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Abstract. It is well known that the variations of the element size have to be controlled
in order to generate a high-quality mesh. Hence, several techniques have been developed to
limit the gradient of the element size. Although these methods allow generating high-quality
meshes, the obtained discretizations do not always reproduce the prescribed size function.
Specifically, small elements may not be generated in a region where small element size
is prescribed. This is critical for many practical simulations, where small elements are
needed to reduce the error of the numerical simulation.

To solve this issue, we present the novel size-preserving technique to control the mesh
size function prescribed at the vertices of a background mesh. The result is a new size
function that ensures a high-quality mesh with all the elements smaller or equal to the
prescribed element size. That is, we ensure that the new mesh handles at least one element
of the correct size at each local minima of the size function. In addition, the gradient of
the size function is limited to obtain a high-quality mesh.

Two direct applications are presented. First, we show that we can reduce the number
of iterations to converge an adaptive process, since we do not need additional iterations
to generate a valid mesh. Second, the size-preserving approach allows to generate quadri-
lateral meshes that correctly preserves the prescribed element size.
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1 INTRODUCTION

In several numerical simulations, such as adaptive processes, it is of the major impor-
tance to generate a mesh that correctly preserves the prescribed element size. On the one
hand, the element size is directly related to the error of the final results. On the other
hand, the element size influences on the computational costs to obtain the final solution.
For this reason, the final mesh has to correctly reproduce the prescribed element size.
One of the most used techniques to prescribe the element size consists on assigning scalar
values at the nodes of a mesh and then, interpolate these values are over the whole do-
main. For instance, this technique is used in adaptive simulations, where starting with an
initial mesh, a size function is deduced from the computed solution via an error estimate.
Then, this mesh is used as a background mesh to generate a new spatial discretization.

The size function has to verify certain requirements in order to generate a high-quality
mesh that reproduces the size function. Therefore, special effort has been focused on
generating element sizes fields that facilitates the generation of the desired mesh, [1, 2, 3].
Current techniques, such as the gradient-limiting algorithms [4, 5, 6, 7], modify a given size
function by limiting its gradient. Thus, ratio of neighbouring element sizes is bounded and
it is easier for any mesh generator to provide a high-quality mesh with smooth variation
of the element size. However, the final mesh may still not correctly reproduce the initial
size function. Thus, it is still necessary to develop new techniques that, given a prescribed
element size field, modify it in such a way that a mesh generation algorithm can provide
a discretization that verifies the initial size field.

The main contribution of this work is to introduce the new concept of size-preserving
size function. The main idea behind this concept is to compute a new size function by
solving an implicit and non-linear equation such that: 1. it ensures that all the elements
are smaller or equal to the prescribed element size; and 2. the maximum gradient of
the new size function is limited. In addition, we propose an implementation to solve the
implicit and non-linear equation that states a size-preserving size function.

The new size-preserving size function has several advantages. For instance, quadrilat-
eral and hexahedral mesh generators benefit from this new size function since these types
of meshes are more difficult to refine or coarse. In addition, the new size function can
reduce the number of iterations needed to converge an adaptive process, since we do not
need additional iterations to properly reproduce the size field.

The outline of this paper is the following. First, in Section 2, using a one-dimensional
example we motivate this work and introduce the basic definitions. In Section 3, we
deduce the size-preserving method and analyze its properties. Finally, in Section 4, several
examples are presented to illustrate the capabilities of the size-preserving size function.

2 MOTIVATION

To illustrate the most common problems arising from the use of a size function in a
mesh generation process, we consider the following one-dimensional size function defined
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(a) (b)

Figure 1. Node distribution using: (a) the original size function, and (b) the gradient-limiting size
function.

in the [0, 1] interval, see Figure 1:

h(x) = min{0.5, 0.1 + 3|x− 0.75|)}, (1)

Function (1) is constant almost everywhere, with a valley at x = 0.75. The minimum size
is 0.1 and the maximum size is 0.5. Figure 1(a) presents the node distribution generated
using an advancing front method where the element size is obtained using the size function
(1). Since the size prescribed at x = 0 is 0.5, only two elements are generated and the
discretization does not preserve the prescribed element size. The main reason of this
shortcoming is that the size function contains high gradients that the meshing algorithm
cannot reproduce.

