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Abstract

Multitask Learning (MTL) was conceived as an approach to improve the
generalization ability of machine learning models. When applied to neu-
ral networks, multitask models take advantage of sharing resources for
reducing the total inference time, memory footprint and model size. We
propose MTL as a way to speed up deep learning models for applications
in which multiple tasks need to be solved simultaneously, which is par-
ticularly useful in embedded, real-time systems such as the ones found
in autonomous cars or UAVs.

In order to study this approach, we apply MTL to a Computer Vi-
sion problem in which both Object Detection and Semantic Segmenta-
tion tasks are solved based on the Single Shot Multibox Detector and
Fully Convolutional Networks with skip connections respectively, using
a ResNet-50 as the base network. We train multitask models for two
different datasets, Pascal VOC, which is used to validate the decisions
made, and a combination of datasets with aerial view images captured
from UAVs.

Finally, we analyse the challenges that appear during the process of train-
ing multitask networks and try to overcome them. However, these hinder
the capacity of our multitask models to reach the performance of the best
single-task models trained without the limitations imposed by applying
MTL. Nevertheless, multitask networks benefit from sharing resources
and are 1.6x faster, lighter and use less memory compared to deploying
the single-task models in parallel, which turns essential when running
them on a Jetson TX1 SoC as the parallel approach does not fit into
memory. We conclude that MTL has the potential to give superior per-
formance as far as the object detection and semantic segmentation tasks
are concerned in exchange of a more complex training process that re-
quires overcoming challenges not present in the training of single-task
models.
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Chapter 1

Introduction

This thesis lies in the area of Deep Learning (DL) within the wider field of
Machine Learning (ML). It focuses on using Multitask Learning (MTL)
for the deployment of DL models in embedded systems for real-time
applications in cases where more than one task needs to be solved simul-
taneously. In this section the motivation for carrying out this thesis is
explained, the approach that will be followed is justified and the contri-
butions specified.

1.1 Background

Typically, deep learning models (and machine learning models in general)
focus on solving one task at a time. However, applications often require
more than one task to be performed simultaneously. If that is the case
the naive solution is to deploy different models running in parallel, one for
each task. In fact, [1] claims that most real-world problems can be seen
as multitask problems, and that, although few of the test problems in
machine learning repositories are seen as multitask ones, this is because
most have often been broken to fit into smaller subproblems beforehand.

Examples of applications in which more than one task needs to be solved
are easy to find in multiple domains: in Natural Language Processing
one might want to translate from one language to multiple languages [2],
in Medical Imaging multiple clinical variables can be estimated from a
same brain image [3] and in Computer Vision (CV) a self-driving car

1
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Figure 1.1: The Shared Dynamic Map (SDM) presents all static and
time-varying (dynamic) objects that are captured by the UAVs. In this
way, the SDM is a foundational technology for applications and services
including delivery, traffic/crowd management, surveillance, disaster re-
sponse, and so on. In this study, we do not consider the shared aspect
of SDMs so we refer to them as dynamic maps. From [4].

might need to do semantic segmentation (see Section 2.5) to differentiate
between road and tree and at the same time estimate the depth of the
different objects in the image to know when to brake.

Another example, which we will use as a study case in this thesis, is that
of creating dynamic maps from Unmanned Aerial Vehicle (UAV) imagery,
see Figure 1.1. The dynamic map is built by doing semantic segmentation
and Multiple Object Tracking (MOT) on aerial view images for capturing
the static, larger objects and the smaller, dynamic objects respectively
and later representing them on a traditional map over time. A number
of applications can benefit from such a map: disaster response, traffic or
crowd management or surveillance.

The creation of a dynamic map is another example of an application
that needs multiple tasks to be solved simultaneously. [5] developed a
DL model for semantic segmentation from UAV imagery to get the static,
larger objects present in UAV imagery such as roads, buildings or water
bodies. In order to obtain the dynamic objects, MOT[6] needs to be
introduced. Following the common tracking-by-detection[7] approach to
MOT, an object detection (see Section 2.6) model needs to be developed
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for obtaining the detections for each frame that would later be used to do
the data association step across the frames with each identified object.

Solving multitask problems becomes most relevant when it happens in
embedded systems - which can be found on autonomous systems or mo-
bile devices such as UAVs, robots, smartphones, wearables, virtual /
augmented reality headsets or portable game consoles. Such systems
typically run on low power, which limits the computing power they can
provide, and are limited on terms of memory available, making the lack
of resources an important concern. Moreover, their applications often
have the extra requirement of having to run in real-time, meaning small
inference times are essential and off-board computation is not possible.

Nevertheless, DL solutions deployed in desktop or datacenter systems
without the previously mentioned constraints could also benefit of mod-
els that allow more efficient computation and have smaller memory foot-
prints. These would be able to process more information in a quicker
and/or cheaper way.

1.2 Challenges

Embedded systems as the ones mentioned in the previous section can
be based on a Central Processing Unit (CPU) and include a Graphics
Processing Unit (GPU) or can be based on a Field-programmable Gate
Array (FPGA) or Application-specific Integrated Circuit (ASIC). Each
of these approaches serves different applications and poses different chal-
lenges, e.g. a typical FPGA has little on-chip memory1 but is much more
efficient than a CPU.

Here the focus is on the more flexible but slower CPU or GPU-based em-
bedded systems. In those, the available resources range from very limited
to moderate but are never close to the systems in which deep learning
models are trained and where their performance is usually evaluated. As
an example, Table 1.1 shows a comparison between the resources avail-
able in two of the most powerful System-on-a-chip (SoC) including a
GPU available on the market, the Jetson TX1 and TX2, and the most
powerful consumer-grade GPU, the Titan X Pascal, among other GPUs
in between.

1As an example a Xilinx Spartan-7 FPGA has at most 0.5 MB of on-chip memory.
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Table 1.1: GPU models comparison. Tegra X1 and Tegra P1 are the
chips in the Jetson TX1 and TX2 respectively. *: memory is shared with
the system. Values from [8], [9].

GPU model FP32 Processing power (GFLOPS) Memory (GB)

Tegra X1 512 4*
Tegra P1 750 8*
GTX 980 4612 4
GTX Titan X 6144 12
Titan X Pascal 11366 12

This poses three main challenges from the point of view of deployment
of deep learning models for inference, which are nothing but accentuated
when it is not one but multiple models that have to be deployed simul-
taneously. The challenges are in terms of memory requirement, both
in disk and physical memory, and computational resources needed to
achieve small inference times that allow high enough throughput to give
real-time performance.

First, the model weights need to be stored on disk to be later used.
Embedded systems are typically constrained in the size of their storage
and the weights of the models can take hundreds of MB2, which can mean
a large share of the total available storage space. Moreover, imagine a
smartphone app that runs AlexNet for classifying images in the camera
album and create nicely ordered albums depending on the content of
the image. Such an app would need to download the weights from the
Internet and store them, making the size of the app too large to be
practical. If we need more than one task and have one model for each,
we have to store the weights for each model, even if they are not to run
simultaneously.

Second, the model has to fit into memory. Not only the parameters have
to be loaded into memory but the outputs of intermediate layers must
be stored as well, whose size depends on the size of the input data and
the batch size. Figure 1.2 shows the relation between batch size and
memory utilization for common convolutional networks used for Image

2For example, the file containing the weights of the reference AlexNet model for
Image Classification is 233 MB [10] when using the Caffe framework[11]. Find it at:
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
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Figure 1.2: Memory vs. batch size. Maximum system memory utilization
for batches of different sizes. Memory usage shows a knee graph, due to
the network model memory static allocation and the variable memory
used by batch size. From [12].

Classification. This might not be a problem for models running in data
centers but clearly compromises models running in embedded systems
with a small amount of memory available, both if they run on CPU or
on GPU with dedicated memory. If two models are needed in parallel -
assuming they are the same size - the memory footprint is doubled.

Third, the model has to be run to get the inference results, i.e. a forward
pass of the model has to be computed for each sample of the input data.
Focusing now on the GPU-accelerated inference, the best throughput is
achieved typically by making full use of the parallelism capabilities of the
GPU using a batch size larger than one, which introduces some latency.
When its utilization gets close to the maximum the inference time is
proportional to the computational complexity or number of operations
that needs to be performed [12]. See Figure 1.3. In fully-connected
and convolutional networks, the computational complexity is dominated
by multiply-adds, typically measured in FLoating-point Operations Per
Second (FLOPS). With two models in parallel we will have double the
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Figure 1.3: Operations vs. inference time, size proportional to # param-
eters. Relationship between operations and inference time for batch size
16, where resources are fully used and, therefore, the operations count
represents an optimal estimation of inference time. From [12].

number of operations, i.e. double the inference time (assuming they reach
the maximum utilization of the GPU or are directly running sequentially
on a single CPU).

