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Abstract

In this work, we define the Dirichlet–to–Robin matrix associated with a Schrödinger
type matrix on general networks, and we prove that it satisfies the alternating
property which is essential to characterize those matrices that can be the response
matrices of a network. We end with some examples of the sign pattern behavior of
the alternating paths.
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1 Preliminaires

The Schur complement plays an important role in matrix analysis, statistics,
numerical analysis, and many other areas of mathematics and its applica-
tions. Our goal is to introduce the Dirichlet–to–Robin matrix associated with
a Schrödinger type matrix on general networks as the Schur complement of
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de Ciencia y Tecnoloǵıa,) under project MTM2011-28800-C02-02
2 Email: cristina.arauz@upc.edu

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87657123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a Schrödinger type matrix with respect to an invertible submatrix defined
troughout the interior vertices. Schur complement is a rich and basic tool in
mathematical research and applications, so we display an important property
that illustrates its power in solving the discrete inverse problem. A complete
version of this work in terms of operators can be found in [1].

Let Γ = (V, c) be a network ; that is, a simple and finite connected graph
where V = {1, 2, . . . , `} is the vertex set and c : V × V −→ R+ is the con-
ductance that defines the set of edges, E. We say that (i, j) is an edge if
c(i, j) = cij > 0. Moreover, when (i, j) /∈ E, then cij = 0, in particular cii = 0

for any i = 1, . . . , `. The (weighted) degree of vertex i is defined as δi =
∑̀
j=1

cij.

If we consider a proper subset F ⊂ V , then its boundary δ(F ) is given by the
vertices of V \ F that are adjacent to at least one vertex of F . It is easy to
prove that F̄ = F ∪ δ(F ) is connected when F is. If F is a non–empty subset
of V , its characteristic function is denoted by 1

F
. We denote by N(i), the set

of neighbours of i ∈ V ; that is, the set of vertices adjacent to i.

Of course networks do not have boundaries by themselves, but starting
from a network we can define a network with boundary as Γ = (F̄ , c

F
) where

F is a proper subset and c
F

= c · 1
(F̄×F̄ )\(δ(F )×δ(F ))

. From now on we will work
with networks with boundary and we suppose that the vertices are labelled
as δ(F ) = {1, . . . , n} and F = {n + 1, . . . , n + m}. Moreover, for the sake of
simplicity we denote c = c

F
.

Given S = {p1, . . . , pk} and T = {q1, . . . , qk} disjoint subsets of δ(F ), there
exist k paths, γ1, . . . , γk, such that γi starts at pi ends at qi and γi\{pi, qi} ⊂ F ,
since F is connected. The pair (S;T ) is called connected trough Γ, when there
exist k paths connecting S and T that are mutually disjoint.

The network Γ = (F̄ , c) is called a circular planar network if it can be

embedded in a closed disc D in the plane so that the vertices in F lie in
◦
D

and the vertices in δ(F ) lie on the circumference C = ∂D. In this case, the
vertices in δ(F ) can be labelled in the clockwise circular order. The pair (S;T )
of boundary vertices is called a circular pair if the set (p1, . . . , pk; q1, . . . , qk) is
in circular order.

Given u ∈ Rn+m, the notation u ≥ 0, respectively u > 0, means that
ui ≥ 0, respectively ui > 0, for any i = 1, . . . , n + m. Any vector σ ∈ Rn+m

such that σ > 0 and moreover
n+m∑
i=1

σ2
i = 1 is called weight on F̄ . The set of

weights is denoted by Ω(F̄ ). If σ ∈ Ω(F̄ ), σ−1 ∈ Rn+m is the vector whose
entries are σ−1

i , i = 1, . . . , n+m.



Given q ∈ Rn+m the Schrödinger type matrix on Γ with potential q is the
matrix whose entries are Lij = −cij for all i 6= j and Lii = δi + qi. Therefore,
for each vector u ∈ Rn+m and for each i = 1, . . . , n+m,

(Lu)i = (δi + qi)ui −
n+m∑
j=1

cijuj =
n+m∑
j=1

cij(ui − uj) + qiui.

