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Vision-based SLAM system for
MAVs in GPS-denied environments

Sarquis Urzua1, Rodrigo Munguı́a1 and Antoni Grau2

Abstract

Using a camera, a micro aerial vehicle (MAV) can perform visual-based navigation in periods or circumstances when GPS

is not available, or when it is partially available. In this context, the monocular simultaneous localization and mapping

(SLAM) methods represent an excellent alternative, due to several limitations regarding to the design of the platform,

mobility and payload capacity that impose considerable restrictions on the available computational and sensing resources

of the MAV. However, the use of monocular vision introduces some technical difficulties as the impossibility of directly

recovering the metric scale of the world. In this work, a novel monocular SLAM system with application to MAVs is

proposed. The sensory input is taken from a monocular downward facing camera, an ultrasonic range finder and a

barometer. The proposed method is based on the theoretical findings obtained from an observability analysis.

Experimental results with real data confirm those theoretical findings and show that the proposed method is capable

of providing good results with low-cost hardware.
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Introduction

The state estimation of vehicle position is a fundamental
necessity for any application involving an autonomous
micro aerial vehicle (MAV). In outdoor environments,
this problem is seemingly solved with on-board global
positioning system (GPS) and inertial measurement units
(IMU), or with their integrated version, the Inertial
Navigation Systems (INS). Contrary, unknown, clut-
tered and GPS-denied environments still pose a consid-
erable challenge.

While available attitude and heading systems
(AHRS) handle well the estimation of the orientation
of MAVs, GPS-based position estimation has some
drawbacks. Especially, GPS is not a reliable service as
its availability can be limited in urban canyons and
is completely unavailable in indoor environments.
Moreover, even when the GPS signal is available, the
problem of position estimation could be not solved for
several scenarios. For instance, in Munguia et al.,1 it is
shown that the precision of standard GPS could not be
enough in order to perform precision maneuvers.

Simultaneous localization and mapping (SLAM)
methods can be used for addressing the problem of

the state estimation of MAVs. In this case, MAV oper-
ates in a priori unknown environment using only
on-board sensors to simultaneously build a map of its
surroundings which it used to track its position. This
means that no external infrastructure (i.e. GPS) is
needed in order to localize the vehicle. Many different
kinds of sensors can be used for implementing SLAM
systems, for instance, laser2,3 sonar,4,5 sound sensors,6

RFID7 or computer vision.8–10 The selection of such a
sensor technology has a great impact on the algorithm
used in SLAM and, depending on the application and
other factors, each technology has some strong and
weak points.
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In the case of MAVs, there exist several limitations
regarding to the design of the platform, mobility and
payload capacity that impose considerable restrictions
on the available computational and sensing resources.
The aforementioned issues have motivated that recent
works move towards the use of cameras as the primary
sensor. Cameras provide a lot of information and are
well adapted for embedded systems because they are
light, cheap and power-saving.

Using a camera, an MAV can perform visual-based
navigation in periods or circumstances when the position
sensor is not available, when it is partially available, or
when a local navigation application requires high preci-
sion. In particular, and compared to another kind of
visual configurations (e.g. stereo vision), the use of mon-
ocular vision has some advantages in terms of weight,
space, power-saving, or scalability. On the other hand, it
introduces some technical difficulties as the challenge of
directly recovering the metric scale of the world.9

Related work

In the case of monocular vision with application to
aerial vehicles, different approaches have been followed
for estimating the state of the vehicle without the aid of
a GPS system. In Mirzaei and Roumeliotis,11 a mon-
ocular SLAM system is proposed where the scale factor
is retrieved from a feature pattern with known dimen-
sions. In the case of monocular SLAM systems pro-
posed in Weiss et al.12 and Foster et al.,13 the map is
initially set by hand, by aligning the first estimates with
the ground-truth in order to get the scale of the envir-
onment. In Celik and Somani,14 the problem of the
scale recovering is addressed for environments formed
by corridors, like those commonly found in office build-
ings. In this case, several assumptions are made about
the structure of the environment, like the flatness of the
floor. Also, it is assumed that the relative altitude of the
MAV respect the floor is known by the use of an ultra-
sonic range sensor, as well as the distance from the
MAV to the wall of the corridor. Another approach
for recovering the metric scale consists in integrating
inertial measurements from an IMU (accelerometer
and gyroscopes). In particular, in Nutzi et al.,15 the
scale is explicitly considered in the system state, and it
is estimated through an Extended Kalman Filter
(EKF). The filter makes use of an innovation error
defined by the difference between the unscaled acceler-
ation (obtained from the monocular vision), and the
measured acceleration in the vertical axis (obtained
from the IMU). In Wang et al.,16 the same approach
is also followed. The potential problem with this kind
of approach has to do with the fact that the acceler-
ation obtained from an IMU has a dynamic bias which
is difficult to estimate. This bias introduces at the same

time a bias in the estimated scale. Moreover, in this kind
of set-up, it is required a precise calibration for the align-
ment of the camera and the IMU. In Chowdhary et al.,17

an EKF-based method is proposed in order to perform
visual odometry with an unmanned aircraft. This
method makes use of inertial sensors, a monocular
downward facing camera, and a range sensor (sonar
altimeter). Unlike vision-based SLAM, there is no map-
ping process in visual odometry approaches.

