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ABSTRACT

In this paper, the dynamics of a dc-ac resonant self-oscillating LC series inverter is analyzed
from the point of view of piecewise smooth dynamical systems. Our system is defined by two
symmetric configurations and its bifurcation analysis can be given in a one dimensional param-
eter space, thus finding a non smooth transition between two strongly different dynamics. The
oscillating regime, which is the one useful for applications and involves a repetitive switching
action between those configurations, is given whenever their open loop equilibrium is a fo-
cus. Otherwise, the only attractors are equilibrium points of node type whose stable manifolds
preclude the appearance of oscillations.
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Figure 1. Schematic diagram of the LC series resonant inverter.

1 INTRODUCTION

In this paper we deal with an analysis of the LC series resonant inverter, similar to the one
developed in [1] for its LC parallel counterpart. We put in evidence some relevant differences
between these two implementations from the point of view of dynamics and bifurcations, which
are mainly related to the location of the equilibria regarding the switching manifold. The rest
of this paper is organized as follows. Section 2 presents the mathematical switched model of
the system and its normalization, thus resulting in a unique bifurcation parameter. In section
3, we find that the transition from spiral to node of the open loop equilibrium further implies a
non smooth global bifurcation, thus inhibiting the desired oscillatory mode. Finally, concluding
remarks are drawn in the last section.

2 SYSTEM DESCRIPTION AND MATHEMATICAL MODELING

Figure 1 shows the circuit diagram of the system considered in this study that is an LC series
resonant inverter [2]. he switches S1 and S4 are ON when iL > 0 (δ = 1), and they are turned
OFF when iL < 0 (δ = 0). The switches S2 and S3 are driven in a complementary way to S1 and
S4. Let vC be the voltage of the output capacitor, iL the inductor current and z = (vC , iL)ᵀ the
vector state. Let also u be the variable determined by the control in the form u = 2δ− 1, that is
u = 1 if iL > 0 and u = −1 if iL < 0. Let us define τ and x = (x1, x2)

ᵀ as follows:

τ = ω0t, x1 =
vC
Vg
, x2 =

iLZ0

Vg
.

The dynamical model of the system is as follows:

ẋ = Ax + Bu, (1)
h(x) = Cᵀx, (2)

where the matrix A and the vector B are redefined as

A =

 0 1

−1 − 1

Q

 , B =

(
0
1

)
.

Note that above parameters are the natural frequency ω0, the characteristic impedance Z0 and
the quality factor Q of the LCR resonant series circuit, which are given by the expressions

ω0 =

√
1

LC
, Z0 =

√
L

C
, Q =

Z0

RS

,

where RS = R + rC + rL is the equivalent series resistance of the circuit. Note also that the
open loop system (1), in which the switch variable u remains constant, either u = 1 or u = −1,
has as unique attractor the equilibrium point x = (u, 0)ᵀ. The eigenvalues of the matrix A are

p± = − 1

2Q
±
√

1

4Q2
− 1,
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and it can be deduced, due the physical restriction Q > 0, which implies eigenvalues with
negative real part, that the open loop equilibrium is always stable. However, there is a minor
transition atQ = 1/2, because the eigenvalues change from real to complex values. IfQ > 1/2,
the two eigenvalues are complex conjugated, so that the equilibrium is surrounded by spiraling
trajectories. Otherwise, ifQ ≤ 1/2, the equilibrium is a node, and so the orbits tend to the stable
manifold corresponding to the eigenvector associated to the highest or to the lowest eigenvalue
considering forward or backward time evolution respectively. Unlike in the linear system, we
will prove that in our piecewise smooth system (1)-(2), a non trivial non smooth bifurcation is
produced at the same value Q = 1/2.

3 PIECEWISE SMOOTH ANALYSIS

3.1 The switching manifold and the sliding subset

Recall that from (2), the switching manifold is defined here as Σ = {x : x2 = 0}. According to
the Filippov theory, sliding dynamics can occur in a subset ΣS of the switching manifold Σ, if
the vector fields F+ and F− satisfy the condition

ΣS =
{
x ∈ Σ : (∇h(x) · F+(x)) (∇h(x) · F−(x)) < 0

}
, (3)

in which ∇(·) is the gradient operator. This means that in a sliding region, the vector field
points inwards or outwards at both sides of ΣS . Conversely, in the points not belonging to ΣS ,
the vector field crosses Σ. Roughly speaking, three different cases of switching dynamics can
exist, one of them corresponding to simple crossing associated to Carathéodory solutions. The
other two cases are the attracting and the rejecting sliding motions. In our case, the field F+

and F− points outwards ΣS , so the sliding is repelling and it is defined in the subset

ΣS = {x : −1 < x1 < 1, x2 = 0} .

3.2 The non oscillatory dynamics

We deal first with the non oscillatory dynamics. Actually, this a malfunction of the inverter
in real applications, which occurs under the over damping condition, that is in the parameter
domain 0 < Q ≤ 1/2. This case is illustrated in Fig. 2 using Q = 0.4, where some ad
hoc trajectories have been depicted. If 0 < Q ≤ 1/2, the eigenvalues of the matrix A are
real and negative, and so the dynamics evolving around each equilibrium cannot cross their
corresponding stable manifolds. The consequence of this fact is that for any arbitrary trajectory,
at most only one switching can be produced and therefore, the oscillating regimen cannot be
attained. The boundary of attraction between the twin equilibrium points, which is also depicted
in Fig. 2 using red color, is made up of three pieces: the sliding subset ΣS and the part of stable
manifold corresponding to the lowest (more negative) eigenvalue in the valid side of the state
plane for each equilibrium.

