Dirichlet-to-Robin Matrix on networks

C. Araúz,A. Carmona,A. M. Encinas ${ }^{1,2}$
Department de Matemàtica Aplicada III
UPC
Barcelona, Spain

Abstract

In this work, we define the Dirichlet-to-Robin matrix associated with a Schrödinger type matrix on general networks, and we prove that it satisfies the alternating property which is essential to characterize those matrices that can be the response matrices of a network. We end with some examples of the sign pattern behavior of the alternating paths.

Keywords: Response matrix, Schur complements, inverse problem, Dirichlet-to-Robin matrix, network 1991 MSC: [2010] 31C20

1 Preliminaires

The Schur complement plays an important role in matrix analysis, statistics, numerical analysis, and many other areas of mathematics and its applications. Our goal is to introduce the Dirichlet-to-Robin matrix associated with a Schrödinger type matrix on general networks as the Schur complement of

[^0]a Schrödinger type matrix with respect to an invertible submatrix defined troughout the interior vertices. Schur complement is a rich and basic tool in mathematical research and applications, so we display an important property that illustrates its power in solving the discrete inverse problem. A complete version of this work in terms of operators can be found in [1].

Let $\Gamma=(V, c)$ be a network; that is, a simple and finite connected graph where $V=\{1,2, \ldots, \ell\}$ is the vertex set and $c: V \times V \longrightarrow \mathbb{R}^{+}$is the conductance that defines the set of edges, E. We say that (i, j) is an edge if $c(i, j)=c_{i j}>0$. Moreover, when $(i, j) \notin E$, then $c_{i j}=0$, in particular $c_{i i}=0$ for any $i=1, \ldots, \ell$. The (weighted) degree of vertex i is defined as $\delta_{i}=\sum_{j=1}^{\ell} c_{i j}$. If we consider a proper subset $F \subset V$, then its boundary $\delta(F)$ is given by the vertices of $V \backslash F$ that are adjacent to at least one vertex of F. It is easy to prove that $\bar{F}=F \cup \delta(F)$ is connected when F is. If F is a non-empty subset of V, its characteristic function is denoted by $\mathbf{1}_{F}$. We denote by $N(i)$, the set of neighbours of $i \in V$; that is, the set of vertices adjacent to i.

Of course networks do not have boundaries by themselves, but starting from a network we can define a network with boundary as $\Gamma=\left(\bar{F}, c_{F}\right)$ where F is a proper subset and $c_{F}=c \cdot \mathbf{1}_{(\bar{F} \times \bar{F}) \backslash(\delta(F) \times \delta(F))}$. From now on we will work with networks with boundary and we suppose that the vertices are labelled as $\delta(F)=\{1, \ldots, n\}$ and $F=\{n+1, \ldots, n+m\}$. Moreover, for the sake of simplicity we denote $c=c_{F}$.

Given $S=\left\{p_{1}, \ldots, p_{k}\right\}$ and $T=\left\{q_{1}, \ldots, q_{k}\right\}$ disjoint subsets of $\delta(F)$, there exist k paths, $\gamma_{1}, \ldots, \gamma_{k}$, such that γ_{i} starts at p_{i} ends at q_{i} and $\gamma_{i} \backslash\left\{p_{i}, q_{i}\right\} \subset F$, since F is connected. The pair $(S ; T)$ is called connected trough Γ, when there exist k paths connecting S and T that are mutually disjoint.

The network $\Gamma=(\bar{F}, c)$ is called a circular planar network if it can be embedded in a closed disc D in the plane so that the vertices in F lie in $\stackrel{\circ}{D}$ and the vertices in $\delta(F)$ lie on the circumference $C=\partial D$. In this case, the vertices in $\delta(F)$ can be labelled in the clockwise circular order. The pair $(S ; T)$ of boundary vertices is called a circular pair if the set $\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$ is in circular order.