To obtain a better discretization, a gradient-limiting technique [4, 5, 6, 7] can be
applied. Figure 1(b) presents the gradient-limiting size function obtained from (1), and
the node distribution obtained using the same meshing algorithm. The maximum gradient
of the new size function is imposed to be ε = 1. Note that this node distribution does
not correctly reproduce the prescribed element size. Although the element size is smaller
around the valley of the size function, the minimum element size is not captured in the
final mesh. To compare these discretizations we have to measure how accurately a mesh
reproduces a prescribed size function. To this end, we introduce the following definitions.

Definition 1. An element e reproduces a prescribed size function h(x) if it verifies

µ(e) ≤ βmin
x∈e

h(x), (2)

where µ(e) is the size of element e, and β is a scaling factor.
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Figure 2. Ratio R(e) for mesh computed using: the original size function (solid line) and the gradient-
limiting size function (dashed line).

Definition 2. A mesh M reproduces a prescribed size function h(x) if it verifies

µ(e) ≤ βmin
x∈e

h(x), ∀e ∈M. (3)

By introducing the ratio

R(e) =
µ(e)

βmin
x∈e

h(x)
, (4)

a valid mesh has to verify
R(e) ≤ 1 ∀e ∈M. (5)

Figure 2 plots function (4) for the discretizations generated using the original size
function and the gradient-limiting size function with β = 1. Since R(e) ≥ 1 for all the
elements of the mesh, these meshes do not reproduce the size function.

3 SIZE-PRESERVING SIZE FUNCTION

We have shown that a mesh may not reproduce the prescribed element size function.
That is, it may not verify Equation (3). To overcome this drawback, in this section we
introduce the new concept of size-preserving size function. Given the original size function,
h(x), we will deduce an alternative size function, called size-preserving size function and
denoted by h∗(x), such that it allows reproducing the size function according to Equation
(3).

In fact, the new size function, h∗(x), can be written in terms of the original one, h(x).
To this end, we consider the one-dimensional example presented in Figure 3(a). To obtain
a mesh that correctly reproduces the size function, we assume that the new element size
around a point x ∈ Ω has to be h∗(x). Then, the new node is created at position x±h∗(x),
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(a) (b)

Figure 3. (a) Original size function (thick black line) and size-preserving size function (grey line), and (b)
one-dimensional size function defined in the [0, 1] interval (thick black line) and several size-preserving
size functions for different values of α (grey lines).

depending on the advancing direction of the meshing algorithm, see Figure 3(a). For this
reason, the size of the new element, e, is µ(e) = h∗(x). Taking into account condition (2),
we deduce that the following equation has to be verified:

h∗(x) = µ(e) ≤ β min
y∈[x−h∗(x),x+h∗(x)]

h(y).

If we want h∗(x) as big as possible to generate the minimum amount of elements, we
have that

h∗(x) = β min
y∈[x−h∗(x),x+h∗(x)]

h(y).

To add more flexibility to our method, we include a parameter α that determines the trial
interval (i.e. the interval in which the minimum of the original size function is computed):

h∗(x) = β min
y∈[x−αh∗(x),x+αh∗(x)]

h(y).

Note that taking α > 1 we enlarge the trial interval. Thus, the size-preserving size function
can achieve smaller values. On the contrary, taking α > 1 we reduce the trial interval and
the size-preserving size function can achieve larger values. The previous equation can be
expressed in any dimension as:

h∗(x) = β min
y∈Bαh∗(x)(x)

h(y), (6)

where Br(x) is the set of points at distance at most r from x. Note that β can be
interpreted as a parameter that controls the maximum ratio R(e) accepted in the final
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(a) (b)

Figure 4. (a) Node distribution using the size-preserving function. (b) Ratio R(e) for mesh computed
using: the original size function (solid line), the gradient-limiting size function (dashed line) and the
size-preserving size function (dotted line).

mesh. It is important to point out that Equation (6) is an implicit and non-linear definition
of the size-preserving size function. Figure 3(b) plots several size-preserving functions for
different values of parameter α. This parameter plays an important role in Equation (6).
In fact, it controls:

(i) The measure of local minima in the element size function. This ensures that
small element sizes prescribed at local minima can be correctly reproduced. That
is, an element can be held at each local minima.

