International Journal for Numerical Methods in Engineering, Volume XX, Number 000, 2016

Interpolation with restrictions between finite element meshes for flow
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The need for remeshing when computing flow problems in domains suffering large deformations has moti-
vated the implementation of a tool which allows the proper transmission of information between finite element
meshes. Since the Lagrangian projection of results from one mesh to another is a dissipative method, a new
conservative interpolation method has been developed. A series of constraints, such as the conservation of mass or
energy, are applied to the interpolated arrays through Lagrange multipliers in an error minimization problem, so that
the resulting array satisfies these physical properties while staying as close as possible to the original interpolated
values in the L2 norm. Unlike other conservative interpolation methods which require a considerable effort in
mesh generation and modification, the proposed formulation is mesh independent and is only based on the physical
properties of the field being interpolated. Moreover, the performed corrections are neither coupled with the main
calculation nor with the interpolation itself, for which reason the computational cost is very low.
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1. INTRODUCTION

The interpolation of numerical solutions between computational meshes is a well known
procedure with multiple applications, for example the transmission of arrays in case of prob-
lems with evolving domains, coupling between different physical problems or computational
codes, initialization or update of boundary conditions or visualization of results. In some
of these cases, a simple Lagrangian interpolation within the elements is acceptable, but
in other scenarios the non-conservative character of the interpolation operation can cause
considerable dissipation and other kinds of numerical error. This has led to the development
of multiple methods for the transmission of information between meshes in finite element
computations.

The accurate projection of transmission conditions between two subdomains was the
main motivation for the development of an interpolation method based on the conservation
of relevant magnitudes, Houzeaux and Codina (2001), which has already been applied to
the fixed mesh ALE method by Codina et al. (2009). In this paper, the projection of vector
fields corresponding to the transmission conditions between subdomains in a domain de-
composition problem is constrained by the conservation of mass in a weak sense and by the
conservation of the L? norm of the solution along the boundary. The application of these
restrictions is performed by solving an optimization problem with constraints controlled
by Lagrange multipliers which enforce that the distance between the interpolated and the
corrected solutions is minimum in the L? norm and that the restrictions are fulfilled. This
concept is the background of the formulation presented in this work.

The pioneer works on conservative interpolation between computational meshes were
an answer to the needs regarding the domain deformation in ALE (Arbitrary Lagrangian
Eulerian) calculations, where the computational nodes of the mesh may either remain fixed as
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in the Eulerian configuration or can be prescribed an arbitrary velocity, Donea et al. (2004).
The techniques for achieving the conservation of certain magnitudes during the interpolation
process consisted in either building a new mesh by locally modifying the original one, or
interpolating the results to a new random grid after computing the intersections between both
meshes. The first case corresponds to the local rezoning, which normally takes place at every
time step but at a low computational cost. An example of such an algorithm is presented by
Margolin and Shashkov (2003), a second order accurate scheme which divides the new cells
taking into account the intersections with the old ones and guarantees the conservation of the
mass fluxes along the edges of the finite volumes in 2D. This method was extended to 3D
domains by Garimella et al. (2007). On the other hand, global remapping does not assume
any relation between the original and the target mesh, for which reason these algorithms deal
with the whole domain and increase the computational cost, although they might be used less
often during the simulation. In this sense, Ramshaw (1985) and Dukowicz and Kodis (1987)
present a remapping method which computes the intersection volume between meshes with a
surface integral and builds the interpolated field performing an area-weight averaging. On the
other hand, some disciplines such as weather forecast use conservative numerical methods
in a semi-Lagrangian frame of reference which require the tracking of the trajectory and the
interpolation of the convection velocity to an Eulerian frame of reference. An area-weighted
interpolation is also used to prevent loss of accuracy by Scroggs and Semazzi (1995). The
concept of interpolation with constraints is presented by Chesshire and Henshaw (1994) for
finite volumes and finite differences, where the integration weights and the interpolation co-
efficients are forced to fulfill certain conditions. Alauzet and Mehrenberger (2010) propose a
P1 exact, mass conservative interpolation scheme which also fulfills the maximum principle
by reconstructing the mass field and its gradient with the elemental intersections between
both meshes. Another popular technique developed recently is the common-refinement or
the supermesh, Jiao and Heath (2004), Farrell et al. (2009) and Farrell and Maddison (2011).
It consists in the construction of an intermediate mesh as a union of the original and the target
meshes in order to allow an efficient Galerkin projection of the results, which minimizes the
L? norm of the interpolation error. An important method regarding the formulation that will
be presented in this work is that of Chippada et al. (1998). It is not based on grid operations or
algorithms but on the physics of the problem, in this case the shallow water equations. The
unknown velocity on the target mesh is expressed as an L? projection of the old one plus
a correction factor defined in terms of the gradient of a scalar function (pseudo-pressure),
which leads to an elliptic problem of the projected velocity correction. Additionally, this
method yields local mass conservation without changing the vorticity of the velocity field.

As stated before, one of the main fields of application of conservative interpolation
methods is the transmission of loads between interfaces belonging to non coincident meshes.
This scenario happens in coupled problems such as fluid-structure interaction or in domain
decomposition methods. In the first case, Cebral and Lohner (1997) propose the conservation
of the load along the interface with a node-projection scheme. On the other hand, Farhat
et al. (1998) use a quadrature-projection of the loads, which involves the transmission of the
integration points to the target mesh, and finally the local version of the common-refinement
Jiao and Heath (2004), being this last one the only whose error is independent of the degree
of mismatching between meshes. A comparison between them can be found in Jaiman et al.
(2005), where the common-refinement method is recommended due to its general good
performance with a reasonable computational cost. In the case of non-conforming domain
decomposition methods, one of the most extended methods of conservative interpolation is
the mortar element, Bernardi (1994).

An alternative approach to the remeshing problem is that presented by Chiandussi et al.
(2000), which presents a method for a homogeneous distortion of moving computational
meshes by preventing those elements located near the boundaries to collapse. This is achieved
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FIGURE 1. Interpolation of a finite element solution between two computational meshes.

by solving a virtual structural problem on the mesh and giving the problematic elements a
higher Young modulus in order to reach a uniform mesh displacement field. For problems
involving moderate deformations leading to high local mesh distortion, this method avoids
remeshing, whereas for large deformations it would reduce the remeshing frequency. For this
reason, it is foreseen as a complementary tool to the present work.

