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Abstract.  

Commercially pure nickel was processed by equal channel angular pressing (ECAP) through 

route Bc for 12 passes to obtain an ultrafine grained (UFG) microstructure and further subjected 

to an ultrasonic treatment (UST) which introduced  a maximum amplitude equivalent to anormal 

stresses of 100 MPa in a steady state regime. It was observed that the microstructure of UFG Ni 

can be differently altered depending on the position in the sample, i.e. on the amplitude of the 

ultrasonic wave. The microstructural analysis demonstrated a lower dislocation density (due to 

the activation of recovery) at the cross section of the specimen subjected to UST  at an amplitude 

equal to 0.8 of the maximum one, plus enhanced hardening in the cross section at the maximum 

amplitude.  
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1. Introduction 

Ultrasonic treatment (UST) of metallic materials has a wide range of applications due to its 

influence on the structure and properties of materials [1-7]. Interaction of ultrasound waves with 

grain boundaries, dislocations, and with other crystal lattice defects can lead to changes in their 

structure and arrangements that determines the microstructure, affects mechanical properties of 

materials and results in a number of interesting effects [1,2,5]. Well-known consequences  of 

UST are the Blaha-Langenecker effect [8], or the yield or flow stress reduction during constant-

strain rate experiments, and the Archbutt effect [9], or the strain rate increase during creep 
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experiments in the presence of a superimposed oscillating stress. These softening effects of 

ultrasound are commonly referred to as acoustoplastic effect. Ultrasonics welding of similar and 

dissimilar materials has become a successful industrial technology [6,7]; moreover, it provided 

the fundamental base for the new emerging technology of ultrasonic additive manufacturing [7]. 

Another example of commercially used technologies of ultrasonic treatment is the surface 

modification by ultrasonic peening [10-13]. For instance, high-intensity ultrasound affects grain 

refinement in alloys and even can be used for nanostructuring of surface layers of materials that 

results in surface hardening [14]. Finally, ultrasounds can also be used to accelerate some 

reactions in metals, e.g., phase transformation processes in shape memory TiNi alloys [15,16] or 

grain refinement during solidification [refs].  

At the same time, a great attention in the last few decades has been given to bulk 

nanostructured materials processed by severe plastic deformation (SPD) methods. Metals 

processed by SPD  demonstrate high strength and fatigue properties, enhanced wear resistance, 

improved superplasticity (at lower temperatures and larger strain rates than conventional 

superplastic conditions). On the other hand SPD metals  display significant distortion of the 

crystal lattice because the presence of non-equilibrium state grain boundaries [17,18]. Internal 

grain volumes in these materials usually have a highly distorted structure contanining  individual 

lattice dislocations,  high-energy structures, large fraction of low-angle subgrain boundaries, etc. 

The high internal stresses usually present in the structure of such materials result in  low 

ductility, low impact toughness and limited thermal stability of the microstructure [17].  

Although, in some cases, ductility can be improved by optimizing the stacking fault energy 

[19] and the deformation process [20], the main way for its improvement is the relaxation of the 

non-equilibrium microstructure. Usually the structure of deformed materials can be relaxed by 

annealing. However, it is accompanied by an undesirable grain growth that significantly reduces 

the strengthening effect obtained by  nanostructuring through SPD [21,22]. Therefore, alternative 

methods of non-equilibrium structure relaxation in SPD-processed nanomaterials, which would 

allow one to improve their thermal stability, ductility and impact toughness, are of great interest.  

In spite of the wide use of ultrasounds with a large range of frequencies and amplitudes in 

many fields of materials science and engineering, the influence of ultrasonic vibrations on the 

non-equilibrium structure of nanostructured materials are not yet well explored. Some 

mechanisms of the influence of alternating stresses induced by the ultrasonic field on 

dislocations and their arrays have been described, for example, in [5,23,24], but still such 

mechanisms are far from being fully understood. 

It has been shown in recent works of some of the present authorsthat UST of some 

moderate intensity imposed on nanostructured nickel processed by high pressure torsion (HPT) 



lead to an increase of the thermal stability of its microstructure [25]. UST of equal-channel 

angular pressing (ECAP) processed nickel also  resulted in a simultaneous increase of ductility, 

strength and impact toughness [26,27].   

