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Abstract. We use calorimetry and dilatometry under hydrostatic pres-7

sure, X-ray powder diffraction and available literature data in a series8

of composition-related orientationally disordered (plastic) crystals to9

characterize both the plastic and melting transitions and investigate10

relationships between associated thermodynamic properties. First, gen-11

eral common trends are identified: (i) The temperature range of sta-12

bility of the plastic phase Tm-Tt (where Tt and Tm are the plastic and13

melting transition temperatures, respectively) increases with increas-14

ing pressure and (ii) both the rate of this increase, d(Tm-Tt)/dp, and15

the entropy change across the plastic transition analyzed as function16

of the ratio Tt/Tm are quite independent of the particular compound.17

However, the dependence of the entropy change at the melting transi-18

tion on Tt/Tm at high pressures deviate from the behavior observed at19

normal pressure for these and other plastic crystals. Second, we find20

that the usual errors associated with the estimations of second-order21

contributions in the Clausius-Clapeyron equation are high and thus22

these terms can be disregarded in practice. Instead, we successfully23

test the validity of the Clausius-Clapeyron equation at high pressure24

from direct measurements.25

1 Introduction26

Orientationally disordered phases are mesophases characterized by the presence orien-27

tational dynamic disorder that may arise in molecular crystals constituted by rather28

isometric or small molecules linked by weak interactions. Activation of the orienta-29

tional degrees of freedom from the completely ordered crystalline phase occurs across30

a first-order transition with unusual large enthalpy and entropy changes that exceed31

those associated with the melting towards the liquid phase [1,2]. This has made them32

promising as solid-state thermal energy storage materials [3,4].33

Beyond this fundamental picture, several studies have been devoted to identify34

additional universal thermodynamic behavior [5–9], but with limited success. Mostly,35

the detected common trends are restricted to a given family of composition-related36

compounds only, rather than to actually general features within plastic crystals.37

Interestingly, several thermodynamic correlations were noticed to be shared by a38

wide variety of plastic crystals [9,10]: (i) The temperature range of stability of the39
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plastic phase, Tm − Tt, (where Tm and Tt stand, respectively, for the temperature at40

the melting and plastic phase transition at a given pressure) increases at the expense41

of the liquid phase when the pressure is increased, i.e. dTm/dp>dTt/dp>0. (ii) The42

entropy and volume changes at Tm, ∆Sm and ∆Vm respectively, decrease with pres-43

sure. These features have been explained in terms of the relative magnitude between44

the rotational and diffusional energy barriers [9]. On the one hand, the existence of45

the plastic transition occurs provided that the activation energy of rotational degrees46

of freedom is low enough compared to diffusion activation. On the other hand, the47

latter increases more rapidly with pressure than the former, which is intuitive as pres-48

sure favors the more compact stacking. In turn, a fast increase of Tm with pressure49

leads to a decrease of ∆Sm. The decrease of ∆Vm with pressure can then be inferred50

from the Clausius-Clapeyron equation, as experimental observations indicate that.51

Moreover, by analyzing ∆Sm as function of Tt/Tm at normal pressure for different52

sets of materials, it was obtained that ∆Sm decreases with Tt/Tm, and in the limit of53

Tt → Tm, ∆Sm → R ln 2. A deviation from this behavior was observed, however, in a54

compound that differed from the rest in the nature of the intermolecular bonds [10].55

It is clear that a full thermodynamic characterization of a pVT system requires56

the knowledge of the effect of pressure on the thermodynamic variables. However, to57

date most high-pressure theoretical and experimental studies are rather limited and58

have focused mainly in the determination of the T -p diagram whereas high-pressure59

energetic and volume data are scarce, basically due to the technical difficulties and60

lack of standard commercial high-pressure equipment [11–19]. Clausius-Clapeyron is61

then evaluated at normal pressure. Moreover, investigations have been focused on62

inorganic and metallic compounds whereas organic plastic phases and the associ-63

ated melting of orientational degrees of freedom have deserved little attention from64

the high-pressure community. It is worth mentioning here recent studies [20,21] on65

organic crystals that have suggested that application of pressure could lead to the66

emergence of stronger bonds between C atoms belonging to different molecular planes67

that are usually stabilized through van der Waals forces or hydrogen bonds. Applied68

