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Abstract

In this paper we investigate a thermoelastic theory obtained from the
Taylor approximation for the heat flux vector proposed by Choudhuri.
This new thermoelastic theory gives rise to interesting mathematical ques-
tions. We here prove an uniqueness theorem and instability of solutions
under the relaxed assumption that the elasticity tensor can be negative.
Later we consider the one dimensional and homogeneous case and we
prove the existence of solutions. We finish the paper by proving the slow
decay of the solutions. That means that the solutions do not decay in
a uniform exponential way. This last result is relevant if it is compared
with other thermoelastic theories where the decay of solutions for the one
dimensional case is of exponential way.

Keywords: Thermoelastodynamics; Uniqueness; Instability; Existence; Slow
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1 Introduction

Fourier’s law implies the instantaneous propagation of the heat waves. This
fact is not well accepted from the thermomechanical point of view because it
contradicts the causality principle. Therefore, a big interest has been developed
to propose alternative constitutive equations to the Fourier law. We recall
the classical formulations of Lord-Shulman [9] and Green-Lindsay [4] which are
based on the Cattaneo-Maxwell heat conduction. In the last decade of the 20th
century two new theories were proposed. On the one side, Green and Naghdi
[5, 6] developed a thermomechanical theory of deformable continua that relies
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on an entropy balance law rather than on an entropy inequality. Depending on
the constitutive variables Green and Naghdi considered three cases that they
denominated as types I, II and III respectively. The linear version of the type
I recovers the Fourier theory. The linearized form of the type II theory does
not sustain energy dissipation and permits the transmission of heat as thermal
waves at finite speed. Type III is the most general and contents type I and type
II as particular cases. On the other side, in 1995 Tzou [24] proposed another
theory where the Fourier law is substituted by

q(x, t+ τq) = −k∇θ(x, t+ τθ), k > 0. (1.1)

Here q is the heat flux vector, θ is the temperature and τq and τθ are the delay
parameters which are assumed positive. This equation says that the temper-
ature gradient established across a material volume at the position x at time
t+τθ results in a heat flux to flow at a different instant of time t+τq. The delays
are understood in terms of the microstructure of the material. An extension was
proposed by Choudhuri [2]. In this theory the constitutive equation is

q(x, t+ τq) = − (k∇θ(x, t+ τθ) + κ∇ν(x, t+ τν)) . (1.2)

Here ν is the thermal displacement that satisfies νt = θ, κ is a new parameter
which is typical in the type II and III thermoelastic theories proposed by Green
and Naghdi, and τν is another delay parameter which is also assumed positive.
One thinks that the intention of Choudhuri was to propose a theory with delays
such that when the Taylor approximations are considered, the theories of Green
and Nagdhi are recovered.

Equations (1.1) and (1.2) are strongly based on an intuitive point of view,
but there is no a priori thermomechanical foundation. Furthermore, it can be
proved that, when we combine the proposed constitutive equations with the
classical energy equation

−div q(x, t) = cθt(x, t), c > 0, (1.3)

we can find a sequence of solutions of the form

θn(x, t) = exp(ωnt)Φn(x)

where the real part of ωn tends to infinity [3]. Therefore continuous dependence
on initial data cannot be obtained, and the associated mathematical problem
is ill posed in the sense of Hadamard. This fact disagrees with the a priori
expectation. For this reason many people have wanted to study different formal
Taylor approximations to the the delay equations [1, 12, 13, 20, 21, 22]. These
alternative theories allow to obtain stability of solutions and the well-posedness
of the problems, provided that certain conditions on the parameters hold.

In recent papers Quintanilla [16, 17, 18] has proposed several modifications
of the theories of Tzou and Choudhuri to obtain heat conduction equations
with delay. In the last reference it was proposed to consider the limit case when
τq = τθ and τ = τν − τq. That is

q(x, t) = − (k∇θ(x, t) + κ∇ν(x, t+ τ)) . (1.4)
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And it was shown that, in this case, a result of continuous dependence on the
initial data and supply terms can be obtained. In that work it was also pointed
out the possibility to substitute the delay τν − τq by the second order Taylor
approximation to obtain the constitutive equation

q(x, t) = −k∇θ(x, t)− κ(∇ν(x, t) + τ∇ν̇ +
τ2

2
∇ν̈). (1.5)