The presented methodology overcomes the typical difficulties related to the described
conservative schemes. First of all, the method is valid for all discretizations and is indepen-
dent of the degree of coincidence between them. Moreover, neither algorithms related to the
mesh, such as rezoning, nor computation of local integrals are performed, for which reason
the computational cost will be low and only dependent on the size of the meshes. Another
important property is that, unlike many of the aforementioned methods, the conservation is
achieved interpolating directly the solution values instead of fluxes at overlapping bound-
aries. Although the conservation of magnitudes will be global and not satisfied locally, the
procedure presented in this work allows to enforce conservation conditions of a general form
which may not be restricted to mass and momentum conservation.

2. FORMULATION

2.1. The concept

Let us consider a finite element partition 73, ; of a domain 2 C R?, d > 1, and a discrete
solution uy, 1 of an arbitrary problem defined in the subspace of functions V}, 1 C V, where
V is the space of functions where the continuous solution lives. For the sake of conciseness,
we will consider scalar functions in this section. Given another finite element partition 77, o
of the same domain, the objective is to construct uy, » from uy, 1 with the same approximation
properties to the continuous solution as uy, 1. We will call uy, o the interpolation of uy, 1 on
Th,2 (see Fig. 1), and V}, 5 the corresponding finite element space.

In order to simplify the notation for the rest of the paper, the finite element functions will
be expressed in terms of the shape functions of each finite element partition, which will be
denoted as { N}, where n = 1, 2 refers to the mesh and the superscript to the nodes, so that
a will run from 1 to the number of nodes of each mesh. Denoting by U the corresponding
nodal values and assuming a standard Lagrangian interpolation, we may write

Upp = ZN,?U,‘;, n=12
a
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where summation is understood to run over the set of nodal values.
Let us describe two simple possibilities to compute wp, 2.

Option 1: L? projection
The interpolation ujy, o might consist in an L? projection of uy 1 onto V} 9. This is

equivalent to minimize the functional J (vj2) = lH’Uh,Q — uh,lH%Q @ and leads to the

2
problem: find uy, o € Vj, 2 such that

/uh,zvh,2 :/Uh,1vh,2,
Q Q

for all test functions vy, o € V}, 2. Using the shape functions and nodal values, the problem to

be solved becomes:
> [ vgngu = [ Ngius, m
PRRAL - J

for all nodes a of 7, 2. Let us call U,, the array of nodal values of uy,,, M the standard
mass matrix of 75, 2 and Pg; the array whose components appear in the right-hand-side of
Eq. (1). The solution to this equation can thus be written as

U, = M, 'Pyy.

Apart from the cost of solving this algebraic system, the algorithmic difficulty of this method
is the evaluation of the components of P;. Suppose that numerical integration associated to
Th,2 is used, with integration points {xJ} and associated weights {w§ }. Then

3 / NENEUE & 30 S wd N () N (x) U
c /9 c g

The difficulty is the evaluation of N{(xJ). This requires finding the element domain K; €
Tr,1 where x3 belongs. If node ¢ belongs to this element K7, then N{(xJ) can be computed
from interpolation. Otherwise, it is zero.

Option 2: standard Lagrangian interpolation

The method described above requires the solution of a system of equations, which may
be inconvenient from a computational point of view, even if it is easy to invert the mass
matrix. A simpler alternative is to obtain the nodal values of u, o simply by interpolation,
ie.,

b b
Us =Y N{(x3)UY,
b
where x$ are the coordinates of node a. This is a node of Ty, 2, whereas { N7} are the shape
functions of 7}, 1. Therefore, one needs to find the element K7 € 7; ; where x5 belongs, and
then proceed to interpolate as in the previous approach.

Interpolation with restrictions

The approach described above has the drawback of being non-conservative and very
diffusive, which is precisely what the application of certain restrictions aims to compensate.
However, it is more flexible and easier to parallelize, whereas the L? projection, in spite of
yielding a smaller interpolation error, is not completely conservative either and in some cases
the mass and other quantities should be corrected as well. Therefore, the idea we propose
consists in obtaining uy 2 € V}, o that satisfies two important features:
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e It must remain the nearest solution to wuy 2 in the L? norm, up 2 being obtained from a
standard Lagrangian interpolation, for example.

e It must fulfill some physical properties of w1, which could involve for example the
conservation of a set of magnitudes.

In order to describe the second point, let us define the restriction operators (forms). When
applied to the finite element functions, these operators give a scalar result corresponding to
a relevant magnitude of the physical problem being calculated. We write them as

Rn,i : Vh,n — R, (2

where the subindex n = 1,2 refers either to the donor 1 or to the target mesh 2, and ¢ =
1, ..., m1s the restriction counter. Operators R, ; can be written in terms of their nodal values,
so that

Ry i(unn) = Z Ry Uy,

where R ; = R, ;(Ny;) for linear restrictions and R ; may depend on U, in the case of
non-linear ones.

Since it has been stated that the restriction consists in conserving the value of these
selected magnitudes, the following equalities must hold:

ZRg,iUg = ZRI{JU{)’ i = 17 <M, (3)
a b

where Uz denotes the nodal values associated to 4y, ». The computational domain €2 remains
the same for all stages of the process, since the interpolation process is completely static
although the simulation considers a dynamic domain. In some cases, only a part of the
domain needs to be interpolated, for example in case of fluid-structure interaction (FSI)
problems, where the values at the interface must be exchanged between both subdomains.
This scenario will not be considered in the present work.

Although this method is only presented for some particular flow problems, it can be
extended to other physical problems. For example, the formulation could be extended to
flows with free surfaces in a straightforward way by restricting the constraints to the flow
subdomain, which would require subelemental integration, Codina et al. (2009). Problems in
which the restrictions are inequalities rather than equalities could also be treated by embed-
ding the scheme in a iterative loop that requires to solve a sequence of problems with equality
constraints, as it is done in optimization; these inequality restrictions are found for example
in plasticity problems, where the stresses are required to be admissible, Brancherie et al.
(2006). This last example requires a further extension consisting in posing the restriction in
terms of variables defined at the numerical integration points, such as internal variables like
plastic multipliers or damage; it is only required to be able to express these variables in terms
of the nodal unknowns of the problem and proceed as we propose here.