(ii) The maximum gradient allowed. This ensures that a high-quality mesh can be
generated. Although we do not have a formal proof, experience has shown that the
maximum gradient of the size-preserving size function is limited to β/α.

Figure 4(a) presents the original size function stated in Equation (1), the corresponding
size-preserving size function, and the node distribution of the generated 1D mesh. The
size-preserving size function is computed according to Equation (6) with α = 1. Note that
the region around the minimum is automatically enlarged in order to held an element of
the requested size. In addition, the gradient of the size-preserving size function has been
automatically limited.

Figure 4(b) presents the ratio R(e), see Equation 4, for the meshes generated using:
the original, the gradient-limiting and the size-preserving size functions. Note that for
the size-preserving size function the distribution of nodes correctly preserves the original
size function.

In order to obtain a size-preserving size function, we propose a node-by-node process
in which we solve the non-linear equation defined in (6). That is, for each node in the
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background mesh, we use an iterative solver to compute the value of the new size function
at that node.

4 EXAMPLES

This section presents four examples in order to illustrate the behavior of the size-
preserving size function. This function has been successfully implemented in the ez4u
meshing environment [8, 9, 10]. The first example shows the advantages of using the
size-preserving size function in an adaptive process. The second one illustrates the appli-
cability of the proposed method to generate a one-dimensional mesh using an advancing
front technique. The remaining examples deal with multi-dimensional mesh generation
problems. The third example is a 2D applications where quadrilateral meshes are gener-
ated using the algorithm presented in [11]. The fourth example shows the mesh generated
for a complex 2D size function defined using an MRI image.

4.1 Accelerating an adaptive process

The objective of this example is to show that the proposed size-preserving approach
can decrease the number of iterations of an adaptive process. To this end, we present
three different executions of the adaptive process presented in Algorithm 1. We define,
for all the executions of the adaptive process, the same analytical element size function:

h = min
{

0.25, |x− 0.575|+ 0.25 · 10−15
}
.

Note that minimum element size is 0.25 · 10−15. From this analytical size function,
we will compute a background mesh for each iteration of the adaptive process. The new
background mesh is constructed from the mesh of the previous iteration. When the new
background mesh is obtained, we generate the next mesh. This process is iterated until
the mesh reproduces the analytical size function with a relative error below 0.05. That
is, we accept all the elements whose length is, at most, 5% above the prescribed size of
the analytical size function.

Algorithm 1 Adaptive process

Ensure: Mesh M
1: function AdaptiveProcess

2: Mesh M← createUniformMesh

3: BackgroundMesh bm← estimateNewElementSize(M,sizeFunction)
4: Boolean converged← checkConvergence(M,bm)
5: while not converged do
6: M← createNewMesh(M,bm)
7: BackgroundMesh bm← estimateNewElementSize(M,sizeFunction)
8: Boolean converged← checkConvergence(M,bm)
9: end while

10: end function
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(a) (b)

(c) (d)

Figure 5. Adaptive process, converged in 50 iterations, without processing the background mesh: (a)
final mesh; (b) background mesh for the last iteration; (c) ratio R(e) for each element of the final mesh,
and (d) estimated error for each iteration.

In the first execution, we do not process the size field with any method. In addition,
the mesh generation function is defined as a mid-point subdivision of the elements that
do not satisfy the prescribed element size. The process takes 50 iterations to generate the
final mesh, see Figure 5(a). Figure 5(b) shows the background mesh of the last iteration.
Note that the final mesh correctly reproduces the prescribed size function. In Figure 5(c)
we present the ratio R(e). Since the mesh reproduces the size function, all the elements
have a ratio below the desired relative error. Finally, Figure 5(d) presents the logarithm of
the maximum ratio R(e) for each iteration. Note that the algorithm divides each element
in half and, for this reason, the logarithm of R(e) decreases linearly. Thus, the number
of iterations is proportional to the ratio between the element size of the initial mesh and
the desired element size.
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(a) (b)

(c) (d)

Figure 6. Adaptive process, not converged in 200 iterations, using the gradient-limiting technique: (a)
final mesh; (b) background mesh for the last iteration; (c) ratio R(e) for each element of the final mesh,
and (d) estimated error for each iteration.