Observe that q = 0 corresponds with the so–called combinatorial Laplacian
that will be denoted by L0 throughout this work. Moreover,

L =

 D −C(δ(F );F )

−C(δ(F );F )> L(F ;F )


where D is the diagonal matrix of order n whose diagonal entries are given by
δ + q on δ(F ) and C(δ(F );F ) = (cij)i∈δ(F ),j∈F . In general, given a matrix M

and A,B sets of indexes, the matrixM(A;B) will denote the matrix obtained
from M with rows indexed by A and columns indexed by B.

For any weight σ ∈ Ω(F̄ ), the so–called potential associated with σ is the

vector
(
qσ
)
i

= −σ−1
i

(
L0σ

)
i
. The authors proved in [1] the following result.

Corollary 1.1 If there exist σ ∈ Ω(F̄ ) and λ ≥ 0 such that q = qσ + λ1
δ(F )

,
then the corresponding Schrödinger type matrix is positive semi–definite. More-
over, it is not strictly definite iff λ = 0, in which case the eigenvectors are
v = aσ, a ∈ R.

From now on, we will work with potentials given by a weight σ ∈ Ω(F̄ )
and a real value λ ≥ 0 such that q = qσ + λ1

δ(F )
; so that the corresponding

Schrödinger type matrix is positive semi–definite. Observe that in this case

(
Lσ
)
i

= 0, i = n+ 1, · · · , n+m and
(
Lσ
)
i

= λσi, i = 1, . . . , n. (1)

In [2, Proposition 4.10], some of these authors proved the following version of
the minimum principle that will be useful in what follows.

Proposition 1.2 (Monotonicity) If u ∈ Rn+m is such that Lu ≥ 0 on F
and u ≥ 0 on δ(F ), it is verified that either u > 0 on F or u = 0 on F̄ .



2 Dirichlet–to–Robin matrix

Let us consider the following Dirichlet problem: Given f ∈ Rm and g ∈ Rn

find u ∈ Rn+m satisfying I 0

−C(δ(F );F )> L(F ;F )

[ u ] =

 g

f

 . (2)

The existence and uniqueness of solution for System (2) were proved in [2].
In fact, the Dirichlet Principle tell us that for any data f ∈ Rm and g ∈ Rn,
Problem (2) has a unique solution.

Associated with the Dirichlet problem we can consider the following semi
homogenous problems, that allow us to introduce the concept of Green and
Poisson matrices. Given f ∈ Rm find uf ∈ Rm satisfying

L(F ;F )uf = f (3)

and given g ∈ Rn find vg ∈ Rn+m satisfying I 0

−C(δ(F );F )> L(F ;F )

[ vg ] =

 g

0

 . (4)

The existence and uniqueness of solution for System (3) implies that matrix
L(F ;F ) is invertible and its inverse is called Green matrix for F and it is
denoted by G. Observe that G is a symmetric matrix.

On the other hand, we define the Poisson matrix for F as the matrix of
order (n+m)× n given by

P(F ; δ(F )) = G · C(δ(F );F )> and P(δ(F ); δ(F )) = I.

Notice that for any g ∈ Rn, the unique solution of System (4) is vg = Pg.
Moreover, from Equation (1), we get that Pσ

δ(F )
= σ.

Kirkhoff’s law say that the sum of the currents flowing out of each interior
vertex is zero, as state by System (4). If a vector g is assigned at the boundary
vertices, the network Γ will acquire a unique harmonic vector vg, with (vg)i =
gi for each i = 1, . . . , n. The vector vg is called the potential due to g.



The function vg determines a current through each boundary node,

(
Lvg
)
i

=
n+m∑
j=n+1

cij
[
gi −

(
vg
)
j

]
.