Given $\mathrm{u} \in \mathbb{R}^{n+m}$, the notation $\mathrm{u} \geq 0$, respectively $\mathrm{u}>0$, means that $\mathrm{u}_{i} \geq 0$, respectively $\mathrm{u}_{i}>0$, for any $i=1, \ldots, n+m$. Any vector $\sigma \in \mathbb{R}^{n+m}$ such that $\sigma>0$ and moreover $\sum_{i=1}^{n+m} \sigma_{i}^{2}=1$ is called weight on \bar{F}. The set of weights is denoted by $\Omega(\bar{F})$. If $\sigma \in \Omega(\bar{F}), \sigma^{-1} \in \mathbb{R}^{n+m}$ is the vector whose entries are $\sigma_{i}^{-1}, i=1, \ldots, n+m$.

Given $\mathrm{q} \in \mathbb{R}^{n+m}$ the Schrödinger type matrix on Γ with potential q is the matrix whose entries are $\mathcal{L}_{i j}=-c_{i j}$ for all $i \neq j$ and $\mathcal{L}_{i i}=\delta_{i}+q_{i}$. Therefore, for each vector $\mathrm{u} \in \mathbb{R}^{n+m}$ and for each $i=1, \ldots, n+m$,

$$
(\mathcal{L} \mathbf{u})_{i}=\left(\delta_{i}+\mathbf{q}_{i}\right) \mathbf{u}_{i}-\sum_{j=1}^{n+m} c_{i j} u_{j}=\sum_{j=1}^{n+m} c_{i j}\left(\mathbf{u}_{i}-\mathbf{u}_{j}\right)+\mathbf{q}_{i} \mathbf{u}_{i} .
$$

Observe that $\mathrm{q}=0$ corresponds with the so-called combinatorial Laplacian that will be denoted by \mathcal{L}^{0} throughout this work. Moreover,

$$
\mathrm{L}=\left[\begin{array}{cc}
\mathrm{D} & -\mathrm{C}(\delta(F) ; F) \\
-\mathrm{C}(\delta(F) ; F)^{\top} & \mathcal{L}(F ; F)
\end{array}\right]
$$

where D is the diagonal matrix of order n whose diagonal entries are given by $\delta+\mathrm{q}$ on $\delta(F)$ and $\mathrm{C}(\delta(F) ; F)=\left(c_{i j}\right)_{i \in \delta(F), j \in F}$. In general, given a matrix M and A, B sets of indexes, the matrix $\mathcal{M}(A ; B)$ will denote the matrix obtained from M with rows indexed by A and columns indexed by B.

For any weight $\sigma \in \Omega(\bar{F})$, the so-called potential associated with σ is the vector $\left(\mathbf{q}_{\sigma}\right)_{i}=-\sigma_{i}^{-1}\left(\mathcal{L}^{0} \sigma\right)_{i}$. The authors proved in [1] the following result.

Corollary 1.1 If there exist $\sigma \in \Omega(\bar{F})$ and $\lambda \geq 0$ such that $\mathrm{q}=\mathrm{q}_{\sigma}+\lambda 1_{\delta(F)}$, then the corresponding Schrödinger type matrix is positive semi-definite. Moreover, it is not strictly definite iff $\lambda=0$, in which case the eigenvectors are $\mathrm{v}=a \sigma, a \in \mathbb{R}$.

From now on, we will work with potentials given by a weight $\sigma \in \Omega(\bar{F})$ and a real value $\lambda \geq 0$ such that $\mathrm{q}=\mathrm{q}_{\sigma}+\lambda 1_{\delta(F)}$; so that the corresponding Schrödinger type matrix is positive semi-definite. Observe that in this case

$$
\begin{equation*}
(\mathcal{L} \sigma)_{i}=0, i=n+1, \cdots, n+m \quad \text { and } \quad(\mathcal{L} \sigma)_{i}=\lambda \sigma_{i}, i=1, \ldots, n \tag{1}
\end{equation*}
$$

In [2, Proposition 4.10], some of these authors proved the following version of the minimum principle that will be useful in what follows.