In the second execution, we process the background mesh using a gradient limiting
technique, ε = 0.8. The mesh for each iteration is generated using an advancing front
technique. In this example, the adaptive process has not converged in 200 iterations.
Figures 6(a) and 6(b), show the mesh and the background mesh for the las iteration,
respectively. Figure 6(c) presents the R(e) ratio for each element. Note that in the region
where a small size has been prescribed, the elements are almost four times bigger than
the requested size. Finally, Figure 6(d) shows the logarithm of the R(e) ratio for each
iteration. Note that the process is not able to converge to the required mesh. The main
reason is that it is not possible to guarantee that, at each iteration, the size field on the
background mesh is correctly preserved.

In the last execution, we have processed the background mesh using the proposed size-
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(a) (b)

(c) (d)

Figure 7. Adaptive process, converged in 17 iterations, using the size-preserving technique: (a) final
mesh; (b) background mesh for the last iteration; (c) ratio R(e) for each element of the final mesh, and
(d) estimated error for each iteration.

preserving algorithm with α = 1.25. In each iteration, the whole mesh is re-generated
using an advancing front method. Figures 7(a) and 7(b) show the generated mesh and
the used background mesh at the last iteration, respectively. Figure 7(c) shows the R(e)
ratio for each element of the final mesh. Note that the mesh correctly reproduces the
analytical size function. Finally, Figure 7(d) shows the logarithm of the R(e) ratio for
each iteration. Note that the adaptive process only takes 17 iterations to converge because
at each iteration, the used background mesh is correctly reproduced.

4.2 Preserving a 1-D size function in a mesh generation process

In this example we present a sinusoidal size function defined in the [0, 1] interval. The
minimum element size is 0.1 and maximum element size is 1.0. In Figure 8 we represent
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(a) (b)

(c) (d)

Figure 8. Node distributions for the first example using: (a) the original size function; (b) the gradient-
limiting size function; (c) the size-preserving size function; and (d) ratio R(e) for mesh computed using:
the original size function (solid line), the gradient-limiting size function (dashed line), and the size-
preserving size function (dotted line).

the original size function with a thick solid line, the modified size functions with dashed
lines and the corresponding node distributions with thin solid lines.

Figure 8(a) plots the original size function and the node distribution obtained using
it. Note that the final mesh does not reproduce the prescribed element size. Figure 8(b)
displays the gradient-limiting size function (using ε = 1), and the corresponding node
distribution. Although the mesh better reproduces the element size function, it does not
generate sufficiently small elements around the minima points of the size function. To
generate a mesh that correctly preserves the element size, we compute a size-preserving
function with α = 1), Figure 8(c). Note that the size-preserving function presents two
features. First, it increases the width of the areas around small element sizes. Second,
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the gradient of the new size function is limited. These two features allow the generation
of a high-quality mesh that correctly reproduces the original size function and captures
the minimum element sizes.

In Figure 8(d), we present the ratio R(e) for the mesh generated using: the original, the
gradient-limiting, the size-preserving, and the approximated size-preserving size functions.
Note that only the mesh generated using the size-preserving size function verifies Equation
(5) and correctly preserves the element size. The meshes obtained using the original and
the gradient-limiting techniques do not preserve the element size.

4.3 Preserving a size function in quadrilateral mesh generation

2-D sinusoidal size function.
In this example we show the meshes generated using a two-dimensional background

mesh defined on the [0, 1] × [0, 1] square. The element size is defined as a sinusoidal
function with 4 periods in which the minimum and maximum element sizes are 0.01
and 1.0 respectively, see Figure 9(a). Note that in all the generated meshes, we used
comparable values for the parameters of the different methods where it was possible.
That is, ε = 1/α and δ = 2α.