At this point it is important to distinguish the current method from the mortar method,
Bernardi (1994). Unlike the present method, the mortar method consists in a domain de-
composition technique which performs a L? projection along an interface between non-
matching grids satisfying adequate matching conditions. The restriction of these fluxes might
be performed with Lagrange multipliers. In our case, the interpolation is performed point by
point and the restrictions affect the whole domain.

2.2. Application to linear restrictions

Let us develop the concept introduced above in the case in which the restrictions are
linear functionals. For example, bearing in mind that one of the main issues in the numer-
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ical computations of incompressible flows is the conservation of mass, it is reasonable to
formulate a problem with this linear restriction.

The restrictions can be enforced through Lagrange multipliers A = (A1,...,\;,) € R™.
Given up2 € V2, the interpolation of w1 € Vy 1 on T o, let us define the following
functional L : Vj, o x R™ — R:

2

-> i (Z R, Vs = Ri’,ﬂf) )
i=1 a b

where V3" are the nodal values of vy, 2, p € R™ is an admissible set of Lagrange multipliers
and the subscript in the norm indicates that it is the L?(€2) one. Then the solution that
minimizes the distance to the interpolated values and imposes the restrictions will be:

1 a a a
L(vpz2, p) = 5 ZNz (V3" = Uy)

L2(Q)

[iino, N = arg inf  sup [L (vp, )] 5)
Vh,2€Vh,2 peR™
This is a saddle point problem. A necessary and sufficient condition for it to be well
posed is that the finite element space V}, 2 and R satisfy the appropriate inf-sup condition.
This in particular restricts the number of Lagrange multipliers. However, since m is usually
very small, we have not encountered any stability problem.
The equations to be solved are obtained by differentiation of the functional L with
respect to the unknowns:

L B m
ib:O:> Z/NSNQIU?—ZMRSZ:Z/NSNSUS, forall b, (6)
oV, —Ja — ’ —~ Jo
OL W - A
67u20:> ZR27iU2 :ZRMUP for all 3. (7)

(] a b

These two equations can be arranged into the following algebraic system:

My —Rj U, | _ [ MyU,
Ry 0 A || RUL |2

where R,, are the matrices of the linear restriction operators, n = 1, 2.
In order to avoid solving the full linear system, which can be expensive and requires to
add the Lagrange multiplier unknowns to the solver, we can solve first the Schur complement

problem for the Lagrange multipliers, and later compute the nodal values Us:
RyMy'RIX = RiU;y — RyUs, ®)
U, = Uy + My 'RIX. 9)
Note that system (8) is of small size m x m. The only difficulty for solving this problem is
the calculation of M, ! This is trivial if the mass matrix My is approximated by a diagonal
matrix. If not, the problem can be solved using iterative methods, each iteration of which

requiring the solution of a system of equations with matrix Ms; it is known that these systems
can be solved with a small computational cost.

2.3. Non-linear restrictions

The same idea can be applied in the case in which the restrictions are non-linear, i.e.,
mappings R, ; in (2) are non-linear. Let us assume that we write them as

Rpi(vnn) = > R (Va)Ve,
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with the components R ;(Vy,,) depending of the nodal values V;,. We consider now the

functional
2

L vh?v

ZN2 Vi —
LQ(Q)

—Zuz (ZRM (Vo) Vit — ZR (Uy) U1>. (10)

The optimization of this functlonal leads to the equations:

oL / L - ORS ,(Us) -
— =0= NyN3US — Ai | By ;(Ug) + ——Us
=0 X [ ingig - 3o (im0 LG

a

:Z/NgNgUg, for all b, (11)

oL .
o = ZR (U)U$ = ZR (U)U?, foralli. (12)

This is a non-linear system that needs to be linearized. Let us use a superscript between
parenthesis to denote the iteration counter. Using a fixed point method for (11) and a fixed-
point or Newton-Raphson linearization for (12) we have that

ORg (GEF-Vy _
a k— K a,(k—
/N2N2U2 § Al (RQZU( DED —2305 go k=D
2

a

:Z/ NENSUS,  forall b, (13)
Q
a

aRa (k 1) ~ ~

3 - (‘3U2
RS (05 ™) ety )

_ZR (UU? + ~ Z 8U2 —20 2 TggVop Y foralli (14)

For k = 1 the algorithm can be initialized taking ﬂ'go) = U,;. The Newton-Raphson
linearization for (12) corresponds to v = 1, whereas a fixed-point (Picard’s) method is
obtained for v = 0. Note that a Newton -Raphson linearization of (11) would imply a
modification of the term multlplylng Uy 2 1n(13)

Let us introduce matrix R5(Us), of components

- ORS ,(Uy) -
R3,(U2) =) —— = U3
a aU2

We can now write (13)-(14) as
M _RT _ RT(g%-1 = (k) M>U
o gD 2 2 (U2 )| 07 gl (2k—1) =~ (k—1)
Ry 4+ yRT(U ™) 0 A RU; +yR7(Uy )0y

The matrix of this system can be made symmetric only if v = 1.
As for the linear problem, we could proceed to compute first A by solving the corre-

sponding Schur complement system, and then compute Us.
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3. IMPLEMENTATION

The implemented interpolator is based on a search octree method which has been ex-
tended for MPI parallel computing. This algorithm builds cubic boxes around the selected
entities (points, elements or subdomains) and organizes them hierarchically in a way that
the search can proceed forwards and backwards recursively without having to apply brute
force every time, Lohner (1995). First of all, an octree of subdomains links each node of the
target mesh with the processor containing this coordinate at the old mesh. Each subdomain
has its own octree of elements that finds the element of the old mesh which corresponds to
a node of the new one. Once all connections have been made and communicated between
processors, all arrays of the physical problem can be projected to the target mesh by perform-
ing a Lagrangian interpolation within the found element. Finally, the obtained array can go
through the optimization problem with restrictions in a completely independent subroutine
(see Fig. 2).