Objectives and contributions

In this work, a novel monocular SLAM system with
application to MAVs is proposed. The method is
intended to be useful for performing visual-based navi-
gation in fully GPS-denied environments or as a backup
system in periods where GPS-signal is not available. In
order to estimate the state of the vehicle and a map of
the environment, the proposed system makes use of: (i)
visual information captured from a monocular down-
ward facing camera, (ii) range measurements obtained
from an ultrasonic range finder, and (iii) measurements
of atmospheric pressure obtained from a barometer.

An observability test is carried out in order to ana-
lyze the problem of the recovery of the metric scale. The
theoretical findings obtained from this test are used as a
basis for developing the proposed system.

Unlike the approaches,15–17 the proposed method
does not make use of inertial sensors and thus, there
is no need of an extensive pre-calibration routine for
aligning the IMU and the camera. In Chowdhary
et al.,17 a range finder is used as an altimeter, and there-
fore it is assumed that all the landmarks lie on a plane
(flat terrain assumption). In this work, the range finder
is used for computing an approximation of the relative
depth of features. Thus, the assumption of a completely
flat terrain is considerably relaxed by the assumption of
a terrain with soft but continuous changes in altitude.

Moreover, in this work, a barometer is used for incor-
porating altitude information into the system in order to
improve the observability of the metric scale. In certain
conditions, the use of the barometer may be sufficient for
recovering the metric scale when the ultrasonic range
finder is out of its operation range. For instance, in
Celik and Somani14 or in Chowdhary et al.,17 acceler-
ometers are used for recovering the metric scale, but the
dynamic error bias of an accelerometer is larger than the
error bias of a barometer.18 Moreover, the barometer is
commonly used as augmentation sensor for limiting the
error in inertial navigation systems.

Preliminaries

The problem to be addressed will be introduced using a
simplified 2-DOF model. It is important to note that
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this model is representative of the main aspects of the
full problem. Later, the proposal will be extended in
order to be applied to a three-dimensional context.

Consider the following unconstrained model _xc ¼
f ðx, uÞ of a camera attached to an MAV (see Figure 1)

_xc ¼ vx _zc ¼ vz _�c ¼ !c _vx ¼ Vx

_vz ¼ Vz _!c ¼ �
ð1Þ

Let xc ¼ ½xc, zc, �c, vx, vz,!c�
T be the vector state of

camera Cs. Let ½xc, zc, �c� represent the position and
orientation of the camera, and ½vx, vz,!c� their first
derivatives. In this model, it is assumed an unknown
input u ¼ ½Vx,Vz,��

T of linear and angular acceler-
ations with zero-mean and known-covariance
Gaussian processes. Also it is assumed that the
camera Cs is capable of detecting and tracking 2D fea-
ture points. The measurement process is modeled by
equations of the form

yi ¼ h�iðxÞ ¼ arctan2
zc � zi
xc � xi

� �
� �c ð2Þ

Let ½xi, zi� be the Euclidean position of a ith feature
coded by its inverse form

xi ¼ ð1=�iÞ cosð�0iÞ þ x0i

zi ¼ ð1=�iÞ sinð�0iÞ þ z0i
ð3Þ

The state of a ith feature yi is defined by
yi ¼ ½x0i , z0i , �0i , �i�

T, let ½x0i , z0i � be the position of the
camera Cs when the feature was first detected, let �0i be
the first bearing measurement, and let �i ¼ 1=di be the
inverse of the feature depth di, (see Figure 1).

The system state x to be estimated is composed by
the camera state xc, and it is augmented with the state yi
of every feature contained in the map

x ¼ ½xc, y1, y2, . . . , yn�
T

ð4Þ

When a feature is detected for the first time from a
monocular camera (bearing sensor), only information
about the ray can be retrieved. In the case of the well-
known undelayed inverse depth (UID) EKF-SLAM
method proposed in Montiel et al.,19 new features are
incorporated into the system state by assuming an
hypothetical initial inverse depth Gaussian prior on
�i � Nð�0, ��0 Þ, which is applied in order to cover
with a probability of 95% the range of depths from
the closest one to infinity.

Observability of metric scale

The use of monocular vision introduces some technical
challenges. First, depth information is difficult to
retrieve in a single frame and hence, robust techniques
for recovering the depth of the features are
required.20,21 Another challenging aspect of working
with monocular sensors has to do with the difficulty
of directly recovering the metric scale of the world.
Davison et al.9 stated that if no additional information
is used and a single camera is used as the solely source
of data to the system, then the map and trajectory can
be recovered without metric information.

In this section, the problem of the observability of
monocular SLAM systems applied to MAVs is studied.
The theoretical results obtained here will be used later
as a basis for developing a monocular-based SLAM
system capable of recovering the metric scale without
need of absolute position measurements as those pro-
vided by GPS.