1.3 Approach

Multitask learning learns to solve tasks in parallel using a shared represen-
tation of the same input data. One straightforward way of implementing
MTL is with Neural Networks (NN) which share a base trunk or set
of hidden layers that learns a common representation for the multiple
tasks and from which a number of task-specific branches emerge, giving
multiple and different outputs related to each task.

Using a part of the network to learn a shared representation also means
computing this representation in a shared manner, sharing the resources
both in terms of memory and computation cost. In this way, only the
branches emerging from the shared representation must be stored and
computed in parallel, accounting for the extra cost over having a sin-
gle task network. Depending on the relative size of these task-specific
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branches over the shared trunk the multitask network can be much larger
than the single-task network or almost negligible.

In practice, networks solving multiple, different tasks are already based
on the same networks. For example, most of the lately proposed networks
for CV tasks are based on VGG [13] or ResNet [14] networks previously
trained for Image Classification. The non-task-specific layers of these
networks account for most of the weights and computational complexity.
These are perfect candidates to be used as the shared base trunks for
multitask networks as they have already been proved useful for solving
many different tasks in CV related problems, as previously investigated
in the literature [15]–[17]; in [18] features extracted from the OverFeat
network [19] are used for solving up to 5 different tasks.

Moreover, previous research proves that by exploiting synergies between
related tasks the models can improve their generalization performance,
as the extra information in the training signals of other tasks works as
an inductive bias towards the more general solution that gives better
performance for the multiple tasks [1].

MTL thus seems to be a win-win approach for deployment of models
in real-world problems, specifically in those constrained by real-time re-
quirements and by the limited resources available in embedded systems.
As a downside, the training process turns out to be more complex as has
already been analyzed in previous research [1].

The study of the viability of MTL for this purpose will focus on the pro-
posed study case. The semantic segmentation and object detection tasks
are known to be related and have been previously solved simultaneously
with multitask networks [20]–[22], although never with the goals pursued
here.

The multitask network approach opens up the possibility of creating a
swiss-knife for different tasks which share the same input data as done in
[21]. In this thesis the focus is on two tasks, but it is worth mentioning
that any other number of tasks can be added as long as they have the
same input, are related and are based on a convolutional base network.
For the case study conducted here, the natural task to add would be
action recognition as it would directly extend the features and uses of
the dynamic map for surveillance or disaster scenarios.
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1.4 Contribution

This thesis focuses on the study of how the inference times, memory
footprint and size of deep learning models can be reduced without com-
promising their prediction accuracy in applications in which more than
one task needs to be solved. In particular, if multitask networks can keep
the prediction accuracy at reasonable levels or even improve it while, by
construction, reducing the required resources for the deployment of the
models, thus achieving smaller inference times, memory usage and model
size compared to the deployment of multiple single-task models at the
same time.

As a case study, we train and evaluate multitask models for both se-
mantic segmentation and object detection. First, we train on the image
dataset Pascal VOC (see Section 3.2), a subset of which has ground-truth
annotations for both tasks. We observe that some multitask models per-
form better than the single-task baselines trained with the same data on
one of the tasks, showing that indeed MTL can be used to boost the
accuracy of the models in some cases. However, we cannot match the
performance of the models trained with more data.

Second, we train on a collection of datasets composed of aerial view
images in which some have annotations of one task and some of the other,
by interleaving samples of each in the same mini-batch. The models
perform reasonably well for the semantic segmentation task but fail to
produce results similar to the ones achieved with the single-task models
for object detection.

Observing the training process, we realize that the semantic segmentation
task learns at a much higher pace and starts overfitting well before the
object detection task peaks so we conjecture that this negatively affects
the training process and hinders the final performance of the model. We
highlight this and other challenges imposed by applying MTL. We explain
how these challenges affect the training of our models and summarize
them in a number of choices that need to be made when defining the
multitask models.

Third, we evaluate how our multitask models compare in terms of infer-
ence time, memory usage and model size against deploying a different
model per task in parallel, without sharing resources. We prove that



CHAPTER 1. INTRODUCTION 9

multitask models are superior in this regard, being 1.6x faster, lighter
and less memory hungry.

1.5 Ethical, Societal and Sustainability As-
pects

Some ethical and societal concerns can arise from this work.

First, a straightforward application of the aerial view models in this
work is visual surveillance. As it can ease the deployment of large-scale,
automated surveillance solutions, it will raise concerns about privacy
in the long-lived debate between privacy and security which has never
reached consensus in our society. However, it is finally up to the society
to decide whether or not or in which cases the use of such solutions can
be justified.

Second, the proposed MTL solution for compressing multiple models per-
forming different tasks into a single one not only allows the deployment
in embedded systems and real-time applications but also improves the
energy efficiency of the solutions as the computation of a large share of
the model is shared between tasks and can even decrease the number of
devices needed to deploy it, thus decreasing the environmental impact
of deploying deep learning solutions both in terms of power consump-
tion and resources needed to build the hardware where the solutions are
deployed.

1.6 Summary of chapters

This thesis is organized as follows. Chapter 2 discusses related work
available in the literature. Chapter 3 explains the details of how the
experimental work of the thesis is carried out. Chapter 4 shows the
results of training the different models and includes an analysis of the
challenges found during the process. Chapter 5 concludes the report
by summarizing the key learning points and outlining future areas for
research.



Chapter 2

Background

This chapter reviews the most relevant work found in the literature re-
lated to Multitask Learning, explains how it relates to Transfer Learning
and analyses the latest work on the CV tasks that serve as a case study
for the problem. In addition, it reviews other approaches that aim at
reducing the inference time, memory usage or model size, approaches
which are of interest for its use in embedded systems.

2.1 Multitask Learning

Multitask Learning [1] is an approach to inductive transfer or transfer
learning that learns to solve tasks in parallel using a shared represen-
tation of a common input. This can improve the generalization of the
model for the multiple tasks by using the training signals of the different
tasks as an inductive bias for the others towards a more general represen-
tation that gives better performance. MTL can be applied to different
ML techniques, such as k-Nearest Neighbors, Decision Trees or Support
Vector Machines [23]. It is, however, with NN and DL that it has been
most used. Multitask, DL models learn a common representation by
sharing a set of hidden layers between the different tasks. Each task is
attached to this shared base as a branch , forming a network that finally
gives multiple outputs, each related to a task. Such a network can still
be trained end-to-end by defining a global objective function as the sum
of the loss functions of each task. In fact, many modern networks oper-

10
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ate in this manner even if not formally defining multiple tasks but only
multiple loss functions [20], [24]. As pointed out by [1], most real-world
Machine Learning problems are in fact multitask problems.

Multiple challenges appear in the training of MTL networks when com-
pared to their single task training: differences in the learning speed of
the different tasks - which can be compensated with early stopping (al-
though this does not allow for simultaneous inference with the shared lay-
ers) and/or defining different learning rates so the different tasks achieve
peak performance at the same time, computational cost - which is in-
creased when compared to their single task counterparts if only one task
is to be learnt but that is decreased if all tasks need to eventually be
trained, decisions on the network architecture and specifically which and
how many layers to share and how to evaluate the relatedness of the
different tasks, which in many cases is difficult to determine beforehand
[1]. Early work using MTL includes NETtalk [25], a network that learns
phonemes and stresses simultaneously although again the authors saw it
as a single task with multiple outputs.

More recent work is divided in research on the theory of MTL and on
applied MTL to solve problems from multiple domains, both multitask
problems that arise naturally and problems that integrate auxiliary tasks
with the purpose of achieving better performance. Multinet[26] presents
a framework for integrated perception that by recurrently encoding both
the input and the output of the different tasks can learn a shared data
representation or integration space to solve different sub-problems of in-
terest simultaneously, improving the performance of the individual tasks.
This approach reduces to conventional MTL when there is no recurrence.
One issue when designing multitask architectures is how to decide which
layers to share and where to start the task specific part of the networks.
In [27] applying tensor factorization techniques allows to automatically
learn the sharing structure. In [28] a deep relationship network jointly
leans transferable features and task relationships to circumvent under-
transfer due to not sharing upper layers and negative-transfer when shar-
ing too many features for tasks that are not related enough. In [29] a
cross-stitch unit for convolutional neural networks is introduced to ex-
plicitly learn what and how much to share between layers of two or more
networks. However, this last approach is not useful from our perspective
as there is no shared computation, which is the feature from MTL we are
after. The approach taken by [30] is the most promising for our purpose
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as it keeps an eye on having a low-memory footprint and low latency
during inference while learning the multitask architecture and sharing
among the different tasks. It achieves so by growing from a thin net-
work during the training phase with a criterion that promotes grouping
of related tasks while penalizing model complexity.