pressures were, however, much larger than those of the present work.69

Here we report systematic high-pressure experimental data on the solid and liquid70

phases and related transitions in a series of composition-related plastic crystals, by71

means of calorimetry and dilatometry under applied hydrostatic pressure and X-Ray72

powder diffraction. In the first part of the present study, we use these data to check73

and extend the aforementioned thermodynamic correlations to an unexplored range74

of materials and pressures.75

On the other hand, the traditional Clausius-Clapeyron equation for first-order76

phase transitions renders a simple relation between volume and entropy changes at77

the transition point, dT/dp = ∆V /∆S. Close to the transition, first-order derivatives78

arise and other additional relations can be derived [22]:79

dT

dp
=
∆V0 +∆α

∗
0 (T − T0)−∆β∗0 (p− p0)

∆S0 +∆Cp0 log (T/T0)−∆α∗0 (p− p0)
(1)

80

d2T

dp2
= − 1
∆V

dT

dp

[
∆Cp
T

(
dT

dp

)2
− 2∆α∗ dT

dp
+∆β∗

]
(2)

81

d∆H

dp
=
dT

dp
∆Cp +∆V − T∆α∗. (3)

82

d∆V

dp
=
dT

dp
∆α∗ −∆β∗ (4)
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where Cp is the specific heat capacity, and α
∗ = (dV/dT)p and β∗ = −(dV/dp)T83

are related to isobaric thermal expansion and isothermal compressibility, although84

the lack of the 1/V factor recommends a star superscript to avoid confusion. In turn,85

the increments (∆) refer to the difference between the quantities in either side of the86

transitions and the zero subscript (0) to the normal pressure condition. Equation (1)87

should then be approximately valid only in a T -p range close to normal pressure where88

the quantities appearing in the right hand side of the equation are considered to be89

constant. Strictly at normal pressure, Clausius-Clapeyron relation is recovered.90

These equations have been largely disregarded, basically due to the lack of data,91

so that studies addressing them are very rare [23]. Therefore, the second part of the92

present work is aimed at taking advantage of the compilation of own and literature93

data to (i) check the traditional Clausius-Clapeyron equation evaluated at high pres-94

sure, and (ii) to obtain orders of magnitude for the above quantities and related95

Equations (1–4).96

2 Samples and experimental methods97

Among plastic crystals, here we focus on a series of alcohol, amine and nitrite98

derivatives of Neopentane [C(CH3)4] obtained by substitution. In particular we99

study neopentyl alcohol [with acronym NPA, chemical formula (CH3)3C(CH2OH)],100

neopentylglycol [NPG, (CH3)2C(CH2OH)2], 2-amino, 2-methyl, 1,3 propane-101

diol [AMP, (NH2)(CH3)C(CH2OH)2], tris(hydroxymethyl)-aminomethane [TRIS,102

(NH2)C(CH2OH)3], 2-methyl, 2-nitro propane [MN, [(NO2)C(CH3)3] and 2-methyl,103

2-nitro, 1-propanol [MNP (NO2)(CH3)2C(CH2OH)]. These compounds have been104

extensively studied [1,2,9,24–28] but thermodynamic data under pressure are rather105

scarce.106

Powdered NPA, NPG, MN, MNP (99% purity) and TRIS (99.9 % purity), were107

purchased from Sigma-Aldrich, and used as such. Powdered AMP was purchased from108

Fluka with a purity of 99.5% and used as such. Experimental methods and devices109

used for X-Ray powder diffraction (XRPD), Differential Scanning Calorimetry at110

normal pressure (DSC), and High-Pressure Differential Thermal Analysis (HP-DTA)111

up to 300MPa are the same as those described elsewhere [9]. For the HP-DTA up112

to 600MPa, a high-pressure cell model MV1-30 was acquired from the Institute of113