In Civera et al.,22 it is shown that a monocular
SLAM system can be initialized with no prior know-
ledge of scene objects within the context of a dimen-
sionless parametrization of the problem. It is also
described how the monocular SLAM state vector can
be partitioned into two parts: a dimensionless part, rep-
resenting up-to-scale scene and camera motion geom-
etry, and an extra metric parameter representing scale.

In our work, in order to make explicit the relevance
of the metric scale in monocular SLAM problem, the
approach proposed in Civera et al.22 is followed. In this
case, the state vector defined in equation (4) is split into
a metric parameter s, unobservable when only angular
measurements are available, and a dimensionless map
and camera part.

xs ¼ ½s, �xc , �zc , �c, �vx , �vz , �!c
, �y1 . . . ,�yn �

T

ð5ÞFigure 1. System parametrization.
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Camera measurements will reduce scene geometry
uncertainty, but not the uncertainty in the metric par-
ameter s. The mapping process from the state vector xs
to the metric geometry is a non-linear computation pro-
cess involving the dimensionless geometry and the par-
ameter s

xc ¼ s�xc zc ¼ s�zc vx ¼ s�vx�t

vz ¼ s�vz�t !c ¼ s�!c
�t

yi ¼ ½s�x0i, s�z0i, �i, ��i=s�

8><
>: ð6Þ

In order to define the system dynamics in terms of
the metric parameter s and the dimensionless param-
eters, equation (6) is substituted into equations (1) to
(3), and the system state is augmented with s. Hence,
the system dynamics becomes

_s ¼ 0 _xc ¼ s�vx�t _zc ¼ s�vz�t _�c ¼ s�!c
�t

_vx ¼ 0 _vz ¼ 0 _!c ¼ 0 _�i ¼ 0

ð7Þ

In the system represented by equation (7), a con-
stant-acceleration camera model is assumed. Also it
assumed a rigid scene (map features remain static)
and a constant metric scale. The system output equa-
tion is

yi ¼ h�iðxÞ ¼ arctan2
s�zc � zi
s�xc � xi

� �
� �c ð8Þ

where

xi ¼ ðs=��iÞ cosð�iÞ þ x0i

zi ¼ ðs=��i Þ sinð�iÞ þ z0i
ð9Þ

Remark 1: In applications like aerial vehicles, the
attitude and heading (roll, pitch and yaw) estimation
is well handled by available systems.23,24 In particular,
in this work, it is assumed that the orientation of the
camera always points toward the ground. In practice,
the foregoing assumption can be easily addressed with
the use of a servo-controlled camera gimbal. Note that
in this downward pointing camera configuration,
the roll of the camera is aligned with the heading of
the MAV.

Considering the above aspects, the system state can
be simplified by removing the variables related to atti-
tude and heading (which are provided by the AHRS).
Therefore, the problem will be focused on the position
estimation of the MAV.

Remark 2: From section Preliminaries, let recall that
the state of a ith feature yi is defined by
yi ¼ ½x0i , z0i , �i, �i� where ½x0i , z0i � is the position of the

camera Cs when the feature was first detected, �i is the
first bearing measurement, and �i ¼ 1=di is the inverse
of the feature depth di. Because ½x0i , z0i , �i� is directly
given when the ith feature is initialized, the observabil-
ity analysis will be focused on the state of the camera Cs

and the inverse depth of the features.
Considering the above remarks the system state xs

becomes

xs ¼ s, �xc , �zc , �vx , �vz , ��1 , ��2 , . . . ,��n

� �T
ð10Þ

If n landmarks are measured by the camera, the
system output is defined as y ¼ ½h�1 , . . . , h�n �

T.
A system is defined as observable if the initial state

x0, at any initial time t0, can be determined given the
state transition and observation models of the system
and observations y½t0, t� from time t0 to a finite time t.
When a system is fully observable, the lower bound
of the error in the estimations of its state will only
depend on the noise parameters of the system and
will not be reliant on initial information about the
state. This fact has important consequences in the con-
text of SLAM.

In Hermann and Krener,25 it is demonstrated that a
non-linear system is locally weakly observable if the
observability rank condition rank(O)¼ dim(x) is veri-
fied. The observability matrix O is computed as

O ¼
L
0
f ðh�1Þ

@x

T
L
1
f ðh�1 Þ

@x

T

. . .
L
0
f ðh�nÞ

@x

T
L
1
f ðh�n Þ

@x

T" #T

ð11Þ

where LifðhÞ is the ith order Lie Derivative26 of the
scalar field of the measurement h with respect to the
vector field f. Note that in equation (11), the zero-
order and first-order Lie Derivatives are used for each
bearing measurement yi ¼ h�iðxÞ. The observability
matrix O was computed using the MATLAB symbolic
toolbox.

The following result was obtained for the system
conformed by the state of equation (10):

. The maximum degree of observability was obtained
with four landmarks. In this case, dim(xs)¼ 9,
rank(O)¼ 8. Adding more landmarks the observa-
bility does not increase, and therefore, the system
is partially observable, in this case with one non-
observable mode. Based on Civera et al.,22 the
non-observable mode should correspond to the
metric parameter s.

