
From Plasma to BeeFarm: Design Experience of
an FPGA-based Multicore Prototype

Nehir Sonmez1,2, Oriol Arcas1,2, Gokhan Sayilar3, Osman S. Unsal1, Adrián
Cristal1,4, Ibrahim Hur1, Satnam Singh5, and Mateo Valero1,2

1 Barcelona Supercomputing Center, Spain
2 Computer Architecture Department, Universitat Politècnica de Catalunya
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Abstract. In this paper, we take a MIPS-based open-source uniproces-
sor soft core, Plasma, and extend it to obtain the Beefarm infrastruc-
ture for FPGA-based multiprocessor emulation, a popular research topic
of the last few years both in the FPGA and the computer architecture
communities. We discuss various design tradeoffs and we demonstrate su-
perior scalability through experimental results compared to traditional
software instruction set simulators. Based on our experience of designing
and building a complete FPGA-based multiprocessor emulation system
that supports run-time and compiler infrastructure and on the actual
executions of our experiments running Software Transactional Memory
(STM) benchmarks, we comment on the pros, cons and future trends of
using hardware-based emulation for research.

1 Introduction

This paper reports on our experience of designing and building an eight core
cache-coherent shared-memory multiprocessor system on FPGA called BeeFarm
to help investigate support for Transactional Memory [11, 17, 23]. The primary
reason for using an FPGA-based simulator is to achieve a significantly faster sim-
ulation speed for multicore architecture research compared to the performance
of software instruction set simulators. A secondary reason is that a system that
uses only the FPGA fabric to model a processor may have a higher degree of
fidelity since no functionality is implemented by a magical software routine. An-
other way to use FPGA-based emulation is to offload infrequent or slow running
instructions and I/O operations to a software simulator but retain the core func-
tionality in FPGA hardware [7]. In our work we model the entire multiprocessor
system on reconfigurable logic, although commercial simulator accelerators like
Palladium and automated simulator parallelization efforts also take advantage
of reconfigurable technology [19].

Recent advances in multicore computer architecture research are being hin-
dered by the inadequate performance of software-based instruction set simulators
which has led many researchers to consider the use of FPGA-based emulation.
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Although sequential software-based simulators are mature and it is relatively
fast to make changes to the system in a high-level environment, they turn out to
be slow for the simultaneous simulation of the cores of a typical multiprocessor.

The inherent advantages of using today’s FPGA systems are clear: multiple
hard/soft processor cores, fast SRAM blocks, DSP units, more configurable logic
cells each generation on a more rapidly growing process technology than ASIC
and already-tested Intellectual Property (IP) cores. There are various synthesiz-
able open-source Register Transfer Level (RTL) models of x86, MIPS, PowerPC,
SPARC, Alpha architectures which are excellent resources to start building a
credible multicore system for any kind of architectural research. Furthermore,
various IPs for incorporating UART, SD, Floating Point Unit (FPU), Ethernet or
DDR controllers are easily accessible [1]. Although FPGA-based multiprocessor
emulation has received considerable attention in the recent years, the experience
and tradeoffs of building such an infrastructure from these available resources
has not yet been considered. Indeed, most infrastructures developed were either
(i) written from scratch using higher level HDLs, such as Bluespec, (ii) using
hard cores such as PowerPC, or (iii) using proprietary cores e.g. Microblaze.