2.2 Multitask learning in Computer Vision

MTL has been applied for many different problems within CV. Here we
focus on the case of MTL with convolutional networks. It has been used
for face analysis tasks to improve the performance [31], [32] or to simulta-
neously solve them [33]–[35], for achieving better performance in object
detection[22], [24], [36]–[38], instance segmentation[20], [39], salient ob-
ject detection[40] and action recognition [41], for jointly learning pose
estimation and action Detection[42] or for simultaneously solving up to
seven different CV tasks ranging from low to high level[21].

The approaches that aim at simultaneous prediction of all tasks are the
ones that are of interest as they care about having good performance for
all of them, while in the ones that just want to boost the performance
of the main task the performance of the extra tasks is often not even
evaluated. A comprehensive method for the training of multitask network
is explained in [21]. It includes a solution for cases in which the training
involves using multiple partial datasets containing only labels for some of
the tasks in each of their samples: creating a loss function that shuns the
losses for the tasks with no ground-truth for a given sample and updating
the parameters of a task branch only after having observed a number of
samples with ground-truth for it.

2.3 Transfer learning

Work on sequential MTL [43]–[45] is now more commonly called transfer
learning or more colloquially fine-tuning in which previously learnt do-
main knowledge in one task is used to initialize the training of a similar
model in another task, while we will exclusively use the term MTL to re-
fer to its parallel counterpart as previously defined. Both techniques are
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closely related and can be simultaneously used as is the case for many
of the examples that will be shown next. Transfer learning has been
extensively studied over the last two decades in all of its forms and usu-
ally under different names - inductive transfer, bias learning or MTL. A
survey is available in [46].

More recently, transfer learning has gained increasing popularity for CV
problems after the success of [15], [18], [19], [47] to the point of being a
must for most approaches based on convolutional neural networks. [47]
define a way of quantifying how transferable are features from a given
layer between tasks and show two causes of negative-transfer, i.e. when
transferring features causes performance drops, are feature specificity and
optimization difficulties due to the splitting of the original network that
leads to fragile co-adaption between units in consecutive layers. [48] goes
one step further and studies how the performance of a generic convolu-
tional network representation can be maximized when applied to a new
task, identifying the most relevant factors and giving advice on how to
set them according to the characteristics of the new task, which greatly
depends, again, on the similarity or relatedness between the original and
the target tasks. We believe that the decisions on where to split a source
task network for transfer learning and where to split a multitask network
into its task-specific branches are deeply related.

2.4 Focus on practical applications

Most of the best performing convolutional neural networks have been
getting more and more expensive both in terms of memory and compu-
tation. Most of them have been created for Image Classification and
then applied to other tasks via transfer learning. Different approaches
have been proposed to reduce computational complexity and/or memory
footprint.

2.4.1 Task-specific approaches

Approaches to making the networks faster and lighter have often ap-
peared in the task specific part of the network, with different ideas such
as integrating region proposal networks into the architecture [24] for ob-
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taining nearly cost-free region proposals or directly removing the need
for generating proposals by discretizing the output space [49], [50] for
the case of object detection or substituting the fully-connected layers for
more efficient convolutional ones [51] for dense prediction problems such
as semantic segmentation.

2.4.2 Lighter base networks

However, more interesting than task-specific solutions is to find solutions
that tackle the large computational and memory cost of some of the
base networks, those originally trained for Image Classification, which
would effectively speed up and make lighter all models depending on
them. Such task-agnostic approaches focus on achieving low latency or
inference times and small memory footprints, requirements absolutely es-
sential for real-time applications and specially when the deployment is in
low memory devices such as the ones found in embedded systems. [12]
studies the deployment of the most common Image Classification models
on a GPU-enabled SoC, the NVIDIA Jetson TX1. It comes to the conclu-
sion that there is a clear trade-off between accuracy and throughput that
appears when comparing the models. Power consumption is surprisingly
not related to model size, number of operations or accuracy. Some net-
work architectures were already designed having their efficiency in mind,
as GoogleNet[52] with the Inception module, or ResNets[14], in which by
learning residual functions in the layers with reference to their inputs in-
stead of learning unreferenced functions deeper networks can be trained
while keeping a lower computational complexity. Moreover, the modular
design allows to tune the complexity by having different numbers of lay-
ers and play with the speed/accuracy trade-off. Thus, some versions of
ResNet [14], namely Resnet-18, Resnet-34 or ResNet-50, and GoogleNet,
have a good trade-off between accuracy and speed in addition to a good
accuracy density.

More recent work proposes even more efficient networks using the lat-
est concepts of convolutional network design clearly having in mind the
deployment in real-time applications and low-memory systems: Dark-
net19[53] achieves 76.5% top-1 accuracy on ImageNet Image Classifica-
tion dataset [54] with a complexity of only 5.58 G-FLOPS while [55] pro-
poses an extremely light network for real-time semantic segmentation but
which can potentially be modified and fine-tuned to perform other tasks,
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achieving 68.4% top-1 accuracy with 1.6 G-FLOPS and a model size of
only 0.7 MB. MobileNets[56] focus on the creation of lightweight networks
for mobile and embedded vision applications by introducing depth-wise
separable convolutions and hyper-parameters for choosing the appropri-
ate model size according to the application requirements in terms of speed
and accuracy.

2.4.3 Distillation, compression and acceleration

Other solutions have arisen from different perspectives but have in com-
mon that take already existing networks such as the reference models
AlexNet[10], VGG[13] or Resnets[14] as a starting point. In knowledge
distillation [57]–[61] a lighter, faster student model learns to mimic a
teacher model which can consist of an ensemble of models, ideally main-
taining the same accuracy. [62] prunes the network to learn only the
important connections, quantizes the weights to enforce weight sharing
and encodes the weights with Huffman codes[63], a known lossless data
compression algorithm, to achieve relative model size reduction by 35x
to 49x and speedups of 3x to 4x. Other approaches include low-rank-
factorization, structured matrices or dynamic capacity networks. It is
worth mentioning that these techniques are complementary to reducing
the complexity of the task-specific parts of the networks so by combining
both even better performance can be achieved or the networks can run
on systems with lower requirements. SqueezeNet[64] combines a custom
architecture design with the compression technique from [62] to achieve
a model with the accuracy of AlexNet[10] but 500x lighter. ZynqNet[65]
modifies it to deploy it on a custom FPGA accelerator that optimizes the
convolution and pooling operations. In [66], SqueezeNet is accelerated to
run on Android devices using heterogeneous computing for distributing
during runtime the workload between CPU and GPU cores.

2.5 Semantic Segmentation

Semantic segmentation aims at partitioning parts of images belonging to
the same semantic class. Different approaches lead to this goal, for exam-
ple, pixel-wise classification classifies each pixel rather than segmenting
first and classifying the resulting segment. Semantic segmentation is
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used, for example, for robot vision, autonomous driving applications and
medical imaging.

Fully convolutional networks (FCN)[51] have allowed improved both ac-
curacy performance and speed for dense prediction problems. By remov-
ing fully-connected layers or transforming them into convolutional ones,
the input can take arbitrary sizes and the computation is much more
efficient than patch-wise inference. By adding in-network upsampling
layers, pixel-wise prediction with the same image size as the input can
be achieved. This approach does not use any pre- or post-processing step,
which can still complement it like done in [67] using Conditional Random
Fields. The fixed upsampling layers can be changed for learnable decon-
volution layers as in [68], [69]. In ParseNet[70], global context is added
to FCN by appending global context pooled from a feature map to the
feature map itself, after scaling both appropriately via a normalization
layer, which increases the accuracy without any post-processing.

Semantic segmentation needs to be distinguished from the more com-
plex Instance Segmentation problem in which not only each pixel has
to be classified according to its category but also according to the in-
stance of that category that it belongs to, the object. This is important,
for example, in the case of segmenting a street image with a number of
pedestrians very close together. Semantic segmentation would assign a
large area of the image to the category pedestrian while Instance Seg-
mentation would separate the areas belonging to different pedestrians as
different segments.

2.6 Object Detection

Object detection aims at finding all instances of objects from a number
of known classes in an image, while also giving their class. The detection
is usually given in the form of a class and a bounding box defining the
location and scale of the detected object within the image. Object detec-
tion is many times used within higher level CV pipelines, e.g. in action
detection[71].