Now, we are ready to define the Dirichlet–to–Robin matrix on general net-
works and to study its main properties. This map is naturally associated
to a Schrödinger type matrix, and generalizes the concept of Dirichlet–to–
Neumann map for the case of the combinatorial Laplacian matrix.

The Dirichlet–to–Robin matrix, denoted by Λ, is the Schur complement of
L(F ;F ) in L; that is,

Λ = L/L(F ;F ) = D− C(δ(F );F ) · G · C(δ(F );F )>.

Observe that for any g ∈ Rn, Λg = Dg − C(δ(F );F )vg |F = L(δ(F ); F̄ )vg.

Hence, Λ sends boundary Dirichlet date g to boundary Robin currents
Lvg. The inverse problem is to recover the conductances C form Λ, see [1,3,4].
In this work we are not worried about this problem, but in studying some
properties of Λ. The following ones are a direct consequence of the expression
of Λ and of some properties for Schur complements of symmetric matrices, see
[5, Theorem 1.12]

Proposition 2.1 The Dirichlet–to–Robin matrix is symmetric, negative off–
diagonal, positive on the diagonal and positive semi–definite. Moreover, λ is
the lowest eigenvalue of Λ and its associated eigenvectors are multiple of σ|δ(F )

.

Now we show that the Dirichlet–to–Robin matrix has the alternating prop-
erty, which may be considered as a generalization of the monotonicity prop-
erty; see [6, Theorem 2.1] for the continuous version of this property.

Theorem 2.2 (Alternating paths) Suppose that δ(F ) = A ∪ B, where A
and B are disjoint subsets. Let g ∈ Rn such that gi 6= 0 iff i ∈ B and
p1, . . . , pk ∈ A such that

(−1)i+1
(

Λg
)
pi
> 0. (5)

Then, there exist q1, . . . , qk ∈ B such that(
Λg
)
pi
gqi < 0. (6)



Moreover, for any i = 1, . . . , k, there exists a path from pi to qi such that
γi \ {pi, qi} ⊂ F and gqivg|(γi\pi)

> 0, where vg = Pg.

Proof. As p1 ∈ A, from (5), we have that 0 <
(

Λg
)
p1

= −
m∑
i=1

cp1n+i(vg)n+i.

Then, there exists t ∈ F ∩N(p1) such that (vg)t < 0.

Let W be the connected component of {k ∈ F : (vg)k < 0} containing
t. Suppose that W ∩ B = ∅; that is, W ⊂ F ∪ A. We consider u =

(
vg
)
|W

;

then Lu = 0 on W , u ≥ 0 on δ(W ), then from the monotonicity principle
u ≥ 0 on W which is a contradiction. Therefore, W ∩B 6= ∅ and hence vg ≥ 0
on δ(W ) ∩ F . If vg ≥ 0 on δ(W ) ∩ B, we get that Lvg = 0 on W , vg ≥ 0
on δ(W ), so vg ≥ 0 on W applying again the monotonicity principle which
is a contradiction. So, there exists q1 ∈ δ(W ) ∩ B such that (vg)q1 < 0. As
q1 ∈ δ(W ), there exists z1 ∈ W , so (vg)z1 < 0, such that q1 ∼ z1. As W is a
connected subset we can join q1 and j1 by a path γ1 = {p1 ∼ t ∼ . . . ∼ z1 ∼ q1}
such that {t, . . . , z1} ⊂ W and hence vg |(γ1\p1)

< 0.