Therefore, in this work we choose a new approach: We take an existing MIPS
uniprocessor core called Plasma [2] and we heavily modify and extend that to
build a full multiprocessor system designed for multicore research. To obtain the
Honeycomb core, the basic building block for the BeeFarm, we designed and
implemented two coprocessors, one providing support for virtual memory using
a Translation Lookaside Buffer (TLB), and another one encapsulating an FPU;
we optimized the Plasma to make better use of the resources on our Virtex-5
FPGAs; we modified the memory architecture to enable addressing for 4 GB; we
implemented extra instructions to better support exceptions and thread synchro-
nization and we developed the BeelibC system library to support the BeeFarm
system. Additionally, we designed coherent caches and developed a parameteriz-
able system bus that accesses off-chip RAM through a DDR2 memory controller
[21]. Finally, we developed a run-time system and compiler tools to support
a programming environment rich enough to conduct experiments on Software
Transactional Memory (STM) workloads. A hypothesis we wish to investigate
is the belief that an FPGA-based emulator for multicore systems will have bet-
ter scalability compared to software-based instruction set simulators. We check
this hypothesis on 1–8 cores using our flexible BeeFarm infrastructure, obtaining
performance speedups of up to 8x. The key contributions of this paper are:

– A description of extending Plasma for implementing the BeeFarm multipro-
cessor system on the BEE3 platform [9] and discussions on the tradeoffs and
an analysis of the FPGA resource utilization of our approach.

– Experimental results for three benchmarks investigating support for Transac-
tional Memory and an analysis of the performance and scalability of software
simulators versus the BeeFarm system.

– An experience reporting the pros and cons of using FPGA-based multicore
emulation and identification of specific challenges that need to be overcome
to better support FPGA-based emulation in the future.



2 The BeeFarm System

The synthesizable MIPS R2000-compatible soft processor core Plasma was de-
signed for embedded systems and written in VHDL. It has a configurable 2-3
stage pipeline (no hazards), a 4 KB direct-mapped L1 cache, and can address
up to 64 MB of RAM. It was designed to run at a clock speed of 25 MHz, and
it includes UART and Ethernet cores. It also has its own real-time operating
system with some support for tasks, semaphores, timers etc. Although the origi-
nal Plasma core is suitable for working with diverse research topics, it has some
limitations that makes it unsuitable as the processing element of the BeeFarm
system, such as the lack of virtual memory (MIPS CoProcessor 0), exceptions
and floating point arithmetic (MIPS CoProcessor 1). Furthermore, the design
only infers optional on-chip resources for the register file, and there is no support
for multiprocessing or coherent caches.

The BEE3 platform contains four Virtex5-155T FPGAs, where each FPGA
controls four DDR2 DIMMs, organized in two channels of up to 4 GB each. The
DDR2 controller [21] manages one of the two channels, performs calibration and
serves requests, occupying a small portion of the FPGA (around 2%). Using one
controller provides sequential consistency for our multicore since there is only
one address bus, reads are blocking and stall the processor pipeline.

2.1 The Honeycomb core: Extending Plasma

On Honeycomb processor (Figure 1) is implemented in a 3-stage pipeline with
an optional stage for data accesses. Instructions and data words are 32-bit wide,
and data can be accessed in bytes, half words (2 bytes) or words (4 bytes). In a
typical ALU instruction, the program counter passes the program counter to the
memory control unit, which fetches the 32-bit opcode from memory. In the next
stage, the memory returns the opcode which is passed to the control unit that
converts it to a 60-bit control word and forwards it to the appropriate entities
through a central multiplexer (bus-mux). Cache accesses pause the CPU and
can take various cycles in case of a miss.

The MMU (CP0): In order to support virtual memory, precise excep-
tions and operating modes, we implemented a MIPS R3000-compatible 64-entry
TLB, effectively upgrading the R2000 core to an R3000, which we named Ho-
neycomb. It provides memory management and exception handling intercepting
the memory control unit datapath. There exist various approaches to imple-
ment an efficient Content Addressable Memory (CAM) on FPGAs, with con-
figurable read/write access times, resource usage, and the technology utilized,
where general-purpose LUTs or on-chip block memories can be used[5]. The use
of LUT logic for medium and large CAMs and multi-cycle access are inappro-
priate since the TLB must translate addresses each cycle on our design. We
implemented this unit with on-chip BRAM configured as a 64-entry CAM and
a small 64-entry LUTRAM. Virtual patterns that are stored in the CAM give
access to an index to the RAM that contains the physical value. It is driven
by a half-cycle shifted clock that performs the translation in the middle of the



memory access stage so a dedicated pipeline stage is not needed. This 6-bit deep
by 20-bit wide CAM occupies four BRAMs and 263 LUTs.