This new heat conduction equation also proposes new and stimulating mathe-
matical questions. It is worth citing the reference [7] where the spatial behavior
of the solutions of the equation proposed by the constitutive equation (1.5) was
studied. This constitutive equation can be combined with the elasticity equa-
tion to obtain a new thermoelastic problem. The aim of this contribution is
the study of this new thermoelastic problem. It is worth noting that in a re-
cent paper Kumari and Mukhopadhayay [10] considered this coupled theory and
proved some basic theorems. One of the results were the uniqueness of solutions
using the standard energy arguments. In the present paper we will prove the
uniqueness and instability of solutions when the elasticity tensor is not definite
and the existence and slow decay of solutions for the one-dimensional case. To
be precise, we first use the logarithmic convexity argument to obtain the unique-
ness and the instability of solutions. As we do not assume the positiviness of the
elasticity tensor our uniqueness result is new and it applies to a larger class of
problems than the ones analysed at [10]. The logarithmic convexisty argument
is a powerful tool to study the qualitative properties of the solutions of several
thermoelastic problems [11, 14]. We also use the semigroup arguments to prove
the existence of solutions. We restrict our study to the one dimensional case
to be coherent with the last section where we prove the slow decay of solutions
for the one dimensional problem. This result is relevant if it is compared with
the ones obtained in other thermoelastic theories (see [8, 15, 19, 23] among oth-
ers), because this is the first case of a thermoelastic theory where the decay of
solutions in the one dimensional case is not exponential.

2 Preliminaries

We consider a body that at time t0 occupies the properly regular region B of
the Euclidean three-dimensional space and is bounded by the surface ∂B. The
motion of the body is referred to a fixed system of rectangular cartesian axes
Oxi (i = 1; 2; 3). We denote by nk the outward unit normal of B. We shall
employ the usual summation and differentiation conventions: Latin subscripts,
unless otherwise specified, are understood to range over the integers (1, 2, 3),
summation over repeated subscripts is implied, and subscripts preceded by a
comma denote partial differentiation with respect to the corresponding cartesian
coordinate. We use a superposed dot to denote partial differentiation with
respect to the time.

The basic evolution equations are the equations of motion:

σij,j + fi = ρüi, (2.1)
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and the equation of the energy

T0η̇ = −qi,i + h. (2.2)

The constitutive equations are

σij = Cijkluk,l − βijθ, (2.3)

η = cθ + βijui,j , (2.4)

and

qi = −κijν,j − (kij + τκij)θ,j +
τ2

2
κij ν̈,j . (2.5)

Here ui is the displacement, σij is the stress tensor, fi is the body force, η is
the entropy, qi is the heat flux vector, T0 is the uniform reference temperature,
h is the heat supply term, ν is the thermal displacement that satisfies that
ν̇ = θ is the temperature, Cijkl is the elasticity tensor that satisfies the major
symmetry Cijkl = Cklij , βij is related with the tensor of thermal dilatation,
c is the heat capacity, kij is the thermal conductivity tensor and satisfies the
symmetry kij = kji and κij is conductivity rate tensor which is typical for the
theories of Green and Naghdi. It is worth recalling that this last tensor also
satisfies the symmetry κij = κji.

If we substitute the constitutive equations into the evolution equations we
obtain the field equations:

ρüi = (Cijkluk,l − βijθ),j + fi, (2.6)

cν̈ − (
τ2

2
κ∗ij ν̈,j),i = −βij u̇i,j + (κ∗ijν,j + (k∗ij + τκ∗ij)ν̇,j),i + h. (2.7)

Here k∗ij = T−10 kij and κ∗ij = T−10 κij , however from now on we shall omit the
star and we only write kij and κij respectively.

To determine a well posed problem we should include some initial and bound-
ary conditions. We assume the initial conditions

ui(x, 0) = u0i (x), u̇i(x, 0) = v0i (x), ν(x, 0) = ν0(x), ν̇(x, 0) = θ0(x), x ∈ B.
(2.8)

One possible family of homogeneous boundary conditions is:

ui(x, t) = ν(x, 0) = 0, x ∈ ∂B, t > 0. (2.9)

3 Uniqueness and instability

In this section we consider the problem determined by the system (2.6), (2.7)
the initial conditions (2.8) and the boundary conditions (2.9) and we use the
logarithmic convexity argument to prove the uniqueness of solutions. We also
prove the instability of solutions for the homogeneous version of this problem
whenever the initial energy of the solution is negative.

The assumptions on the constitutive coefficients are the following:
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• The mass density ρ and the heat capacity c are strictly positive constants.

