

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2017 Society for Industrial and Applied Mathematics
Vol. 39, No. 2, pp. C65–C95

REFFICIENTLIB: AN EFFICIENT LOAD-REBALANCED
ADAPTIVE MESH REFINEMENT ALGORITHM FOR

HIGH-PERFORMANCE COMPUTATIONAL PHYSICS MESHES∗

JOAN BAIGES† AND CAMILO BAYONA†

Abstract. In this paper we present a novel algorithm for adaptive mesh refinement in compu-
tational physics meshes in a distributed memory parallel setting. The proposed method is developed
for nodally based parallel domain partitions where the nodes of the mesh belong to a single processor,
whereas the elements can belong to multiple processors. Some of the main features of the algorithm
presented in this paper are its capability of handling multiple types of elements in two and three
dimensions (triangular, quadrilateral, tetrahedral, and hexahedral), the small amount of memory
required per processor, and the parallel scalability up to thousands of processors. The presented
algorithm is also capable of dealing with nonbalanced hierarchical refinement, where multirefinement
level jumps are possible between neighbor elements. An algorithm for dealing with load rebalancing
is also presented, which allows us to move the hierarchical data structure between processors so that
load unbalancing is kept below an acceptable level at all times during the simulation. A particular
feature of the proposed algorithm is that arbitrary renumbering algorithms can be used in the load
rebalancing step, including both graph partitioning and space-filling renumbering algorithms. The
presented algorithm is packed in the Fortran 2003 object oriented library RefficientLib, whose in-
terface calls which allow it to be used from any computational physics code are summarized. Finally,
numerical experiments illustrating the performance and scalability of the algorithm are presented.

Key words. adaptive mesh refinement, adaptivity, finite elements, finite volumes, finite differ-
ences, high-performance computing, parallel, load rebalancing

AMS subject classifications. 68U01, 68U20

DOI. 10.1137/15M105330X

1. Introduction. Discretized partial differential equations are used to solve
many types of practical problems in engineering and physics. In some of these prob-
lems, the solution leads to a wide range of spatial scales which spread over the compu-
tational domain. In these cases, the numerical solution obtained with coarse meshes
is often too inaccurate, but performing computations using fine meshes is impracti-
cal considering the required computational effort. Adaptive mesh refinement (AMR)
methods deal with this issue by producing efficient meshes that are capable of resolv-
ing a wide range of scales. These methods locally adjust the mesh to both improve
the solution and minimize the computational effort.

Development of parallel AMR methods is justified in order to solve problems
that contain a large number of unknowns and which typically require the use of a
huge amount of computational resources. Parallelizing the refinement methods allows
us to exploit the calculation capabilities provided by rapidly evolving parallel com-
puter clusters. However, parallelized refinement methods lead to a distributed mesh

∗Submitted to the journal’s Software and High-Performance Computing section December 17,
2015; accepted for publication (in revised form) November 17, 2016; published electronically March
30, 2017.

http://www.siam.org/journals/sisc/39-2/M105330.html
Funding: This work was partially supported by the Spanish Government Elastic-Flow project

DPI2015-67857-R. The first author’s work was supported by the Spanish Government through Ramòn
y Cajal grant RYC-2015-17367. The second author was supported by the doctoral scholarship re-
ceived from the Colombian Government-Colciencias.
†Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE), Edifici C1, Campus Nord

UPC C/ Gran Capità S/N, 08034 Barcelona, Spain, and Universitat Politècnica de Catalunya, Jordi
Girona 1-3, Edifici C1, 08034 Barcelona, Spain (jbaiges@cimne.upc.edu, cbayona@cimne.upc.edu).

C65

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sisc/39-2/M105330.html
mailto:jbaiges@cimne.upc.edu
mailto:cbayona@cimne.upc.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C66 JOAN BAIGES AND CAMILO BAYONA

structure, which is complex because frequent data access is necessary, and memory
consumption is high. In addition, the dynamical evolution of information during the
AMR constitutes another major challenge: it requires a growing number of collective
communication operations, and therefore it is not easily scalable in massive parallel
computers. Including the possibility of redistributing the workload between processors
in order to maximize the utilization of computational resources significantly increases
the communications demand. Hence, efficient algorithms and data structures have be-
come the backbone of parallel AMR methods, and distributed collections of structures
that can be dynamically modified without requiring several global communications
are the preferred designs.

A first approach to parallel AMR methods was block-structured methods. These
methods refine parallel meshes by using a single sequential mapping, and therefore
are not suitable for complex geometries and nonstructured meshes. Tree-based meth-
ods were an alternative to the regularity imposed by the block-structured methods.
Tree data structures, namely quadtrees and octrees, are hierarchical data structures
constructed with axis-aligned lines and planes. These data structures are used for
searching procedures because their hierarchical structure reduces the complexity of
the search. The first application of tree data structure algorithms was in parallel
domain decomposition and efficient partitioning of meshes (see, for example, Camp-
bell et al. [7]). Later, data structures, balancing algorithms, and adaptive refinement
algorithms over distributed octree meshes were developed in [19, 20]. The etree li-
brary [22] collected algorithms that addressed operations over an octree-based mesh
in a database-oriented framework. The code demonstrated good scalability and par-
allel efficiency. Furthermore, octree developments were implemented into the Octor

parallel meshing tool [21], which could generate static unstructured meshes on the
processors but also performed dynamic refining during execution time. Scalability
tests were addressed up to 62,000 processors using hexahedra and giving overall good
performance. Some multigrid solvers exploited the balancing and meshing algorithms
for octree-based meshes and were implemented in Dendro software [17]. The code
was scaled up to thousands of processors. Other applications and multiple implemen-
tations based on octree data structures were developed in [16, 15] and possessed good
adaptivity and performance.

Instead of the quadrilateral and cube-shaped domains that were described by tree
data structures, a wider variety of geometries were described by forest-of-octrees–
based meshes. This approach was first introduced into AMR methods with the
deal.II software [3], but the code replicated the global mesh into all processors, and
hence it limited the scalability to a few processors. Fully distributed algorithms han-
dling forest-of-octrees meshes were the following step. Burstedde et al. [5] worked in
a dynamic AMR based on distributed forest-of-octrees geometries. This was the first
work that supported high-order discretizations and non-Cartesian geometries, and it
led to the encapsulation of algorithms into the p4est library [6]. Good, strong, and
weak scaling results over 224,000 cores were obtained for p4est working as a paral-
lel adaptive refinement library on meshes composed of quadrilateral and hexahedral
elements [3]. Later, Isaac, Burstedde, and Ghattas [11] focused on the balance struc-
ture and proposed a subtree balancing algorithm. Weak scaling times improved and
required less memory than previous balance algorithms in p4est .

In this paper we describe a general adaptive finite element framework for un-
structured meshes that has demonstrated suitable performance for large scale parallel
computations. The algorithm currently focuses on h-refinement; the extension of the
algorithm to hp-refinement will be a matter of future work. Contrary to other paral-

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C67

lel refinement algorithms, the method we present here is developed for nodally based
parallel domain partitions; that is, the nodes of the mesh belong to a single proces-
sor, whereas elements can belong to multiple processors if they own nodes belonging
to different subdomains. These remote nodes over the set of overlapping elements
are called “ghost” points. This poses some challenges in parallel communications,
since neighboring parallel domains need to be kept updated. Hence, local elements,
points, edges, faces, and connectivities are stored in data structures that can be eas-
ily accessed and modified. Refinement operations and load balancing procedures are
handled over these structures.

To the best of our knowledge, LibMesh [14] was a similar approximation. How-
ever, because completely unstructured methods work at the cost of having to store
explicitly the connectivities of the mesh, the parallel partitioning scheme of LibMesh
stored all of the mesh information in each processor, and the associated overhead
limited the scalability to 100 processors. Jansson, Hoffman, and Jansson [12] also im-
plemented a general adaptive finite element framework for unstructured tetrahedral
meshes without hanging nodes, which is suitable for large scale parallel computa-
tions. These authors presented strong scaling results linear up to 1,000 processors for
an incompressible flow solver. In contrast, the main contributions of the proposed
refinement framework are the following:

1. A hierarchical adaptive refinement algorithm for nodally based partitions in
distributed memory machines is presented. The algorithm allows us to suc-
cessively refine and unrefine computational meshes in order to adapt to the
requirements of the simulation.

2. Our distributed structure handles two- and three-dimensional unstructured
meshes composed of triangular, quadrilateral, tetrahedral, and hexahedral
elements. This approach is capable of describing complex geometries and
performing nonuniform refinements.