Atomistic simulations of the interaction of ultrasonic waves with crystal lattice defects in a 

two-dimensional nanocrystal has shown as well a number of interesting effects consistent with 

experimental data, namely, a decrease of the number of low-angle grain boundaries, relaxation of 

non-equilibrium grain boundaries and triple junctions avoiding grain growth, and annihilation of 

lattice dislocation [28]. Three-dimensional molecular dynamics simulation studies have 

displayed that emission of lattice dislocations by nonequilibrium grain boundaries facilitated by 

their internal stresses can be an underlying atomistic mechanism for the structure relaxation 

effects of UST in the SPD-processed materials [29, 30]. 

These promising results need to be understood and studied in more detail and accuracy. In 

consequence, in the present study was carry out a detailed analysis of the microstructure of 

nanostructured nickel processed by ECAP and subjected to UST with a maximum stress 

amplitude of 100 MPa. This maximum was chosen on the base of  earlier studies [26]. The final 

aim of the present study is to find the dependence of  quantitative characteristics of the 

microstructure such as the fraction of high-angle boundaries, dislocation density, average grain 

size, etc.,  on the amplitude of the ultrasounds applied. 

 

2. Experimental materials and procedure 

Cylindrical samples of commercially pure nickel (99.5%, grade NP2 according to Russian 

classification) were subjected to 12 passes of ECAP following route BC, i.e. by rotating the 

sample to 90 in the same direction around its axis before each subsequent pass [26]. The 

deformation temperature was set equal to 350C. After ECAP, the samples were subjected to a 

slight extrusion to obtain cylinders of 18 mm in diameter and 104 mm in length. The latter size is 

approximately equal to a half wavelength of an ultrasonic wave at a frequency of 22 kHz in 

nickel. This made possible to  generate a standing ultrasonic wave by along this sample. 

The sample and a scheme of the UST applied are depicted in Fig. 1. The left end of the 

sample is firmly attached to an acoustic transducer, which is powered by and ultrasonic generator 

producing mechanical vibrations in the sample at  frequency of 22 kHz. Since the vibrations are 

transmitted to the half-wavelength sample, a standing wave is formed in the latter and the 

amplitude of oscillating displacements along the sample obey the relation )/sin(0 lx , 

where 0  is the amplitude of displacements of the sample edges, i.e. at 4/2/  lx ,  the 

wave length and x the distance from the centre of the sample. Therefore, the amplitude of normal 



stress at any point of the sample, dxxdExA /)()(  , where E is the Young modulus, can be 

obtained from the following relationship: 

 xAxA





2
cos)( 0 , (1) 

being A0 is  maximum stress amplitude, which corresponds to the centre of the sample. 

A value of A0 equal to 100 MPa was selected in the present study, so that the normal stress 

amplitude changed from 0 MPa at the edges of the sample to 100 MPa in the centre.  

After UST the sample was sliced into 42 disks of 2.5 mm in thickness as also shown in Fig. 

1. The mechanical properties under tension conditions for each disk and its correspondence with 

the oscillating stress amplitude can be found elsewhere [26]. In the present study, the parameters 

of microstructure and texture of ECAP nickel subjected to UST for the cross sections shown in 

the Fig.1b are defined by the slice numbers 1, 13, 19, and 30, which correspond to stress 

amplitude values of A = 0, 79, 98, and 79 MPa, respectively.  

The microstructure was studied on a scanning electron microscope TESCAN MIRA 3 

LMH FEG equipped with an EBSD analyzer “CHANNEL 5”. A rectangular grid with scan step 

of 100 nm was used. The EBSD analysis was performed for the central regions of the disks 

extracted from theultrasonic treated cylinder. Specimens for EBSD analysis were prepared by 

mechanical polishing with subsequent electromechanical polishing. Received EBSD maps were 

subjected to a clean-up procedure involving a grain tolerance angle of 5° and a minimum grain 

size of 3 pixels. 

The X-ray diffraction analysis was carried out using an DRON-4 apparatus. Specimens for 

X-ray analysis were identically prepared to  the EBSD samples. The diffraction patterns were 

recorded with a step 0.05 and exposition time 5 s. The CuK line was used with Bragg-Brentano 

focusing. A Soller collimator for primary beam and a graphite monochromator for diffracted 

beam were used. The experimental data were processed by means of the software «Maud» 

(Materials Analysis Using Difraction) [31] that uses the Rietveld method [32]  in its algorithm. 