Now let consider that the measurements of altitude
of the MAV camera are becoming available.
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The additional system output equation ya is

ya ¼ hzc ðxÞ ¼ zc ¼ s�zc ð12Þ

Hence, if n landmarks are measured by the cam-
era, the system output is now defined as y ¼
½hzc , h�1 , . . . , h�n �

T. The observability matrix O is now
computed from

O ¼
L
0
f ðhzc Þ

@x

T
L
1
f ðhzc Þ

@x

T
L
0
f ðh�1 Þ

@x

T
L
1
f ðh�1Þ

@x

T"

� � �
L
0
f ðh�n Þ

@x

T
L
1
f ðh�nÞ

@x

T#T ð13Þ

By considering the availability of measurements of
altitude, the following results were obtained:

. The maximum degree of observability was obtained
with only three landmarks, but in this case, the
system becomes observable, that is, dim(xs)¼ 8,
rank(O)¼ 8.

. The movement of the vehicle on the vertical axis
(�vz 6¼ 0) is a sufficient condition of full observability.

Now let consider that instead of altitude readings,
the measurements of range are available for a subset of
features. The range measurement of ith feature is mod-
eled by an equation of the form

yd ¼ h�iðxÞ ¼ 1=�i ¼ s=��i ð14Þ

Hence, if n landmarks are measured by the
camera Cs, and m range measurements (m � n) are
available, the system output is defined as
y ¼ ½h�1 , . . . , h�n , h�1 , . . . , h�m �

T. The observability
matrix O is computed as

O ¼
L
0
f ðh�1Þ

@x

T
L
1
f ðh�1 Þ

@x

T

� � �
L
0
f ðh�nÞ

@x

T
L
1
f ðh�n Þ

@x

T

,

"

�
L
0
f ðh�1Þ

@x

T

� � �
L
0
f ðh�mÞ

@x

T#T ð15Þ

Note that in equation (15) only the zero-order Lie
Derivative is used for range measurements. Considering
the availability of such range measurements the follow-
ing result was obtained:

. Independently of the number of features included
into the system state, full observability, dim(xs)¼
rank(O), can be reached by including a single meas-
urement of range h�i .

It is important to note that the purpose of the pre-
vious analysis over a simplified 2-DOF model is not to
prove (by extension) the full observability of the whole
SLAM system, but to show that the metric parameter s
representing scale could become observable if measure-
ments of absolute altitude or measurements of range
for a subset of features are available. A full observa-
bility analysis in 6-DOF should be of great interest for
future work.

Method description

Sensor fusion approach

As it has previously seen, the metric scale is difficult to
be recovered using monocular vision. On the other
hand, it was found that the metric scale can become
observable if altitude information is included into the
system. As a consequence of this result, altitude meas-
urements obtained from a barometer are incorporated
into the system. However, it was also found that if this
approach is followed, the observability depends on the
movement of the vehicle. These facts mean that the
effectiveness of this approach can be compromised in
periods where the MAV performs only short and small
movements.

Another interesting theoretical result has to do with
the fact that the system becomes observable with the
inclusion of a single measurement of depth of a map
feature. In order to take advantage of this result for
improving the robustness of the proposed method, a
technique for incorporating approximate information
about the depth of features is proposed. For the forego-
ing purpose, an ultrasonic range finder is also incorpo-
rated into the system.

Aerial platform

As shown in Figure 2, the platform considered in this
work is a quadrotor moving freely in any direction in
R

3
� SOð3Þ. However, it is important to highlight that

the proposed monocular SLAM method could be
applied to other kinds of aerial platforms.

The quadrotor is equipped with a barometer for
measuring atmospheric pressure. The monocular
camera is mounted over a servo-controlled gimbal.
The gimbal is configured in order to counteract the
changes in attitude of the quadcopter, and therefore it
stabilizes the orientation of the camera toward the
ground. Besides the camera, an ultrasonic range
finder is also mounted over the servo-controlled
gimbal. The ultrasonic sensor is aligned in parallel to
the optical axis of the camera (see Figure 2). In this
work, it is assumed that a possible misalignment of
the camera respect to the ultrasonic sensor is negligible

Urzua et al. 5



if it is compared with other inherent constraints of the
ultrasonic sensor. In this case, it is assumed that the
lack of a fine calibration is taken into account by
means of an uncertainty parameter used for modeling
the error in sensor measurements.

The proposed method is mainly intended for local
autonomous vehicle navigation. In this case, the local
tangent frame is used as the navigation reference frame.
Thus, the initial position of the vehicle defines the
origin of the navigation coordinates frame. The navi-
gation system follows the NED (North, East, Down)
convention. The magnitudes expressed in the naviga-
tion and camera frame are denoted respectively by the
superscripts N, and C. All the coordinate systems are
right-handed defined. In this work, it is assumed that
the location of the origin of the camera frame respect to
other elements of the quadcopter (e.g. barometer) is
known and determined. Hence, the position of the
origin of the vehicle can be computed from the esti-
mated location of the camera.

Remark 3: In section Observability of metric scale,
the system state was split into a metric parameter s
and a dimensionless map and camera part, in order to
explicitly show that the metric scale of the system can
become observable if altitude or range measurements
are included into the system. By knowing this fact,
hereinafter, the metric parameter will be considered
implicit into the system variables.