Approaches to object detection have typically been divided between slid-
ing windows[72] and region proposal classification approaches [73], [74].
Since the accuracy jump provided by R-CNN[73] the second method
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has gained much attention and been improved to the extent that Faster
R-CNN [24] was able to run at 7 frames per second (fps) and achieve
73.2 mean Average Precision (mAP) by integrating the Region Proposal
part of the pipeline into the network. YOLO[50] takes another direction
and sees the object detection task as a regression problem where the re-
gressed variables are bounding boxes coordinates and class probabilities,
obtained directly from a single forward pass of a convolutional network.
By integrating all steps in the same network the inference times achieved
are extremely fast (45 frames per second), although the accuracy lags
behind the state-of-the-art. The Single Shot MultiBox Detector (SSD)
[49] is similar to YOLO but instead of pulling features only from the
top of the network it takes features at different levels to predict offsets
and confidence scores for default bounding boxes at multiple scales and
aspect ratios. It proves to be faster and more accurate than YOLO. Fol-
lowing the region proposal classification approach, R-FCN[75] converts
the network in a fully convolutional one by making the Region Proposal
Network convolutional and adding a position-sensitive score maps to be
able to counteract the translation invariance introduced by the convolu-
tional layers, which undermines the final task of object detection that
intrinsically requires translation variance. It achieves a higher accuracy
than previous approaches but its speed is far from that of the single-
network ones. Since the start of this thesis three relevant architectures
have appeared which are both faster and more accurate[38], [39], [53].

In [76], the speed versus accuracy trade-off is studied for different object
detection systems following the architectures of Faster R-CNN, R-FCN
and SSD using different feature extractors.

2.7 Multiple Object Tracking

MOT consists in locating all the targets of interest in a video and main-
taining their identity across frames. One of the most common approaches
is tracking-by-detection, in which objects are detected at every frame and
then a patch of the image taken as a measurement that needs to be as-
sociated with a target ID. Challenges include discarding false detections
and handling processes of birth and death of undetermined numbers of
targets while being robust to clutter and occlusion.

In [77], a simple implementation of a MOT algorithm based on a Kalman
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filter for the motion prediction and the Hungarian algorithm for data asso-
ciation achieves top-3 performance at 10 fps in the MOT Benchmark[78]
by obtaining high quality detections with Faster R-CNN and extracting
appearance features for computing the affinity value for data association
with a deep convolutional feature extractor based on GoogleNet. The suc-
cess of this approach highlights the importance that the detector quality
has within tracking-by-detection schemes.
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Methods

In this chapter the methodology followed for obtaining the experimental
results from training the different models is explained. In particular, the
details of how the models are developed, the data used to train them and
how it is handled, the training strategies followed, how the models are
evaluated and the metrics used, and the details about the devices and
software used.

3.1 Model details

In order to construct and evaluate multitask models for both semantic
segmentation and object detection a choice has to be made on the base
models that will be used for each task and the common convolutional
trunk that will serve as the feature extractor. Ideally, one would choose
these via cross-validation, however the resources and time available fall
short to study which models are more adequate for MTL. The choice
is made in terms of accuracy, speed, simplicity and prior success in the
literature when using the most promising models.

3.1.1 Feature extractor: Residual Network, 50 layers

The common convolutional trunk will be selected based on memory and
computational complexity requirements from the typical architectures
used nowadays as the base for these tasks.

19
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Figure 3.1: Accuracy vs. throughput, size proportional to number of op-
erations. A non trivial linear upper bound can be seen in this scatter plot,
illustrating the relationship between prediction accuracy and throughput
of all examined architectures. From [12]

Figure 3.1 plots the accuracy of the most known architectures for Image
Classification versus their throughput for batch size 16 on the Jetson
TX1 GPU.

While no architecture offers a free lunch and gives high throughput and
high accuracy, we expect that the heaviest networks are not suited for
deployment in embedded systems due to both bigger memory footprint
and larger inference times and the lightest and that fastest models gen-
eralize poorly to other tasks compared to the heaviest ones due to their
lower capability of learning general enough features. While ResNet-18
or GoogleNet seem to be interesting candidates, preliminary exploration
with ResNet-18 leads to bad results for semantic segmentation and [51] re-
ported that GoogleNet underperformed compared to other architectures.

Finally, we choose ResNet-50 for its reasonable accuracy at a small
enough inference time and successful prior uses in the literature[5] for the
tasks at hand. The chosen common convolutional trunk for our multitask
model is shown in the top of Figure 3.2. It consists of a first convolu-
tional layer and pooling layer, and then 4 stages of residual blocks, with
different number of blocks in each (3, 4, 6 and 3) for a total of 50 layers.
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The difference from the original ResNet architecture meant for the Image
Classification task is that the last pooling, fully-connected and softmax
layers are removed.

3.1.2 Semantic Segmentation: Fully Convolutional
Networks

As commented in Section 2.5, most modern approaches for semantic seg-
mentation and other dense-labeling tasks are based the Fully Convolu-
tional Network paradigm proposed in [51]. Here, we keep it simple and
stick with its basic implementation only adding skip connections to en-
able finer details after a fixed upsampling layer. In this way extra com-
plexity is not added to the comparison between the single-task model
and the multitask one and the inference time is also kept to a minimum.
Extra post-processing steps could be added later if needed.

The chosen model is depicted in Figure 3.2. It consists of two 1x1 convo-
lutional layers with as many filters as number of classes to predict. The
output of this layer gives a score heatmap for each class the same size of
the feature map it had as an input. One of the score layers pulls features
from the top of the network, res5c, while the other from deeper inside
the network, res4f, right before the next convolutional layer with stride
2 that effectively halves the feature map size. The second forms the skip
connection and the predictions are thus made at a higher resolution al-
though with less deep features. After the lower resolution convolutional
layer, a 2x upsampling layer is attached before merging the two score
heatmaps by element-wise sum to finally upsample them again to match
the original size of the input and give the final segmentation map, named
seg_scores. A softmax layer is finally added for training, but can also
be used during deployment to get a confidence map seg_conf of the pre-
dicted classes.

3.1.3 Object Detection: Single Shot MultiBox Detector

The considered object detection architectures are explained in Section
2.6. In [76], the authors identify the most interesting models as those
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Figure 3.2: (a) Resnet-50 common base network and legend. (b) With
FCN branch added. Crops layers not shown. Adapted from [5]. (c)
With SSD branch added. Reshape, flatten and permute layers before not
shown for a simple visualization.
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Figure 3.3: Accuracy vs. inference time for different object detector ar-
chitectures and different feature extractors. From [76].

in the optimality frontier of the speed versus accuracy trade-off that we
are after, see Figure 3.3. The sweet-spot models are defined as those
in the elbow of the optimality frontier. According to this study, having
fixed the feature extractor to ResNet-50, the best would have been to
use R-FCN or Faster R-CNN, which together with ResNet-101, the most
similar feature extractor to our choice, fall on this sweet-spot. However,
this study was not available at the start of the thesis, so the decision
was made without this knowledge. Instead, SSD is used as it promises
interesting speed ups compared to the others according to the reported
results, seems simple to integrate into a multitask model and is trainable
end-to-end with no intermediate steps.

The SSD branch of the multitask network, shown in the bottom of Figure
3.2, is composed of extra convolutional layers added on top of the base
network and a number of detection heads that are attached at different
levels. The extra layers are attached after res5c and decrease in size
progressively, allowing the prediction at multiple, larger scales, with a
final pooling layer. In contrast with the original implementation, the
extra layers that we attach are residual blocks as the ones used for the
base network, each new stage having two blocks and 1024 outputs. We
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mbox_loca on_out

mbox_conf_out

Figure 3.4: The multitask architecture based on ResNet-50 with FCN
and SSD branches attached.

use Batch normalization[80] whenever the training is done with a big
enough batch size, i.e. 6 or larger. The detection heads are composed
of two small 3x3 convolutional layers to predict one the scores for each
class and the other the offsets respect to the default box and aspect ratios
for each feature map. They are attached after res3d, res4f, res5c, res6b,
res7b and pool_last. Normalization layers are used for the first three
stages. The outputs are named mbox_conf_out and mbox_location_out
respectively.

3.1.4 Multitask model

Finally, we attach both task-specific branches to the base network to
create the multitask network, as shown in Figure 3.4. In general, no
change needs to be made from an architecture perspective, as we do not
try to evaluate the different possibilities about which layers to share and
which not to avoid under-transfer or negative-transfer. We do this only
once by splitting the network after res4f and having the 5th stage of the
base network twice, so it is not shared by both tasks. Unlike [21], we do
not have any multi-scale scheme.
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3.2 Input data

Having properly annotated datasets is essential for training discrimina-
tive models as the ones in which this work focuses. It is common that
each task has a set of datasets with different characteristics on which the
models are trained, tested and compared. Many models have elements
to tackle specifically not only elements of the task they want to solve
themselves but also of the dataset for which they are being trained. This
makes the dataset part of the task that is to be solved which means at
the same time making the models less general, many times in order to
achieve better performance scores on the dataset that is used. When a
model is thought to generalize properly, it is also common to prove so by
training it on multiple datasets with minimal modifications or even to
see how it performs on another dataset than the one it has been trained
for. However, some datasets have been growing to include multiple tasks
and characteristics, in part to challenge the researchers to create more
general models.