We can repeat this argument to produce paths γj such that γj joins pj to a
point qj ∈ B such that γj \{pj, qj} ⊂ F and (−1)j(vg)z < 0 for all z ∈ γj \pj.2
Corollary 2.3 Suppose that the network is circular planar and δ(F ) = A∪B,
where A and B are disjoint subsets. Let g ∈ Rn such that gi 6= 0 iff i ∈ B

and p1, . . . , pk ∈ A in circular order such that (−1)i+1
(

Λg
)
pi
> 0. Then, there

exist q1, . . . , qk ∈ B in circular order such that
(

Λg
)
pi
gqi < 0. Moreover, for

any i = 1, . . . , k, there exists a path from pi to qi such that γi \ {pi, qi} ⊂ F
and gqivg|(γi\pi)

> 0 such that (p1, . . . , pk; q1, . . . , qk) is connected through Γ.

The following result can be obtained from Theorem 2.2 by a slightly mod-
ification of the proof.

Theorem 2.4 (Strong alternating paths) Suppose that δ(F ) = A ∪ B,
where A and B are disjoint subsets. Let g ∈ Rn such that gi 6= 0 iff i ∈ B

and p1, . . . , pk ∈ A such that
(

Λg
)
pi

= 0, then there is a sequence of points

q1, . . . , qk ∈ B such that (−1)igqi ≥ 0. Moreover, for any i = 1, . . . , k, there
exists a path from pi ∼ xi1 ∼ . . . ∼ xini ∼ qi such that Pi \ {pi, qi} ⊂ F and
there exists mi ∈ {1, . . . , ni + 1} such that (vg)x` = 0 for all ` = 0, . . . ,mi − 1
and g`i(vg)x` > 0 for all ` = mi, . . . , ni.

The following examples show the behavior of the paths described in the
above results.



1. Consider the Spider graph displayed in Figure 1 (left), see [1] for the
definition. With the following weights and parameters: σ = 1

10
on δ(F )∪{x00}

and σ = 1
5

on F \ {x00}, where x00 is the central vertex and λ = 2. Moreover,
all the conductances equal 1 on the edges in the radius and equal 2 on the
edges of the circles. Then, the Dirichlet–to–Robin matrix is
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Fig. 1. Sign pattern in a Spider.

Λ =
1

110384474959



a b c d e f f e d c b

b a b c d e f f e d c

c b a b c d e f f e d

d c b a b c d e f f e

e d c b a b c d e f f

f e d c b a b c d e f

f f e d c b a b c d e

e f f e d c b a b c d

d e f f e d c b a b c

c d e f f e d c b a b

b c d e f f e d c b a



, where

a = 395732805366

b = −28317414524

c = −19609504324

d = −15073456676

e = −12739926180

f = −11741626020.

Finally, for g = (−4, 21,−37.2, 26.38,−6.29519)T , we get the following sign
pattern for vg depicted in Figure 1.

2. Consider now the spider network displayed in Figure 1 (right). In this case,
σ = 1

6
on δ(F ) ∪ {x00} and σ = 1

3
on F \ {x00} and λ = 2. Moreover, the

conductances equal 1 on the edges in the radius and equal 2 on the edges of
the circles. Then, the Dirichlet–to–Robin matrix is

Λ =
1

889



a b c d d c b

b a b c d d c

c b a b c d d

d c b a b c d

d d c b a b c

c d d c b a b

b c d d c b a


, where

a = 3128

b = −281

c = −211

d = −183.



Finally, for g = (−1, 3.5,−3.5, 1)T we get the following sign pattern for vg
depicted in Figure 1(right).
3. Consider the network displayed in Figure 3. With the following weights
and parameters: σ = 1

4
on A ∪ F and σ = 1

2
on B and λ = 2. Moreover, the

conductances equal 2 on F × F and equal 1 otherwise. Then, the Dirichlet–
to–Robin matrix is

Λ =
1

24



105 −13 −15 −13 −3 −5

−13 105 −13 −15 −5 −3

−15 −13 105 −13 −3 −5

−13 −15 −13 105 −5 −3

−3 −5 −3 −5 57 −1

−5 −3 −5 −3 −1 57


.

Finally, for g = (1,−1.5)T we get the following sign pattern for vg depicted
in Figure 2.
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Fig. 2. Sign pattern in a non–planar network
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