3. We propose a distributed scheme in which each processor stores only the local
information of the partitioned distributed mesh. This reduces the memory
consumption and allows scaling up to thousands of processors.

4. Our parallel refinement procedure is based on a hierarchical data structure for
the refined elements of the mesh that we use to efficiently search neighboring
elements at the interprocessor level. A data structure containing parent and
children pointers is used, where new refinement levels are successively added
to or subtracted from the computational mesh.

5. Resulting meshes are nonconforming with hanging nodes on sides where two
levels of refinement meet. Contrary to other adaptive refinement methods,
the algorithm proposed here does not enforce a balancing restriction in the re-
finement level of adjacent elements: the jump in the refinement level between
neighbor elements can be arbitrarily large.

6. For the parallel refinement process, the proposed algorithm deals with element
and node identification across processors by using a global element and global
point identifier structure. This ensures that the global numbering structure
and general nodal and elemental information can be transferred to all of the
neighboring processors in an efficient manner.

7. To balance the processors’ load, we use a dynamical parallel repartitioning
framework that changes the ownership of the mesh nodes when load unbal-
ance reaches a certain threshold, and then it transfers the associated elements
to the corresponding processors. Contrary to other algorithms for load rebal-
ancing in hierarchical AMR, the algorithm we propose is independent from

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C68 JOAN BAIGES AND CAMILO BAYONA

the renumbering strategy of the load rebalancing process. In particular, both
graph partitioning schemes and space-filling methods for load rebalancing can
be used with the proposed algorithm.

The proposed algorithms are packed in an adaptive refinement library which we
call RefficientLib. The calls to the library have been made as simple as possible so
that it can be easily coupled with existing finite element, volume, or difference codes.

Several numerical tests are carried out in order to assess the performance of
the proposed methods. The first group of tests corresponds to simulation driven
experiments which illustrate the capability of the method to generate computational
meshes for different physical problems. A Poisson heat transfer problem is solved both
for bidimensional and three-dimensional elements. The incompressible flow past a
cylinder is also tested in order to apply the AMR to the incompressible Navier–Stokes
equations. In the second group of experiments, weak scalability tests for uniform
refinement and load balancing cases in a high-performance computing environment
are presented.

The paper is organized as follows. In section 2 the distributed refinement structure
with the mesh partition strategy, the distributed data structures, and the initializa-
tion of the refinement procedure, are described. In section 3 the refinement step is
described. Classification, local refinement, hanging nodes, and exportation to the ex-
ternal flat mesh algorithms are presented. Load rebalancing and global renumbering
procedures are included in section 4. The external calls and the user interface to the
RefficientLib library from an external computational physics solver are presented
in section 5. Numerical experiments and scalability tests are presented in section 6.
Finally, in section 7 some conclusions are stated.

2. Distributed refinement structure. In this section we describe the dis-
tributed structure of the AMR method. The domain partition strategy is explained
first, over which the parallelization is developed. Then we introduce the main data
structures and the initialization steps of the parallelized AMR method.

2.1. Mesh partition. The algorithm described in this paper is designed to work
in distributed memory parallel machines. The idea is to have a library which takes care
of all the steps necessary for the refinement, while the external driver (for instance,
a finite element solver) sees the resulting mesh as a nonhierarchical or flat grid. The
domain partition strategy for the mesh is nodal based, which means that each node is
assigned to a unique processor, but elements can belong to multiple processors if they
own nodes from more than one subdomain. The concepts point and node both refer
to nodes of the mesh, although node will generally be used when dealing with points
in an element, and point will be used when treating them as independent entities.
Points belonging to a given subdomain are denoted as local points. Before refinement,
nodes are assigned to a single processor, but the first layer of nodes belonging to a
neighbor processor is also stored in the current processor. These neighboring points
are called ghost points. Elements can belong to multiple processors if they have nodes
from multiple subdomains. We define the processor responsible for an element as the
processor which owns the node of the element with the lowest global node number.

Figure 1 shows an initial domain partitioned mesh as seen from different pro-
cessors. The advantage of this strategy is that each processor stores only the local
information of its subdomain. The processor stores the local numeration of the sub-
domain points, but the global numbering of these points must also be saved in order
to locate and communicate points for other processors.

The parallel refinement method is constructed over the partitioned mesh. Since
the mesh needs to be seen as a flat mesh by the external driver, a node and element

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C69

Fig. 1. Initial mesh information. Left: the global mesh. Points and elements (circled) are
numbered globally. Right: the mesh, partitioned into two subdomains. Colors denote the processor to
which the information belongs. Points and elements (circled) are numbered locally for each domain.
Note that the elements numbered (2), (3), (6), and (10) in the global mesh are shared by the two
subdomains. This distributed structure will be used to calculate remote neighboring contributions for
the shared elements. (See online version for color.)

Fig. 2. Internal hierarchical mesh as seen from one of the processors. In order to illustrate
this refinement example, a shared element of the mesh of Figure 1 is refined. Left: initial level 0
mesh. Right: refined level 1 mesh.

renumbering strategy is needed in order to be able to move from the external, flat
mesh to the internal (refiner) hierarchical mesh and vice versa. Figure 2 presents an
example of a hierarchically refined mesh. Two levels of refinement are displayed as
seen internally in the refiner from one of the processors. The same mesh is depicted
in Figure 3 as seen from the external driver. Note that the element marked with an
asterisk (∗) in Figure 2 does not appear in the flat mesh for the considered processor:
in the external flat mesh, only the first layer of flat node neighbors is considered,
while in the internal hierarchical mesh, also the element hierarchical neighbors are
considered. Element hierarchical neighbors are elements which share a parent with
an element that belongs to a processor. The element marked with an asterisk (∗) in
Figure 2 is a hierarchical neighbor, because although none of its nodes is assigned to
the processor, the element shares its parent with the rest of level 1 elements in the
processor. We call the elements which share a parent sibling elements.

2.2. Distributed data structures. The algorithms to be described in section 3
are implemented by using a collection of data structures which allow us to efficiently

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C70 JOAN BAIGES AND CAMILO BAYONA

Fig. 3. Refined mesh as seen from the external driver. Left: external flat mesh. Right: external
flat mesh as seen from the processor denoted by the blue color. (See online version for color.)

access and modify the information that defines the mesh. The implementation is
generally done in an object-oriented manner, but for efficiency the actual storage in
memory sometimes uses a flattened storage, where parts of the objects are stored
in an array list. We will denote this storage structure as CSR, in reference to the
compact sparse row storage used in many computational physics applications. All of
the data structures are encapsulated in a class, which we call the Refiner. Refinement
procedures and communications are performed by this class. The data structures
which are part of the Refiner class are briefly explained as follows:

• gnpoin is the total number of points of the internal mesh.
• gnelem is the total number of elements of the internal mesh.
• npoin is the number of points of the internal mesh in the local proces-

sor. This includes both the local (belonging to the current processor) points
(npoinLocal) and the first layer of hierarchical neighbors of the local points
(npoinGhost).

• npoinLocal is the number of points of the internal global mesh belonging to
the current processor.

• npoinGhost is the number of points of the internal global mesh which are
the first layer of hierarchical neighbors of the local nodes. Their data are
required in the current processor.

• nelem is the number of elements of the internal mesh which are required in
the current processor. This includes not only all elements having local nodes
but also elements which do not have a local node but are relevant in the
hierarchical refinement process.

• ElementList is the list of elements in local numbering, of size nelem. For
each local element we need to store it contains

– ElementType. This item identifies the element type (triangles, quadri-
laterals, tetrahedra, hexahedra) and subtype or variation according to
the subdivision process. The subtype is relevant, for instance, in the
case of tetrahedral elements, where there are multiple possibilities for
hierarchically subdividing an element. This is stored as an array of 1
byte integers of dimension 2.

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C71

– Data structure of type GlobalElementIdentifier. Similarly to the
strategy followed in [3], the global element identifier allows us to uniquely
identify an element from the mesh (described in subsection 2.3).

– ParentIdentifier. This is the local element numbering of the parent
element.

– ChildrenIdentifierList. This is the list of local element numbering of
the children elements. (Stored in CSR format.)

– NodeList. This contains the nodes which are part of the element in lo-
cal numbering. This is stored as an array of 4 byte integers of dimension
2. (Stored in CSR format.)

– FaceList. For each face in the element, it stores the neighbor (opposite)
element and the corresponding face (or edge in two dimensions) of the
neighbor. If this is a hanging face, it contains the neighbor of the parent
element and the corresponding face. (Stored in CSR format.)