Pascal VOC [81], [82] and Microsoft COCO[83] are two good examples
of such datasets and include (partial) annotations for both object detec-
tion and semantic segmentation among others through some additional
annotations. Having a dataset which includes annotations for both tasks
makes the work of creating a multitask model much easier, although with
the method proposed in [21] this limitation is alleviated.

For aerial view, however, there is no dataset available that has annota-
tions for both tasks. Datasets including one of the two tasks of interest
include Stanford Drone Dataset[84] and UAV123[85] for object detec-
tion and tracking and Swiss [86], Okutama[5], Aerial-KITTI[87], Vaihin-
gen[88] and TorontoCity[89] for semantic segmentation.

First, we use Pascal VOC dataset consisting of natural RGB images
from hand-held cameras combining both the 2007 and 2012 versions for
the validation of different training strategies. Finally, we train the best
models on a dataset consisting of aerial view images that matches the
target application. This dataset is a combination of Swiss and Okutama
datasets for semantic segmentation and Stanford Drone Dataset (SDD)
for object detection.
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3.2.1 Pascal VOC dataset

Pascal VOC includes a total of 20 classes plus background annotated
for both object detection and semantic segmentation tasks. Images were
retrieved from flickr.com website. Object sizes range from small to larger
objects and include classes like Person, Car, Table or TV Monitor. Both
versions of Pascal VOC - 2007[81] and 2012[82] - are combined to get a
larger dataset. In order to make it even larger, the extended annotation
set for semantic segmentation from the Semantic Boundaries Dataset
(SBD)[90] is also used. As pointed out by the authors, some data points
in their training set are part of the validation set of the original VOC2012,
which has to be taken into account for a correct evaluation of the models.

Ground truth annotations for both tasks are required so only those data
points with both annotations are used. The intersection between the
sets with available annotations for object detection from VOC2007 and
VOC2012 and the sets with available annotations for semantic segmen-
tation from VOC2007, VOC2012 and SBD is used to create three sets.
The original training and validation sets for VOC2012 detection task are
respected. Figure 3.5 shows the different sets and how they intersect for
both training and validation/test sets. The final size for the training set
is 5489 images, considerably smaller than if the limitation of having both
annotations was not there as there would be 8218 images with object
annotations and 10582 images with segmentation annotations[67]. As
Pascal VOC has a private test set, the validation set is randomly split
in two in order to have a test set that can be used to report final results.
We get two equally sized validation and test sets of 2982 images each.
Some example images with both annotations can be found in Figure 3.6.

3.2.2 Aerial View datasets

As already mentioned, there is no dataset that has both annotations for
the tasks of interest from an aerial view perspective. Luckily, Swiss and
Okutama datasets have ground truth annotations for semantic segmen-
tation and SDD for object detection. By combining them, a multitask
model can be trained using a trick inspired by [21], interleaving samples
of each dataset inside each mini-batch during training.
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(a) (b)

Figure 3.5: (a) Train set. (b) Validation set. A(red) is the set of
images with semantic segmentation available for VOC2007 and VOC2012.
B(green) is the set of images with semantic segmentation annotation from
SBD. C(blue) is the set of images with object detection annotations for
VOC2007 and VOC2012. The intersection between C and either A or B
or both forms the desired set with both annotations for object detection
and semantic segmentation.
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Figure 3.6: Pascal VOC dataset example images with bounding box
ground-truth annotations for object detection and overlaid semantic seg-
mentation ground-truth annotation.
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(a) (b)

Figure 3.7: Percentage of pixels per class in (a) Okutama dataset and
(b) Swiss dataset.

3.2.2.1 Swiss and Okutama datasets

Swiss and Okutama datasets are two small size datasets consisting of top-
down images taken from a UAV in Japan and Switzerland at a height
of either 50 or 90m above the ground. They are annotated for semantic
segmentation with 10 classes including Water, Plants, Train tracks or
Buildings. Each image has 4k resolution and there are 100 and 92 images
for each dataset respectively. However, in order to handle it more easily,
we crop the images in a 2x2 fashion to get 4 times the number of images
with 1080p resolution. As any semantic segmentation dataset, intrinsic
imbalance in the number of pixels belonging to each class is present, as
can be seen in Figure 3.7.

Due to these facts, it is important that at least the sets in which the
dataset is split are balanced in terms of number of images having at least
some pixels belonging to each class. Figure 3.8 shows the percentage of
images having at least one pixel of each class.

Thus, dataset balancing needs to be done when splitting into training,
validation and testing sets so each set has a good representation of every
class. Images are assigned to a set so that all classes appear in about the
desired percentage of images in each set. Swiss dataset is balanced in a
similar fashion. Figure 3.9 shows how the images per class percentage
looks like after balancing for each set of the datasets. The target was
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(a) (b)

Figure 3.8: Percentage of images containing each class in (a) Okutama
dataset and (b) Swiss dataset.

to split the dataset in 60% of images for training, and 20% for both
validation and test.

Finally, some sample images with semantic segmentation annotation can
be found in Figure 3.10.

3.2.2.2 Stanford Drone Dataset

SDD is a dataset compiled with the goal of enabling the development of
algorithms for both trajectory forecasting and target tracking. However,
given the fact that the per-frame annotations are bounding boxes of a
number of target classes, it can also be used for object detection. The
classes are Bicyclist, Pedestrian, Skateboarder, Cart, Car and Bus. It is
collected from a hovering UAV with a camera facing top-down in 8 dif-
ferent locations of a university campus environment and includes almost
a million frames and more than 19k unique targets or object instances.
Although they were originally collected at 4k resolution, after distortion
correction and stabilization the videos have a resolution close to 1080p.

For practical reasons and the fact that consecutive frames are really sim-
ilar, only each 20th frame is used so that after randomly splitting the
dataset a total of 31565 frames are used for training and 10522 each for
both validation and test sets. Example frames can be found in Figure
3.11.
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(a) (b)

Figure 3.9: Fraction of images per class for each set over full dataset. (a)
Okutama. (b) Swiss.

3.2.3 Data augmentation

In order to fight overfitting, we apply different data augmentation tech-
niques in an online fashion during training. We use either random crops
or resizing when using a batch size greater than one so that all images in
the batch have the same size. We apply color distortion by randomly al-
tering channel values in HSV color space. We also randomly flip images,
horizontally for Pascal VOC dataset and both horizontally and vertically
for the aerial view datasets.

3.2.4 Feeding the networks for MTL

For Pascal VOC dataset, the network can be fed with either only one
image, resized or cropped or with the original size, or with a batch of
multiple images, in which case all of them must have the same size so
they need to be resized or cropped. Annotation for both tasks is also
available for each data point so the loss can be computed for training
without problems.

For the aerial view datasets, as each dataset has only annotations for one
of the tasks, we interleave one image from each dataset to form a batch
in which there are samples from both datasets with annotations for both
tasks. In order for the annotations that are missing not to affect the loss
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(a)

(b)

Figure 3.10: (a) Swiss dataset example images with overlaid semantic
segmentation ground-truth annotations. (b) Okutama dataset example
images with ground-truth.
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Figure 3.11: SDD dataset example frames with bounding box ground-
truth annotations for object detection.
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of the corresponding task, these take a known value that makes them be
ignored while computing the loss. In this way the corresponding losses for
that image take zero value and the gradients are also zero, meaning there
is no back propagation into the network for the loss corresponding to the
missing ground-truth annotation. As for each batch there are both cases,
the weight updates are computed with the average of both gradients in
the common layers and only with the ones for the task for which there
was annotation for the task-specific layers. This is similar to the strategy
described in [21] but less flexible as the updates for the common trunk
are always twice more often than for the task-specific branches, which
always happen with the same frequency.

3.3 Training strategies

Different training strategies are evaluated on the validation set to de-
termine the best one, both for the single-task and multitask models.
The strategies followed for the single-task models in previous works is
described but it is expected that it is not necessarily the best for the
multitask models, starting from the fact that they greatly differ for both
tasks.

3.3.1 Single-task models

Here we explain how the models were originally trained and the details
that are common to all models. The exact details used for each of the
different models trained are explained in Section 4.1.