Original mesh with Target mesh with
domain decomposition domain decomposition
2
2 3
3

e m s
| Resions |

FIGURE 2. Scheme showing the computational implementation of the interpolation method.
Example with 4 subdomains.

4. APPLICATION TO THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

The presented formulation has been applied to the incompressible Navier-Stokes equa-
tions solved in an ALE frame of reference. Our motivation to develop the formulation de-
scribed here is to use it as a first step towards a complete ALE aeroacoustics calculation using
Lighthill’s acoustic analogy, Lighthill (1952), with incompressible flow and 3D dynamic
realistic vocal tract geometries. The simulation of syllables with a CFD code represents a
challenge in regard to the accuracy of the interpolation of velocity and pressure fields during
the remeshing stages. If we consider the numerical calculation of the syllable [as], sharp
gradients are expected to appear when the upper inscissors approach the lower teeth, which
combined with the large deformation of the domain from the initial open position to the



INTERPOLATION WITH RESTRICTIONS 9

final closed configuration, makes a conservative interpolation method extremely necessary
in order to prevent the propagation of important numerical error sources.

4.1. Continuous problem

The incompressible Navier-Stokes equations model the motion of isentropic, low-speed
viscous flows which do not involve relevant compressibility effects. These are to be solved
in a computational domain © C R¢ (where d = 2, 3 is the number of space dimensions) with
boundary 02 and prescribed initial and boundary conditions. Splitting 02 into two disjoint
sets 0€) = I'p U I'y, the mathematical problem to be faced reads

ou—vAu+u-Vu+Vp=f inQ, t>0,

V-u=0 inQ, t>0,
u (x,0) = up (x) inQ, t=0,
u(x,t) =up (x,t) onI'p, t >0,
n-o(x,t) =ty (x,t) onTy, t >0,

where u is the velocity, p the pressure, f the vector of body forces, v the kinematic viscosity,
ug the velocity initial condition, up the velocity Dirichlet condition, n the exterior unit
normal to 0€2, o = —pI 4+ vn - Vu and ty the prescribed (pseudo-)traction.

Let Vp the space of vector functions with components in H'(Q2) and equal to up on
I'p, and V), the analogous space of functions vanishing on I'p. Let also Q = L?(£2), being
the mean of these functions zero if ' is empty. Let (-, -),, be the integral of the product of
two functions in the domain w (with the subscript omitted when w = €2) and (-, -) the L?(£2)-
inner product. The weak form of the Navier-Stokes equations can be written as follows: for
all time ¢ > 0, find u(t) € Vp and p(t) € Q, with appropriate regularity in time, such that

(O, v)+ (u-Vu,v) +v(Vu,Vv) — (p,V-v) = (f,v) + {tn, V)T,
(qa V- u) =0,

forall v € Vy and q € Q, and supplemented with the weak form of the initial conditions.

When the domain €2 is time dependent, this dependency can be taken into account using
an ALE formulation. If ugey, is the velocity of the points in {2, the only modification that
needs to be introduced to the previous equations is the replacement of the advection velocity
in the convective term by u — Ugom.

4.2. Finite element approximation and time integration using a monolithic scheme

Let us consider a finite element partition of the domain €2 of size h, and use this letter
as subscript to denote finite element functions and spaces. Only conforming finite element
approximations will be considered in what follows.

Concerning the time integration, the monolithic approach for solving the incompressible
Navier-Stokes equations consists in building a linearized system with both velocity and
pressure degrees of freedom, which leads to the coupled calculation of the momentum and
mass equations in one single step. To approximate the first order time derivative, a third order
backward finite difference scheme (BDF3) has been used. Let us partition the time interval
[0, 7] into N equal time steps of size Jt := t"*!1 — " sothat 0 = t¥ < t! < ... < " <
... <tV = T. Given a generic time dependent function g(t), the following notation will be
used for the BDF3 approximation to the first time derivative:

1 llgn+1 —3¢" + §gn—1 N lgn—2> ’

a n ~ 5 n+1 ==\ —=
Glen1 % 0ug 5t < 6 2 3

where g" denotes evaluation of g at time step t". At an arbitrary time step of the numerical
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simulation, the final fully discretized implicit scheme in space and time reads as follows.

From known uZ’Q, uZ*I and u}}, compute the incompressible velocity and pressure at time

step t" L, [u ™t pi ] € Vp x Qp, such that

(5tu2+1,vh) + <uzJrl : VuZ+1,vh> +v (VUZH, Vvh) — (pZH, V- vh)
+ (gn, V™) = (E7 v + (G Vi), (15)

for all test functions [vy,qn| € Vo, x Qp. This is the standard Galerkin approximation of
the problem. Stabilization is required to deal with convection-dominated flows. Likewise,
the pressure and velocity spaces have to satisfy an adequate inf-sup condition or, otherwise,
a stabilization technique is also required. In our calculations we use the approach described
in Codina (2002).

4.3. Examples of restrictions for incompressible flows

Let uy, 1 be the velocity computed from (15) at a certain time step and with a mesh
Th,1. Suppose now that € is remeshed and the new finite element partition is 7, ». Using the
notation of the previous section, if uy ; = >, N{UY{, the straightforward interpolation will
produce up o = Y, NQbUg. From this, we wish to compute now 1y, 2, an approximation to
uy, o satisfying certain restrictions.

The imposition of restrictions is obviously problem-dependent. In the case of the incom-
pressible Navier-Stokes equations, we will consider conservation of mass, conservation of
kinetic energy and conservation of linear momentum. The first and last restrictions are linear,
whereas the second is non-linear (quadratic). They can be written as:

/v-ﬁhg:/v-uh,h (16)
Q Q

/!ﬁhg\?—/ lup 1%, (17)
Q Q

/ﬁh,2:/uh,1- (18)
Q Q

Note that density can be cancelled in all these conditions, as well as the factor 1/2 of the
kinetic energy in (17). The mass conservation equation (16) is crucial; even if we may assume
uy, 1 to be mass-conserving, i.e., the right-hand-side of (16) to be zero, this property cannot
be guaranteed for uy, o, and therefore it may be very important to explicitly impose it.