• PointList is the list of nodes in local numbering, of size npoin. The first
npoinLocal components of the list correspond to local points, and the last
npoinGhost components of the list correspond to ghost points. For each
point, we store the following:

– GlobalPointNumbering. This data structure stores the global (par-
allel) point numbering of the point. An InverseGlobalPointNumber-
ingList is also created which allows us to get the local point number of
global points for a given processor. In order to implement the inverse
global point numbering list, a hash table type structure is used (this is
described in subsection 2.4).

– ProcessorNumber. For ghost points, it stores the processor number
to which the point belongs.

– Level. This is the level (in the refinement structure) of the point. Initial
points are classified as level 0.

– EdgeRefinementList. For each point i, it stores a list of neighbor
points j to which point i is connected only if a refinement node k between
i and j exists; it also stores the local numbering of j and k. (Stored in
CSR format.)

– HangingNodeList. For hanging nodes, it contains the list of recursive
parent nodes and their linear combination coefficients. (Stored in CSR
format.)

Most of the lists involving multiple types of data (i.e., ElementList or PointList)
are implemented as separated list arrays for convenience and memory performance,
although they could also be stored as objects containing data structures. When the
size of each component of the list is not constant for all elements, these separated list
arrays are generally stored in CSR format.

2.3. The GlobalElementIdentifier data structure. The hierarchical refine-
ment element information is encapsulated into a tree data structure composed of
GlobalElementIdentifier objects. This data structure allows us to uniquely iden-
tify an element in any processor, at any level of refinement. When used together
with the ParentIdentifier and ChildrenIdentifierList, it allows us to communi-
cate element information between processors. This information can be used to identify
the local numbering of an element when interprocessor information communication
is required. The GlobalElementIdentifier structure is composed of the following
information:

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C72 JOAN BAIGES AND CAMILO BAYONA

• GlobalTopLevelElement. This is the original element number of the top
level element prior to any refinement or load rebalancing process. This is
stored as a 4 byte integer.

• Level. This is the level of the element in the refinement structure. Initial
elements are classified as level 0. This is stored as a 1 byte integer.

• PositionInParentElement. For each level, three bits are dedicated to store
the refinement branch (or child) of the element. This allows us to identify a
maximum of eight children per level. A maximum of 21 refinement levels is
allowed in the current implementation, totalling 63 bits. This is stored as an
8 byte integer.

The total amount of memory required to store the GlobalElementIdentifier for an
element is 13 bytes, which round up to 16 bytes in memory.

2.4. The InverseGlobalPointNumberingList. In order to perform parallel
communications, we need to be able to recover the local point number from a global
point identifier at any time in the refinement process. This could be done in a straight-
forward manner by allocating an array of dimension gnpoin and then storing for each
local point, in the global position of the array, the local number associated to the cor-
responding global point. However, gnpoin depends on the size of the global problem
and can in general be very large. This would result in the allocation of this array
becoming very time consuming and, when using thousands of processors, affecting
the performance and scalability of the parallel refinement algorithm.

Thus, an alternative implementation of the global to local mapping is required. In
our implementation, we have opted to implement it by using a hash filtering followed
by a binary search if collisions are found.

• First, the hash function is defined as the modulus of the division by a primer
number primeNumber, which is close to and larger than the local number of
points npoinLocal. A hash table data structure of dimension primeNum-
ber is allocated.

• Second, for each local point–global point pair, the hash function of the global
point identifier is computed and the point is stored in the corresponding hash
table data structure slot. If there are collisions, the points are stored in
ascending order according to their global point identifier.

• Finally, in order to recover the local numbering of a global point, the hash
function of the global point number is computed. If a single point is stored in
the corresponding hash table slot, the local numbering is recovered directly.
In case there are collisions, a binary search is performed on the sorted global
point numbering array of the hash table slot in order to find the corresponding
local point number.

This process allows us to reduce the average computational cost of finding the local
point number associated to a global point to O(1), while keeping the storage require-
ments to O(npoinLocal). Although a possibly more efficient implementation could
be found by differentiating between the behavior of the algorithm for local and ghost
points, we have chosen the described implementation for its compromise between
efficiency and reusability.

2.5. Initialization. Our parallel refinement method establishes the input ini-
tial mesh as a zero level mesh that cannot be coarsened. In the initialization step,
the flat, top level mesh is passed to the Refiner. From this mesh, ElementList
and PointList are built. All elements and points are assigned the zero level. The
processor number for each point and a global element number for each element and

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C73

point need to be passed to the Refiner, from which the GlobalElementIdentifier
for each element and the GlobalPointNumbering (and its inverse) for each point
can be built. The initial FaceList for each element is built by looping through neigh-
bor elements and checking for faces with coincident nodes. Neighbor elements are
identified in a two step process as elements with which at least one point is shared.
The remaining arrays, which refer to the refinement structure, are started as empty
or null, since no refinement step has been performed yet.

3. Refinement step.

3.1. Amending the element refinement classification. The first stage of
the refinement step consists of passing to the library an array of size nelem which
contains the information about the element refinement. In our implementation this
is achieved by passing a 1 valued integer for elements which need to be refined, a −1
valued integer for elements which need to be unrefined, and a 0 valued integer for
elements which do not need to be either refined or unrefined. Elements can only be
unrefined if all of their sibling elements are also unrefined. If an element is marked
to be unrefined but one of its siblings is not, then the element is reclassified as not to
be unrefined.

An important point is that the refinement criteria must be the same in all pro-
cessors; that is, if an element belongs to both processors i and j, then the decision
of whether to refine the element must coincide in processor i and processor j. Even
when taking this into account, there are unrefinement cases in which the information
available in a certain processor is not enough to decide whether an element will ef-
fectively be unrefined. This is, for instance, the situation for an unrefinement step of
the level 1 elements in Figures 2 and 3. Suppose that the external driver has marked
the four level 1 elements which are exported to the external mesh (Figure 3) to be
unrefined. However, the blue processor (Figure 3, right) has no information on the
classification of the hierarchical neighbor (marked with an asterisk (∗) in Figure 2).
As a consequence, and only in the case when all the local element siblings are marked
to be unrefined, a communication step with the neighbor processor is required in order
to classify hierarchical neighbor elements.

This communication step consists of asking the processor responsible for the el-
ement to communicate its refinement classification. Elements in different processors
are identified through their GlobalElementIdentifier. This step is not required
when refining, because sibling elements can be refined independently.

As explained previously, the proposed algorithm can deal with unbalanced meshes
in the sense that the refinement level jump between neighbor elements can be arbitrar-
ily large. However, this might not be convenient for some applications. For this, an
optional flag which limits the level jump between neighbor elements has been added to
the algorithm. If this flag is enabled, the algorithm adds the following to the previous
reclassification of elements to be refined: for each node, it notes the maximum and
minimum levels of the elements to which it belongs. Then, if the difference between
the maximum and minimum levels is 1 (the algorithm should not allow this difference
to be larger than 1), it does not allow the maximum level elements to further refine,
and it does not allow the minimum level elements to unrefine. This ensures that a
balanced mesh is obtained in the case when this flag is enabled.

3.2. Local refinement. Once all elements are properly classified following the
refinement criteria, a local refinement step starts in each processor. The implemented
subdivision process for triangles, quadrilaterals, tetrahedrons, and hexahedrons re-

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C74 JOAN BAIGES AND CAMILO BAYONA

Fig. 4. Subdivision of a tetrahedron into four tetrahedrons and one octahedron. The octahedron
is then further subdivided into four tetrahedrons.

fines a given element into 2d subelements of the same type, where d is the number
of dimensions, although the implementation is left open to refine into other element
types in the future. A first loop through the elements allows us to compute the di-
mensions of the arrays after the refinement stage, which are then allocated. Elements
which are unrefined are removed from the lists, and new elements are added at the
end of the ElementList. At the same time, the ParentIdentifier and the Chil-
drenIdentifierList for each element are filled. Also the GlobalElementIdentifier
for each new element is computed from the GlobalElementIdentifier of its parent
element (adding one level to the parent level, assigning a child number for the new
level). Also the element type is computed (for h-refinement, the element type of chil-
dren elements is the parent element type). In the case of tetrahedrons, what we call
an element subtype also needs to be stored: each refined tetrahedron is subdivided
into eight subelements. However, there are three different ways of subdividing a tetra-
hedron into eight subelements, each way corresponding to a main plane of subdivision
of the internal octahedron obtained by joining the midpoints of tetrahedron edges.
The election of the subelement type is done so that the distortion of the resulting
children elements is minimized. This is illustrated in Figure 4.