3.3.1.1 FCN model

In the original paper, FCN models are trained via Stochastic Gradient
Descent (SGD) in an online fashion (batch size of 1 image) with images
of variable sizes, large momentum of 0.99 (vs. the standard 0.9), fixed
learning rate of 10−10[51]. The loss function is the classical multinomial lo-
gistic or cross-entropy loss for multi-class, single label problems but with
no normalization over the number of pixels. In [70], better results are
achieved by using standard momentum, higher base learning rate of 10−9
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and polynomial decay learning rate policy (base_lr ∗ (1 − iter
max_iter

)power)
with power parameter set to 0.9 and 80000 iterations. No data augmenta-
tion is used but [5] reports some performance gains by doing random flips
and crops on Swiss dataset, most likely due to its small size. The weights
of the base network are initialized with those of a model pre-trained on
ImageNet[54] and the new layers of the fully convolutional branch with
MSRA[91] initialization.

We try using both the original and improved training strategies, intro-
ducing normalized loss over the number of pixels, resizing of images and
mini-batch training. We also adapt the number of iterations for which
we train to the dataset size, which for our subset of Pascal VOC dataset
is roughly half, and we apply data augmentation techniques, in which
case we also increase the number of iterations.

3.3.1.2 SSD model

The training of SSD models is significantly more complex. To start with,
ground truth annotation has to be assigned to a specific output of the
detector for then computing the loss function and applying back propa-
gation. This matching is done by pairing the default and ground truth
annotation bounding boxes with highest jaccard overlap (Areaintersection

Areaunion
)

but also those with a jaccard overlap higher than 0.5 in order to ease the
learning as overlapping bounding boxes can all have high scores. With
the matched default boxes and annotations the loss is computed as the
weighted sum of a localisation loss, computed as a Smooth L1 loss be-
tween the bounding box parameters, and a confidence loss, computed
as a cross-entropy loss. The number, scale and aspect ratio of the de-
fault bounding boxes is a parameter that can be tuned according to the
characteristics of the dataset, the default parameters are kept for all
experiments. Hard negative mining is used to balance the number of
positive and negative training examples. Extensive data augmentation
is also used and greatly affects the performance of the model. It includes
sampling patches of multiple sizes and aspect ratios according to the
jaccard overlap with the ground truth boxes or randomly, random flips
and photo-metric distortions. In the original paper, SSD is only trained
for Pascal VOC with VGGNet[13] as a base network but in [79] SSD is
trained with ResNet-50 instead. The VGG model is trained via SGD
with a base learning rate of 10−3, batch size 32 and standard values for
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the rest of parameters. The learning rate is divided by 10 after 40k and
50k iterations until reaching 60k. In the second case, the first conv1 and
res2 blocks are frozen but batch normalization statistics are computed
again for all other layers. The learning is divided by 10 after 40k iter-
ations. As done for the FCN model, the initialization of the weights of
the base network takes values pre-trained on ImageNet and the rest use
MSRA initialization.

We apply similar flipping and color distortion techniques but use a sim-
pler patch sampling strategy with only random crops. We use the same
base learning rate of 10−3 but instead of using a step policy we use the
same polynomial decay learning rate policy that we use for FCN and
train for different numbers of iterations depending on dataset and batch
size.

3.3.2 Multitask models

For the multitask models, a common training strategy needs to be fol-
lowed. Given the fact that the strategies reported as best greatly differ
between both tasks, exploration over the hyper-parameters and data aug-
mentation techniques is needed. The hyper-parameters that we explore
are the base learning rate and policy, using batch normalization or not
and the batch size - which, for practical reasons, cannot reach 32 as in
SSD due to the fact that the Caffe version used does not support multi-
GPU training with Python layers. Also, we evaluate the effect that the
data augmentation techniques have on the final accuracy. Unlike [21],
where the weights are initialized with those of networks pre-trained on
Microsoft COCO [83] for both tasks, we initialize the base network with
ImageNet weights and the task-specific branches with MSRA initializa-
tion.

3.4 Evaluation

We compare the resulting multitask models to their single-task counter-
parts in terms of accuracy, inference time, memory usage and model size.
In terms of resources, the results are compared to the naïve approach of
running one model for each task in parallel but on the same device. We
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test the models both on a desktop GPU and an embedded device with
GPU.

The accuracy metrics used for evaluating each task are explained next.
Per-class accuracy scores are also a very interesting metric to take into
account in the evaluation of models, particularly when different classes
appear in different scales and number of instances in the datasets.

3.4.1 Metrics

3.4.1.1 Semantic Segmentation metrics

Semantic segmentation is typically evaluated in terms of mean
Intersection-over-Union (mIoU), the per-class average of the Intersection-
over-Union (IoU):

mIoU =
Nc∑
i=0

IoU(i)

IoU(i) = TP (i)
TP (i) + FP (i) + FN(i)

Where Nc is the number of classes, TP is the number of pixels correctly
classified as belonging to class i, FP is the number of pixels wrongly
classified as class i and FN the number of pixels wrongly not classified
as class i. The frequency-weighted IoU takes into account class imbalance
in the dataset by weighting the sum for computing the average over the
different classes with the frequency with which the class appears in the
dataset.

fwIoU =
Nc∑
i=0

freq(i) · IoU(i)

As the model has to perform properly for all classes even when they are
not balanced in the dataset, we believe mIoU is a better summary of its
performance and we use it instead.

The overall (OP) or per-class mean (PC) pixel accuracies are often used as
well, although they are more biased towards classes with a much greater
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presence in imbalanced datasets[92], such as Pascal VOC (with around
70% of all pixels belonging to the background class) or Okutama/Swiss
datasets, as explained previously.

OP =
∑Nc

i=0 TP (i)∑Nc
i=0 TP (i) + FP (i)

PC = 1
Nc

Nc∑
i=0

TP (i)
TP (i) + FP (i)

3.4.1.2 Object Detection metrics

For the object detection task, the common evaluation metric is the Av-
erage Precision (AP), used for example for Pascal VOC challenge since
2007[93] in its 11-point interpolated version:

AP (i) = 1
11

∑
r∈{0,0.1,...,1}

pinterp,i(r)

Where pinterp(r) is an interpolated precision defined as the maximum
precision over all recalls greater than r. This precision is defined as:

pinterp,i(r) = max
r̂:r̂≥r

pi(r̂i)

pi(r̂i) is the precision at recall r̂i, which can take different values depend-
ing on the set of detections taken from the list of detection outputs for
class i ranked according to their confidence scores. The recall at K or
ri@K for class i is defined as taking the top-K detections from that list.
The first K that gives the given recall is used. Thus, pi(r̂i) is the precision
using the same set of top-K detections that gives recall r̂i.

ri@K = TPi(K)
TPi(K) + FNi(K)

pi(r̂i) = pi@KK:ri@K=r̂i
= TPi(K)

TPi(K) + FPi(K)
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TPi is the number of objects correctly detected and classified as belonging
to class i, the true positives; FPi is the number of objects wrongly de-
tected and classified as class i, the false positives; and FNi the number of
objects wrongly not detected and classified as class i, the false negatives.
The matching strategy between detection and annotation bounding boxes
is the same as explained in Section 3.1.3, measuring the bounding box
overlap and assigning as TP those with jaccard overlap or Intersection-
over-Union higher than 0.5. Multiple detections of the same object in an
image are considered false detections. The mean Average Precision is the
average of the AP of each class over Nc classes:

mAP =
Nc∑
i=0

AP (i)

3.4.2 Test devices

The accuracy of each model should be independent of the system used.
However, due to differences in architecture and versions of the frame-
works and software used, the memory usage and specially the inference
times can be different. In order to see how both vary between desktop-
level systems and embedded ones we do this evaluation in two different
systems, one belonging to each type.

First, we use the system used for training also for evaluating the perfor-
mance of the models as our desktop-level system. The model runs on
a NVIDIA GTX Titan X GPU with CUDA 7.5 and cuDNN 5 support.
It has 3072 CUDA cores that run at 1GHz for a maximum processing
power for single precision operations of 6144 GFLOPS. It has 12 GB of
memory and a memory bandwidth of 336 GB/s.

Second, we use a Jetson TX1 development kit as our embedded system,
which incorporates a NVIDIA Tegra X1 GPU and has CUDA 8 and
cuDNN 5.1 support. This GPU has 256 CUDA cores that run at 1 GHz
for a maximum processing power of 512 GFLOPS with single-precision
floating-point format. Its memory is shared between the system and the
GPU and has a total of 4GB and a memory bandwidth of 25.6 GB/s.

In numbers, the systems are clearly different in terms of resources as
the desktop one has roughly 12 times more processing power, 3 times
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the amount of memory (which is dedicated) and 13 times more memory
bandwidth.

3.5 Software and frameworks

All experiments are performed on Ubuntu Linux 14.04 using the ssd fork
of Caffe framework from [49] with an NVIDIA GTX Titan X GPU and
CUDA 7.5 and cuDNN 5 support. We do loading and data augmentation
operations via a custom Python (2.7) layer which uses NumPy, PIL,
OpenCV and SciPy libraries for image processing and tensor handling.