Sensor measurement models

Visual measurements. A standard monocular camera is
considered to be mounted aboard the quadrotor. In
this case, a central-projection camera model is assumed.
The image plane is located in front of the camera’s
origin where a non-inverted image is formed.

The camera frame C is right-handed with the z-axis
pointing to the field of view.

The R
3
) R

2 projection p ¼ ðu, vÞ of a 3D point,
located at pN ¼ ðx, y, zÞT, to the image plane is
defined by

u ¼
x0

z0
v ¼

y0

z0
ð16Þ

Let u and v be the coordinates of the image point p
expressed in pixel units, and

x0

y0

z0

2
64

3
75 ¼

f 0 u0

0 f v0

0 0 1

2
64

3
75 pC ð17Þ

Let pC be the same 3D point pN, but expressed in the
camera frame C by pC ¼ RNCpN. Let RNC be the rota-
tion matrix that allows to transform from the naviga-
tion frame N to the camera frame C. Also, it is fulfilled
that RNC ¼ ðRCNÞ

T, and RCN is known by the use of the
gimbal.

Inversely, a directional vector hC ¼ ½hCx , h
C
y , h

C
z �

T

can be computed from the image point coordinates u
and v as

hC ¼
u0 � u

f
,
v0 � v

f
, 1

� �T
ð18Þ

Vector hC points from the camera optical center pos-
ition to the 3D point location. The vector hC can be
expressed in the navigation frame by hN ¼ RCNhC. Note
that for the R

2
) R

3 mapping case, defined in equation
(18), depth information is lost.

Figure 2. Aerial platform and coordinate systems.
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The distortion caused by the camera lens is con-
sidered through the model described in Bouguet.27

In this case, radial and tangential distortions are con-
sidered. Using the former model (and its inverse form),
undistorted pixel coordinates (u, v) can be obtained
from ðud, vd Þ and conversely. In this work, it is assumed
that the intrinsic parameters of the camera are already
known: focal length f, principal point (u0, v0), and
radial lens distortion k1, . . . , kn.

Range measurements. An ultrasonic range finder is used,
whenever is possible, in order to obtain approximate
information about the range (depth) of features. The
idea is to define an image region where visual features
lying inside could be associated with a range provided
by the ultrasonic sensor. The image region is a function
of the range measured by the sensor as well as its
beam pattern.

Every time that a range reading, provided by the
ultrasonic sensor, is available, it will associated with
the next camera frame. Due to the operating frequency
of ultrasonic range sensors, typically lower (3–4Hz)
than the frame rate of cameras, only a subset of the
frames will have an associated range.

The beam pattern of the ultrasonic range finder is
modeled by an elliptic paraboloid (see Figure 3) satisfy-
ing: z ¼ ax2 þ ay2. The parameter a is chosen in order
to adjust the paraboloid (as far as possible) to the
actual beam pattern of the sensor (see Figure 3, right).

First, let zr be the range measured by the ultrasonic
sensor. Then, a circle zr ¼ ax2 þ ay2 is defined by the
intersection of the paraboloid and the plane z¼ zr

(see Figure 3, left). The region defined by this circle rep-
resents the ground surface from which depth of features
can be inferred from the ultrasonic sensor. In order to
define a circular region over the image plane, a 3D point
belonging to the circle (e.g. pN ¼ ð

ffiffiffiffiffiffiffiffiffi
zr=a
p

, 0, zrÞ) is pro-
jected to the image plane using equation (16). The radius
rc of the circular image region (in pixels) is computed
by rc ¼ k½u, v�

T
� ½u0, v0�

T
k. Note that the radius rc ¼

f ðzr, aÞ is a function of the range zr and the parameter
a, which defines the paraboloid representing the beam
pattern of the sensor. The size of the circular image
region increases as the vehicle flies closer to the ground
(see Figure 4).

A 3D point located at pN ¼ ðx, y, zÞT with projection
(ui, vi) in the image plane, which lies inside the circle
with radius rc and center at (u0, v0), is assumed to have
an approximate depth d computed by

d ¼
zrkh

Nk

hNz
ð19Þ

Let hN be the directional vector pointing from the
camera to the location of the 3D point (see the related
equation (18)), and let hNz be the z component of hN.

In other related methods, the range measured by the
telemeter is associated (directly or indirectly) with all
the visual features seen by the camera.17 In the pro-
posed method, the range is associated only with the
visual features lying inside of the region covered by
the beam pattern of the ultrasonic sensor. Hence, it is
assumed that only the portion of the ground detected
by the ultrasonic sensor is approximately planar.

Figure 3. The ultrasonic range finder is used for estimating the approximate depth of visual features lying in its beam pattern (left).

An elliptic paraboloid is used as a simple model of the actual beam pattern of the ultrasonic range finder (right).

Urzua et al. 7



This is important because the assumption of a quasi-flat
terrain is locally restricted to a circular central image
region and not the global image itself (see Figure 5). In
this manner, the flat-terrain assumption could be
relaxed if the whole terrain is supposed to be composed
of several connected sub-regions with small but con-
tinuous changes in altitude between them.