For updating the FaceList of each element, the neighbors of each element are
checked. If in the previous refinement step the face was connected to an element which
has been unrefined in the current refinement step, then the element is connected to the
parent element. On the contrary, if the element is connected to a higher level element
which has now been refined, then the element becomes connected with the correspond-
ing children. These face connections can be done in an efficient manner thanks to the
Parent-Identifier and ChildrenIdentifierList structures, which allow us to move
through the different refinement levels. Some examples of face matching for elements
in different levels are shown in Figure 5. Faces that connect to faces in elements of a
higher level are denoted as hanging faces.

At this point, the element refinement structure has been updated to the new
refinement stage. However, the new nodes still need to be added to the new elements.
There are three types of nodes in the new elements: nodes which are added in the edges

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C75

Fig. 5. Face matching in the refinement process. In the mesh at the start of the refinement
process (top), element b has a face connected to element a, which is one level higher. Similarly,
element d has a face connected to one of the faces of element c. After a refinement step, both
elements c and b are refined (bottom). Some of the children of b have a face which is connected to a
face in element a, while the faces in element d which were connected to element c are now connected
to faces of the children of element c.

of the parent element, nodes which are added in the faces of the parent element, and
nodes which are added in the interior of the parent element. This is best illustrated
in three-dimensional hexahedral elements, as shown in Figure 6.

For nodes added in the interior of the parent element, we are sure that the node
is new, and a new point number can be assigned to the node. However, for nodes
added in the faces or in the edges of a parent element, we need to check that the node
does not already exist in another element.

In the case of nodes added in the faces of elements, the node will pre-exist only
if the face of the new child element is connected to an element of the same level. In
this case the new node in the new child element is assigned the point number of the
node in the neighbor face.

For nodes added in the edges of elements, we make use of the EdgeRefine-
mentList structure, in which for each edge connection between two points of the
mesh we store the point numbering of the refined point added between them. This
keeps track of the already existing refined points in the edges, allowing us to add
new points when an element is refined or, on the contrary, to match existing points
with the refined point in the edge. The addition of new nodes to the EdgeRefine-
mentList needs to be done in a two step process (the first loop for counting sizes
and allocating, and the second loop for filling the data structures) and making use of
linked lists in order to obtain a proper performance of the algorithm.

3.3. Parallel numbering. The algorithmic steps in the previous subsection
allow us to advance to the new refined mesh. However, no communications have
been done between processors, so at this stage new points have been assigned a local

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C76 JOAN BAIGES AND CAMILO BAYONA

Fig. 6. Edge (red), face (blue), and interior (green) new nodes in a refined element. (See
online version for color.)

numbering, but the parallel numbering of points is still pending. Elements, on the
other hand, are already identified by their GlobalElementIdentifier. In order to
construct the new global point numbering, we start by classifying points as local or
ghost in each processor. Points that already existed in the previous refinement stage
keep the same local/ghost status. New points are classified as local or ghost following
different criteria depending on whether they are new interior points, new face points,
or new edge points.

The new interior points are classified as local for a given processor if, in the
previous refinement step, the processor was the owner of the node in the parent
element with the lowest global numbering (the processor was the responsible processor
for the element).

The new face points are classified as local for a given processor if, in the previous
refinement step, the processor was the owner of the node in the parent face with the
lowest global numbering (the processor was the responsible processor for the face).

The new edge points are classified as local for a given processor if, in the previous
refinement step, the processor was the owner of the node in the parent edge with the
lowest global numbering (the processor was the responsible processor for the edge).

Once all points of each processor have been classified as local or ghost, a gather
operation of the number of local points of each processor, followed by a scatter opera-
tion with the first global point number of each processor, allows us to set the parallel
global numbering for all the local points in each processor (since the global number-
ing of the local points of each processor will be consecutive). However, the parallel
numbering of the ghost points of each processor is still unknown to the processor. For
points that were already ghosts in the previous refinement step, each processor simply
asks the owner of the point to communicate its new global number. When asking for
the point, this point is identified by its global number in the previous refinement step.

For new ghost points, their global numbering is obtained as follows:
• For new interior and face points, the GlobalElementIdentifier of the parent

element is sent to the responsible processor together with the interior/face
node number, which in turn returns the global point number for the interior
point.

• For new edge points, the old (previous refinement step) global numbering of
the edge parent points is sent to the processor responsible for the edge, which
in turn seeks the refined edge point through its EdgeRefinementList and
returns the new point global number for the new edge point.

At this stage, all internal refinement structures are already defined and updated to

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C77

the new refinement stage. The steps for exporting this information to the external
mesh are detailed in the following subsections.

3.4. Hanging nodes. Although in most refinement algorithms using tree data
structures a conforming restriction over adjacent elements must be satisfied, this is not
the case in our algorithm. This so-called balance condition, which enforces the fact
that there is only one hanging node on sides where two levels of refinement meet, does
not need to be satisfied by the algorithm presented in this paper, and an arbitrary
jump in the refinement level of adjacent elements is possible. We believe that this is
one of the main features of the present algorithm.

Hanging nodes are classified as nodes which belong to a face or edge that is
connected to an element in a higher level (hanging face or edge) and which do not
belong to the higher level element. There are several possibilities for treating hanging
nodes in computational physics: one of the possible approximations for hanging nodes
consists of fixing the value for the unknowns in the hanging node as the mean of the
value of the unknowns of its hanging parents (this is the approach we have followed in
the numerical examples). Other possibilities include the use of discontinuous Galerkin
methods [8] or hybrid continuous-discontinuous Galerkin methods [2].

In any case, it is necessary to know which are the hanging parents of a certain
hanging node. Hanging parents are defined as nodes in the parent element in the case
of interior refined nodes, nodes in the parent face in the case of face refined nodes,
and nodes in the parent edge in the case of edge refined nodes. If the hanging parents
are in turn hanging nodes, this establishes a recursive dependency of the values of the
unknowns in the hanging nodes on the values of the unknowns in higher level nodes.

In our implementation, the list of hanging nodes and their relation with respect
to their hanging parents is obtained by looping through the elements and checking
the node matching of faces and edges which connect to higher level elements. The
nodes that are not present in both sides of the face, or in all elements which concur
at the edge, are considered hanging nodes.

Once the hanging nodes list is built, the recursive dependency structure with re-
spect to their hanging parents is obtained by traversing the hanging nodes list from top
level to low level hanging nodes and annotating the contribution of hanging parents
to the averaged value of each hanging node. As the number of parents contributing to
the averaged value of a hanging node can be arbitrarily large if no balance condition
is applied, this recursive dependency structure is stored in CSR format. If a parent
node of a hanging node is also a hanging node, then its contribution to the value of
the hanging node is transferred recursively to the hanging parents. This is illustrated
in Figure 7.

Note also that in successive refinement steps, normal nodes can become hanging
nodes depending on the refinement behavior of neighbor elements and vice versa.

3.5. Exporting the external mesh. As explained previously, the hierarchical
mesh with which the algorithm works internally does not coincide with the flat mesh
which is exported and used by the external driver. The main criteria for choosing
elements and nodes which are passed to the external mesh are the following:

• Elements are exported only if they are last level elements which own at least
a local node.

• Nodes are exported only if they belong to an exported element.
These two criteria are in general sufficient for deciding which elements need to be
exported. However, there are some specific cases (after load rebalancing has occurred
and children elements are not necessarily in the same processor as their parent ele-

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C78 JOAN BAIGES AND CAMILO BAYONA

Fig. 7. Hanging nodes. Node 4 is a hanging node, its hanging parents being nodes 2 and 3.
Node 3 is in turn a hanging node, its hanging parents being nodes 1 and 2. The hanging node value
for the unknown at node 4 is u4 = 1

2
u3 + 1

2
u2 = 1

4
u1 + 3

4
u2.

ments) where additional elements need to be exported. The first is the case of hanging
nodes whose hanging parent nodes are assigned to a different processor, which is il-
lustrated in Figure 8. In this case, the elements owning the recursive hanging parents
need also to be exported in order to ensure that the assembly to the parent nodes can
be performed and to ensure that if the high level element is refined, all of the involved
processors will be aware of the refinement step.

The second is the case of elements which are hanging opposites of elements with
nodes assigned to the current processor. Even if none of the nodes of the element
belong to the current processor, these elements need to be exported so that their
refinement criteria can be known by the current processor and the new elements and
face matching can be created. Again, an example of this particular case can be seen
in Figure 8.

In both cases, information on elements belonging to neighbor processors but not
present in the current processor will have to be communicated between processors.
This is the case of element b in Figure 8.