We use Jupyter notebooks for tracking training progress and test results
parsed from the log files and to analyze and manage the different datasets.
In order to test the network during its training we adapted another cus-
tom Python layer from the test code of [51] for computing the metrics
related to the semantic segmentation task. Such a layer is already avail-
able for obtaining the object detection metrics in the Caffe fork used. For
testing the performance of the models on an embedded system, we use
an NVIDIA Jetson TX1 which has the same software but CUDA 8 and
cuDNN 5.1.
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Results

This chapter presents and analyses the results of the different models
for both Pascal VOC and Aerial View datasets, in terms of accuracy,
inference times, memory footprint and model size; and discusses the chal-
lenges found during the training process.

4.1 Pascal VOC

Evaluating the proposed method on Pascal VOC allows us to validate
our ideas and strategies on a smaller dataset which is easier to handle
and faster to train for. As we have to find a common strategy for both
tasks on Pascal VOC, we start by evaluating on each task the effects of
using features of the strategy used for the other task. All models are
trained via SGD with momentum unless specified.

First, we decide to investigate which batch size gives better results for the
training of the SSD model for object detection. Here, we test batch sizes
6, 12 and 24, although for the latter via gradient accumulation due to
memory limitations so the batch normalization parameters are computed
with half the batch. The total number of iterations is 30000 for the batch
size 6 model, and divided proportionally when augmenting the batch size.
When trying with the larger base learning rate used in [79], however, the
gradients explode so the original base learning rate is used instead. We
did not use data augmentation here except for random horizontal flips.

41
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Table 4.1: Single-task SSD model results compared to those in the liter-
ature.

Batch size mAP (%)
VGGNet[50] 32 74.3

ResNet-50[88] 32 70.4
Ours 6 51.3

12 48.2
24 45.7

Table 4.1 shows the results compared to the reported values of previous
work. Unlike our models, the reference ones use VOC2007 and VOC2012
trainval for training and test on VOC2007 test, and, most importantly,
use data augmentation with color distortion and an extensive sampling
strategy to generate more samples at different scales, both small and
large, via random crops and random expansions[49].

The batch size that gives best results is 6 but these are still far from the
reference models, a performance gap which we attribute to the extensive
data augmentation and patch sampling used in them.

Second, we try using the modified training strategy from [70] for semantic
segmentation and achieve the same result than using the strategy of the
original paper. As the loss used in FCN is not normalized but the one
in SDD is, a normalized loss is mandatory for the multitask training in
order to have losses of similar magnitudes. When doing so the learning
rate has to be incremented.

For the object detection task, SSD uses mini-batch training, which means
that all images in the batch must have the same size. We evaluate the
effect of warping the images to train with equally sized images, also the
effect of using mini-batch training instead than online. As the dataset
used is roughly half the size of the one used in other works[67], [70], we
train for half the number of iterations, 40000. Table 4.2 summarises the
different changes introduced to the training of FCN models evaluated on
the validation set of Pascal VOC. The result reported in [5] uses also the
images that do not have object detection annotations.

The training strategy for ParseNet achieves the same result with less
iterations as after 30000 the model accuracy does not improve. However,
all other modifications decrease the final accuracy of the model. The



CHAPTER 4. RESULTS 43

Table 4.2: Mean Intersection-over-Union (mIoU) and per-class pixel ac-
curacy (PC) results for the different single-task semantic segmentation
models on the validation set of Pascal VOC after the different modifica-
tions introduced to the training strategy.

Laurmaa[5] FCN-ResNet-50
ParseNet training 3 3 3 3

Normalized loss 3 3

Warping, 300x300 3 3

Mini-batch, bs = 6 3

mIoU (%) 62.5 58.9 58.8 54.6 57.0 56.4
PC (%) - 68.3 68.7 65.6 66.5 66.8

Table 4.3: Multitask model results for different batch sizes and including
data augmentation on our validation set for Pascal VOC dataset.

Multitask-ResNet-50
Batch size 6 12 24 6 6 6

Random crops 3 3

Color distortion 3 3

mIoU (%) 54.4 53.3 53.8 54.2 55.2 54.5
PC (%) 65.4 62.9 64.5 67.1 66.8 67.0

mAP (%) 51.8 47.3 47.8 51.8 52.6 50.9

most severe seems to be normalizing the loss function. For it different
learning rates are tested but 10−4 proves to be the best choice. In the
mini-batch training case, using batch normalization allows a larger base
learning rate of 10−3.

Finally, with the FCN training strategy adapted to match that of SSD,
we train our multitask model. Again, we evaluate for batch sizes 6, 12
and 24 and later introduce more data augmentation: color distortion and
random sampling of patches via random crops instead of warping. We
train all models with poly learning rate policy, base learning rate 10−3

and 30000 iterations. Table 4.3 shows the results for the different models.

As can be seen when comparing the values in Tables 4.1-3, batch size 6
gives the best results among the evaluated batch sizes, improving 0.5%
mAP for object detection over the single-task model trained in similar
conditions but with a 2% drop in mIoU for semantic segmentation. We
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see that random crops without resizing do not improve accuracy but
color distortion does by 0.8% mAP for object detection and 0.7% mIoU,
1.2% PC for semantic segmentation. Strangely, when combining both
techniques the performance drops, we hypothesize that it needs to be
trained for more iterations due to a greater variability in the training
samples. Duplicating the last stage of the base network so that each
task can learn it separately does not lead to good results for the object
detection task.

Some example detection and segmentation outputs given by the best
model can be found in Figure 4.1.

The results for semantic segmentation seem to be better when the object
is clearly salient in the image, otherwise there is more confusion and
patches of different classes appear on a same object. For object detection
there is a significant number of false negatives and some cases with double
detections or two bounding boxes covering different parts of a same object.
In many cases, the SSD model does not seem to agree with the semantic
segmentation output, such as in the correct segmentation of the Sheep
that is wrongly detected as both a Dog and a Horse or the Cow that is
also classified as a Horse.

4.2 Aerial view

For the aerial view datasets, we first train single-task models without the
limitations of the MTL training. For Okutama/Swiss datasets, we train
an FCN model based on ResNet-50 for 80000 iterations on the training
and validation sets in an online manner but with gradient accumulation
of 8 samples, no loss normalization, standard 0.9 momentum and base
learning of 10−10. For the Stanford Drone Dataset, we train an SSD
model with batch size 32, resized images to 300x300 and all the original
parameters and data augmentation strategies for 90000 iterations.

Finally, we evaluate our multitask model with the new datasets with both
random crops and color distortions, batch size 12 for the shared layers
and 6 for the task-specific ones, base learning rate 10−3, learning rate
policy poly and crop size of 300. Table 4.4 summarizes the results of the
single-task and multitask models trained.

As the SDD dataset includes mostly small scale objects, the achieved
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Figure 4.1: Example detection and segmentation outputs from our best
multitask model for images of Pascal VOC dataset test set.
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Table 4.4: Object detection and semantic segmentation results for aerial
view dataset baseline and multitask models.

Image size mIoU (%) PC (%) mAP (%)
FCN Variable 70.9 79.8 -
SSD 500 - - 54.3

Multitask 300 64.1 72.0 17.7
500 65.3 73.6 28.2

mAP is not as high as the reference model as we are not using the exten-
sive patch sampling techniques from [49] in our multitask models. For
the 300x300 model, the AP of the most common classes Bicyclist and
Pedestrian reaches 47.0% and 44.0% respectively, 18.7% for Cars and all
others below. We hypothesize that the imbalance between classes in the
dataset negatively affects the result. In the reference model, this happens
as well in the beginning but training for more iterations the unbalanced
classes are finally learnt properly and the final per-class AP are more
similar. In addition, with the multitask model the FCN branch learns at
a much faster pace and starts overfitting soon after, most likely affect-
ing the ability of the model to continue learning for the SSD branch. A
larger image size positively affects the performance of the model. For
semantic segmentation, the best performing classes are Plants and Non-
paved ground around 90% IoU and are also the most frequent, followed
by Wheeled vehicles, Buildings and Paved ground all above 75% IoU. The
other less frequent classes are all below 30%.

Some example detection and segmentation frames using the multitask
model can be found in Figure 4.2 for Swiss and Okutama datasets and
in Figure 4.3 for SDD.