Proposition 1.2 (Monotonicity) If $\mathrm{u} \in \mathbb{R}^{n+m}$ is such that $\mathcal{L} \mathrm{u} \geq 0$ on F and $\mathrm{u} \geq 0$ on $\delta(F)$, it is verified that either $\mathrm{u}>0$ on F or $\mathrm{u}=0$ on \bar{F}.

2 Dirichlet-to-Robin matrix

Let us consider the following Dirichlet problem: Given $f \in \mathbb{R}^{m}$ and $g \in \mathbb{R}^{n}$ find $u \in \mathbb{R}^{n+m}$ satisfying

$$
\left[\begin{array}{cc}
\mathrm{I} & 0 \tag{2}\\
-\mathcal{C}(\delta(F) ; F)^{\top} & \mathcal{L}(F ; F)
\end{array}\right][\mathrm{u}]=\left[\begin{array}{l}
\mathrm{g} \\
\mathrm{f}
\end{array}\right]
$$

The existence and uniqueness of solution for System (2) were proved in [2]. In fact, the Dirichlet Principle tell us that for any data $f \in \mathbb{R}^{m}$ and $g \in \mathbb{R}^{n}$, Problem (2) has a unique solution.

Associated with the Dirichlet problem we can consider the following semi homogenous problems, that allow us to introduce the concept of Green and Poisson matrices. Given $\mathrm{f} \in \mathbb{R}^{m}$ find $\mathrm{u}_{f} \in \mathbb{R}^{m}$ satisfying

$$
\begin{equation*}
\mathcal{L}(F ; F) \mathrm{u}_{f}=\mathrm{f} \tag{3}
\end{equation*}
$$

and given $\mathrm{g} \in \mathbb{R}^{n}$ find $\mathrm{v}_{g} \in \mathbb{R}^{n+m}$ satisfying

$$
\left[\begin{array}{cc}
\mathrm{I} & 0 \tag{4}\\
-\mathcal{C}(\delta(F) ; F)^{\top} & \mathcal{L}(F ; F)
\end{array}\right]\left[\mathrm{v}_{g}\right]=\left[\begin{array}{l}
\mathrm{g} \\
0
\end{array}\right] .
$$

The existence and uniqueness of solution for System (3) implies that matrix $\mathcal{L}(F ; F)$ is invertible and its inverse is called Green matrix for F and it is denoted by \mathcal{G}. Observe that \mathcal{G} is a symmetric matrix.

On the other hand, we define the Poisson matrix for F as the matrix of order $(n+m) \times n$ given by

$$
\mathcal{P}(F ; \delta(F))=\mathcal{G} \cdot \mathcal{C}(\delta(F) ; F)^{\top} \quad \text { and } \quad \mathcal{P}(\delta(F) ; \delta(F))=\mathcal{I}
$$

Notice that for any $\mathrm{g} \in \mathbb{R}^{n}$, the unique solution of System (4) is $\mathrm{v}_{g}=\mathcal{P g}$. Moreover, from Equation (1), we get that $\mathcal{P} \sigma_{\delta(F)}=\sigma$.

Kirkhoff's law say that the sum of the currents flowing out of each interior vertex is zero, as state by System (4). If a vector g is assigned at the boundary vertices, the network Γ will acquire a unique harmonic vector v_{g}, with $\left(\mathrm{v}_{g}\right)_{i}=$ g_{i} for each $i=1, \ldots, n$. The vector v_{g} is called the potential due to g .

The function v_{g} determines a current through each boundary node,

$$
\left(\mathcal{L} \mathrm{v}_{g}\right)_{i}=\sum_{j=n+1}^{n+m} c_{i j}\left[\mathrm{~g}_{i}-\left(\mathrm{v}_{g}\right)_{j}\right] .
$$

Now, we are ready to define the Dirichlet-to-Robin matrix on general networks and to study its main properties. This map is naturally associated to a Schrödinger type matrix, and generalizes the concept of Dirichlet-toNeumann map for the case of the combinatorial Laplacian matrix.