4. Load rebalancing. After several refinement steps, computational load in
the processors may become unbalanced, causing the most loaded processor to damage
the global efficiency. In order to avoid this issue, load rebalancing is required. Load
rebalancing consists of changing the processor owning each group of nodes in such a
way that the computational load is approximately equal in all processors. At the same
time, it has to be ensured that the communications required in the load rebalancing
process and in the external computations to be performed by the driver are minimized.

4.1. Rebalance renumbering. The first step of the load rebalancing process
consists of computing the new processor and new global number for each node in the
mesh. Contrary to other adaptive refinement schemes in which the new node number-
ing is linked to the adaptive refinement algorithm, in the algorithm presented in this
paper any node renumbering strategy is possible. In fact, the new node numbering is
computed externally by the driver and then passed to the refinement library. In the
numerical examples presented in section 6, node renumbering is computed externally
by using the ParMetis [13] and Zoltan [4] specialized software, which are based on
nested bisection, graph partitioning, and space-filling methods. Both of these pack-
ages are accessed through an interface provided by the PETSc library [1], which we
also use as a linear system solver for the numerical examples in section 6. All of these

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C79

Fig. 8. Left: global exported mesh. Center: local exported mesh for processor 0 (blue nodes).
Right: local exported mesh for processor 1 (red nodes). Element a would in principle not be exported
in processor 0, since it has no local node for this processor, but it is exported because it is the
hanging opposite of elements belonging to processor 0. Element b would in principle not be exported
in processor 1, since it has no local node for this processor, but it is exported because it is the hanging
opposite of element a belonging to processor 1. (See online version for color.)

remapping methods produce new partitions from an already partitioned mesh.
With all the nodes in the mesh already assigned a processor number to which

they belong, it remains to decide which elements and nodes need to be sent to each
processor. The algorithmic rules of this step are similar to the rules for exporting
elements and nodes in subsection 3.5, although taking into account the hierarchical
nature of the internal mesh as follows:

• An element needs to be sent to a processor if it owns a node which belongs
to the processor.

• An element needs to be sent to a processor if one of its children or sibling
elements is sent to the processor.

• A node needs to be sent to a processor if it belongs to at least one element
which is sent to the processor.

Again, an additional rule applies in the case of elements with hanging nodes: any
element which is the high level hanging (edge or face) opposite of an element which
needs to be sent to a given processor will also be sent to the processor. The situation
is similar to the one depicted in Figure 8.

4.2. Rebuilding the refinement structure. The final step before the
Refiner is ready to continue with the following step of the AMR strategy con-
sists of rebuilding all the required data structures. The FaceList structure and the
ParentIdentifier and ChildrenIdentifierList arrays can be rebuilt in a two step
process from the information in the NodeList and by traversing the element levels
using the GlobalElementIdentifier of each element. Once this is done, rebuild-
ing the HangingNodeList and the EdgeRefinementList is also straightforward,
although some care needs to be taken so that the resulting implementation is efficient.

5. External calls to the RefficientLib library. In this section we present
the interface and calls to the RefficientLib object-oriented library. The implemen-

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C80 JOAN BAIGES AND CAMILO BAYONA

tation allows the refinement algorithm to be used from distributed memory compu-
tational physics codes. The library has been developed following the object-oriented
Fortran 2003 standard. In the following we illustrate a typical call to the adaptive
refinement library.

The first step consists of the initialization of the Refiner object. This is done by
passing an IniData object from which the initial mesh information can be retrieved
(elements, nodes, and connectivities). The IniData object is defined as abstract in
the library and needs to be implemented and extended by the user:

! MyIniData i s an o b j e c t from which the i n i t i a l mesh informat ion
! can be e x t r a c t e d
ca l l Ref ine r%I n i t i a l i z e (IniData)

The required calls for this object are the following:

! General dimensions
! Number o f p o i n t s in the processor
ca l l IniData%GetNpoin (npoin)
! Number o f l o c a l p o i n t s in the processor
ca l l IniData%GetNpoinLocal (npoinLocal)
! Number o f e lements in the processor
ca l l IniData%GetNelem (nelem)
! Globa l Number o f Points
ca l l IniData%GetGlobalNpoin (gnpoin)

! Get an element c o n n e c t i v i t y l i s t
ca l l IniData%GetConnect iv ity (ie lem , nnode , c o n n e c t i v i t y)

! Get the l o c a l to g o b a l mapping f o r a s e t o f nnode nodes
! Output i s GlobalNumbering
ca l l IniData%GetLocal2Global (nnode , LocalNumbering , GlobalNumbering)

! Get the processor to which a s e t o f nnode nodes i s ass i gned
! Output i s ProcessorL i s t
ca l l IniData%GetProcessorNumber (nnode , LocalNumbering , P r o c e s s o r L i s t)

Also, the coordinates of the nodal points of the mesh are passed to the Refiner.
These are only used in the tetrahedral elements case in order to choose the subelement
type which causes the lesser distortion, as explained previously:

! Coord conta ins the array o f coordinates , necessary f o r the
! sube lement type cho ice in t e t r a h e d r a l e lements
ca l l Ref ine r%SetCoordArray (coord)

An optional call for setting the balancing flag (and forcing the resulting mesh to
be balanced) can be done in the following manner:

! Opt ional c a l l f o r s e t t i n g the ba lanc ing f l a g
ca l l Ref ine r%Set 2 1 Ba lanc ing (. f a l s e .)

Once the Refiner is initialized, the array containing the refinement criteria is
passed to the Refiner, which performs all the required refinement steps:

i f (r e f i n i n g) then
! RefinerMarkel conta ins the re f inement c r i t e r i a f o r each element
ca l l Ref ine r%Ref ine (Ref inerMarke l)

endif

If instead of a refinement step, we are carrying out a load rebalancing step, an
external call to the renumbering library needs to be done, which needs to retrieve the
PointGlobNumber and the PointProcNumber arrays. Once these are available,
the Refiner call has following form:

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C81

i f (r eba l anc ing) then
!A c a l l to an e x t e r n a l l i b r a r y f o r renumbering i s
! necessary (user d e f i n e d)
ca l l ExternalLibraryRenumbering (PointGlobNumber , PointProcNumber)
! PointGlobNumber , PointProcNumber contain the new g l o b a l
! numbering and processor f o r p o i n t s
ca l l Ref ine r%SetRebalancingNumbering (PointGlobNumber , PointProcNumber)
! Communicate and r e b u i l d the re f inement s t r u c t u r e
ca l l Ref ine r%LoadRebalance

endif

Once the refinement or load rebalancing step is done by the Refiner, information
can be retrieved using several calls, and from it the new external flat mesh can be
built:

! Once the re f inement i s done , we r e t r i e v e the informat ion from the
! Ref iner

!New Dimensions
! number o f l o c a l points , l o c a l + ghos t points , g l o b a l p o i n t s
ca l l Ref ine r%GetPointDimensions (newnpoinLocal , newnpoin , newgnpoin)
! number o f elements , s i z e o f the c o n n e c t i v i t y array
ca l l Ref ine r%GetElementDimensions (newnelem , newLnodsSize)

! Af ter a l l o c a t i o n o f e x t e r n a l arrays , the informat ion can
! be r e t r i e v e d from the Ref iner
! Element Connec t i v i t y l i s t in CSR format
ca l l Ref ine r%GetLnods (pnods , lnods)
! Local to Globa l and processor l i s t f o r the new l o c a l nodes
ca l l Ref ine r%GetLocalOrdering (LocalToGlobal , P r o c e s s o r L i s t)
!A l i s t o f hanging nodes (pHangingList , lHang ingLis t)
! wi th the averag ing c o e f f i c i e n t s (rHangingList)
! in CSR format can be r e t r i e v e d from the Ref iner
ca l l Ref ine r%GetHangingListDimensions (Hang ingLis tS ize)
ca l l Ref ine r%GetHangingList (pHangingList , lHangingList , rHangingList)
!A l i s t o f hanging f a c e s (pHangingList , lHang ingLis t)
! in CSR format can be r e t r i e v e d from the Ref iner
ca l l Ref ine r%GetHangingFacesList (pHangingFacesList , lHang ingFacesLi s t)

The hanging nodes list contains, for each node, the list of their hanging parents
(lHangingList) and the corresponding averaging coefficients (rHangingList), stored in
CSR format.

For all nodal arrays defined in the old mesh, a call to the Refiner allows us to
transform them (by interpolation and restriction) into arrays in the new mesh:

ca l l Ref ine r%UpdateVariable (ndime , coord , newcoord)

This summarizes the interaction with the adaptive refinement library from a user
point of view. Some additional optional calls exist that allow us to pass values in
the boundaries of the old mesh to the boundaries of the new mesh. These can be
convenient, for instance, for enforcing Neumann boundary conditions in finite element
analysis, but we have not included them here for legibility and conciseness.