The results look better when the image quality is good. For the Swiss and
Okutama images, which did not have ground-truth for object detection,
the detection of Cars is surprisingly good and even the few Pedestrians
that appear are also recognized. For SDD, however, the semantic seg-
mentation output looks coarser and with more confusion between classes
than in Okutama and Swiss. The blurriness in all SDD images, however,
makes it a difficult task even for the human eye.
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Figure 4.2: Example detection and segmentation outputs from our best
multitask model for images of Okutama(left) and Swiss(right) test sets.
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Figure 4.3: Example detection and segmentation outputs from our best
multitask model outputs for images of SDD test set.
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4.3 Inference time, memory usage and model
sizes

As the goal of this work is to develop models that are not only accurate
but usable in embedded applications the resources used by it are evalu-
ated. Both memory usage, which summarizes both number of parameters
and memory taken by the intermediate layers, and inference time, which
relates to the number of operations but is also dependent on the mem-
ory bandwidth and architecture of the GPU. We choose these two values
because are the ones that best define the usability of the model. The
inverse of the inference time will indicate the throughput, the number of
frames per second that can be processed. The total memory usage indi-
cates if the model can fit into the memory of the GPU. For simplicity,
we evaluate images with size 300x300 pixels and use a batch of a single
image. This values are close to the limit of what can be deployed in an
embedded system such as the Jetson TX1, which as analysed previously
has a total of 4GB of shared memory. While doing the experiments,
the operating system was using already 1575MB. For other systems with
dedicated and/or more memory available the batch size can be increased
to take advantage of matrix-matrix product acceleration in GPUs and
increase the throughput at the cost of introducing some extra latency.
With higher image sizes both the inference time and memory usage go
up. Table 4.5 summarises the inference times, memory used and model
sizes for the different cases.

The advantage in terms of resource sharing of multitask models is clear.
Deploying the two single-task models simultaneously without sharing is
1.5x slower, uses 1.6x more memory and the model size is 1.6x larger than
the multitask model for the Pascal VOC models deployed on the GTX
Titan X. For the aerial view models, it is 1.6x slower, uses 1.6x more
memory and the model size is 1.7x larger. We cannot test the two-single
task models simultaneously on the Jetson TX1 as the memory gets full,
so it is not even an option to deploy them.
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Table 4.5: Inference times, memory usage and model weights size when
running the base, single-task, multitask models and both single-task mod-
els simultaneously on the Jetson TX1 and GTX Titan X. All values are
averaged over 50 forward iterations using a single image per batch.

Jetson TX1 Inf. time(ms) Mem.(MB) Weights(MB)
Base network 175 1193 95

Pascal VOC
FCN 202 1276 95
SSD 224 1702 158
MT 249 1780 158

Aerial View
FCN 185 1225 95
SSD 210 1616 140
MT 219 1644 140

GTX Titan X Inf. time(ms) Mem.(MB) Weights(MB)
Base network 19 1203 95

Pascal VOC
FCN 31 1276 95
SSD 29 1594 158
MT 39 1668 158
Both 58 2641 253

Aerial View
FCN 24 1233 95
SSD 27 1525 140
MT 30 1552 140
Both 49 2511 235
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4.4 MTL effects on the training process

Although multitask models offer a clear advantage in the use of resources
and speed, the process of training them is more cumbersome and perfor-
mance obtained in the single-task models following the optimal training
strategies is difficult to achieve. This is due to a number of reasons
related to the use of MTL that are explained next.

First, the choices when stitching together different models become a
hyper-parameter that needs to be chosen, i.e. the layers that are shared
from the base network and the ones that are used by a specific task only
etc. We have opted for choosing it the natural way and we share all the
base network but it definitely takes an important role in the final model
performance, memory used and inference time.

Second, the meta-architecture used for each task (SSD, Faster R-CNN,
etc.) or the base network are another choice that will affect the training
process. Both [21] and [22] used VGGNet as the base network, Faster
R-CNN for object detection and DeepLab[67] for semantic segmentation
with success. Faster R-CNN only uses features from the top of the net-
work, so the path that the gradients follow when they back-propagate
into the network is always the same and independent of the dataset char-
acteristics themselves. In contrast, as SSD pulls features from different
levels of the network for the different prior bounding box sizes, the gradi-
ents get into the network at multiple locations affecting the shared layers
in different manners depending finally on the statistics of the dataset. For
Pascal VOC, where there are images of all sizes, this might not be that
important, for SDD, where most objects appear small, most will take
prior boxes that pull features from the first layers, so the gradients that
they will produce will affect only those below. We conclude that the way
the different approaches used to solve each task interact and affect the
learning process of the shared layers and the branches of other tasks in
the network is something that has to be taken into consideration in the
design phase.

Third, different tasks peak in performance at different times. We see this
for the VOC models although it does not seem to affect the final perfor-
mance. However, for the aerial view models the semantic segmentation
task peaks way before the object detection task, most likely due to the
large difference in dataset sizes, 504 training images for Okutama/Swiss
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dataset versus 31565 training images for SDD. [1] explains that not only
this can lead to obtaining no benefit from the MTL approach, but the
opposite, it can undermine the performance of the slower learning task
if the fastest starts to overfit as it can make the shared layers overfit as
well. To overcome this, it proposes using per-task learning rates, which
are fine-tuned in an iterative, trial and error way; to make all tasks reach
best performance nearly simultaneously. We did not try this solution
in this thesis and we leave it for future work. We tried using different
optimization methods, such as AdaDelta[94] or Adam[95] that adapt dif-
ferent learning rates for the different parameters, but they did not lead
to good results.

Finally, the optimal strategies for training the models typically differ be-
tween tasks and datasets as they have been empirically been found to
work best after fine-tuning the hyper-parameters for a particular task.
This forces to compromise between the different training strategies to
have something in between which works well for all tasks. In [22] this
was considered but the second task was typically used to regularize the
first and increase its accuracy so the goal was different as the perfor-
mance only had to be good for the main task. UberNet[21] takes this
fact into consideration with the same purpose than here and proposes
asynchronous updates with different batch sizes for the different task
branches and shared base network. In the end, this means that for a
MTL model the parameters that were once carefully chosen for each task
need to be tuned again for a good, common performance on all tasks.
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Conclusion

In this thesis, we proposed MTL as a way to speed up Deep Learning
models for applications in which multiple tasks need to be solved simulta-
neously, which is particularly useful in real-time, embedded applications
with limited resources. We replaced the naïve approach of deploying a
model for each task simultaneously by a single jointly trained, multitask
model which takes advantage of shared resources for reducing the total
inference time, memory footprint and model size.

We applied MTL to a Computer Vision problem in which we aim at solv-
ing two tasks: object detection and semantic segmentation. We adapted
and trained state-of-the-art models for each task, with the limitations
that the MTL training introduced. We chose the Single Shot Multibox
Detector for object detection and simple Fully Convolutional Networks
with skip connections for semantic segmentation. The base network was
replaced with ResNet-50 in order to achieve lower inference times. We
developed MTL models combining both tasks and trained and evaluated
them for two different datasets with different characteristics, mimicking
different applications: Pascal VOC, for hand-held, mobile applications;
and a combination of Okutama, Swiss and SDD datasets for creating a
multitask dataset for aerial view applications.

The challenges found during the training of multitask models included
the lack of datasets with multitask annotation, which were dealt with by
combining different datasets; the increased number of choices that need
to be made when combining architectures to create multitask models,
the different paces with which different tasks learn, peaking at different
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times; and the difference in training strategies of the different models for
the different tasks forming the multitask model, which have to be trained
jointly in the end.

The compromises made, the particularities of the MTL training process
itself and especially the lack of a strong data augmentation to handle
multiple scales caused the final accuracies of our multitask models to
clearly lag behind that of the single-task ones trained without limitations
although they clearly improved in terms of speed and usage of resources,
being 1.6x faster, lighter and consuming less memory than deploying
the two single-task models simultaneously. Compared to the single-task
models trained with the same limitations, the multitask models matched
or outperformed their accuracy for one of the tasks.

We conclude that MTL has the potential to give superior performance
in accuracy versus speed over using multiple single-task models simulta-
neously as far as the two tasks of object detection and semantic segmen-
tation are concerned. This is in exchange of a training process that is
more complex as it requires extra choices to be made, a new tuning of
the parameters that jointly works well for each task and overcoming new
challenges that were not present in the training of single-task models.

There are several potential directions for extending this thesis. First,
most interestingly, investigating how to overcome the challenges found
here and finding strategies for simplifying the process of defining and
training multitask models, for example following directions similar to [30],
where the architecture of the multitask network itself is modified during
training taking into consideration accuracy but also resource sharing,
combining the approach with guidelines from the meta-architectures that
are known to perform best for each task according to the literature. Other
future work that is of interest is to evaluate how MTL works when applied
to other domains. Also, in order to use the models for real applications,
further tuning the parameters and choices made here to achieve better
results or adding more tasks of interest such as action detection, that can
be of interest from an application perspective.
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