• The relaxation parameter τ is positive.

• The thermal conductivity tensor and the conductivity rate tensor are pos-
itive definite in the sense that there exist two positive constants k0 and
κ0 such that

kijξiξj ≥ k0ξiξi, and κijξiξj ≥ κ0ξiξi, for every vector ξi. (3.1)

To prove a uniqueness theorem it is sufficient to prove that the only solution
for the homogeneous version of the problem is the null solution. Therefore, in
the remains of this section we will treat with the homogeneous version of the
system (2.6), (2.7).

We will start by considering the energy equation. We note that the energy

E(t) =

∫
B

(ρu̇iu̇i + Cijklui,juk,l + cθ2 +
τ2

2
κijθ,iθ,j + κijν,iν,j)dv (3.2)

+2

∫ t

0

∫
B

(kij + τκij)θ,i(s)θ,j(s)dvds = E(0),

is conserved.
The logarithmic convexity argument is based in the choice of a suitable func-

tion which satisfies some specific requirements. We consider several relations to
define this function. First we integrate with respect to the time the homoge-
neous version of equation (2.7). We have∫ t

0

(κijν,i(s)),jds+ ((kij + τκij)ν,i),j − βijui,j = cθ − τ2

2
(κijθ,i),j (3.3)

+((kij + τκij)ν
0
,i),j − βiju0i,j − cθ0 +

τ2

2
(κijθ

0
,i),j

Now, we define Q(x) as the solution to the Poisson equation

(κijQ,i),j = cθ0 − τ2

2
(κijθ

0
,i),j + βiju

0
i,j − ((kij + τκij)ν

0
,i),j , (3.4)

subject to the condition Q = 0 at the boundary ∂B. If we denote

β = ψ +Q, where ψ =

∫ t

0

ν(s)ds, (3.5)

we obtain that equation (3.3) can be written as

(κijβ,i),j + ((kij + τκij)ν,i),j − βijui,j = cβ̈ − τ2

2
(κij β̈,i),j . (3.6)
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We now define the function

Fω,t1(t) =

∫
B

(
ρuiui + κijβ,iβ,j +

∫ t

0

(kij + τκij)ν,iν,jds

)
dv + ω(t+ t1)2,

(3.7)
where ω and t1 are two constants to select later. We compute the two firsts
derivatives of Fω,t1(t):

Ḟω,t1 = 2

∫
B

(ρuiu̇i + κijβ,iβ̇,j)dv +

∫
B

(kij + τκij)ν,iν,jdv + 2ω(t+ t1). (3.8)

F̈ω,t1 = 2

∫
B

(ρu̇iu̇i+ρuiüi+κij β̇,iβ̇,j+κijβ,iβ̈,j)dv+2

∫
B

(kij+τκij)ν,iθ,jdv+2ω.

(3.9)
If we substitute into equations (2.6) and (3.6) and apply the divergence theorem
we obtain that

F̈ω,t1 = 2

∫
B

(
ρu̇iu̇i−Cijklui,juk,l+κijν,iν,j−cθ2−

τ2

2
κijθ,iθ,j

)
dv+2ω (3.10)

In view of the energy equation (3.2), we obtain that

F̈ω,t1 = 4

∫
B

(
ρu̇iu̇i+κijν,iν,j+

∫ t

0

(kij+τκij)θ,iθ,jds
)
dv+2(ω−E(0)). (3.11)

It is also worth noting that (3.8) can also be written as

Ḟω,t1 = 2

∫
B

(ρuiu̇i + κijβ,iβ̇,j)dv + 2

∫ t

0

∫
B

(kij + τκij)ν,iθ,jdvds (3.12)

+

∫
B

(kij + τκij)ν
0
,iν

0
,jdv + 2ω(t+ t1).

From (3.7), (3.12) and (3.11) we obtain that

Fω,t1 F̈ω,t1 −
(
Ḟω,t1 −

Γ

2

)2
≥ −2(E(0) + ω)Fω,t1 , (3.13)

where

Γ = 2

∫
B

(kij + τκij)ν
0
,iν

0
,jdv. (3.14)

Inequality (3.13) is fundamental in our analysis. In case that we assume that
the initial conditions vanish we have that E(0) = 0 and Γ = 0. If we take
ω = t1 = 0 the inequality (3.13) becomes

FF̈ − (Ḟ )2 ≥ 0, (3.15)

where we have simplified the notation and we use F (t) for the function F0,0(t).
From (3.15) we obtain the estimate

F (t) ≤ F (0)1−
t
T F (T )

t
T , 0 ≤ t ≤ T. (3.16)
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We then conclude that F (t) vanishes for 0 ≤ t ≤ T and we get a uniqueness
result.

