e) ;
i nne r I n t e g e r count (s t a r t =1) ;
inner parameter Real ymax(s t a r t =10.0) ;
inne r parameter Real ymin (s t a r t =0.0) ;
inne r parameter Real xmax(s t a r t =10.0) ;
inne r parameter Real xmin (s t a r t =0.0) ;
inne r parameter Real b(s t a r t =1.0) ;
inne r parameter Real k (s t a r t =1.0) ;
inne r parameter Real m(s t a r t =5.0) ;
inne r parameter Boolean act (s t a r t=true) ;
inner I n t e g e r r e s (s t a r t =0) ;

b lock S t a n d i n g S t i l l
end S t a n d i n g S t i l l ;
S t a n d i n g S t i l l s t a n d i n g s t i l l ;
b lock MovingDown

outer input Real b ;
outer input Real k ;
outer input Real m;
outer output Real y ;
outer output Real yd ;

equat ion
der (yd)=−1/m∗(b∗yd+k∗y) ;
der (y)=yd ;

end MovingDown ;
MovingDown movingdown ;
b lock MovingUp

outer input Real b ;
outer input Real k ;
outer input Real m;
outer output Real y ;
outer output Real yd ;

equat ion

105

APPENDIX C. CASE STUDY: MODELICA CODE

der (yd)=−1/m∗(b∗yd+k∗(y−10)) ;
der (y)=yd ;

end MovingUp ;
MovingUp movingup ;
b lock Intermed iate

outer input Real b ;
outer input Real k ;
outer input Real m;
outer output Real y ;
outer output Real yd ;

equat ion
der (yd)=−1/m∗(b∗yd+k∗y) ;
der (y)=yd ;

end Intermed iate ;
Inte rmed iate in t e rmed ia t e ;

equat ion
count=i f a c t i v e S t a t e (in t e rmed ia te) then prev ious (count)+1 e l s e prev ious (count) ;
i n i t i a l S t a t e (s t a n d i n g s t i l l) ;
t r a n s i t i o n (s t a n d i n g s t i l l , in termediate , down , immediate=true , p r i o r i t y =1) ;
t r a n s i t i o n (intermediate , movingdown , act , immediate=true) ;
t r a n s i t i o n (s t a n d i n g s t i l l , movingup , up , immediate=true , p r i o r i t y =2) ;
t r a n s i t i o n (movingdown , s t a n d i n g s t i l l , not down , immediate=true) ;
t r a n s i t i o n (movingup , s t a n d i n g s t i l l , not up , immediate=true) ;

pub l i c
b lock S t a n d i n g S t i l l l
end S t a n d i n g S t i l l l ;
S t a n d i n g S t i l l l s t a n d i n g s t i l l l ;
b lock MovingOut

outer input Real b ;
outer input Real k ;
outer input Real m;
outer output Real x ;
outer output Real xd ;

equat ion
der (xd)=−1/m∗(b∗xd+k∗(x−10)) ;
der (x)=xd ;

end MovingOut ;
MovingOut movingout ;
b lock MovingIn

outer input Real b ;
outer input Real k ;
outer input Real m;
outer output Real x ;
outer output Real xd ;

equat ion
der (xd)=−1/m∗(b∗xd+k∗x) ;
der (x)=xd ;

end MovingIn ;
MovingIn movingin ;

equat ion
i n i t i a l S t a t e (s t a n d i n g s t i l l l) ;
t r a n s i t i o n (s t a n d i n g s t i l l l , movingout , out , immediate=true , p r i o r i t y =1) ;
t r a n s i t i o n (s t a n d i n g s t i l l l , movingin , inn , immediate=true , p r i o r i t y =2) ;
t r a n s i t i o n (movingout , s t a n d i n g s t i l l l , not out , immediate=true) ;
t r a n s i t i o n (movingin , s t a n d i n g s t i l l l , not inn , immediate=true) ;

pub l i c
b lock On1
end On1 ;
On1 on1 ;
b lock Off1
end Off1 ;

106

APPENDIX C. CASE STUDY: MODELICA CODE

Off1 o f f 1 ;
equat ion

r e s=rem(count , 2) ;
out=i f a c t i v e S t a t e (on1) then res >0 e l s e prev ious (out) ;
inn=i f a c t i v e S t a t e (on1) then r e s<1 e l s e i f a c t i v e S t a t e (on4) then f a l s e e l s e

prev ious (inn) ;
up=i f a c t i v e S t a t e (on1) then f a l s e e l s e i f a c t i v e S t a t e (o f f 5) then true e l s e i f

a c t i v e S t a t e (on5) then true e l s e prev ious (up) ;
i n i t i a l S t a t e (on1) ;
t r a n s i t i o n (on1 , o f f 1 , y<ymax , immediate=true) ;
t r a n s i t i o n (o f f 1 , on1 , y>=ymax , immediate=true) ;