 

3. Experimental results 

Table 1 summarizes all experimental data obtained by microhardness measurements, X-ray 

analysis and EBSD analysis. 

3.1. Microhardness 

Table 1 show the evolution of microhardness (Hv) as a function of the position on the ECAP rod 

treated by ultrasound and the corresponding value of the applied UST stress amplitude. It is 

apparent that the Hv values increase for the cross-sections corresponding to samples #13 and #30 



(A=80 MPa) comparing to the untreated sample #1 (A≈0 MPa) and they slightly decrease as the 

US amplitude increases, i.e. for the samples #19 and #24 (A=98 MPa).  

   

3.2. X-Ray analysis 

The results of the Rietveld analysis of X-ray data are presented as well in Table 1. As for 

microhardness similar trend was observed for crystallite size. i.e.  decreases for  samples #13 and 

#30 and  increases for  samples #19 and #24 in comparison with the untreated specimen #1. 

Microstrain values posses a reciprocal dependence, that is, increasing for  samples #13 and #30 

and decreasing for  samples #19 & #24. On the other hand, dislocation density can be estimated 

using the following equation [33, 34]:  

 
bd
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 (2) 

where 〈ε2
 〉1/2

 is the microstrain, d is the crystallite size and b = 2.49 Å is the Burgers vector for 

nickel. Dislocation density increases for the specimens subjected to UST with amplitude of 80 

MPa (#13 & #30) and decreases slightly for the specimens treated at 98 MPa.  

 

3.3. EBSD data 

Figure 2 represents in 3 columns (from left to right) the inverse pole figures (IPF), the 

Kernel average misorientation (KAM) maps and the (111) pole figures for  samples #1, 13, 19, 

24 and 30. Black lines in IPF and KAM maps separate high angle boundaries (HAB), i.e. 

misorientation angles higher than 15°. Scale bars on all maps correspond to 5 micrometers. Last 

row in the Fig. 2 shows the legends for IPF and KAM maps and for the (111) pole figures. 

Sample #1 corresponds to UST with very small amplitude (~7.5 MPa) and shows the typilca 

microstructure of ECAPed materials[34]. Insets in the texture column show the texture strength. 

All specimens exemplified have a fairly strong texture with maxima from 8.2 times random level 

for the specimen #1 up to 10.5 times random level for the specimen #13.  

Figure 3 summarizes the grain size distribution obtained by the intercept method and the 

grain boundary misorientation distribution (GBMD). Mean grain size of the specimens subjected 

to identical UST is similar: mean grain size of the sample #19 is 0.55 µm which is very close to 

the value of 0.54 µm for the sample #24. Likewise, the mean grain size of 0.42 µm for the 

sample #13 is close to the value of 0.40 µm for the sample #30. Grain boundary misorientation 

distributions are comparable for all specimens and they consist of large fraction of low angle 

boundaries (LAB). However, a careful inspection shows a slight increase in the fraction of high 



angle boundaries (HAB) with increasing amplitude of UST: samples # 19 and 24 possess almost 

identical fractions of HAB of about 45%.  

Using kernel average misorientation (KAM), the dislocation density can be evaluated in 

turns by using the equation [35]:  

 
Dh

EBSD


 , (3) 

where θ is the kernel average misorientation in radians, h is a scanning step size and D is a grain 

size, obtained using EBSD by intercepts method.  

All parameters obtained by experimental measurements using EBSD are presented in 

Table 1. 

 

4. Discussion 

X-Ray and EBSD analysis.  

Fig. 4 depicts the crystallite size and the microstrain plotted as a function of the position in the 

half-wave specimen, or in other words, of the US amplitude. The crystallite size decreases with 

increasing of US amplitude reaching the minimum of about 160 nm for the maximum applied 

UST stress. However, the microstrain behaves differently: it increases as UST amplitude 

increases from 0 MPa to the value of 80 MPa and then decreases as the US amplitude continues 

increasing. These results are in good accordance with data obtained earlier [36]. 