In the general case from (3.13) we obtain that

Fω,t1 F̈ω,t1 − (Ḟω,t1)2 ≥ −ΓḞω,t1 , (3.17)

where we have selected ω = −E(0). It implies that

d

dt

(
Ḟω,t1
Fω,t1

)
≥ −Γ

Ḟω,t1
F 2
ω,t1

. (3.18)

Therefore, we see that the function

Ḟω,t1 − Γ

Fω,t1
(3.19)

is increasing on time. In particular we see that

Ḟω,t1(t)− Γ

Fω,t1(t)
≥ Ḟω,t1(0)− Γ

Fω,t1(0)
. (3.20)

Now, we select the arbitrary positive constant t1 to be large enough to satisfy
Ḟω,t1(0)− Γ > 0. After a quadrature we obtain

Fω,t1(t) ≥ Fω,t1(0)Ḟω,t1(0)

Ḟω,t1(0)− Γ
exp

(
Ḟω,t1(0)− Γ

Fω,t1(0)

)
t− ΓFω,t1(0)

Ḟω,t1(0)− Γ
. (3.21)

Thus, we have established that F (t) grows exponentially for large time.
We have proved:
Theorem 1 Under the conditions proposed in the begining of the section,

we have:

• The first boundary value problem has at most a solution.

• If E(0) < 0, then the solutions becomes unbounded in an exponential way.

It is worth noting that our uniqueness theorem applies to a large class of
problems to the one proposed at [10]. In fact the new aspect is that we here do
not assume that the elasticity tensor is positive definite. It is worth recalling
that the logarithmic convexity argument is a powerful tool to study structural
stability of thermoelastic systems. A such study could be proposed here after
an easy modification of the function Fω,t1(t) that we have defined. However, we
do not develop this analysis here and we only point out this possibility.

4 Existence of solutions

In this section we prove an existence theorem for the solutions of the thermoe-
lastic problem proposed previously. However, in order to make the calculations
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easier, we consider the homogeneous one dimensional case. In particular all the
constitutive tensors become constants.

We assume that the body occupies the interval [0, π]. That is the system of
field equations becomes

ρü = µuxx − βν̇x, (4.1)

cν̈ − τ2κ

2
ν̈xx = κνxx + (k + τκ)ν̇xx − βu̇x. (4.2)

Although Dirichlet boundary conditions could be considered, in this case the
analysis would be easier if we consider the boundary conditions

u(x, t) = νx(x, t) = 0, x = 0, π, t ≥ 0. (4.3)

We should impose that∫ π

0

ν0dx =

∫ π

0

θ0dx = 0, (4.4)

in order to save constant solutions.
In the remains of this paper we assume that

• ρ, µ, c, k, κ and τ are positive constants.

If we denote u̇ = v, ν̇ = θ and D = d/dx, we can write the system in the
following form:

u̇ = v (4.5)

v̇ =
1

ρ
(µD2u− βDθ) (4.6)

ν̇ = θ (4.7)

θ̇ = (cI − τ2κ

2
D2)−1(κD2ν + (k + τκ)D2θ − βDv). (4.8)

We define L2
∗ = {f ∈ L2;

∫ π
0
fdx = 0} and let H1

∗ = H1 ∩ L2
∗. To formalize

the problem, we assume the evolution to be taking place on the Hilbert space

H = {U = (u, v, ν, θ);u ∈ H1
0 , v ∈ L2, ν ∈ H1

∗ , θ ∈ H1
∗}, (4.9)

driven by the operator

A =


0 I 0 0

µ
ρD

2 0 0 −βρD
0 0 0 I

0 (cI − τ2κ
2 D2)−1βD (cI − τ2κ

2 D2)−1κD2 (cI − τ2κ
2 D2)−1(k + τκ)D2


(4.10)

With the aforementioned notation, our initial boundary value problem can be
written in abstract form as

dU

dt
= AU, U0 = (u0, v0, ν0, θ0). (4.11)
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It can be proved that the mild solutions of system are given by the semigroup
of contractions generated by the operator A. We define an inner product in H.
If U∗ = (u∗, v∗, ν∗, θ∗), then