Double-Precision FPU (CP1): The MIPS 3010 FPU implemented in
Coprocessor 1, which was designed using Xilinx Coregen, can perform IEEE 754-
compatible single and double precision floating point operations. It takes up 5520
LUTs and 14 DSP units, performing FP operations and conversions in variable
number of cycles (4–59). We used only 4 of the 6 integer-double-float conversion
cores to save space. This optional MIPS CP1 has 32x32-bit FP registers and a
parallel pipeline. The integer register file was extended to include FP registers
implemented as LUTRAM. For double precision, two registers represent the low
and high part of the 64-bit number and the register file was replicated to allow
64-bit (double precision) read/write access each cycle.

TLB FPU

CP0 CP1

CPU

25 MHz

Bus

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

ArbiterDDR2
Controller

125 MHz

Bootmem

I/O

PC_next Mem_ctrl

Control

Reg_bank
Bus_mux

ALU

Mult

Shifter

FPU_iface

Fig. 1. Left: the Honeycomb processor. Right: the BeeFarm multiprocessor system.

Memory Map and ISA Extensions: We redesigned the memory sub-
system which could originally only map 64 MB of RAM, to use up to 4 GB
with configurable memory segments for the stack, bootloader, cache, debug reg-
isters, performance counters and memory-mapped I/O ports. Furthermore, we
extended the Honeycomb ISA with three extra instructions borrowed from the
MIPS R4000: ERET (Exception RETurn), to implement precise exception re-
turns that avoid branch slot issues, LL (Load-Linked) and SC (Store Condi-
tional), which provide hardware support for synchronization mechanisms such
as Compare and Swap (CAS) or Fetch and Add (FAA). This is useful for Soft-
ware TM support, as we detail in Section 2.4.

2.2 The BeeFarm Architecture

Honeycomb’s 8 KB write-through L1 cache design that supports the MSI cache
coherency for both data and instructions in 16-byte, direct-mapped blocks, uses
2+1 BRAMs for storing data and cache tags. The BRAM’s dual-port access
enables serving both CPU and bus requests in a single cycle. Reads and writes are
blocking, and coherence is guaranteed by the snoopy cache invalidation protocol



that we implemented. The caches designed are interconnected with a central
split-bus controlled by an arbiter, as shown in Figure 1. They snoop on the
system bus to invalidate entries that match the current write address, where
write accesses are processed in an absolute order. This protocol can perform
invalidations as soon as the writes are issued on the write FIFOs of the DDR
and it serves to find an adequate balance between efficiency and resource usage.
More complex caches that demand more resources would make it difficult to
implement a large multiprocessor given the limited resources present on chip.
We are not interested in using large, multithreaded soft cores like OpenSPARC
and Leon3 because we concentrate on designing our own TM-capable manycore
emulator by upgrading a popular soft core, and reflecting on such experience.

The bus arbiter implemented interfaces the FIFOs of the DDR controller,
serving requests from all processors following a round-robin scheme. The boot-
up code is stored in a BRAM next to the arbiter and mapped to a configurable
region of the address space. I/O ports are also mapped, and the lowest 8 KB of
physical memory give access to the cache memory, becoming a useful resource
during boot-up when the DDR is not yet initialized. Furthermore, the cache can
be used as stack thanks to the uncached execution mode of MIPS. Such direct
access to cache memory is useful for debugging, letting privileged software to
read and even modify the contents of the cache.

The arbiter, the bus, caches and processors can run at a quarter of the DDR
frequency (25 - 31.25 MHz), the CPU’s shallow pipeline being the main cause
of this upper bound on the clock. Although bus and cache frequencies could be
pushed to work at 125 MHz or at an intermediate frequency, it was not desirable
to decouple this subsystem from the processor because partitioning the system in
many clock domains can generate tougher timing constraints, extra use of BRAM
to implement asynchronous FIFOs or additional circuitry for signals that cross
different clock domains. Further optimizations to the Honeycomb are possible
by clocking faster all special on-chip units and including such extra circuitry.