Let A1, A2 and Aoy, j = 1,...,d, be the Lagrange multipliers to enforce (16), (17) and
(18), respectively. In this case, the Lagrangian functional to be minimized, whose generic
expression is (10), is given by

2
Lwnam) =3 [ <Z N§(VE - U%))
d d
— [ S omvg - Yot

a j=1 b =1

o () ()
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d
=S ey /Q (Z Ngvg -3 NfoJ) . (19)
j=1 a b

The restrictions have been expressed in terms of the velocity nodal values, that now are
vectors whose components have been identified with subscript j.

Now we can proceed as in the general case, taking the derivatives of L with respect to the
nodal unknowns and the Lagrange multipliers to obtain the optimality conditions, and then
linearizing the resulting non-linear problem, the non-linearity being due to the imposition of
conserving the kinetic energy.

The optimality conditions read:

oL / b ATaT; b b ATaT] b
— =0= NN“U“-—)\l/a-N —2)\25 /NN“U“-—/\QJF»/N
OVQI’J ; o 2°%2%25 0 Jj4V2 — Jo 24V Vo j J 0 2

:Z/NSNSUSJ, forallb, j =1,....d,

3#1 /ZZ&NQU% /ZZ&N{’UU,

a j=1 b j=1

2 2
oL / - / brth
o= NeUY | = Nt

oL orra .
- =0= /QZNQUQJZAZN{’U{’J, j=1,....d.
a b

Opa+;

Using the notation introduced for the general case, a Newton-Raphson linearization of the
problem yields:

Z/N§N2 o (k) )\(k/(?NQ—Q/\ Z/N§N2 (k1) Ag';J/NZ

:Z/NSNSUSJ, forallb, j=1,...,d,

d
/ZZ@ N3Oy = /ZZ@-N{’U{’J,

a j=1 b j=1
2
(k=1 77b, (k) ava,(k—1
222/1\75’]\5 0y ™ /(ZN{’Ub> +/Q<ZN2U2( >> :
a,b j=1 a

/ZN;UQJ /ZNlULj, j=1,...,d.

In the case of a Picard’s scheme for the third equation, it would read

ZZ/NQNQU2 (k=178 k) _/ (ZN{’U”)

ab j=1

Let R, 1 and R,, 3 be the matrices that arise from the imposition of the conservation of
mass and linear momentum, respectively, on mesh n,n = 1,2. Letalso A3 = (A3, ..., Aa1q)-
Using Picard’s linearization for the conservation of kinetic energy, the system to be solved
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at each iteration is

M, ~RY, —2My 0" —RL,) [g( My Uy

Ra1 0 0 0 Al | R11U,
(ﬁ;k_l))TMQ 0 0 0 A2 U MU,y

Ry 3 0 0 0 A3 Ry 53U,

As a measure of convergence of this iterative scheme, we have used precisely the kinetic
energy of Us. In general, convergence is quite fast, but it can deteriorate when dealing with
fields with sharp gradients and highly non-coincident meshes. Convergence can be improved
using under-relaxation.

As in the general case, the Lagrange multipliers can be solved first from a Schur com-
plement system, which is trivially constructed if M» is approximated by a diagonal matrix.

4.4. Time integration using a fractional step scheme and pressure interpolation

Instead of using the monolithic approach to integrate in time the Navier-Stokes equa-
tions, one can use a fractional step scheme, in which the calculation of the velocity and
the pressure are segregated. The interest of this approach is well known; in particular, it
is known that the computational cost is drastically reduced, particularly for problems with
many degrees of freedom. In general, within each time step fractional step schemes consist
in the computation of a non divergence-free velocity in a first stage and a Poisson problem
for the pressure in a second step; finally, the velocity is corrected in order to fulfill the
incompressibility condition and consistency (see Badia and Codina (2007) for a review).

Let us consider the simplest backward Euler discretization of the Navier-Stokes equa-
tions combined with a second order fractional step method. Supposing that there are only
Dirichlet conditions, the equations to be solved are:

1 A7y n A~ 7y ~n n
5 (uh'H — uh,vh) + (uh'H . Vuh+1,vh> +v (Vuh'H, Vvh) —(py, V- vp)
= (f", ),
n ‘ 1 AT
(vpthl’ vqh) = (vphv th) + 57t (v : uh+17 Qh) )
1

(8 vi) + (T va) — (i) = 0.

where 1 is the non-solenoidal intermediate velocity. Once again, the stabilization terms
needed for using equal interpolation for the velocity and pressure fields have been omitted
for the sake of simplicity.

An important particularity of the second order fractional step scheme presented is that
the momentum equation uses the pressure field of the previous time step. If the computational
domain is remeshed at a certain time step, not only the velocity, but also the pressure must be
interpolated to the target mesh when the calculation restarts. In order to ensure an accurate
interpolation, the conservation of the L?-norm of the pressure can be imposed as a restriction.
Proceeding as described for the general case, the calculation of the pressure nodal values Py
from P9, computed from the standard interpolation of Py, consists in the optimization of the
functional:

2
1
L(Qhﬂa H’) = 5

> N5 (Q5 - Pg)

L2(Q)
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Original value 0.013650
After Interp. without restrictions  0.013621
Interp. with restrictions 0.013653

TABLE 1. Maximum values of |u| at the first interpolation stage.
b atb d nrd

—M/ ZQzNzNSQg_ZplNlePf ; (20)
Q
a,b c,d

where we have assumed that functions in the pressure spaces are interpolated also with the
shape functions { N2}, i = 1,2.

Now we can proceed as for the velocity interpolation with restrictions, obtaining the
optimality conditions for (20), linearizing them, solving for the optimal Lagrange multiplier
A from a Schur complement problem and, finally, obtaining P as a correction of Py with A
known. Details are omitted.