High Pressure Physics of the Polish Academy of Science (Poland), with a temper-114

ature range from 193K to 393K. Here, the samples were encapsulated in the same115

way as used in the other HP-DTA cells whereas the calorimetric signal between sam-116

ple and reference was obtained by attaching the encapsulated samples to a peltier117

module, instead of using thermocouples in the Bridgman’s piston setup. Another118

peltier module was used for the reference (that was left empty), and both peltiers119

were connected in opposition. As a usual procedure in calorimetry, heating rates were120

approximately 2Kmin−1, although in some extreme temperatures the rates could121

be different. Dilatometry measurements in isothermal conditions were performed in122

a custom-built device similar to that described in Reference [29], allowing pressures123

from 0 to 300MPa.124

Analysis of the voltage peaks in HP-DTA curves permits the evaluation of tran-125

sition temperatures, and enthalpy and entropy changes. The latter two require cali-126

bration of the HP-DTA signal. On the one hand, the sensitivity of the calorimetric127

cell is calculated from HP-DTA analysis of the solid-to-solid transition characteristics128

of three Cu-Al-based alloys, which are assumed to be insensitive to the application129

of hydrostatic pressure. On the other hand, the normal-pressure value obtaed in HP-130

DTA is forced to match the value from DSC. Measurements obtained by XRPD and131

dilatometry render volume changes and related quantities such as isothermal com-132

pressibility and isobaric thermal expansion.133
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Fig. 1. T -p phase diagrams for the neopentane derivatives. In all cases, there is an increase
of the temperature range of stability of the plastic phase (denoted by I) as the pressure
increases.

It is worth discussing about the error associated with the experimental methods134

used in this work. Although the precision of the techniques may be relatively high135

(ε(T ) ∼ 1K, ε(p) ∼ 1MPa, ε(V ) ∼ 1cm3mol−1), there are several major sources136

of error that decrease significantly the accuracy of the obtained results. In a very137

first step, the compound characteristics may depend on the particular sample, as the138

purity and the sample preparation does. In calorimetry experiments in alloys, for139

instance, it is known that the presence of inhomogeneities may result in anomalies140

in the calorimetric signal [30]. Moreover, here it is worth mentioning the error com-141

ing from the calibration process and the peak integration after baseline subtraction.142

This may explain the significant difference between the magnitude of thermodynamic143

quantities reported in the literature as, for instance, it is the case of the specific heat144

change ∆Cp across the plastic transition in NPG [31–33]. High-pressure experiments145

entail less accurate experimental data, with the presence of higher noise that compli-146

cates the choice of appropriate baselines. Moreover, some thermodynamic quantities147

require intermediate numerical steps (fits, derivatives, etc.) that may decrease dra-148

matically the accuracy of the calculated magnitudes. For instance, here ∆α∗(p) must149

be estimated as the difference between derivatives of numerical fits from thermal data150

obtained in dilatometry measurements. Hence, we can only assure relative errors εr151

lower than or similar to 1% in dT/dp and lower than 10% in ∆S0. For most of the152

remaining experimental magnitudes, εr are estimated to be around 10–20% whereas153

in second-order terms, such as ∆β∗ or ∆α∗, εr can be much larger as discussed.154

Having said that, for the sake of clarity we will omit error bars in the figures.155

3 Results156

Calorimetric results157

Figure 1 reports the temperature-pressure phase diagrams for the compounds under158

analysis obtained by HP-DTA. From now on, L, I, II and III will refer to liquid,159
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Fig. 2. Entropy change across the melting (∆Sm, red symbols) and plastic transitions (∆St,
blue symbols) for the compounds under study as function of pressure. Lines are fits to the
data.

plastic, and one and subsequent completely ordered crystalline phases respectively.160

Melting data for MN in this and following figures have been taken from literature [34]161

for completeness. Most of our data is consistent within error with literature data at162

normal pressure [1–4,35–37]. However, partial disagreement has been found in few163

cases [2] as for instance, the melting transition for TRIS, most likely due to less164

accurate measurement technique based on a metabolemeter, compared to that used165

here.166

Figure 2 shows the molar entropy change across the melting (∆Sm) and plas-167

tic (∆St) transitions for each compound. Red (blue) lines and symbols indicate the168

melting (plastic) transition. It can be observed that in all cases the temperature169

range of stability of the plastic phase is enlarged when the pressure is increased170

(dTm/dp > dTt/dp) and the entropy change on melting is lower than that associated171

to the plastic transition (∆Sm < ∆St). We recall that this behavior is common within172

compounds exhibiting plastic phases, as anticipated in the introduction.173

We can use the data fits in the previous Figures 1 and 2 to compare the behavior174

between different compounds, as an attempt to extract any further universal behavior175

within plastic crystals. This is shown in Figure 3. Figure 3(a) shows ∆Sm as function176

of the parameter Tt/Tm, for different compounds. This helps the understanding of177