The Dirichlet-to-Robin matrix, denoted by Λ, is the Schur complement of $\mathcal{L}(F ; F)$ in \mathcal{L}; that is,

$$
\Lambda=\mathrm{L} / \mathcal{L}(F ; F)=\mathrm{D}-\mathrm{C}(\delta(F) ; F) \cdot \mathcal{G} \cdot \mathrm{C}(\delta(F) ; F)^{\top}
$$

Observe that for any $\mathrm{g} \in \mathbb{R}^{n}, \Lambda \mathrm{~g}=\mathrm{Dg}-\mathrm{C}(\delta(F) ; F) \mathrm{v}_{g_{\mid F}}=\mathcal{L}(\delta(F) ; \bar{F}) \mathrm{v}_{g}$.
Hence, Λ sends boundary Dirichlet date g to boundary Robin currents $\mathcal{L} \mathrm{v}_{g}$. The inverse problem is to recover the conductances \mathcal{C} form Λ, see [1,3,4]. In this work we are not worried about this problem, but in studying some properties of Λ. The following ones are a direct consequence of the expression of Λ and of some properties for Schur complements of symmetric matrices, see [5, Theorem 1.12]

Proposition 2.1 The Dirichlet-to-Robin matrix is symmetric, negative offdiagonal, positive on the diagonal and positive semi-definite. Moreover, λ is the lowest eigenvalue of Λ and its associated eigenvectors are multiple of $\sigma_{\left.\right|_{\delta(F)}}$.

Now we show that the Dirichlet-to-Robin matrix has the alternating property, which may be considered as a generalization of the monotonicity property; see [6, Theorem 2.1] for the continuous version of this property.

Theorem 2.2 (Alternating paths) Suppose that $\delta(F)=A \cup B$, where A and B are disjoint subsets. Let $\mathrm{g} \in \mathbb{R}^{n}$ such that $\mathrm{g}_{i} \neq 0$ iff $i \in B$ and $p_{1}, \ldots, p_{k} \in A$ such that

$$
\begin{equation*}
(-1)^{i+1}(\Lambda \mathrm{~g})_{p_{i}}>0 \tag{5}
\end{equation*}
$$

Then, there exist $q_{1}, \ldots, q_{k} \in B$ such that

$$
\begin{equation*}
(\Lambda \mathrm{g})_{p_{i}} \mathrm{~g}_{q_{i}}<0 \tag{6}
\end{equation*}
$$

Moreover, for any $i=1, \ldots, k$, there exists a path from p_{i} to q_{i} such that $\gamma_{i} \backslash\left\{p_{i}, q_{i}\right\} \subset F$ and $\mathrm{g}_{q_{i}} \mathrm{v}_{g_{\left(\gamma_{i} \backslash p_{i}\right)}}>0$, where $\mathrm{v}_{g}=\mathcal{P} \mathrm{g}$.

Proof. As $p_{1} \in A$, from (5), we have that $0<(\Lambda \mathrm{g})_{p_{1}}=-\sum_{i=1}^{m} c_{p_{1} n+i}\left(\mathrm{v}_{g}\right)_{n+i}$. Then, there exists $t \in F \cap N\left(p_{1}\right)$ such that $\left(\mathrm{v}_{g}\right)_{t}<0$.