We can fit 8 Honeycomb cores without FPUs or 4 cores with FPUs on one
Virtex5-155T FPGA. The system bus can become a bottleneck not only during
system execution, but also when placing and routing the design. To use all four
FPGAs on the BEE3 and to support up to 40 Honeycomb cores, a distributed
directory scheme that will provide system-wide memory coherency is being de-
signed and implemented. Each FPGA will have a quarter of the memory space
and a directory that is responsible for local locations and a proxy directory with
information about lines from the local memory that are cached on remote nodes.

2.3 FPGA resource utilization

One of the objectives of the design is to fit the maximum number of cores while
supporting a reasonable number of features.The Honeycomb core without an
FPU occupies 5712 LUTs (Figure 2) on a Virtex-5 FPGA including the ALU,
MULT/DIV and Shifter units, the coherent L1 cache, the TLB and the UART
controller, a comparable size to the Microblaze core. The functional blocks on
Honeycomb can be categorized in three groups:



Compute-intensive (DSP): Eg. ALU, MULT/DIV, Shifter, FPU can take
advantage of hard DSP units. In the original Plasma core these units fit the third
category, since the ALU is a combinatorial circuit, while the MULT/DIV take
32 cycles to iterate and compute. The ALU can be mapped directly on a DSP
block while a MULT can be generated with Xilinx Coregen in a 35x35 multiplier
utilizing an acceptable 4 DSPs and 160 LUTs. The shifter can also benefit from
these 4 DSPs thanks to dynamic opmodes, however, a 32-bit divider can take
anywhere between 1100 LUTs to 14 DSP units: The optimal way of combining
all these operations to have a minimal design is not yet clear, we leave this as
future work.
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Fig. 2. Left chart: some of the available options (in 5-LUTs) to implement the Register
File, the ALU and the Multiplier unit. The lighter bars indicate the choices in the
original Plasma design. Right chart: LUT and BRAM usage of Honeycomb components.

Memory-intensive (BRAM/LUTRAM): Eg. Reg Bank, Cache, TLB.
The TLB is designed in a CAM, the cache and tags in BRAMs. The Reg Bank
in Plasma selects between using 4-LUT RAMs (RAM16), behaviorally describing
a tri-ported RAM, or using a BRAM. The use of a large BRAM is inefficient, and
the tri-ported RAM infers too many LUTs, as seen in Figure 2. When distributed
LUTRAM is inferred, each 5-LUT can act as a 32-bit register on the Virtex-5,
enabling two reads and one write per cycle assuming one of the read addresses
is the write address. Few options to enable two reads and a write to distinct
addresses on each CPU cycle are: (i) to do the accesses in two cycles, using one
of the address inputs for reading or writing, (ii) to clock the register file twice
as fast and do the reads and writes separately, or (iii) to duplicate the register
file. Although we currently use the third approach, our design accepts either
configuration. Other groups have proposed latency insensitive circuits which save
resources by accessing the register file in a few cycles[25].

LUT-intensive: Eg. implementing irregular if/case structures or state ma-
chines: PC next, Mem ctrl, control, bus mux, TLB logic, system bus and cache
coherency logic. This category demands a high LUT utilization; one striking re-
sult in Figure 2 is that providing cache coherency occupies roughly half of the
LUT resources used by the Honeycomb. Such complex state machines do not
map well on FPGAs, however synthesis results show that our core would per-



form 43.7% faster on a Virtex-6 FPGA, so such irregular behavioral descriptions
can still be expected to perform faster as FPGA technology advances.