Figure 3(b), where the same data is plotted for different values of pressure. There,178

at each pressure (for a given color), each symbol stands for one compound. Linear179

regressions are carried out to detect trends in the limit of Tt/Tm →1. They reveal180

that, while at normal pressure ∆Sm → Rln2, in agreement with the behavior recently181

reported in other sets of compounds [9], this trend is broken at high pressures.182

Instead, Figures 3(c,d) show that d(Tm − Tt)/dp is quite similar for all the com-183

pounds and that ∆St approximately does not depend on the distance between tran-184

sition temperatures, Tm−Tt. It is worth anticipating here that ∆Vt does change with185

pressure for all the studied compounds as it will be seen later on. It is consistent186

with the fact that the T -p curves for the plastic transitions exhibit non vanishing187

curvature, in agreement with Clausius-Clapeyron equation.188
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Fig. 3. (a) Entropy change on melting as function of Tt/Tm for different samples. Tt and Tm
stand for plastic and melting transition temperature respectively. (b) Same data as in (a),
but color code corresponds to constant pressure. (c) Tm – Tt as function of pressure for
different samples. (d) Entropy change at the plastic transition as function of Tt/Tm for
different samples.

Dilatometry, X-ray powder diffraction and Clausius-Clapeyron equation189

In this section we aim to test the Clausius-Clapeyron-related Equations (1–4) asso-190

ciated with the phase transitions in three of the compounds studied above, namely191

NPA, NPG and MN.In addition to calorimetric data presented above that provides192

the magnitude of dT/dp and ∆S across the transitions, the knowledge of thermal193

coefficients is required. For this purpose we use dilatometry and XRPD data to mea-194

sure the isothermal and isobaric evolution of volume respectively, which in turn will195

permit evaluating the thermal expansion α and isothermal compressibility β in the196

different phases as well as ∆V across the transitions.197

Figure 4 shows the evolution of the volume in temperature at normal pressure,198

obtained by XRPD. From these data, transition volume changes ∆V and thermal199

expansion α at either side of the transitions can be calculated.200

Figure 5 shows high-pressure dilatometric experimental data for NPA, NPG and201

MN. While for NPA and NPG we use our own experimental data, for MN we use data202

previously published by Jenau et al. [34]. Large discontinuous changes correspond to203

phase transitions. The data have been fitted to a second order polynomial, for each204

phase separately. From Figure 5 we can then calculate the following Figures 6–10,205

where we have included data taken from Figure 4 when applicable. For instance, in206

Figure 6 we show the volume change ∆V across the different transitions, as function207

of pressure, including the value at normal pressure obtained from X-ray diffraction208

shown in Figure 4. From linear fits (straight lines in Figure 6) we can obtain the209

values for d(∆V )/dp. Figure 7 shows compressibility-related values, β∗ as function of210

pressure, obtained from the fits in Figure 5. Evaluation of this quantity close to each211

transition permits calculating ∆β∗ = β∗i −β∗j , where i and j stand for different phases212

at the transition, which is needed for Equations (1, 2, 4) (see Figure 8). Figure 9 shows213

volume−temperature data as function of temperature extrapolated from the fits in214
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Fig. 4. X-Ray powder diffraction at normal pressure for four of the compounds under study:
(a) NPA, (b) NPG, (c) MN and (d) MNP. Lines are fits to the data.

Fig. 5. Isothermal evolution of volume as function of pressure for NPA, NPG and MN. In
the case of MN, the data is reproduced from Reference [34]. Phases L, I, II, and III are
indicated near the corresponding regions.

Figure 5 for different applied pressures. Lines are linear fits to the data in all cases,215

as it is usually observed in organic crystals [7]. From the slopes of the linear fits, we216

can then extract the values for thermal expansion-related values, α∗ as function of217

either temperature or pressure, the latter case shown in Figure 10.218

Table 1 summarizes the data needed for Equations (1–4) for the different com-219

pounds. As we do not have complete data for all compounds, we will be able to220

evaluate the equations for NPA, NPG and MNP. Data taken from the literature is221

specified by different superscripts, and the corresponding references are indicated in222

the caption.223

In Table 2 we compare the value for dT/dp obtained directly from experiments224

with that of Clausius-Clapeyron equation at normal and high pressures. It is found225

that the agreement is excellent. Instead, comparison to Equation (1) fails completely,226

indicating that Equation (1) is only valid much closer to the transition, where the227
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Fig. 6. Volume changes across the phase transitions as function of pressure. Values at
normal pressure are taken from X-ray diffraction (see Fig. 4) whereas values under pressure
are measured from dilatometry (see Fig. 5). The legend in panel (c) holds for all panels.