Fig. 5 summarizes the results of calculation of dislocation density based on X-Ray analyses 

and EBSD measurements. Despite of the complex shape for the microstrain, dislocation density 

evaluated by X-ray follows the UST amplitude. Here it is assumed that this dislocation density 

corresponds to stochastically stored dislocations (SSD) induced by ultrasonic treatment. Their 

density level is one order of magnitude lower than it is usually observed for nickel subjected to 

severe plastic deformation [37]. This is in good consistence with the relatively low amplitude of 

UST. The dislocation density evaluated from kernel average misorientation by EBSD reflects the 

density of geometrically necessary dislocations (GNB) and it shows the level of dislocations 

stored in low angle boundaries with misorientation ranging from 1 to 5 degrees.  

Deformation mechanisms.  

Applying two models for strain hardening, namely the Hall-Petch equation, and dislocation 

strengthening,  one can estimate the yield strength for nickel subjected to UST as a function of 

US amplitude. The Hall-Petch likewise relation for microhardness is  



 DKHH HVVV /0  , (4) 

where HV0 is the grain size-independent microhardness due to lattice friction and other 

mechanisms (i.e. Orowan hardening due to impurities), KHV is an empirical coefficient of grain-

size strengthening, and D is the grain size determined by intercepts in EBSD. In ref [38] the 

Hall-Petch relation was studied for microhardness in ultrafine-grained and nanostructured nickel 

processed by different methods and from linear fitting of experimental data the following values 

for its parameters were calculated: HV0=833 MPa and KH=596.4 MPa·µm
1/2

.  

The contribution of dislocation strengthening can be also estimated from [39] 

               √ ,      (5) 

where is α=0.24 is the numerical coefficient describing the average contribution from 

dislocations of different type (screw or edge), M=3 is the Taylor factor, G=78.9 GPa is the shear 

modulus of nickel,  b=0.249 nm is the Burgers vector for nickel and ρ=ρSD + ρGNB is the total 

dislocation density. Fig. 6 presents the calculated microhardness as a function of the position in 

nickel specimen or as a function of the amplitude of applied ultrasound and experimentally 

measured microhardness. The calculated microhardness is in  excellent agreement with 

experimental values corresponding to the non-treated area of the specimen and in general it 

follows the dependence (less than 10% of difference) of  Hv with the position on the rod or the 

amplitude of ultrasonic treatment. The microhardness of the sample #0 (ECAP area) is lower 

than that reported in [39, 40]. This is due to the fact that the present specimen was processed at 

350ºC and not at room temperature.  

Model for microstructure evolution during UST.  

Supposedly, the influence of ultrasonic treatment (Fig. 1) is symmetrical regarding to zero point 

of the specimen or the maximum of US amplitude. This means that the experimental data for the 

samples #13 and #30 and for #19 and #24 can be averaged by pairs. Microstructural 

characteristics obtained by such an averaging are summarized in Table 2. It is apparent that the 

crystallite size decreases and stochastic dislocation density increases as ultrasonic amplitude 

increases from zero to the maximum of 100 MPa.  Concurrently, microstructural parameters 

obtained using EBSD behave differently: grain size (acquired by intercepts) and GNB density 

decrease as US amplitude increases to the value of 80 MPa. At the central point of the specimen 

with the maximum of US amplitude the grain size increases again but to intermediate level of 

0.55 µm, which is lower than one for untreated area. The GNB density returns to the level of the 

sample #0. Such an evolution of microstructure on two different scale levels can allow 

constructing a phenomenological model for ECAP nickel subjected to ultrasonic treatment 



(Table 3). Under ultrasound conditions the structure is introduced the dislocations which are 

mostly stochastic in types due to alternating sign of ultrasonic impact. However, increasing in 

US amplitude leads to increasing the heat released during the US treatment, which consequently 

initiates recovery in the area of higher US amplitude.  