3.3 The self oscillating dynamics

In the following, we consider the quality factor restricted to the range Q > 1/2. Then, system
(1)-(2) has an oscillatory dynamics, which is the one useful for inverter applications. Notice
that for the linear case (1), with either u = 1 or u = −1, we have naturally a focus dynamics
converging to an equilibrium, so that the self sustained oscillation is only enabled by the switch-
ing action introduced in (2). To prove this, let us choose an initial point located in the upper half
plane. The dynamical integration forces the trajectory to cross Σ at a point (y1 > 1, y2 = 0),

3



MEDYNA 2017 25-27 Apr 2017, Sevilla (Spain)

Figure 2: Boundaries of the attraction basin of the twin equilibria (blue points) for the system
(1)-(2) with Q = 0.4 < 1/2, defined by the rejecting sliding segment and the eigenvectors
corresponding to the lowest eigenvalue (red lines). A scheme of the piecewise smooth vector
field and some illustrative trajectories have been also plotted. Notice that they tend to the stable
manifold corresponding to the highest eigenvalue (blue lines).

Figure 3: Oscillatory dynamics for system (1)-(2) with Q = 1.5 > 1/2, thus converging to a
limit cycle, depicted in blue color, which is defined by two half cycles connected each other.

because it evolves clockwise around the right side equilibrium x+ = (1, 0). Then, the trajectory
enters the lower half plane, so evolving clockwise around the left side equilibrium x− = (−1, 0)
to reach and cross Σ again at a point (y1 < −1, y2 = 0). This process is repeated indefinitely,
thus converging the trajectory to a finite limit cycle, that is the oscillatory dynamics, due to the
dissipative character of the system. To get an expression of the stable limit cycle, it turns out
more convenient to introduce the bifurcation parameter γ as the quotient between the real and
the imaginary parts of the focus eigenvalue p+ that is

p+ = − 1

2Q
+ i

√
1− 1

4Q2
= σ + iωr = σ

(
1 +

i

γ

)
,

in which
γ =

σ

ωr
= − 1

2Q
√

1− 1/(4Q2)
= − 1√

4Q2 − 1
< 0.

Fig. 4 shows the evolution of the parameter γ in terms of the quality factor Q. Notice
that ωr is the ratio between the free running frequency ω and the natural frequency ω0 in the
real system, that is ω = ωrω0. Thus, if we take the new time and variables

θ = ωrτ, y1 = x1, y2 = ωrx2,
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Figure 4. The plot of the focus parameter γ versus the quality factor Q.

(a) Y1 versus γ (b) Y1 versus Q

Figure 5: Amplitude of the limit cycle versus γ andQ. The gray dashed lines are the asymptotes
to which the amplitude tends for high absolute values of the corresponding parameter.

and take into account that ω−2
r = γ2 + 1, we obtain from (1)-(2) the normalized system

dy

dθ
=

(
0 γ2 + 1
−1 2γ

)
y +

(
0
1

)
u, (4)

h(y) = Cᵀy, (5)

in which y = (y1, y2). Accordingly, the switching manifold is redefined as Σ = {y : y2 = 0}.
Taking into account the symmetry of the vector field with respect to the origin, we focus our
attention only to the half-plane y2 ≥ 0, where u = 1 with the focus located at point (1, 0). Thus,
solving equation (4) with u = 1, we get(

y1(θ)− 1
y2(θ)

)
= Φ(θ)

(
y1(0)− 1
y2(0)

)
, (6)

where Φ(θ) is an evolution operator given by

Φ(θ) = eγθ
(

cos θ − γ sin θ (γ2 + 1) sin θ
− sin θ cos θ + γ sin θ

)
. (7)

Since we are dealing with orbits for y2 ≥ 0 starting at Σ and returning to Σ at time θ1 after
surrounding the focus, we can write y2(0) = y2(θ1) = 0 in (6) thus resulting θ1 = π. This
simple solution reflects the fact that any orbit running from Σ to Σ surrounding the focus, will
last exactly half time of the cycle because both focus are at Σ itself. Imposing also the symmetry
condition y1(θ1) = −y1(0), we obtain after some algebra an expression for the amplitude of the
limit cycle, as the crossing point of the limit cycle at Σ, namely

Y1 = y1(θ1) = coth
(
−γπ

2

)
.
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(a) Q = 5 (γ = −0.3535) (b) γ = −1 (Q = 0.7071)

Figure 6. Waveforms of y1(θ) in red and of y2(θ) in blue, for the limit cycle.

In Fig. 5, the value of the normalized variable y1 at the switching condition, called here Y1, is
represented in front of the two parameters γ and Q. It is worth noting that if the quality factor is
high enough, the expression Y1 ≈ 4Q/π is a reasonable approximation for the amplitude of the
steady oscillation. Also, if γ is made negative enough, Y1 converges to its lowest value Y1 = 1.
Both asymptotic behaviors can be seen in the same diagrams. In Fig. 6, the normalized values
(y1, y2) for one cycle of the steady state oscillation have been represented for two different
parameters Q = 5 (γ = −0.3535) and γ = −1 (Q = 0.7071). Focusing on applications,
let us define a new variable yR to account for the relative load voltage. Thus, recalling that
y2 = ωriLZ0/Vg and considering the voltage divider relation α = R/RS between the load R
and the series equivalent RS we deduce that

yR =
iLR

Vg
=
αy2
ωrQ

, (8)

and for one of the two symmetrical half cycles in the steady state we deduce from (6)-(7) the
expression y2(θ) = (1 + Y1)e

γθ sin θ, and then yR(θ) = YR(γ)g(γ, θ) follows, in which the
constant YR is a sort of amplitude and g takes care of the dependence on time. These terms are

YR = −2αγ
(

1− coth
(γπ

2

))
, g(γ, θ) = eγθ sin θ.
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