Unlike the cache coherence protocol and the shared system bus that map
poorly, compute-intensive units and the register bank are good matches for dis-
tributed memory that use 5-LUTs, although one still can not do a single cycle
3-ported access. BRAMs and DSP units must be used carefully, to match better
the underlying FPGA architecture. Regular units that match a compute-and-
store template rather than complex state machines must be fashioned. In general,
we believe that caches are a bottleneck and a good research topic for multicore
prototyping. There is little capacity for larger or multi-level caches on our FPGA,
and it would not be easy at all to provide high levels of cache associativity.

2.4 The BeeFarm Software

Since we are not running a full Linux with all system calls implemented, we can
not use the standard C library libC, so we developed a set of system libraries
called BeelibC for memory allocation, I/O and string functions. Other groups
process system calls and exceptions falling back to a host machine or a nearby
on-chip hard processor core [20, 7]. A MIPS cross-compiler with GCC 4.3.2 and
Binutils 2.19 is used to compile the programs with statically linked libraries. The
cores initially boot from the read-only Bootmem that initializes the cores and the
stack and then loads the RTOS kernel code into memory. One of the most attrac-
tive proposals for shared-memory CMPs has been the use of atomic instructions
in Transactional Memory (TM), a new programming paradigm for deadlock-free
execution of parallel code without using locks, providing optimistic concurrency
by executing atomic transactions in an all-or-none manner. In case of a data
inconsistency, a confict occurs and one of the transactions has to be aborted
without committing its changes, and restarted. Transactional Memory can be
implemented in hardware (HTM) [11], which is fast but resource-bounded while
requiring changes to the caches and the ISA, or software (STM) [10] that can be
flexible at the expense of weaker performance. Specifically, we are interested in
the intermediate approaches, or Hardware-assisted STM (HaSTM) which aims
to accelerate an STM implementation for which we provide a framework that
could be easier for conducting architectural studies. Towards this goal, we have
successfully ported TinySTM [10], a lightweight and efficient word-based STM
library implementation, and ran TM benchmarks on the BeeFarm, we present
these results in Section 3.

3 Comparison with SW Simulators

The multiprocessor system presented in this work was designed to speed up mul-
tiprocessor architecture research, to be faster, more reliable and more scalable
than software-based simulators. Its primary objective is to execute real applica-
tions in less time than popular full-system simulators. Our tests: (i) Measure the
performance of the simulator platform, and not of the system simulated. (ii) Ab-
stract away from library or OS implementation details, so that external functions



like system calls would not significantly affect the results of the benchmark. (iii)
Can be easily ported to different architectures, avoiding architecture-specific im-
plementations like synchronization primitives. (iv) Pay special attention to the
scalability of the emulation, a key weakness of software multiprocessor simula-
tors. Our emulations are not affected by the number of processors in other ways
than the usual eg. memory bandwidth, contention, cache protocols.

M5 [4] is an easily modifiable “full-system simulator” that can simulate Alpha
processors with cache and bus details. We believe that despite the fact that
MIPS and Alpha are distinct architectures, this can be a fair comparison: Both
architectures are 32 register 32-bit RISC, operate on fixed-size opcodes and
the only operations that access the memory are load and store. We executed
the test in M5 fast mode (with optimizations, minimum timing and profiling
options), and additionally for ScalParC in a slower profiling mode with timing.
The compilers used to obtain the test programs for the BeeFarm and the M5
both use GCC version 4.2, compiled with the -O2 optimization level or -O3
when possible on a 64-bit Intel Xeon E5520 server with 2x quad-core processors
running at 2.26 GHz with 64 GB of DDR3 RAM and 8 MB of L3 cache memory.
All results were obtained using Xilinx ISE 12.2 running on RHEL5.

3.1 BeeFarm Multicore Performance of STM Benchmarks

To test multicore performance with STM benchmarks running on the BeeFarm,
we have run ScalParC from RMS-TM [13], Intruder and SSCA2 TM benchmarks
from STAMP [16] which are very commonly used for TM research. We modified
ScalParC with explicit calls to use TinySTM. In our experiments, ScalParC was
run with a dataset with 125K records, 32 attributes and 2 classes, SSCA2 was
run with problem scale 13 and Intruder with 1024 flows.