S. NUMERICAL RESULTS

5.1. Method validation: interpolation between identical translated meshes

Before proceeding to analyze the correction performed by the restrictions on the inter-
polated field in common application cases, such ALE calculations, a first case consisting in
an analytical solution is presented to assess the dissipation caused by the non-conservative
interpolation and the efficiency of the compensation introduced by the present method.
This function is interpolated from an original structured mesh of bilinear elements with
dimensionless size h = 0.025 covering the domain 2 = [0, 1] x [0, 1] to an identical mesh
which has been shifted to the right with elements of size h/2, so the old and the new nodes
do not coincide at all, see Bussetta et al. (2015). Afterwards, the function is interpolated back
to the original mesh, repeating this sequence up to 20 times. The analytical solution is given
by u = (ug, uy), with

ugy =227y (= 1)° (y — 1) (2y — 1),
u, = —2y%x (y — D2 (z—1) 2z —1).

Since u|r = 0, where I' = 012, only the conservation of momentum and L? norm are
applied. Table 1 shows the evolution of the maximum of |u| during the first interpolation
process: after a 2% loss caused by the point-by-point interpolation, the correction brings
the maximum back to its original value with a small overflow. In spite of the benefit, this
scenario shows that this global method does not respect the local features of the solution,
such as peak values. However, this deviations are very small and new spurious peaks are
not possible because the method enforces that the final solution remains the nearest possible
to the interpolated one. The same happens with the sign preservation and the monotonicity
of the solution, since the method does not enforce them explicitly and some unwanted sign
changes might appear at points where the function or its derivative are very close to zero.
Nonetheless, these errors will be always negligible for the same reason.

Next, the accumulation of the interpolation error along the whole sequence and its
compensation are analyzed. After the 20th interpolation the dissipation is considerable as
it can be seen in the following series of plots of |u/|, see Fig 3, which use the same scale in

13
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Original value 0.013650
After Interp. without restrictions  0.012244

Interp. with restrictions 0.013261

TABLE 2. Maximum values of the final norm of |u|.

order to reflect the degradation of the solution. Fig. 3d and Table 2 show how the imposition
of momentum and L? norm conservation compensate most of the dissipation.
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FIGURE 3. a) Original profile of |u|, b) final profile of |u| after interpolating without
restrictions, c) final profile of |u| after interpolating with restrictions, d) Superposition of
the previous profiles at y = 0.5.

5.2. Flow around a cylinder

In order to show the benefit of the presented formulation in a straightforward way, a sim-
ple Re = 500 flow around a cylinder benchmark case has been computed with the monolithic
approach of the incompressible Navier-Stokes equations in a static domain and a fine finite
element mesh (see Guasch and Codina (2009) for more details). During 2000 time steps,
5 equispaced interpolations to a coarse mesh have been performed in two different ways:
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Mesh Fine Coarse
#elements 63,413 13,860
#nodes 32,445 7,079

Element type Stabilized P1/P1  Stabilized P1/P1

TABLE 3. Parameters for the flow over a cylinder example.

without applying any restrictions and enforcing the conservation of mass, momentum and
kinetic energy to the velocity field. After each interpolation, the results have been projected
back to the original mesh after only one time step, in order to avoid further distortion of the
solution than that caused by the interpolation error. This procedure allows the comparison of
the results to a reference case which undergoes the same interpolation stages, but projecting
the velocity field always to the same, slightly moved, fine mesh. Therefore, in this case no
accuracy losses are expected other than those due to the interpolation between meshes and
the results can be considered as ideal for our purpose. The mesh parameters of the simulation
are listed in Table 3.

In spite of the small differences expected for only five bidirectional interpolations in
an overall run of 2000 time steps, a considerable phase error between the reference curve
and the solution computed without applying restrictions can be clearly observed in Fig. 4,
which shows the last steps of the velocity time history. On the other hand, the red curve,
corresponding to the velocity interpolated with restrictions, nearly fits the reference solution.
This proves that the imposition of the restrictions leads to a reduction of the interpolation
error and its propagation.

1 1 1 — interpolation with restrictions
212 ] — interpolation without restrictions

21 —
2.08 —
2.06 —
2.04 7
2.02 —
2 |
1.98 -
1.96 -

T T T T T T T T T T T

0.075 0.0775 0.08 0.0825 0.085 0.0875 0.09 0.0925 0.095 0.0975 0.1

FIGURE 4. Time history of the last time steps of the velocity field.
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5.3. A problem in aero-acoustics using an ALE description and remeshing

Following the practical motivation of this work, a preliminary case representing the
syllable [as] is presented next. It consists in an air flux (density 1.2 kg/m? and viscosity
1.5 - 10~° Pa s) flowing through a constriction in a simplified 2D geometry based on the
3D simplified model of a vocal tract, Cisonni et al. (2013). The computation starts from
a developed flow computed with the incompressible Navier-Stokes equations on the initial
open configuration corresponding to the phoneme [a], (see Fig. 6). The upper part of the
vocal tract has been prescribed an initial velocity ramp followed by a constant vertical
velocity of —5 m/s until the final position corresponding to the fricative sound is reached,
which happens after a total closure path of 5.15 cm at ¢ = 0.012 s. During this dynamic phase
an ALE frame of reference is used and a total of 7 remeshing stages are performed due to the
fast distortion of the elements. Moreover, the domain velocity and the closure itself change
the flow characteristics, for which reason the time step has been changed progressively from
the initial value 5t = 107 s to a final size of ¢ = 2.5 - 10~ s. The computational domain,
from now on referred as 2, with an inlet velocity of (2.4,0) m/s, rigid walls with a non-
slip condition except the vertical outlet boundary, has been discretized with two different
finite element meshes (see Fig. 5), whereas the time integration scheme is BDF3 in all cases.
Therefore, three time components of the velocity are interpolated in order to guarantee a
smooth and accurate restart of the computation on the new mesh.

It will be shown how the accuracy of the interpolation, and hence the impact of the
restrictions, depend, as expected, on the degree of coincidence between the donor and the
target mesh. Therefore, the same case will be run twice: first interpolating always to a similar
mesh as usual, and then going from the original fine mesh to a coarse mesh and vice-
versa. This scenario might not be usual in ALE calculations, but is indeed common in the
computation of coupled problems with two or more different meshes, such as FSI and aero-
acoustics, where the acoustic source term arising from the CFD calculation can be projected
to a coarser mesh for the less demanding wave equation, Kaltenbacher et al. (2014). The
results will be also analyzed from both a static and a dynamic point of view. In the first one,
the effect of the restrictions within the interpolation will be assessed, whereas the latter will
focus on the propagation of the interpolation error along a complete simulation.