< U,U∗ >H=
1

2

∫ π

0

(ρvv̄∗ + cθθ̄∗ +
τ2κ

2
θxθ̄
∗
x + µuxū

∗
x + κνxν̄

∗
x)dx. (4.12)

Here, a superposed bar denotes the complex conjugation. It should be
pointed out that this product is equivalent to the usual product in the Hilbert
space H. It is worth noting that the squared norm of a vector is given by

||U ||H =
1

2

∫ π

0

(ρ|v|2 + c|θ|2 +
τ2κ

2
|θx|2 + µ|ux|2 + κ|νx|2)dx. (4.13)

The domain D(A) is the set of U ∈ H such that AU ∈ H .
Lemma 1 The operator A defined previously is the infinitesimal generator

of a C0-semigroup of contractions on H .
PROOF. First of all, we notice that D(A) contains a subset that is dense

in H and then D(A) is also dense in H. We will show that A is a dissipative
operator and that 0 is in the resolvent set of A. Using the Lumer-Phillips
theorem, the conclusion will follow.

On the one side, a direct calculation gives

< < AU,U >H= −1

2

∫ π

0

(k + τκ)|θx|2dx.

and, therefore, the operator A is dissipative. On the other hand, for any F =
(f1, f2, f3, f4) ∈ H we will find a unique U ∈ D(A) such that AU = F , or
equivalently

v = f1, (4.14)

µD2u− βDθ = ρf2, (4.15)

θ = f3, (4.16)

κD2ν + (k + τκ)D2θ − βDv = cf4 −
τ2κ

2
D2f4. (4.17)

The second and fourth equations can be written in terms of f1, f2, f3 and f4 as
follows:

µD2u = ρf2 + βDf3, (4.18)

κD2ν = cf4 −
τ2κ

2
D2f4 + βDf1 − (k + τκ)D2f3 (4.19)

To prove the solvability of this system we develop f1, ..., f4 in Fourier series.
The families of sin(nx) and cos(mx) are two orthonormal complete system in the
Hilbert space L2. In particular, we develop f1 and f2 in series of sines and f3 and
f4 in series of cosines. So, we take f1 =

∑∞
n=1 an sin(nx), f2 =

∑∞
n=1 bn sin(nx),

f3 =
∑∞
n=1 cn cos(nx) and f4 =

∑∞
n=1 dn cos(nx). In view of the fact that the
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averages of f3 and f4 are zero, the developments in the cosines series start from
n = 1.

We will show that it is possible to find u =
∑∞
n=1 un sin(nx) and ν =∑∞

n=1 νn cos(nx) such that
∑∞
n=1 n

2|un|2 < ∞ and
∑∞
n=1 n

2|νn|2 < ∞. We
can take

un =
βncn − ρbn

µn2
,

and

νn = −
cdn + τ2κ

2 n2dn + βnan + (k + τκ)n2cn

κn2
.

Thus, it is clear that u and ν satisfy the desired conditions. It is not difficult
to see that ||U || ≤ C||F ||. Therefore, 0 is in the resolvent set of A and the
lemma is proved.

Theorem 2 The problem given by system (6.1), (6.2) with boundary con-
ditions (4.3) and initial conditions (2.8) in H has a unique mild solution.

PROOF. The proof is a direct consequence of the previous lemma.
It is worth noting that the semigroup is dissipative. The stability of the

system is a consequence of this fact.

5 Slow decay

The aim of this section is to prove that the decay of the solutions obtained in
the previous section is slow. We mean that there is no exponential decay of
solutions. To this end we are going to study the point spectrum of the solutions
and we will see that there always exist solutions as near as we want to the
imaginary axis.

The solution in this case will be combinations of functions of the form

u = A exp(ωt) sinnx, ν = B exp(ωt) cosnx. (5.1)

Imposing them as solutions of the system we obtain the following homogeneous
system with the unknowns A,B:

Bnβω−A(n2µ+ρω2) = 0, 2Anβω+B(2cω2 +n2(2kω+κ(2+τω(2+τω)) = 0
(5.2)

We want to obtain a nontrivial solution. We impose that the determinant of
this system vanishes. Therefore ω must satisfy the equation

2n4κµ+ 2x(kn4µ+ n4κµτ) + 2x3(kn2ρ+ n2κρτ) (5.3)