 

5. Summary 

Investigation of the structure of ECAPed nickel under a post UST shows that the relaxation 

effect is non-linearly dependent on the amplitude of ultrasound. The decrease of dislocation 

density, the low-angle grain boundary fraction and the changes in texture are most significant in 

the state after ECAP and UST within the amplitude of 80 MPa. With the increase of amplitude to 

98 MPa the effect is not so strong. This dependence can be explained by rearrangement of 

dislocations under the action of the oscillating force. When this force is low enough, the 

incompletely formed low-angle dislocation boundaries rearrange into the stable boundaries that 

do not produce long-range stresses. Also, the annihilation process takes place due to increase of 

dislocation mobility. But, with the increase of the US intensity the generation of new 

dislocations becomes possible. These two effects introduce a different contribution in the 

dependence of the ultrasound amplitude. 

Understanding this mechanisms and their dependence of the US intensity it becomes 

possible to use the relaxation effect of the UST in the nanostructured materials processed by 

ECAP and to get desirable properties. The finding out of the optimum regimes of the UST for 

achieving the maximum relaxation effect without loss of strength requires further investigations. 
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Fig. 1. Schematic of the sample and US amplitude distribution. 
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Fig. 2.  IPF and KAM maps, (111) pole figures for different cross sections of ECAP nickel subjected to 

ultrasonic treatment. 
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Fig. 3. Grain size distribution (by intercepts) and Grain boundary misorientation distribution in ECAP 

nickel specimens subjected to ultrasonic treatment 

 

 

Fig. 4. Microcrystallite size and microstrain by X-Ray analysis of ECAP nickel specimens subjected to 

ultrasonic treatment. Arrows indicates data points interpolated. 
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Fig. 5. Dislocation density calculated by X-Ray and EBSD analysis of ECAP nickel specimens subjected to 

ultrasonic treatment. 

 

 

 

Fig. 6. Experimental and calculated microhardness of ECAP nickel subjected to UST. 
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Table 1. Microhardness and microstructural parameters by X-ray and EBSD analyses 

Speci
men 

Positi
on 

(mm) 

Ultras
onic 

amplit
ude 

(MPa) 

Hv 
(MPa) 

X-ray EBSD 

Crystall
ite size, 
d (nm) 

Microstr
ain, 

ε2


1/2, 
×10-3 

Disloca
tion 

density

, X-ray, 
×1014 
(m-2) 

Ste
p 

siz
e 
(n
m) 

KA
M 
(°) 

Grain 
size by 
interce

pts 
(µm) 

Disloca
tion 

density

, EBSD, 
×1014 
(m-2) 

#1 
-52.5 

0 
1926.2±

86.9 
284.5±

14.4 
0.966±0.

022 
0.47±0.

04 
10
0 

0.8
9 

0.62±0
.03 

6.24±0.
62 

#13 
-20 

80 
2180.7±

58.7 
204.6±

12.0 
1.105±0.

027 
0.75±0.

06 
10
0 

0.6
4 

0.42±0
.02 

4.49±0.
45 

#19 
-5 

98 
2156.2±

70.2 
176.6± 

6.0 
0.850±0.

021 
0.67±0.

04 
10
0 

0.7
8 

0.55±0
.02 

5.61±0.
56 

#24 
5 

98 
2148.6±

67.5 
175.4±

6.8 
0.800±0.

028 
0.64±0.

05 
10
0 

0.9
8 

0.54±0
.02 

6.87±0.
69 

#30 
20 

80 
2202.0±

87.7 
209.7±

12.3 
1.043±0.

028 
0.69±0.

06 
20
0 

1.2
0 

0.40±0
.02 

4.21±0.
42 

#41 
52.5 

0 
1926.2±

86.9 
300.0±

15.0 
1.000±0.

03 
0.46±0.

04 
10
0 

0.8
9 

0.62±0
.03 

6.24±0.
62 

 

 

 

  



Table 2. Microstructure parameters of the ECAP nickel subjected to ultrasonic treatment 

US amplitude  

(MPa) 

X-ray EBSD 

Crystallite size (nm)   SD, ×1014 (m-2) Grain size (µm) GNB, ×1014 (m-2) 

0 284.5±14.4 0.47±0.04 0.62±0.03 6.24±0.62 

80 232.2±12.3 0.66±0.04 0.41±0.02 4.35±0.43 

98 168.0 ± 5.9 0.79±0.06 0.55±0.03 6.24±0.62 

 

 

 

 

Table 3. Schematic of microstructure evolution of the ECAP nickel subjected to ultrasonic treatment. 
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