Altitude measurements. Measurements of altitude can be
inferred from measurements of atmospheric pressure.
The proposed method is mainly intended for local
autonomous vehicle navigation. Hence, the altitude or
height of the MAV above a local ground location is
computed from the change in pressure between the
ground and the altitude of interest. The following for-
mula can be used for computing the local altitude za
from a barometer

za ¼ 1�
P

Pg

� �RL0
Mg

 !
T

L0
ð20Þ

where P is the current barometric pressure measure-
ment; Pg is the barometric pressure at the initial pos-
ition (home position); R¼ 8.31432N-m/(mol-K) is the
universal gas constant for air; L0 ¼ �:0065 K/m is the
rate of temperature decrease in the lower atmosphere;
M¼ 0.0289644 kg/mol is the standard molar mass of
atmospheric air; g¼ 9.80665m/s2 is the gravitational
constant and T is the temperature at flight location in
Kelvin degrees.

EKF-SLAM

The system state to be estimated is

x ¼ rN, vN, y1, y2, . . . , yn
� �T

ð21Þ

Let rN ¼ ½xc, yc, zc� represent the position of the vehi-
cle (camera) expressed in the navigation frame, and let
vN ¼ ½vx, vy, vz� denote the linear velocity of the vehicle
expressed in the navigation frame.

Figure 4. The size of the terrain region detected by the ultrasonic range finder is a function of the beam pattern of the sensor and

the flight altitude of the MAV. Frame captured at 7 m of altitude (left). Frame captured at 3:9 m of altitude (right).

Figure 5. Initialization of new map features: Camera frame with an associated range measurement (left plot). Zenithal view (middle

plot) and sectional view (right plot) of the estimates. The ellipses indicate the initial uncertainty region of a new feature 3D location.

Note that the visual features lying inside of the circular image region, determining the portion of the terrain detected by the ultrasonic

range finder, are initialized as new map features with a smaller initial uncertainty in depth.
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Map features are defined by

yi ¼ ri, �i,�i, �i½ �
T

ð22Þ

Let ri ¼ ½x0i , y0i , z0i � be the coordinates of the center
of the camera when the feature was observed for the
very first time; let �i and �i be azimuth and elevation,
respectively, and let �i ¼ 1=d be the inverse of the depth
d, and

�i ¼ atan2 hNy , h
N
x

	 

�i ¼ acos

hNzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hNx
� �2

þ hNy

	 
2
þ hNz
� �2r

0
BB@

1
CCA

ð23Þ

Let hN ¼ ½hNx , h
N
y , h

N
z �

T be computed from equation
(18). The architecture of the system is defined by the
typical loop of prediction updates of the standard
EKF-SLAM, where the EKF propagates the vehicle
state as well as the feature estimates. Interested readers
are referred to literature28,29 for an extensive review on
the EKF-SLAM methodology.

System prediction. The system state x is taken a step for-
ward by the following discrete model

rNkþ1 ¼ rNk þ vNk �t

vNkþ1 ¼ vNk þ VN

y1½kþ1� ¼ y1½k�

:

yn½kþ1� ¼ yn½k�

8>>>>>><
>>>>>>:

ð24Þ

At every step, it is assumed that there is an unknown
linear velocity with acceleration zero-mean and known-
covariance Gaussian processes �a, producing an
impulse of linear velocity: VN ¼ �2a�t.

Note that in this work, for simplicity, a Gaussian
random process is used for propagating the velocity
of the vehicle. However, a feasible alternative could
be the use of the dynamical model of the aircraft
instead of the Gaussian random process. However,
this approach commonly requires having a considerable
knowledge about the specific physics of each aerial
vehicle where the proposed method could be applied.

Initialization of map features. The initialization process of
new map features is carried out using frames with an
associated range zr (see subsection Range measurements).
A random search is conducted over the image in order to
detect new visual features in regions without them.

In this work, the detector proposed in Rosten and
Drummond30 is used for detecting new visual features,

but any other detector with good performance could be
used instead.

The coordinates of a ith new visual feature are
defined by (ui, vi).

Any new feature ynew ¼ Jðx, ui, vi, diÞ to be included
in the map is defined by

ynew ¼ r0, �0,�0, �0½ �
T

ð25Þ

with ½r0, �0,�0� calculated as in equation (22); and
�0 ¼ 1=d0, being d0 the hypotheses of depth computed
with equation (19) from the range measurement zr.
Therefore, the system state x is augmented by:
xnew ¼ ½r

N, vN, y1, y2, . . . , yn, ynew�
T.

The new covariance matrix Pnew is computed by

Pnew ¼ rJ

Pold 0 0

0 R 0

0 0 �2�

2
64

3
75rJT ð26Þ

where rJ is the Jacobian for the initialization function;
R is the measurement noise covariance matrix for (ui,
vi); and �� is chosen according to the probability of
being measured by the range sensor (see Figure 5):

. �� is chosen with a small value (�� ¼ �0=10) if the
new visual feature (ui, vi) lies inside the circular
image region, with radius rc, computed as it has
been defined in subsection Range measurements.

. �� is chosen with a big value (�� ¼ �0=2), as proposed
in the UID method (See section Preliminaries), if the
new visual feature lies outside the circular image
region, in order to cover a big depth uncertainty
region.