Fig. 7. Pressure derivative of volume as function of pressure, calculated from fits in fig-
ure 5. Filled squares, empty circles and downwards triangles stand for phases I, II and III
respectively.

Fig. 8. Difference between pressure derivatives of volume at the transition between phases,
calculated from the transition points of the fits in Figure 7.

magnitudes playing a role in the equation can be considered as constant, as it has228

been mentioned in the introduction. Indeed, Figures 6, 8 and 11 show that this valid229

pressure range should be restricted to few MPa. The very significant disagreement230

also suggests that the errors associated with these magnitudes are likely too large for231

a reliable estimation.232
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Fig. 9. Volume as function of temperature, extrapolated from Figure 5. Phases are indicated
by L, I, II, III in the corresponding regions.

Fig. 10. Temperature derivative of volume (α∗) as function of pressure. Lines are fits to the
data.

Fig. 11. Difference of α∗ between phases, ∆α∗, as function of pressure. Square data have
been calculated from data in Figure 10 whereas triangles are calculated from X-ray data
(see Figure 4).

We then proceed to compare some thermodynamic quantities obtained through233

experiments with the corresponding values obtained using Equations (2–4) (see ta-234

ble 3). It is revealed that in general the latter values differ significantly from the235

former. Again, this discrepancy can be attributed to the increase of errors due to236

the accumulation of numerical steps necessary to infer indirectly some quantities that237

have not been possible to reach directly from experiments. As a consequence, this238

makes that the final calculated values are extremely sensitive to the initial experi-239

mental values. This is the case, for instance, of ∆α∗, that has been obtained through240
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Table 1. Transition characteristics for the set of neopentane derivatives analyzed in this
work. Subscript “0” refers to the values at or across the transition at normal pressure. †Taken
from Reference [2]. ‡Taken from Reference [32]. ∗Taken from Reference [33]. #Taken from
Reference [Kamae 31]. ¥Taken from Reference [38]. ?Taken from Reference [39].

NPA NPG AMP TRIS MN MNP

T t at 0.1MPa K
L-I 323.2 394.5 374.1 437.1 299.0 360.2

I-II 235.7 314.8 351.4 406.1 260.6 311.6

dT t/dpat 0.1
KMpa−1

L-I 0.688 0.494 0.392 0.297 0.561 0.482

I-II 0.218 0.118 0.0590 0.0361 0.141 0.0750

d2Tt/dp
2

10−4K Mpa−2
L-I -10.8 0 0 0 -10.2 -11.0

I-II −2.50 −1.28 0 0 −1.6 −0.339

∆S0
J K−1mol−1

L-I 11.3 11.2 7.52 7.21 8.7 8.71

I-II 18.0 39.9 66.5 82.7 17.9 49.1

∆V0
cm3mol−1

L-I 7.90† 6.63† 3.39† 3.14† 4.9 4.46†

I-II 4.01† 4.82 5.06† 5.07† 2.5 3.90†

∆cp0
J K−1mol−1

L-I 21.5‡ 20.4* 26.3* 5.81* 6.71¥

I-II 64.4‡

68.9#

71.8*

127* 147‡

142*
−12.1¥ 44?

∆ α∗0
cm3mol−1K−1

L-I 0.077 0.036

I-II 0.029 0.023 0.035

∆ β∗0
cm3mol−1MPa−1

L- I 0.065

I-II -0.015 0.017 −0.006

d ∆H0/dp
J mol−1MPa−1

L-I -2.2 -38 -0.95 -18 1.3 -5.8

I-II 1.5 1.7 4.0 −0.23 −3.0 4.6

d ∆V0/dp
cm3mol−1MPa−1

L-I -0.013

I-II −0.0076 −0.0069 −0.0048
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Table 2. Comparison between experimental fits and calculated values for dT/dp (K MPa−1)
at several pressures. For pressures higher than 0.1MPa, calculations of eq. (1) are also
considered.