Let W be the connected component of $\left\{k \in F:\left(\mathrm{v}_{g}\right)_{k}<0\right\}$ containing t. Suppose that $\bar{W} \cap B=\emptyset$; that is, $\bar{W} \subset F \cup A$. We consider $u=\left(\mathrm{v}_{g}\right)_{\left.\right|_{\bar{W}}}$; then $\mathcal{L} \mathbf{u}=0$ on $W, \mathrm{u} \geq 0$ on $\delta(W)$, then from the monotonicity principle $\mathrm{u} \geq 0$ on W which is a contradiction. Therefore, $\bar{W} \cap B \neq \emptyset$ and hence $\mathrm{v}_{g} \geq 0$ on $\delta(W) \cap F$. If $\mathrm{v}_{g} \geq 0$ on $\delta(W) \cap B$, we get that $\mathcal{L} \mathrm{v}_{g}=0$ on $W, \mathrm{v}_{g} \geq 0$ on $\delta(W)$, so $\mathrm{v}_{g} \geq 0$ on W applying again the monotonicity principle which is a contradiction. So, there exists $q_{1} \in \delta(W) \cap B$ such that $\left(\mathrm{v}_{g}\right)_{q_{1}}<0$. As $q_{1} \in \delta(W)$, there exists $z_{1} \in W$, so $\left(\mathrm{v}_{g}\right)_{z_{1}}<0$, such that $q_{1} \sim z_{1}$. As W is a connected subset we can join q_{1} and j_{1} by a path $\gamma_{1}=\left\{p_{1} \sim t \sim \ldots \sim z_{1} \sim q_{1}\right\}$ such that $\left\{t, \ldots, z_{1}\right\} \subset W$ and hence $\mathrm{v}_{\left.g\right|_{\left(\gamma_{1} \backslash p_{1}\right)}<0 \text {. } ~}$

We can repeat this argument to produce paths γ_{j} such that γ_{j} joins p_{j} to a point $q_{j} \in B$ such that $\gamma_{j} \backslash\left\{p_{j}, q_{j}\right\} \subset F$ and $(-1)^{j}\left(\mathrm{v}_{g}\right)_{z}<0$ for all $z \in \gamma_{j} \backslash p_{j}$. \square
Corollary 2.3 Suppose that the network is circular planar and $\delta(F)=A \cup B$, where A and B are disjoint subsets. Let $\mathrm{g} \in \mathbb{R}^{n}$ such that $\mathrm{g}_{i} \neq 0$ iff $i \in B$ and $p_{1}, \ldots, p_{k} \in A$ in circular order such that $(-1)^{i+1}(\Lambda \mathrm{~g})_{p_{i}}>0$. Then, there exist $q_{1}, \ldots, q_{k} \in B$ in circular order such that $(\Lambda \mathrm{g})_{p_{i}} \mathrm{~g}_{q_{i}}<0$. Moreover, for any $i=1, \ldots, k$, there exists a path from p_{i} to q_{i} such that $\gamma_{i} \backslash\left\{p_{i}, q_{i}\right\} \subset F$ and $\mathrm{g}_{q_{i}} \mathrm{v}_{\left.\right|_{\left(\gamma_{i} \mid p_{i}\right)}}>0$ such that $\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$ is connected through Γ.

The following result can be obtained from Theorem 2.2 by a slightly modification of the proof.

Theorem 2.4 (Strong alternating paths) Suppose that $\delta(F)=A \cup B$, where A and B are disjoint subsets. Let $\mathrm{g} \in \mathbb{R}^{n}$ such that $\mathrm{g}_{i} \neq 0$ iff $i \in B$ and $p_{1}, \ldots, p_{k} \in A$ such that $(\Lambda \mathrm{g})_{p_{i}}=0$, then there is a sequence of points $q_{1}, \ldots, q_{k} \in B$ such that $(-1)^{i} \mathrm{~g}_{q_{i}} \geq 0$. Moreover, for any $i=1, \ldots, k$, there exists a path from $p_{i} \sim x_{1}^{i} \sim \ldots \sim x_{n_{i}}^{i} \sim q_{i}$ such that $P_{i} \backslash\left\{p_{i}, q_{i}\right\} \subset F$ and there exists $m_{i} \in\left\{1, \ldots, n_{i}+1\right\}$ such that $\left(\mathrm{v}_{g}\right)_{x_{\ell}}=0$ for all $\ell=0, \ldots, m_{i}-1$ and $\mathbf{g}_{\ell_{i}}\left(\mathrm{v}_{g}\right)_{x_{\ell}}>0$ for all $\ell=m_{i}, \ldots, n_{i}$.

The following examples show the behavior of the paths described in the above results.