Measurement of map features. In order to update the filter
with the re-observation of map features the following
approach is followed:

Case 1: For frames without an associated range zr, the
classical visual measurement model ðu, vÞ ¼ hiðxÞ, which
is related to features parametrized in their inverse depth
form, is used.

Each feature yi does model a 3D point pN located at

pN ¼ ri þ
1

�i
mð�i,�iÞ ð27Þ

where mð�i,�iÞ ¼ ðcos � sin�, sin � sin�, cos�Þ
T is the

unit vector defined by the pair of azimuth-elevation
angles. Then, pN is expressed in the camera frame and
projected to the image plane by equations (16) and (17)
(See subsection Range measurements).
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Case 2: For frames with an associated range zr, the
measurement model used for updating the filter
depends on whether the measured location of the
visual feature lies inside the circular image region,
with radius rc, which is computed as defined in subsec-
tion Range measurements:

. If the visual feature lies outside the circle, it is
assumed that the landmark is out of range of the
ultrasonic range finder and hence, the visual meas-
urement model ðu, vÞ ¼ hiðxÞ, which is defined in
Case 1, is used.

. On the other hand, if the visual feature lies inside the
circle, it is assumed that the landmark is on the range
of the ultrasonic range finder. Hence, depth informa-
tion is incorporated through the measurement model
ðu, v, d Þ ¼ hiðxÞ, where (u, v) is computed by the
visual measurement model defined in Case 1, and d
is the feature depth (d ¼ 1=�i). In this case, the
actual measurement of depth is computed from the
range zr using equation (19).

Altitude updates. Whenever is possible, information
about the relative altitude of the MAV is incorporated
to the filter using the standard update equations.

The measurement model of altitude zc ¼ hiðxÞ is
simply the estimated altitude of the vehicle taken
from the current state vector. The actual measurement
of altitude is computed from equation (20), (see subsec-
tion Altitude measurements).

Experimental results

To perform the experiments with real equipment, a
custom-built quadrotor is used (Figure 6). The vehicle
is equipped with an Ardupilot unit as flight controller,31

a Radio Telemetry 3DR 915MHz, a DX201 DPS
camera with wide angle lens, a 5.8-GHz video transmitter

and an ultrasonic range finder XL-MaxSonar-EZ0. The
flight controller has a built-in barometer. The camera
is mounted over a very low-cost gimbal which is servo-
controlled by standard servomotors.

In experiments, the quadrotor has been manually
radio-controlled. A custom-built Cþþ application run-
ning over a laptop has been used for capturing data from
the vehicle received via MAVLINK protocol,32 as well
as capturing the digitalized video signal transmitted from
the vehicle. The data obtained from the sensors (barom-
eter and ultrasonic sensor) as well as the frames captured
by the camera were synchronized and stored in a dataset.
The frames with a resolution of 320� 240 pixels, in gray
scale, were captured at 26 fps. A MATLAB� implemen-
tation of the proposed method was executed offline over
the dataset, in order to estimate the flight trajectory and
the map of the environment.

In experiments, in order to evaluate the performance
of the proposed method, an independent trajectory
computed by a perspective on 4-point (P4P) technique
was used. For computing the P4P trajectory, four
marks were placed in the floor, forming a square of
known dimensions (see Figure 4). Then, a perspective
on 4-point (P4P) technique33 was applied to each frame
in order to compute the relative position of the camera
with respect to this known reference. It is important to
note that the trajectory obtained by means of this tech-
nique should not be considered as a perfect reference of
ground-truth. However, this approach was very helpful
to have a fully independent reference of flight for evalu-
ation purposes.

Two different flight trajectories (a and b) were per-
formed over two different outdoor test fields consisting
in urban parks. Figure 7 shows the trajectory and map
for both cases, estimated by means of the proposed
method. The upper plots show a 3D view of maps
and estimated trajectories. The middle plots show the
zenithal (x-y) view of maps and estimated trajectories.
The lower plots show the sectional (z-x/y) view of maps
and estimated trajectories. In this case, a good concord-
ance between the P4P trajectory and the one computed
with the proposed method was found.

A comparative study has been performed in order to
gain more insight about the performance of the pro-
posed method. For this purpose, the same flight trajec-
tories were also computed under other two different
conditions: (i) using only visual information, (ii) using
visual and altitude information.

In the first case (i), the undelayed inverse depth
method (UID)19 was used for initializing the visual fea-
tures. Because no extra aid of any kind of sensory infor-
mation is used, the metric scale of the estimates depends
only on the initial hypotheses of inverse depth �0, which
is a parameter to be manually set. Considering that the
flights of the MAV were performed at low altitude,

Figure 6. A custom-built quadrotor was used for performing

the experiments with real data.
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a value of initial depth �0 ¼ 1=2 m was used in experi-
ments. The usefulness of the UID variant is to have a
scaled estimation of the flight trajectories, and use it as
a reference in order to evaluate the benefits obtained
from incorporating information from other sources
such as the barometer and the ultrasonic sensor.
In this sense, recalling from section Observability of
metric scale, the metric scale can become observable if
altitude or range information is incorporated into the

system. In the second case (ii), the same conditions of
the UID method are used but also measurements of
altitude obtained from the barometer are incorporated
into the system (see subsection Altitude updates).