pub l i c
b lock On2
end On2 ;
On2 on2 ;
b lock Off2
end Off2 ;
Off2 o f f 2 ;

equat ion
pick=i f a c t i v e S t a t e (on2) then res >0 e l s e f a l s e ;
drop=i f a c t i v e S t a t e (on2) then r e s<1 e l s e f a l s e ;
down=i f a c t i v e S t a t e (on2) then f a l s e e l s e i f a c t i v e S t a t e (on3) then true e l s e i f

a c t i v e S t a t e (on4) then true e l s e prev ious (down) ;
i n i t i a l S t a t e (o f f 2) ;
t r a n s i t i o n (o f f 2 , on2 , y<=ymin , immediate=true) ;
t r a n s i t i o n (on2 , o f f 2 , y>ymin , immediate=true) ;

pub l i c
b lock On3
end On3 ;
On3 on3 ;
b lock Off3
end Off3 ;
Off3 o f f 3 ;

equat ion
i n i t i a l S t a t e (o f f 3) ;
t r a n s i t i o n (o f f 3 , on3 , x>=xmax , immediate=true) ;
t r a n s i t i o n (on3 , o f f 3 , x<xmax , immediate=true) ;

pub l i c
b lock On4
end On4 ;
On4 on4 ;
b lock Off4
end Off4 ;
Off4 o f f 4 ;

equat ion
i n i t i a l S t a t e (on4) ;
t r a n s i t i o n (on4 , o f f 4 , x>xmin , immediate=true) ;
t r a n s i t i o n (o f f 4 , on4 , x<=xmin , immediate=true) ;

pub l i c
b lock Open
end Open ;
Open open ;
b lock Closed
end Closed ;
Closed c l o s e d ;

equat ion
OFF=i f a c t i v e S t a t e (open) then true e l s e f a l s e ;
ON=i f a c t i v e S t a t e (c l o s e d) then true e l s e f a l s e ;
i n i t i a l S t a t e (open) ;

107

APPENDIX C. CASE STUDY: MODELICA CODE

t r a n s i t i o n (open , c losed , pick , immediate=true) ;
t r a n s i t i o n (c losed , open , drop , immediate=true) ;

pub l i c
b lock Off5
// outer output Boolean up ;
// equat ion
// up=true ;
end Off5 ;
Off5 o f f 5 ;
b lock On5
end On5 ;
On5 on5 ;

equat ion
i n i t i a l S t a t e (o f f 5) ;
t r a n s i t i o n (o f f 5 , on5 ,OFF, immediate=true) ;
t r a n s i t i o n (on5 , o f f 5 ,ON, immediate=true) ;

end PickPlace ;

108

	Contents
	Introduction
	Cyber-physical systems
	Systems engineering
	Model-based engineering
	Model-based systems engineering

	Cyber-physical systems development process
	MBSE and supervisory control
	xCPS platform
	Objectives and outline
	Methodology for comparing and evaluating modeling languages

	Introduction to Model-Based Systems Engineering and Discrete-Event Systems
	Fundamentals of MBSE with supervisory control synthesis
	Behavioural models in MBSE
	Control strategies
	Models for supervisory Control

	Case study: Pick&Place Station of the xCPS platform
	CIF3
	Modeling the uncontrolled system
	Uncontrolled Hybrid plant
	Requirements
	Discrete-event plant

	Developing the controlled system
	Synthesis process and supervisory controller development
	Simulation

	Stateflow & Simulink
	Basic modeling concepts
	Simulink
	Stateflow

	MBSE capabilities
	Specification phase
	Supervisor development phase
	Validation phase
	Implementation phase

	Case study

	MechatronicUML
	Basic modeling concepts
	Component Model
	Real-Time Statecharts

	MBSE capabilities
	Specification phase
	Supervisor development phase
	Validation phase
	Implementation phase

	Case study

	Modelica
	Basic modeling concepts
	State Machines

	MBSE capabilities
	Specification phase
	Supervisor development phase
	Validation phase
	Implementation phase

	Case study

	SysML
	Basic modeling concepts
	Structure
	Requirements
	Behaviour
	Parametrics

	MBSE capabilities
	Specification phase
	Supervisor development phase
	Validation phase
	Implementation phase

	Case study

	Comparison between modeling languages/tools
	Overall comparison
	Comparison review
	Simulink&Stateflow review
	MechatronicUML review
	Modelica review
	SysML review

	Conclusions and Recommendations
	Conclusions
	Recommendations and future work

	Bibliography
	Appendix
	CIF3 Models
	Plant Models of the System
	Models of the requirements
	Hybrid System Models

	Stateflow Models
	Case study: Modelica Code