Figure 9(b) shows the mesh generated using a gradient limiting technique (ε = 0.5).
The colors of each element are the ratio of the actual element size and the prescribed
element size of the original size function. Note that there are elements that are 57%
larger than the prescribed element size. From a numerical point of view, these elements
may not be acceptable.

In order to obtain a mesh that preserves the element size, we use a size-preserving size
function, with α = 2. Figure 9(c) shows the mesh generated using it. In this case, the
final mesh correctly captures all the features of the initial size function. That is, the areas
where a small element size is prescribed are correctly captured in the final mesh.

Preserving a field defined by MRI image. In this example, we present a quadri-
lateral mesh generated using a size field derived from a MRI image, courtesy of the OASIS
project [12], see Figure 10(a). The size field is defined in terms of the mean curvature of
the MRI field, in order to generate more elements where the variation of the gradient of
the MRI field is higher, see Figure 10(b). With this background mesh, we have generated
two meshes. In each mesh, we have computed the interpolation error of the initial MRI
field on the corresponding mesh, and the ratio R(e) for the elements. The first mesh is
obtained with the gradient-limiting technique. Figure 11(a) shows the interpolation error
of the MRI field on the mesh, and Figure 11(b) presents the ratio R(e) for the elements.
Note that there are elements that are almost 75% bigger that the requested size. The sec-
ond mesh is obtained using the size-preserving approach. In this case, the results present
a reduced interpolation error (Figure 12(a)), and ratio R(e) (Figure 12(b)).

Table 1 summarizes the statistics for the meshes generated with the different size
functions. The behavior of the size functions is similar to the ones reported in the previous
example. The gradient-limiting technique, although fast is not able to reproduce the initial
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(a) (b)

(c)

Figure 9. (a) Original size function of the second example. Meshes generated using: (b) a gradient
limiting technique; and (c) a size-preserving function.

size function, obtaining the highest ratio R(e) and the lowest percentage of correct faces.
Specifically, there are elements that are almost 75% percent bigger than the requested
size. The mesh obtained with the size-preserving approach presents the lowest ratio R(e)
and the maximum percentage of correct faces. In this case, 99.99% percent of the faces
are correct, and the maximum ratio R(e) is around 1.03.

5 CONCLUSIONS

In this paper, we have presented the new size-preserving method for computing good
element size functions. It modifies the original size function, and allow any mesh gen-
eration algorithm to generate meshes that preserve the original size function. For this
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(a) (b)

Figure 10. (a) MRI field defined on a square and (b) its associated size function.

(a) (b)

Figure 11. Mesh generated using the gradient-limiting technique: (a) interpolation error and; (b) ratio
R(e) of the elements.

Table 1. Statistics for the meshes generated for MRI field.

method total correct correct maximum Time compared to
faces faces faces (%) ratio R(e) gradient-limiting

gradient-limiting 14089 10402 73.83% 1.746 1
size-preserving 42932 42543 99.09% 1.049 53.2

reason, it facilitates the generation of quadrilateral and hexahedral meshes, since it is not
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(a) (b)

Figure 12. Mesh generated using the size-preserving technique: (a) interpolation error and; (b) ratio
R(e) of the elements.

required to refine them to reproduce the initial size function. Moreover, this method can
potentially reduce the number of iterations of an adaptive process, since the prescribed
size field is correctly reproduced in each iteration.

The size-preserving method computes computes the new size function by solving a
non-linear equation. The proposed algorithm modifies the size function at each node of
a background mesh ensuring that an element can be held in that area and, at the same
time, limits the maximum gradient of the new size function. We have shown that to
generate a mesh that preserves the original size function, it is recommended to use β ≤ 1
and α ≥ β.

Several aspects of the proposed method can be extended in the near future. For
instance, we use an edge-based solver to compute the new size functions. Although more
expensive from the computational point of view, it could be interesting to analyze the
solutions provided by Hamilton-Jacobi solvers. In addition, the ideas presented in this
work can be extended to anisotropic size fields. This implies to work with an anisotropic
metric, and modify some aspects of the proposed algorithms.
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