The results that are normalized to the single-core M5 executions show that
while the BeeFarm can scale in a near-linear way, the M5 simulator fails to
scale and the performance rapidly degrades as the core counts are increased.
Figure 3 shows that the gap opens with more cores and with only four, the
BeeFarm with FPU just needs fifteen minutes to run the ScalParC benchmark,
an eightfold difference. The scalability of our hardware is more obvious when the
abort ratio between the transactions are low and little work is repeated, so the
benchmark itself is scalable. SSCA2 also benefits from the inherent parallelism
of the FPGA infrastructure and the good performance of the FPU: The two-
core BeeFarm takes about half of the runtime of the M5 and it shows better
scalability with more cores. In this sense our FPU which takes roughly the space
of a single CPU core is clearly a worthy investment for the case of this particular
benchmark. Other available hardware kernels such as a quicksort core [6] would
be a very useful accelerator for this particular benchmark, and such specialized
cores/execution kernels could further push the advantages of multicore emulation
on reconfigurable platforms.

Intruder is a very high abort rate integer-only benchmark that scales poorly,
and this can be seen on both M5 and BeeFarm results. We are able to run
Intruder with 8 CPUs because this design does not use FP. It performs worse on



the BeeFarm for single processor runs, however for more than two cores, it runs
faster than the M5, whose scalability again degrades rapidly. Certain benchmarks
with certain configurations (eg. without an FPU) for a small number of cores
could result in software simulators performing faster than FPGA devices. Mature
simulators that take advantage of the superior host resources could still have
advantages over FPGA emulators for simulations of a small number of cores.
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4 The Experience and Trade-offs in Hardware Emulation

Although we achieved good scalability for our simulations with respect to the
number of processor cores, we have observed several challenges that still face the
architecture researcher that adopts FPGA-based emulation.

Place and route times can be prohibitively long, although newer synthesis
tool versions have started to make use of the host multithreading capabilities. In
the case of adding a simple counter to the design for observing the occurrence of
some event, the resynthesis, mapping, placing and routing of an 8-core BeeFarm
takes 2-3 hours on our 8-core server.

Another issue is the low level of observability of online debugging tools like
ChipScope plus the resource overhead. This problem could be mitigated by an
application specific debug framework that is tailored to capturing information
about multiprocessor systems. Furthermore, in the example of working with a
DDR controller that resides outside of the FPGA, a precise simulation model of
the controller should be developed. While in its absence, a fully-working simu-
lation of a design can fail to run when loaded onto the actual FPGA. For such
cases, certain ‘extra’ versions (eg. one that substitutes the DDR with an on-chip
memory of BRAMs to separate away all possible problems interfacing the DDR
controller) prove to be extremely useful. We also observe an impedance mis-
match between the speed of the off-chip DDR memory which runs much faster
than the internal processing elements. This mismatch could be exploited by us-
ing the fast external memory to model multiple independent smaller memories
which would better support architecture research where each core has its own
local memory. Alternatively, one controller on each FPGA can be dedicated to
model secondary-level caches.

Although the Virtex-5 FPGAs that we use in this work do not allow for
implementing a greater number of cores or large multi-level caches, new FPGAs



that support 6-LUTs on 28 nm technology double the total number of gates
available on chip while allowing the designer to have access to up to six MB
of BRAM capacity and thousands of DSP units. Such abundance of resources
might be more suitable for building larger and faster prototypes on reconfigurable
infrastructures.

Finally, other researchers have advocated the use of higher level HDLs to
improve programmer productivity. We undertook our design in VHDL/Verilog
and based on our experience, we would also consider moving to a higher level
representation because the design effort and debug difficulty of working with a
lower level language when producing a system for emulation rather than produc-
tion is probably not worthwhile compared to a system that offers rapid design
space exploration, e.g. Bluespec.