Figure 8 shows the progression over time for
each estimated trajectory by: (i) the proposed method
(altitudeþ range), (ii) UID method, (iii) altitudeþUID,
and (iv) P4P visual reference. A separate plot for each
coordinate North, East, and Down (x, y, z) is presented.
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Figure 7. Flight trajectory and map estimated with the proposed method. For comparison purposes the flight trajectory was also

computed in an independent manner using a P4P technique.
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In this comparison study, the results were obtained aver-
aging 10 executions of each method. It is important to
note that those averages are computed because the meth-
ods are not deterministic since the search and detection
of new visual features points is conducted in a random
manner over the images.

Table 1 summarizes the results obtained in the forego-
ing experiment. In the table, the proposed method is
indicated by (AþR), the UIDþAltitude variant is indi-
cated by (AþUID), and the undelayed inverse depth
method by (UID). The following results have been com-
puted for each method: (i) number of the features initi-
alized into the system state (NIF), (ii) number of features

deleted from the system state (NDF), (iii) number of
features been tracked at each frame (FPF), (iv) total
time of execution (TTE) and (v) average mean absolute
error (aMAE) of the vehicle position. For computing the
aMAE, the P4P trajectory has been used as an independ-
ent reference of the vehicle position.

From these results it can be concluded that

. For flight (a): Taking the UID trajectory as an
unscaled reference, it can be appreciated that the
inclusion of altitude measurements (AþUID) can
be useful by itself in order to recover the metric
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Figure 8. Estimated positions expressed in each coordinate north, east, and down (x, y, z).

Table 1. Results for flight trajectories ‘a’ and ‘b’.

Method Flight NIF NDF FPF TTE (s) aMAE (m)

AþR a 126� 2.5� 100� 7.3� 22.9� 4.2� 268� 16� .28� .12�

AþUID a 178� 8.6� 148� 8.7� 26.1� 4.6� 336� 19� .51� .20�

UID a 154� 8.3� 121� 10� 28.0� 4.5� 323� 9� .50� .36�

AþR b 76.8� 5.6� 27.6� 1.8� 35.2� 10.9� 170� 21� .25� .09�

AþUID b 89.6� 4.2� 32.4� 3.5� 43.2� 11.3� 197� 11� .87� .54�

UID b 84.2� 4.9� 27.6� 4.0� 43.5� 11.7� 192� 9� 1.43� .73�

UID: undelayed inverse depth; NIF: number of the features initialized into the system state; NDF: number of features

deleted from the system state; FPF: number of features been tracked at each frame; TTE: total time of execution; aMAE:

average mean absolute error.
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scale of the estimates. Note that for this flight, there
is a considerable variation in altitude along the tra-
jectory. Even though an acceptable result was
obtained with the (AþUID) method, the result
obtained with the proposed method (AþR) was
considerable better.

. For flight (b): The solely inclusion of altitude meas-
urements (AþUID) contributes little in terms of
improvements of the recovery of the metric scale.
This result can be explained because for this flight
there is little variation in altitude along the trajec-
tory, (especially at the beginning). On the other
hand, with the proposed method (AþR), the
actual trajectory was also successfully recovered.

. In both flights, with the proposed method (AþR)
fewer features were initialized into the system state
than the other approaches, because features are initi-
alized only in frames where range measurements are
available. It is advantageous if the system performs
well with few features because a smaller computa-
tional cost is need.

It is interesting to note that the theoretical findings
presented in section Observability of metric scale are
well supported by the empirical results obtained with
real data. Also, it is shown that the proposed method is
capable of working with the data obtained from low-
cost sensors, in order to estimate the flight trajectory of
an MAV.

Conclusions

Using monocular SLAM, an MAV can navigate relying
on visual information in environments where GPS is
not available. Compared with other approaches, the
monocular vision has advantages in terms of weight,
space, power-saving, and scalability, but it introduces
some technical difficulties as the impossibility of dir-
ectly recovering the metric scale of the world.

In this work, a theoretical analysis has been carried
out in order to study the observability of a monocular
SLAM system applied to an MAV. According to the
theoretical findings, under certain conditions the metric
scale can become observable by the inclusion of altitude
measurements into the system. Also, it was found that
depth measurement of even a single landmark can
improve the observability of the system.

Based on the theoretical findings, a novel monocular
SLAM system is proposed. In this case, for recovering
the metric scale of the world, two extra sources of sen-
sory information have been considered: (i) an ultrasonic
range finder is used for computing the approximate
depth of features whenever is possible and (ii) a barom-
eter is used for updating the system with information
about the local altitude of the MAV.

In order to validate the proposal, experimental
results have been obtained using real data acquired by
sensors onboard of a custom-built quadrotor. Based on
these results, it is shown that by means of the proposed
system, the MAV is able to recover its flight trajectory
as well as a map of the environment using only those
sensors. The proposed method is robust enough to be
implemented with low-cost hardware.
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