+x2(2n2β2 + 2cn2µ+ 2n2κρ+ n4κµτ2) + x4(2cρ+ n2κρτ2) = 0

Our aim is to prove that solutions to this equation as near as we want to the
complex axis can be found. Therefore, it will be sufficient to show that for ε
as small as we want, we can find solutions which are on the right of the line
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<{z} = −ε. This is equivalent to prove that there exists a solution of the
equation

2n4κµ+ 2(x− ε)(kn4µ+ n4κµτ) + 2(x− ε)3(kn2ρ+ n2κρτ) (5.4)

+(x− ε)2(2n2β2 + 2cn2µ+ 2n2κρ+ n4κµτ2) + (x− ε)4(2cρ+ n2κρτ2) = 0,

with positive real part.
We prove it by means of the Hurwitz theorem that says that the necessary

and sufficient condition to guarantee that the solutions of the equation

l4x
4 + l3x

3 + l2x
2 + l1x+ l0 = 0, (5.5)

have negative real part is that li > 0, l3l2 > l4l1 and l1l2l3 − l0l23 − l4l21 > 0.
In our case, we can write equation (5.4) as

ρ(2c+n2κρτ2)x4+(2ρ(k+κτ+)n2+P3(ε))x3+(2(β2+cµ+κρ)n2+κµτ2n4+P2(ε))x2

(5.6)
+2((kµ+ κµτ)n4 + P1(ε))x+ 2κµn4 + P0(ε)

where

P3 = −4ερ(κτ2n2 + 2c), P2 = 6ε(−kρ− κρτ + ερκτ2)n2 + 6cρε2

P1 = ε(−κµτ2n4 − (2β2 + 2cµ+ 2κρ− 3kρε− 3κρτε+ 2κρτ2ε2)n2 − 4cρε2)

P0 = 2cε4ρ− n4(2kεµ+ 2εκµτ − ε2κµτ2)

−n2(−2β2ε2 − 2cε2µ+ 2kε3ρ− 2ε2κρ+ 2ε3κρτ − ε4κρτ2).

Direct calculations allow us to see that there exists n large enough to guarantee
that l3l2 < l4l1 and l1l2l3 − l0l23 − l4l21 < 0. We have that

l3l2− l4l1 = −2εκ2µρτ4n6 + (4kκρ2 + 4κ2ρ2τ + 4kβ2ρ+ 4β2κρτ − 20ε3κ2ρ2τ4+

−ε(12k2ρ2+24kκρ2τ+8cκµρτ2+16κ2ρ2τ2+4β2κρτ2)+ε2(30kκρ2τ2+30κ2ρ2τ3))n4

+n2(−ε(8cβ2ρ+ 8c2µρ+ 8cκρ2)− 80cε3κρ2τ2 + ε2(60ckρ2 + 60cκρ2τ))

−80c2ε3ρ2.

It is clear that for n large enough this expression becomes negative because
the coefficient of the larger degree in the variable n is negative. Therefore this
expression is negative and the decay is slow.

It is worth noting that an analysis similar could be done for the expression
l1l2l3 − l0l23 − l4l21, but we do not reproduce it here to save cumbersome calcu-
lations. Nevertheless it is sufficient with the analysis of l3l2 − l4l1 to prove the
slow decay.
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6 Further comments

If τν < τq we have that τ < 0. Therefore our system becomes

ρü = µuxx − βν̇x, (6.1)

cν̈ − (τ∗)2κ

2
ν̈xx = κνxx + (k − τ∗κ)ν̇xx − βu̇x, (6.2)

where τ∗ = τq−τν . An existence theorem can be obtained for this case following
an argument similar to the one developed in Section 4.

In case that k > τ∗κ we can see that the system is stable. However when
k < τ∗κ the system is not stable. In fact, we can look for solutions of the form
(5.1). If we look for nontrivial solutions, then ω must satisfy the equation

2n4κµ+ 2x(n2β2 + kn4µ− n4κµτ) + 2x3(kn2ρ− n2κρτ) (6.3)

+x2(2cn2µ+ 2n2κρ+ n4κµτ2 + 2n2β2) + x4(2cρ+ n2κρτ2) = 0,

where we have omitted the star to make the written easier.
This is an equation of the type (5.5). For n large enough the coefficient

2(n2β2 + kn4µ− n4κµτ) becomes negative. Alternatively if we have that

l3l2 − l4l1 = 4n4ρ(β2 + κρ)(k − κτ)

which is also negative and then we see the instability of solutions.
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