5 Related Work
Some of the recent multicore prototyping proposals such as RAMP Blue [14]
implement full ISA on RTL and require access to large FPGA infrastructures,
while others such as the Protoflex [7] can use single-FPGA boards with SMT-
like execution engines for simulator acceleration. Although multithreading leads
to a better utilization on FPGAs, our focus is architectural emulation where it
is generally desirable to keep as close to the original architecture that we are
emulating. There is a wide variation of ISAs such as larger SMP soft cores [8],
hard cores [26] and smaller ones like the Beehive [22], for prototyping shared
memory as well as message-passing schemes [3]. Our work differs from these
approaches in the sense that we model the cores only on reconfigurable logic
and we effectively upgrade a full ISA open source soft processor core to better
fit the architecture of modern FPGAs and to be able to closely examine STM
applications and implementations. The only previous study on adapting an avail-
able soft core onto a commercial FPGA platform has been the LEON-3 core on
the BEE2 [27]. Similar work that involves building a cache coherent MP with
MIPS cores was presented in [24]. As for comparison of hardware emulation with
software simulators, RAMP Gold [20] compares a SPARC V8 ISA design with
three different Simics configurations: Functional, cache, and timing, reporting
up to 250x speedup for 64 cores while the ATLAS design compares 8 on-chip
100 MHz PowerPC hard cores with HTM support on five TM applications with
a execution-driven simulator at 2 GHz to show 40-200x speedup, also concluding
that higher level caches and high associativity were problematic to implement
on current FPGAs[26].

Transactional Memory has already drawn a lot of attention in the research
community as a new easy-to-use programming paradigm for shared-memory mul-
ticores. However, so far mostly preliminary work has been published in the
context of studying TM on FPGA-based multicore prototypes. The ATLAS
emulator has read/write set buffers and caches augmented with transactional
read-write bits and TCC-type TM support, and a ninth core for running Linux
[26, 18]. A TM implementation that targets embedded systems which can work
without caches, using a central transactional controller interconnecting four Mi-
croblaze cores was explained in [12].



Recent work that also utilizes MIPS soft cores focuses on the design of a con-
flict detection mechanism that uses Bloom filters for a 2-core FPGA-based HTM,
however they do not consider/detail any design aspects on their infrastructure.
They derive application-specific signatures that are used for detecting conflicts
in a single pipeline stage. The design takes little area, reducing false conflicts,
and this approach is a good match for FPGAs because of the underlying bit-level
parallelism used for signatures[15].

6 Conclusions and Future Work

In this work, we have described a different roadmap in building a full multicore
emulator: By heavily modifying and extending a readily available soft processor
core. We have justified our design decisions in that the processor core must be
small enough to fit many on a single FPGA while using the on-chip resources
appropriately, flexible enough to easily accept changes in the ISA, and mature
enough to run system libraries and a well-known STM library. We’ve presented
an 8-core prototype on a modern FPGA prototyping platform and compared
performance and scalability to software simulators for three benchmarks written
to explore tradeoffs in Transactional Memory.

The BeeFarm architecture shows very encouraging scalability results which
helps to support the hypothesis that an FPGA-based emulator would have a
simulation speed that scaled better with more modelled processor cores than a
software-based instruction set simulator. For small numbers of cores we find that
software simulators are still competitive, however the gap widens dramatically
as more cores are used as ScalParC runs suggest, where for 4 cores the BeeFarm
system outperforms the M5 simulator in fast mode by 8x.

Our experience showed us that place and route times, timing problems and
debugging cores are problematic issues working with FPGAs. We have also iden-
tified components of a typical multiprocessor emulator that map well on FPGAs,
such as processing elements, and others that map poorly and consume a lot of
resources, such as a cache coherency protocol or a large system bus. We are work-
ing on a ring bus that can substantially reduce routing congestion to fit more
cores on an FPGA and a memory directory design to extend our infrastructure
to use all four FPGAs on the BEE3.
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