6. Numerical examples. In this section we illustrate the behavior of the pro-
posed algorithm through several numerical examples. In these examples the algorithm
is tested for various types of linear, bilinear, and trilinear elements, in both two and
three dimensions.

6.1. Bidimensional elements. The first numerical example consists of a square
bidimensional domain (0, 1) × (0, 1) meshed using triangular linear elements. The
refinement process is arbitrary in order to show the capability of the algorithm to

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C82 JOAN BAIGES AND CAMILO BAYONA

deal with multilevel jumps across hanging faces, and in this case it concentrates most
of the elements in the top-right corner.

The number of processors in this simulation is 25, and the load rebalancing cri-
terion is the following:

max (npoinLocal) · nproc

gnpoin
≥ tolrebalance.

Over this mesh, a Poisson heat transfer problem is solved using finite elements.
The heat transfer problem consists of finding u : Ω −→ Rd such that

−k∆u = f in Ω,

u = 0 in ΓD,

kn · ∇u = h in ΓN ,

where k > 0, f is a given forcing function, h is the normal heat flux, Ω denotes the
computational domain, and ∂Ω = Γ = ΓD ∩ ΓN is the boundary, with ΓD ∩ ΓN = ∅.
In this example the forcing term is uniform with value f = 1; ΓD is composed of the
upper, lower, and left boundaries; while ΓN is composed of the right boundary, with
h = −20.

Figure 9 shows the behavior of the method for this case. After several refinement/
unrefinement steps, the mesh is much more heavily refined in the top-right corner than
in the rest of the computational domain. Note that in this process, in some of the
steps normal nodes become hanging nodes and vice versa. The load rebalancing acts
by rearranging the ownership of the nodes in such a way that the computational
load in all of the processors is approximately the same. This results in most of the
processors dealing with nodes in the top-right corner. The algorithm is capable of
dealing with the multilevel jump in hanging faces and providing an accurate result
for the temperature field.

6.2. Multiple types of elements in a single bidimensional simulation.
In this numerical example we solve again the example presented in subsection 6.1,
but this time we use two types of elements: in the left half of the domain we use
triangular finite elements, while in the right half quadrilateral finite elements are
used. This example illustrates the capability of the algorithm to deal simultaneously
with several types of finite elements. Figure 10 shows the numerical results. Note
that some of the hanging faces of the mesh belong to the interface between triangular
and quadrilateral elements.

6.3. Tetrahedral and hexahedral elements. In this numerical example a
heat transfer problem is solved in a unit cube domain. The boundary conditions are
adiabatic in all walls except in the lower one, where the temperature is fixed to zero.
The source term is f = 1. The selection of the elements to refine is again arbitrary,
and several refinement/unrefinement steps are performed before arriving at the final
configuration. The number of processors in this numerical example is 6.

Figure 11 shows the behavior of the method for this case. After several
refinement/unrefinement steps, the mesh is much more heavily refined in the top-
right quarter than in the rest of the computational domain, and the load rebalancing
algorithm acts by rearranging the nodes in each processor so that the computational
load is similar in all processors. The algorithm is capable of dealing with the multilevel
jump in hanging faces and providing an accurate, smooth result for the temperature
field.

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C83

Fig. 9. Poisson problem example on a triangular mesh. Top-left: original mesh. Top-right:
mesh after some refinement steps. Bottom-left: node distribution across processors. Bottom-right:
temperature field at the end of the simulation. Note that the jump of refinement level across hanging
faces can be arbitrarily large.

Figure 12 shows the same example using hexahedral elements and 25 processors,
the load rebalancing criteria being the same as in the previous cases. In the three-
dimensional case no simulation is done using multiple types of elements, since the faces
of the elements and the finite element shape functions for tetrahedral and hexahedral
elements do not match at the interface.

6.4. An application to the incompressible Navier–Stokes equations. In
this numerical example we solve the incompressible Navier–Stokes equations, which
consist of finding u : Ω× (0, T) −→ Rd and p : Ω× (0, T) −→ R such that

∂tu− ν∆u + u · ∇u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = ū on Γ

for t > 0, where ∂tu is the local time derivative of the velocity field. Ω ⊂ Rd is a
bounded domain, with d = 2, 3, ν is the viscosity, and f is the given source term.
Appropriate initial conditions have to be appended to this problem. The numerical
solution of these equations through finite elements is done using a stabilized formula-
tion [9] which allows us to deal with the convective term and use equal interpolation
spaces for the velocity and the pressure.

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C84 JOAN BAIGES AND CAMILO BAYONA

Fig. 10. Adaptive simulation in a finite element mesh with several types of elements. Top-left:
original mesh. Top-right: mesh after some refinement steps. Bottom-left: node distribution across
processors. Bottom-right: temperature field at the end of the simulation.

This numerical example deals with the flow around a cylinder at Re = 100. The
computational domain consists of a 16 × 8 rectangle with a unit-diameter cylinder
centered at (4, 4). The horizontal inflow velocity is set to 1 at x = 0. Slip boundary
conditions are set at y = 0 and y = 8, and velocity is set to 0 at the cylinder
surface. The viscosity has been set to ν = 0.01, and the Reynolds number is Re =
100 based on the diameter of the cylinder and the inflow velocity. A third-order
backward differences scheme has been used for the time integration with time step
size δt = 1 · 10−3. As an error estimator, the Zienkiewicz–Zhu error estimator [23] for
the velocity gradient has been used, which results in a refinement strategy near the
boundary layer and in the regions surrounding the vortices behind the cylinder:

eK =

∫
K

Π⊥ (∇uh) =

∫
K

(∇uh −Πh (∇uh)) ,

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C85

Fig. 11. Mesh refinement for tetrahedral elements. Top-left: original mesh. Top-right: mesh
after some refinement steps. Bottom-left: node distribution across processors. Bottom-right: tem-
perature field at the end of the simulation.

where K denotes each element of the mesh, Πh denotes the projection onto the finite
element space, and Π⊥ denotes the projection onto the space orthogonal to the finite
element space. Figure 13 shows the results and mesh evolution obtained for this
example. Note that in the refinement process, some of the normal nodes become
hanging nodes and vice versa at each step.

6.5. An application to a nonsmooth solution. Here we present a nonsmooth
solution example for the steady Stokes problem, which consist of finding u : Ω ×
(0, T) −→ Rd and p : Ω× (0, T) −→ R such that

−ν∆u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = ū on Γ,

where Ω ⊂ R2 is a two-dimensional bounded domain, ν is the viscosity, and f is a
given source term. A divergence free nonsmooth manufactured solution is considered:

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C86 JOAN BAIGES AND CAMILO BAYONA

Fig. 12. Mesh refinement for hexahedral elements. Top-left: original mesh. Top-right: mesh
after some refinement steps. Bottom-left: node distribution across processors. Bottom-right: tem-
perature field at the end of the simulation.

u (r, φ) = rα
[

cos (φ)ψ′ (φ) + (1 + α) sin (φ)ψ (φ)
sin (φ)ψ′ (φ)− (1 + α) cos (φ)ψ (φ)

]
,

p (r, φ) = −r(α−1) (1 + α)
2
ψ′ (φ) + ψ′′′ (φ)

1− α
,

with

ψ (r, φ) =
sin ((1 + α)φ) cos (αω)

1 + α
− cos ((1 + α)φ)

+
sin ((α− 1)φ) cos (αω)

1− α
+ cos ((α− 1)φ) .

Here ω and α are taken as ω = 3π/2 and α ≈ 0.5444837, which is an approxima-

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C87

Fig. 13. Adaptive refinement finite element solution of the flow past a cylinder. Contour results
for the velocity and pressure fields, and the refined mesh details, are presented for two separated
configurations of the wake oscillation.

tion to the root of the nonlinear equation

sin2 (αω)− α2 sin2 (ω)

α2
= 0.

We depart from a six linear element triangular mesh and refine it by using the
Zienkiewicz–Zhu error estimator and refinement criteria explained in the previous ex-
ample. Figure 14 shows the obtained velocity and pressure solutions. The original
and the refined mesh after several refinement steps are also displayed. Several re-
finement levels are developed for the refined mesh. The mesh refinement deals with

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C88 JOAN BAIGES AND CAMILO BAYONA

Fig. 14. Adaptive refinement finite element solution of the Stokes problem, nonsmooth solution.
Contour results for the velocity (top-left) and pressure (top-right) fields, and the original (bottom-
left) and refined (bottom-right) meshes.

the singularity appearing in the corner and provides an accurate solution capable of
better representing the pressure field close to the singularity.