1. Consider the Spider graph displayed in Figure 1 (left), see [1] for the definition. With the following weights and parameters: $\sigma=\frac{1}{10}$ on $\delta(F) \cup\left\{x_{00}\right\}$ and $\sigma=\frac{1}{5}$ on $F \backslash\left\{x_{00}\right\}$, where x_{00} is the central vertex and $\lambda=2$. Moreover, all the conductances equal 1 on the edges in the radius and equal 2 on the edges of the circles. Then, the Dirichlet-to-Robin matrix is

Fig. 1. Sign pattern in a Spider.

Finally, for $\mathrm{g}=(-4,21,-37.2,26.38,-6.29519)^{T}$, we get the following sign pattern for v_{g} depicted in Figure 1.
2. Consider now the spider network displayed in Figure 1 (right). In this case, $\sigma=\frac{1}{6}$ on $\delta(F) \cup\left\{x_{00}\right\}$ and $\sigma=\frac{1}{3}$ on $F \backslash\left\{x_{00}\right\}$ and $\lambda=2$. Moreover, the conductances equal 1 on the edges in the radius and equal 2 on the edges of the circles. Then, the Dirichlet-to-Robin matrix is

$$
\Lambda=\frac{1}{889}\left(\begin{array}{lllllll}
a & b & c & d & d & c & b \\
b & a & b & c & d & d & c \\
c & b & a & b & c & d & d \\
d & c & b & a & b & c & d \\
d & d & c & b & a & b & c \\
c & d & d & c & b & a & b \\
b & c & d & d & c & b & a
\end{array}\right), \quad \text { where } \quad \begin{aligned}
& a=3128 \\
& b=-281 \\
& c=-211 \\
& d=-183 .
\end{aligned}
$$

Finally, for $\mathrm{g}=(-1,3.5,-3.5,1)^{T}$ we get the following sign pattern for v_{g} depicted in Figure 1(right).
3. Consider the network displayed in Figure 3. With the following weights and parameters: $\sigma=\frac{1}{4}$ on $A \cup F$ and $\sigma=\frac{1}{2}$ on B and $\lambda=2$. Moreover, the conductances equal 2 on $F \times F$ and equal 1 otherwise. Then, the Dirichlet-to-Robin matrix is

$$
\Lambda=\frac{1}{24}\left(\begin{array}{cccccc}
105 & -13 & -15 & -13 & -3 & -5 \\
-13 & 105 & -13 & -15 & -5 & -3 \\
-15 & -13 & 105 & -13 & -3 & -5 \\
-13 & -15 & -13 & 10 & -5 & -3 \\
-3 & -5 & -3 & -5 & 57 & -1 \\
-5 & -3 & -5 & -3 & -1 & 57
\end{array}\right) .
$$

Finally, for $\mathrm{g}=(1,-1.5)^{T}$ we get the following sign pattern for v_{g} depicted in Figure 2.

Fig. 2. Sign pattern in a non-planar network

References

[1] C. Araúz, A. Carmona, and A. M. Encinas: Dirichlet-to-Robin map on finite networks. submmitted, 2014.
[2] E. Bendito, A. Carmona, and A. M. Encinas: Potential Theory for Schrödinger operators on finite networks. Rev. Mat. Iberoamericana, 21(3): 771-818, 2005.
[3] E. B. Curtis, D. Ingerman, and J. A. Morrow: Circular planar graphs and resistor networks. Linear Algebra Appl., 283(1-3): 115-150, 1998.
[4] E. Curtis, and J. Morrow: Inverse Problems for Electrical Networks. Series on Applied Mathematics, vol. 13. World Scientific 2000.
[5] R.A. Horn, and F. Zhang, Basic Properties of the Schur Complement, The Schur Complement and Its Applications, Numerical Methods and Algorithms, vol. 4: 17-46. Springer 2005.
[6] D. Ingerman, and J. Morrow: On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region. SIAM J. Math. Anal., 29(1): 106-115, 1998.

[^0]: 1 This work has been supported by the Spanish Research Council (Comisión Interministerial de Ciencia y Tecnología,) under project MTM2011-28800-C02-02
 ${ }^{2}$ Email: cristina.arauz@upc.edu