FIGURE 5. Original fine mesh (left) and coarse mesh used at the first interpolation (right).
Dimensions in mm.

5.3.1. Monolithic scheme. As stated above, the presented case has been run twice for
analyzing the dependence of the formulation on the degree of coincidence between meshes.
In both cases the following restrictions for the velocity field of the incompressible Navier-
Stokes equations have been applied together: conservation of mass, conservation of mo-
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FIGURE 6. Initial geometry corresponding to phoneme [a] (left), final geometry correspond-
ing to phoneme[s] (right).

Initial mesh Fine Coarse
#elements 254,907 16,784
#nodes 131,058 8,706
Element type  Stabilized P1/P1  Stabilized P1/P1
max. size 0.001 0.005
min. size 1075 2.1074

TABLE 4. Mesh parameters for the aero-acoustics example.

mentum in = and y, and conservation of kinetic energy. On the other hand, when they are
applied separately the compensation performed by each one turns to be nearly the same,
for which reason the decoupled case will not be presented. Moreover, this fact reveals that
the non-diagonal terms of the system matrix, which force the simultaneous fulfillment of all
restrictions, scarcely modify the values of the Lagrange multipliers and only compensate the
linearization. A direct solver has been used in order to better evaluate the interpolation error
at the remeshing stages and its propagation, since it provides the exact discrete solution of
the problem.

5.3.1.1. Static analysis

This subsection intends to illustrate the performance of the restrictions in a single inter-
polation. The procedure is called static because the projection of results takes place in a fixed
domain. Table 5 summarizes the corrections performed by each restriction in all the remesh-
ing stages from the initial geometry [a] to the final configuration [s] in the aforementioned
two different cases: projection to a similar fine mesh (F' — F) and intercalation of coarse
meshes (F' = C or C' — F). It shows the amount of mass as well as the deviation percentage
of momentum and kinetic energy that needs to be compensated at each interpolation when
all restrictions are applied together. First of all, the first interpolation to the coarse mesh with
restrictions will be compared to that without them and to the equivalent ideal projection to
a similar fine mesh, in order to check how far this method can compensate a non-accurate
interpolation. Later on, the most critical interpolation will be carefully analyzed by evalu-

17
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# interp 1 1 2 2 3 3 4 4
F—-F F—-(C F—-F C—-F F—>F F—-(C F—F C—=F
Mass 8.4e-5 0.029 1.0e-5 1.7e-4 3.4e-6 0.014 5.0e-5 5.7e-4

MomX (%)  0.029 0.542 0.034 0.022 0.027 0.174 0.031 0.016
MomY (%) 4.3e-4 0.004 0.002 1.8e-4  4.9e-3 0.113 9.3e-3  4.3e-3
Kinet. (%) 0.027 0.328 0.049 0.031 0.079 0.514 0.101 0.062

# interp 5 5 6 6 7 7
rFr—-F F—-C F—-F C—F F—F F-—>C(C
Mass 1.8e-4 9.2e-3 2.5e-4 1.3e-3 2.9e-4 0.052

MomX (%)  0.040 0.332 0.052 0.022 0.026 1.263
MomY (%) 3.7e-3 0.145 4.9e-3 8.0e-3 0.013 0.069
Kinet. (%) 0.143 1.208 0.201 0.116 0.267 1.908

TABLE 5. Corrections performed by each restriction at all interpolation stages.

Original value 29.637

Target mesh fine coarse

Interp. without restrictions  29.591  29.397
Interp. with restrictions 29.600 29.435

TABLE 6. Maximum values of the velocity norm at the first remeshing stage

ating the contribution of the restrictions, not only as a whole, but seeing how they perform
individually.

It can be clearly seen, as expected, that the interpolations going from a fine mesh to
a coarse one (F' — () are far more inaccurate than the others due to the low degree
of coincidence between nodes. If we consider the first interpolation, which departs from
the same solution in both cases, an interesting analysis regarding the peak value can be
derived. The current formulation does not conserve explicitly the peak value, since this would
require local restrictions, which are not part of the scope of this global method. However, the
injection of mass, energy and momentum by the imposition of restrictions performs indeed
a correction on the peak values which have been shaved by the interpolation. Table 6 shows
the maximum values of the velocity norm, which appear around the obstacle, at the first
remeshing stage.

Although the resulting peak value after applying the restrictions will mostly depend on
the capability of the mesh of capturing local sharp gradients, which is not always possible
given a low degree of coincidence between meshes and a coarse resolution of the target mesh,
the method manages to restore partially the lost peaks, above all in the coarse solution, which
needs a greater correction than the fine one.

The last interpolation to the coarse mesh is clearly the most critical one. The losses of
mass and momentum are considerable, but the most remarkable fact is the loss of kinetic en-
ergy, which nearly reaches the 2%. The next series of plots show the correction performed by
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each restriction separately and all together to the velocity field in Fig. 7, which corresponds
to the last remeshing stage at the final geometry, (see Fig. 6).

FIGURE 7. Velocity field before the last interpolation to the coarse mesh.
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FIGURE 8. Velocity field after the last interpolation to the coarse mesh before being
corrected by the restrictions.