p (MPa) NPA NPG MN

0.1
experimental 0.218 0.118 0.141

Clausius-Clapeyron 0.217 0.118 0.141

50

experimental 0.206 0.112 0.131

Clausius-Clapeyron 0.197 0.111 0.130

Equation (1) 0.26 0.12 0.18

100

experimental 0.193 0.106 0.122

Clausius-Clapeyron 0.177 0.103 0.120

Equation (1) 0.30 0.13 0.23

200

experimental 0.168 0.093 0.102

Clausius-Clapeyron 0.136 0.088 0.105

Equation (1) 0.39 0.14 0.35

Table 3. Comparison between experimental and calculated values through Equations (1–4)
for dT/dp, d2T/dp2, d∆H/dp and d∆V/dp for the II-I transition at normal pressure for
NPA, NPG and MN.

NPA NPG MN

d2T/dp2

K MPa−2
experimental −2.5 · 10−4 −1.3 · 10−4 −1.6 · 10−4

Equation (2) 8.3 · 10−4 −3.1 · 10−4 7.4 · 1−4

d∆H/dp
J mol−1MPa−1

experimental 1.5 1.7 -3.0

Equation (3) 4.0 3.9 -5.7

d∆V/dp
cm3mol−1MPa−1

experimental −7.6 · 10−3 −6.9 · 10−3 −4.8 · 10−3

Equation (4) 15 · 10−3 −13 · 10−3 9.1 · 10−3

differences of derivatives of data which in turn are calculated by fitting experimental241

data. We can then conclude that in the absence of high-quality direct experimental242

data, Equations (1–4) do not seem useful to determine any thermodynamic quan-243

tity, as traditional Clausius-Clapeyron does. We therefore discarded to extend the244

calculations of these equations to higher pressures or other transitions.245
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4 Conclusions246

By means of calorimetry, thermometry, dilatometry and X-ray diffraction, we have247

characterized the melting of orientational degrees of freedom at high pressure in a248

series of neopentane derivatives. We found that these composition-related compounds249

show that (i) the slope of the differences between the T − p plastic-liquid and solid250

II-plastic transitions, d(Tm − Tt)/dp, is roughly independent of the compound, and251

(ii) at low-pressure the entropy change at the solid II-plastic transition is almost inde-252

pendent of pressure, in contrast to the volume change at the transition, that decreases253

notably when increasing pressure. This results in slightly convex curvature of the T -p254

solid II-plastic transition line in most of the compounds. This behavior is consistent255

with Clausius-Clapeyron equation evaluated at high pressures. The present work rep-256

resents one of the very few complete studies on the pressure-temperature dependence257

of entropy and volume in organic plastic crystals, and shows that some universal be-258

havior might emerge for plastic phases. It should inspire similar work in other plastic259

crystals to confirm the observed trends as a generality beyond neopentane derivatives.260
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18. M. Woznyj, F.X. Prielmeier, H.–D. Lüdemann, Z. Naturforsch. 39a, 800 (1984)293

19. H.G. Kreul, R. Waldinger, A. Würflinger, Z. Naturforsch 47a, 1127 (1992)294



Phase Equilibria and their Applications 13

20. P.F. McMillan, Nature Mater. 6, 7 (2007). Benzene bridges under pressure.295

21. L. Ciabini, M. Santoro, F.A. Gorelli, R. Bini, V. Schettino, S. Raugei, Nature Mater. 6,296

39 (2007)297

22. P.W. Bridgman, Phys. Rev. 6, 94 (1915)298

23. W. Wagner, A. Saul, A. Pruss, J. Phys. Chem. Ref. Data 23, 515 (1994)299

24. T. Hasebe, H. Chihara, Bull. Chem. Soc. Jpn. 59, 1141 (1986)300
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37. J. Salud, D.O. López, M. Barrio, J.Ll. Tamarit, H.A.J. Oonk, P. Negrier, Y. Haget,317

J. Solid State Chem. 133, 536 (1997)318

38. S. Urban, Z. Tomkowicz, J. Mayer, T. Waluga, Acta Phys. Pol. A48, 61 (1975)319

39. J. Font, J. Muntasell, Mater. Res. Bull. 29, 1091 (1994)320


	1 Introduction
	2 Samples and experimental methods
	3 Results
	4 Conclusions
	References