6.6. An application to free surface flows. This numerical example consists
of the simulation of the water flow over the deck of a ship followed by the impact of the
resulting wave against an obstacle. This is a well-known benchmark for free surface
problems and has been studied experimentally by the Maritime Research Institute
Netherlands (MARIN). Experimental data are available in [18]. The setting of the
problem is the following. A large tank with an open roof is considered. At one side
of the tank, a gate isolates a volume of water which lays at rest at a constant free
surface height. On the other side of the tank there is a prismatic obstacle representing
a container on the deck of a ship. This obstacle is static, and no fluid-structure
interaction effects are considered. The experiment starts when the gate quickly opens

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C89

Fig. 15. Position of the free surface and computational mesh at several instants of the simula-
tion for the green water flow case.

(the duration of the gate-opening process is considered to be zero) and the resulting
water wave impacts against the obstacle and the walls of the tank. The pressure time
history at several points on the surface of the obstacle is then measured and compared
against experimental results.

An initial mesh composed of 3756 linear tetrahedra elements is used. The time
step is set to 0.01 s (seconds) and a total of 6 s is simulated. The finite element mesh
is then successively adapted, and the mesh refinement is heavily localized around the
free surface, which leads to important savings in the computational effort.

In Figure 15 the position of the free surface at several time instants is shown,
together with the mesh at each of these time steps.

6.7. Scalability tests. In this section we test the scalability of the proposed
refinement method when a large number of processors is used. We consider two cases.
In the first case, we solve an adaptive refinement case where the problem is balanced,
and no load rebalancing is required. In the second case, we test the algorithm for a

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C90 JOAN BAIGES AND CAMILO BAYONA

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000

S
e
c
o
n
d
s

Number of Processors

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 500 1000 1500 2000

S
e
c
o
n
d
s

Number of Processors

Fig. 16. Uniform refinement weak scalability results up to 1849 processors. The notation for
the element type is as follows: Triangles(4), squares (�), tetrahedra(N), hexahedra(�). Left: in this
case we depart from an initial points per processor configuration (100 for bidimensional elements
and 8 for three-dimensional elements) and perform 6 levels of uniform refinement. Thereafter, we
include several uniform unrefinement/refinement steps after the last refinement level. This type of
run is performed in order to be able to measure the overall refinement performance of several time
steps, and it is calculated using the Marenostrum supercomputer. Right: in this case we depart
from an initial points per processor configuration (90,000 for bidimensional elements and 270,000
for three-dimensional elements) and perform a single level of uniform refinement. We calculate this
case using the Beskow supercomputer.

case where load rebalancing is required at almost every step of the refinement process.
For each step we refine the elements contained inside the domain, following either a
uniform refinement criterion or a refinement criterion which aggressively forces load
rebalancing. The weak scalability tests are run up to 1849 processors for bidimen-
sional elements, and 1728 processors for three-dimensional elements. Both scalability
cases are limited to 2000 million total elements for the largest mesh created at the
last refinement level, since our current implementation uses 4 byte integers for the
nodal and elemental counters. The tests presented in this subsection were run on
the MareNostrum supercomputer at the Barcelona Supercomputing Center, and on
the Beskow supercomputer at KTH, Sweden. The MareNostrum supercomputer is
equipped with Intel SandyBridge-EP E5-2670 cores at 2.6 GHz (3056 compute nodes)
and 103.5 TB of main memory. The Beskow supercomputer is a Cray XC40 system
based on Intel Xeon E5-2698v3 cores at 2.3 GHz (1676 compute nodes) and 104.7 TB
of main memory.

The first weak scalability test corresponds to a uniform refinement problem. We
depart from a structured uniform mesh with an initial number of elements and points
per processor, and successively refine it. For each time step we refine the elements in
the entire spatial domain. The CPU runtime invested in the refinement procedures is
presented in Figure 16. The objective of this weak scalability test is to measure the
communications between processors. Because no communications are needed for load
balancing, the measured time is due only to the refinement procedure. The results
show an increase in runtime between 1 and 100 processors. After 100 processors
a flat tendency is observed. The scaling results are good for both bidimensional
and three-dimensional cases, ensuring the correct behavior of the adaptive refinement

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C91

 0

 20

 40

 60

 80

 100

64 256 1024 1849

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

 0

 20

 40

 60

 80

 100

64 256 1024 1849

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

 0

 20

 40

 60

 80

 100

27 216 1000 1728

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

 0

 20

 40

 60

 80

 100

27 216 1000 1728

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

Fig. 17. Runtime fraction results for the uniform refinement weak scaling tests up to 1849 pro-
cessors on the Beskow supercomputer. Triangles (top-left), squares (top-right), tetrahedra (bottom-
left), and hexahedra (bottom-right) element type cases are evaluated. The description of this case
is given in Figure 16. We perform a single level of uniform refinement and solve the stationary
heat transfer problem with the resulting refined mesh. The refinement procedure runtime fraction is
plotted with a solid fill, and the linear system runtime fraction is plotted using the pattern fill. We
addressed the fraction of time required by a single refinement procedure in comparison with the time
spent by the linear solver in order to solve the refined mesh linear system. We compared our results
with best runtime from among several linear solvers, which was given by the biconjugate gradient
method implemented in the PETSc parallel solver library [1], together with the ML preconditioning
package implemented in the TRILINOS library [10].

algorithm. The runtime fraction of the refinement procedure with respect to the linear
system solution is presented in Figure 17 for a single time step. Results show that the
runtime is dominated by the linear system solution, and that the runtime fraction of
the refinement procedure decreases with the number of processors, ensuring a good
behavior in large scale computing.

The second weak scalability test intends to evaluate the overall performance when
load rebalancing is necessary. For this case we depart from a structured uniform mesh
and refine it successively using the following refinement criteria. For each step we re-
fine only the elements contained inside the domain Ωr = (1− 1

2i , 1)×(1− 1
2i , 1)×(0, 1),

where i denotes the step number in this case. This criterion defines a spatial distri-
bution which partially refines elements of the domain. Figure 18 shows the runtime

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C92 JOAN BAIGES AND CAMILO BAYONA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000

S
e
c
o
n
d
s

Number of Processors

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000

S
e
c
o
n
d
s

Number of Processors

Fig. 18. Load balancing refinement weak scalability results up to 1849 processors. The notation
for the element type is as follows: Triangles (4), squares (�), tetrahedra (N), hexahedra (�). Left:
in this case we depart from an initial points per processor configuration (4900 for bidimensional
elements and 8 for three-dimensional elements) and perform 15 levels of load rebalancing refinement.
This run is calculated using the Marenostrum supercomputer. Right: in this case we depart from
an initial points per processor configuration (90,000 for bidimensional elements and 270,000 for
three-dimensional elements) and perform a single level of forced load rebalancing refinement. We
calculate this case using the Beskow supercomputer.

required for the refinement and load balancing procedures. The interprocessor com-
munications in this case are due not only to the refinement step but also to the
load rebalancing procedure. An asymptotic tendency is reached for both bidimen-
sional and three-dimensional elements as the number of processors increases. The
three-dimensional elements weak scaling results are good up to the range of 1000 pro-
cessors. The runtime fraction spent by the refinement and load balancing procedures
with respect to the linear system solution is presented in Figure 19. In all cases the
refinement and load balancing computational cost was small to moderate with respect
to the linear system solve. The linear system solve was tested for a one-degree-of-
freedom heat transfer problem. In the case of an incompressible Navier–Stokes prob-
lem, nonlinearities and a larger number of degrees of freedom per node would increase
considerably the cost of solving the linear system, but the refinement procedure cost
would remain the same, leading to an even smaller runtime fraction for the refinement
step. Therefore, we conclude that the implementation of the proposed algorithm is ef-
ficient with respect to the cost of solving linear systems on adaptively refined meshes,
and the algorithm is suitable for large scale problems in high-performance computing
environments.

7. Conclusions. In this paper a novel parallel, hierarchical, and load rebal-
anced algorithm for adaptive mesh refinement (AMR) and coarsening of unstructured
bidimensional and three-dimensional meshes has been presented.

The main features of the proposed algorithm are its suitability for nodally based
partitions in distributed memory frameworks and its capability of successively refining
and unrefining the mesh in an efficient manner in clusters of up to thousands of
processors. Several different types of meshes can be dealt with by the algorithm,
including triangular, quadrilateral, tetrahedral, and hexahedral elements, and also
meshes with several types of elements.