Fig. 8 shows the non-conservative interpolation of the velocity field to the coarse mesh.
For a better tracking of the whole process, the same scaling has been used. The conservation
of mass is achieved by injecting fluid through the only open boundary, the outlet, as shown in
(Fig. 9), taking into account the divergence theorem. Then, the mass is diffused into the bulk
by a consistent mass matrix. However, the correction is essentially restricted to the boundary
nodes because it must also satisfy that the final solution remains the nearest possible to the
interpolated field. The correction of momentum follows a mesh dependent discontinuous
pattern, since the corresponding restriction operator is the integral of the shape functions
at the nodes (see Fig. 10). On the other hand, the correction of the kinetic energy follows
perfectly the motion of the flow because it can be understood as the conservation of the
velocity L? norm. Bearing in mind that this correction has a quadratic effect, the injection
of kinetic energy will be proportional to the velocity field in order to minimize the relative
variation of the solution (see Fig. 11). The total correction scale (see Fig. 12) shows the key
importance of this method when dealing with highly non-coincident grids, a typical scenario
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FIGURE 9. Correction of the velocity field performed by the conservation of mass.
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FIGURE 10. Correction of the velocity field performed by the conservation of momentum.

that can be found in some coupled problems, otherwise the solution could get distorted in
just one time step. Finally, Fig. 13 shows the final velocity field after applying the previous
correction, which recovers most of the flow features of the original field that hat been lost
during the non-conservative interpolation, (see Figs. 7 and 8).

5.3.1.2. Dynamic analysis.

Up to now, only the static transmission of information between two meshes has been
analyzed. However, the most important features are the degradation of the results and the
accumulation of error during a dynamic calculation when no restrictions are applied, as well
as the global effect of the restrictions along the simulation. It is not easy to quantify the
benefit just by adding the effect of the successive application of the restrictions because
after losing mass, momentum and energy at one interpolation, the numerical solution of the
Navier-Stokes equations is computed again and this interpolation error is partially compen-
sated by the imposition of the incompressibility condition as well as by the injection of
momentum and kinetic energy coming from the inlet boundary condition. For this reason, if
we did not apply the restrictions and we measured the losses at the last interpolation, these
values would not reveal the accumulated error, but just a frozen picture of the accuracy of
a single interpolation. Instead, the accumulation of error arises from an interpolated value
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FIGURE 11. Correction of the velocity field performed by the conservation of kinetic energy.

FIGURE 12. Total correction of the velocity when applying all restrictions together.

which does not fulfill the physical problem features and that is later propagated when the
computation restarts.

In this case, only interpolations to similar fine meshes have been considered. Unlike the
previous case, the numerical error cannot be assessed comparing the velocity before and
after the interpolation stage, since the high degree of coincidence between meshes avoids a
visible dissipation. The matter of study here is the accumulation of this error, hence the time
histories of the velocity at a point under the tooth (78.7,5.33) mm during the last two stages
of the simulation, (see Figs. 15 and 16), and the final velocity fields at the configuration [s]
have been compared, (see Fig. 14). In spite of keeping the same mean value, the solutions
start diverging when the first vortices go across the analyzed point. Between interpolations
5 and 6 the tooth is approximating its final position but the flow under the obstacle has
not yet experimented important oscillations and the two solutions show a good agreement.
However, at the following stage between interpolations 6 and 7, just before reaching the
final position, the sudden presence of sharp velocity gradients amplifies the propagation of
the initial interpolation error, leading to different peak values and to a considerable phase
change. The impact of the application of the restrictions in the oscillating solution can be
clearly observed in Fig. 17, where the Fast Fourier Transform of both velocity time histories
has been computed.
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FIGURE 13. Final velocity field after applying all restrictions.
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FIGURE 14. Final velocity profile applying no restrictions (a), final velocity profile applying
all restrictions (b)

5.3.2. Second order fractional step scheme. The same case as for the monolithic scheme
is now solved using a fractional step scheme. The same computational meshes have also been
used. The problem has been computed again three times: without restrictions, with only
velocity restrictions and with velocity and pressure restrictions as presented in Section 4, in
order to evaluate the benefits of the interpolation procedure applied to the pressure field (see
Fig. 18).

Once again, in spite of showing some similar patterns, the solutions yield significant
discrepancies regarding the peak value and the phase of oscillation. Unlike the monolithic
case, the solutions with and without restrictions diverge at the stage between interpolations
5 and 6. Fig. 19 shows that the red solution starts oscillating earlier than the blue one. In
this case, the solution without enforcing the pressure constraint has not been plotted because
it coincides perfectly with the solution applying all restrictions. On the other hand, at the
following stage (Fig. 20), these two solutions finally diverge once sharp gradients appear at
the analyzed point below the tooth, which shows that the enforcement of the pressure L2
norm conservation is as important as the velocity restrictions to prevent phase error.
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FIGURE 15. Time history of the velocity between interpolations 5 and 6.
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FIGURE 16. Time history of the velocity between interpolations 6 and 7.

6. CONCLUSIONS

The presented formulation has proved to be very effective in compensating the inter-
polation error when using two highly non-coincident computational grids, where it was
already expected that the loss of mass, momentum and kinetic energy would be relevant
in flow problems. It has also turned to be of crucial importance in scenarios, such as in
Arbitrary Lagrangian Eulerian calculations, where the interpolations take place between
similar fine meshes. In this case, the effect of the restrictions on the interpolated array is
not so relevant but the accumulation and propagation of this theoretically small error due to
the non-conservative interpolation turns to be relevant indeed after several thousands of time
steps. One of the most important factors regarding the accuracy of the interpolation between
meshes is the presence of sharp gradients as well as the mesh resolution and coincidence to
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FIGURE 17. FFT of the velocity between interpolations 6 and 7.
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FIGURE 18. Final velocity profile applying no restrictions (a), final velocity profile applying
only velocity restrictions (b), final velocity profile applying all restrictions (c)
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FIGURE 19. Time history of the velocity between interpolations 5 and 6.
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FIGURE 20. Time history of the velocity between interpolations 6 and 7.

capture them. Although this is a global method, it also manages to partially restore the lost
peaks in the interpolated field.

The method has been applied successfully to the solution of the incompressible Navier-
Stokes equations. In this case, the most relevant restriction is the conservation of kinetic
energy. It has also been proved that the propagation of interpolation error when using a
non-conservative interpolation becomes considerable after several hundreds of time steps.
Although the mean value is conserved, the oscillation pattern becomes clearly divergent
when the vorticity increases. In a similar way, for second order fractional schemes the
conservation of the pressure L? norm has turned to be necessary to prevent phase error.

From a computational point of view, the method yields a fast convergence and a very
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FIGURE 21. FFT of the velocity between interpolations 6 and 7.

low computational cost, and is flexible enough for being easily extended to other physical
problems with other restrictions to be imposed.
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