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C93

 0

 20

 40

 60

 80

 100

64 256 1024 1849

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

 0

 20

 40

 60

 80

 100

64 256 1024 1849

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

 0

 20

 40

 60

 80

 100

27 216 1000 1728

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

 0

 20

 40

 60

 80

 100

27 216 1000 1728

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

Fig. 19. Runtime fraction results for the load rebalancing refinement weak scaling tests up to
1849 processors on the Beskow supercomputer. Triangles (top-left), squares (top-right), tetrahedra
(bottom-left), hexahedra (bottom-right). The full description of this case is given in Figure 18. It
performs a single level of forced load rebalancing refinement and solves the stationary heat transfer
problem with the resulting refined mesh. The linear solver is set to be the biconjugate gradient with
the ML preconditioner. The refinement runtime fraction is plotted with a solid fill, the load balancing
runtime fraction is plotted with a coarse pattern fill, and the linear system runtime fraction is plotted
using the fine pattern fill.

The memory requirements of the algorithm are reduced at the local level, because
only the information corresponding to the part of the mesh in the current processor
subdomain needs to be stored locally. The resulting refined meshes are nonconforming
with hanging nodes, but no balancing restriction needs to be enforced between adja-
cent elements, which allows us to have jumps of multiple refinement levels in neighbor
elements.

A load rebalancing scheme has been presented which is independent of the re-
balancing/renumbering strategy, which can be chosen by the user. Both graph par-
titioning schemes and space-filling methods (or any other renumbering strategy for
load rebalancing) can be used with the proposed algorithm.

Several numerical tests have been presented to illustrate the performance of the
proposed algorithm. The first set of tests deals with simulation driven problems such
as the Poisson heat transfer problem and the incompressible Navier–Stokes equations

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C94 JOAN BAIGES AND CAMILO BAYONA

in adaptive meshes, for which the expected behavior of the refinement algorithm is
obtained. The second set of tests studies the scalability of the algorithm in up to
2000 CPU clusters where good weak scalability results are obtained for meshes of
up to 2000 million elements. Also, the runtime fraction for the refinement process is
reduced when compared to the runtime for solving linear systems of equations on the
generated meshes, which ensures the suitability of the proposed algorithm for large
computational physics problems in high-performance computing environments.

The proposed algorithm is packed in the RefficientLib Fortran 2003 library for
which the user interface has been presented. This allows the easy integration (with
no more than 10 calls to the adaptive refinement library) of the proposed algorithm
with existing computational physics codes.

The algorithm currently deals with h-refinement; the extension of the algorithm
to hp-refinement will be a matter of future work.

Acknowledgments. The simulations were done on the MareNostrum supercom-
puter at the Barcelona Supercomputing Center of the Centro Nacional de
Supercomputación (the Spanish National Supercomputing Center) and on the Beskow
supercomputer at the Royal Institute of Technology (KTH), Sweden. We acknowl-
edge PRACE for awarding us access to resource MareNostrum based in Spain at
Barcelona. The support of the Red Española de Supercomputación (RES) and the
European PRACE network is acknowledged.

REFERENCES

[1] S. Abhyankar, M. F. Adams, S. Balay, J. Brown, L. Dalcin, T. Isaac, M. G. Knepley,
D. May, K. Rupp, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang,
PETSc (Portable, Extensible Toolkit for Scientific Computation), version 3.7, 2016, http:
//www.mcs.anl.gov/petsc.

[2] S. Badia and J. Baiges, Adaptive finite element simulation of incompressible flows by hy-
brid continuous-discontinuous Galerkin formulations, SIAM J. Sci. Comput., 35 (2013),
pp. A491–A516, https://doi.org/10.1137/120880732.

[3] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data struc-
tures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Soft-
ware, 38 (2011), 14.

[4] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine, The Zoltan and Isor-
ropia parallel toolkits for combinatorial scientific computing: Partitioning, ordering, and
coloring, Sci. Program., 20 (2012), pp. 129–150.

[5] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. Warburton, and L.
Wilcox, Extreme-scale AMR, in Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and Analysis, IEEE Com-
puter Society Press, Piscataway, NJ, 2010, pp. 1–12.

[6] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adap-
tive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33 (2011), pp. 1103–1133,
https://doi.org/10.1137/100791634.

[7] P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and J. D. Teresco,
Dynamic Octree Load Balancing Using Space-Filling Curves, Technical Report CS-03-01,
Department of Computer Science, Williams College, Williamstown, MA, 2003.

[8] B. Cockburn and C.-W. Shu, The Runge–Kutta discontinuous Galerkin method for conser-
vation laws V: Multidimensional systems, J. Comput. Phys., 141 (1998), pp. 199–224.

[9] R. Codina, A stabilized finite element method for generalized stationary incompressible flows,
Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 2681–2706.

[10] M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R.
Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring,
and A. Williams, An Overview of Trilinos, Technical Report SAND2003-2927, Sandia
National Laboratories, Albuquerque, NM; Livermore, CA, 2003.

[11] T. Isaac, C. Burstedde, and O. Ghattas, Low-cost parallel algorithms for 2 : 1 octree
balance, in Proceedings of the IEEE 26th International Parallel & Distributed Processing
Symposium, IEEE Computer Society Press, Piscataway, NJ, 2012, pp. 426–437.

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
https://doi.org/10.1137/120880732
https://doi.org/10.1137/100791634

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REFFICIENTLIB: EFFICIENT ADAPTIVE MESH REFINEMENT C95

[12] N. Jansson, J. Hoffman, and J. Jansson, Framework for massively parallel adaptive finite
element computational fluid dynamics on tetrahedral meshes, SIAM J. Sci. Comput., 34
(2012), pp. C24–C41, https://doi.org/10.1137/100800683.

[13] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning ir-
regular graphs, SIAM J. Sci. Comput. 20 (1998), pp. 359–392, https://doi.org/10.1137/
S1064827595287997.

[14] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, LIBMESH: A c++ library for
parallel adaptive mesh refinement/coarsening simulations, Engineering with Computers,
22 (2006), pp. 237–254.

[15] A. Langer, J. Lifflander, P. Miller, K.-C. Pan, L. V. Kale, and P. Ricker, Scalable algo-
rithms for distributed-memory adaptive mesh refinement, in Proceedings of the IEEE 24th
International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), IEEE Computer Society Press, Piscataway, NJ, 2012, pp. 100–107.

[16] S. Popinet, Gerris: A tree-based adaptive solver for the incompressible Euler equations in
complex geometries, J. Comput. Phys., 190 (2003), pp. 572–600.

[17] R. S. Sampath and G. Biros, A parallel geometric multigrid method for finite elements on
octree meshes, SIAM J. Sci. Comput., 32 (2010), pp. 1361–1392, https://doi.org/10.1137/
090747774.

[18] S.E.R.I. Community, http://spheric-sph.org/index.
[19] H. Sundar, R. S. Sampath, and G. Biros, Bottom-up construction and 2:1 balance refinement

of linear octrees in parallel, SIAM J. Sci. Comput., 30 (2008), pp. 2675–2708, https://doi.
org/10.1137/070681727.

[20] T. Tu and D. O’Hallaron, Balance Refinement of Massive Linear Octrees, Technical Report
CMU-CS-04-129, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
2004.

[21] T. Tu, D. R. O’Hallaron, and O. Ghattas, Scalable parallel octree meshing for terascale
applications, in Proceedings of the ACM/IEEE 2005 Conference on Supercomputing, IEEE
Computer Society Press, Piscataway, NJ, 2005, p. 4.

[22] T. Tu, D. R. O’Hallaron, and J. C. López, Etree: A database-oriented method for generating
large octree meshes, Engineering with Computers, 20 (2004), pp. 117–128.

[23] O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for prac-
tical engineering analysis, Int. J. Numer. Methods Engrg., 24 (1987), pp. 337–357.

D
ow

nl
oa

de
d

06
/1

6/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/100800683
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/090747774
https://doi.org/10.1137/090747774
http://spheric-sph.org/index
https://doi.org/10.1137/070681727
https://doi.org/10.1137/070681727

	Introduction
	Distributed refinement structure
	Mesh partition
	Distributed data structures
	The GlobalElementIdentifier data structure
	The InverseGlobalPointNumberingList
	Initialization

	Refinement step
	Amending the element refinement classification
	Local refinement
	Parallel numbering
	Hanging nodes
	Exporting the external mesh

	Load rebalancing
	Rebalance renumbering
	Rebuilding the refinement structure

	External calls to the RefficientLib library
	Numerical examples
	Bidimensional elements
	Multiple types of elements in a single bidimensional simulation
	Tetrahedral and hexahedral elements
	An application to the incompressible Navier–Stokes equations
	An application to a nonsmooth solution
	An application to free surface flows
	Scalability tests

	Conclusions
	References

