
Power-Aware Load Balancing Of Large Scale MPI Applications

Maja Etinski†

maja.etinski@bsc.es
Julita Corbalan†

julita.corbalan@bsc.es
Jesus Labarta†

jesus.labarta@bsc.es

Mateo Valero†

mateo.valero@bsc.es

†Barcelona Supercomputing Center
Jordi Girona 31, 08034 Barcelona, Spain

Alex Veidenbaum‡

alexv@ics.uci.edu

‡Department of Computer Science
University of California, Irvine CA

Abstract

Power consumption is a very important issue for HPC
community, both at the level of one application or at the
level of whole workload. Load imbalance of a MPI ap-
plication can be exploited to save CPU energy without pe-
nalizing the execution time. An application is load imbal-
anced when some nodes are assigned more computation
than others. The nodes with less computation can be run
at lower frequency since otherwise they have to wait for
the nodes with more computation blocked in MPI calls. A
technique that can be used to reduce the speed is Dynamic
Voltage Frequency Scaling (DVFS). Dynamic power dissi-
pation is proportional to the product of the frequency and
the square of the supply voltage, while static power is pro-
portional to the supply voltage. Thus decreasing voltage
and/or frequency results in power reduction. Furthermore,
over-clocking can be applied in some CPUs to reduce over-
all execution time. This paper investigates the impact of us-
ing different gear sets , over-clocking, and application and
platform propreties to reduce CPU power. A new algorithm
applying DVFS and CPU over-clocking is proposed that re-
duces execution time while achieving power savings com-
parable to prior work. The results show that it is possible
to save up to 60% of CPU energy in applications with high
load imbalance. Our results show that six gear sets achieve,
on average, results close to the continuous frequency set
that has been used as a baseline.

1. Introduction

HPC systems use an increasingly large number of pro-
cessors with MPI-based parallel programs. The resulting
increase in the number of processes of an application usu-
ally decreases the load balance degree of the application.

Several solutions have been proposed to load balance ap-
plications via processor resource distribution ([1]). Via Dy-
namic Voltage Frequency Scaling (DVFS) that enables per
processor frequency control it is possible to balance imbal-
anced applications in power aware manner. In load imbal-
anced MPI applications, there are processes which complete
their computation and have to wait for the other processes
to communicate. These nodes can run at lower frequen-
cies and save energy consumed by CPU without increasing
the execution time. The dynamic power is proportional to
the product of the frequency and the square of the voltage
and it can be reduced via DVFS technique. A processor
that supports DVFS defines a set of gears i.e. frequency-
voltage pairs at which it can run. The idea to exploit load
imbalance to save energy has been already proposed and a
runtime system called Jitter has been implemented and de-
scribed in [18]. A static version of this approach is called
Slack and it is observed in [21].

Prior work has been evaluated only on small clusters, for
instance eight nodes were used in ([21], [18]). Larger sys-
tems are likely to have a more unbalanced execution. In this
work we investigate the impact of the cluster size on imbal-
ance and show that it can grow significantly with cluster
size. Thus larger scale applications may have a greater load
imbalance and therefore allow greater relative savings than
the small clusters. This paper presents results for large clus-
ters with up to 128 nodes and for real world applications.
Furthermore, we show the correlation between the degree
of load balance and the energy reduction.

The Jitter system proposed an algorithm which computes
for each process the frequency necessary to complete the
computation at the same time as other processes, based on
slack time. We will refer to this algorithm as the MAX algo-
rithm, because it makes all processes complete in the time of
the longest running process. Furthermore, this name makes
clear the difference between this already proposed approach

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87655779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and an algorithm called AVG that we propose. The main
difference between the MAX and average algorithms is that
the AVG algorithm tries to reduce the maximum time by
using over-clocking. Our conjecture was that over-clocking
would need to be applied only in very few processors and
thus not lead to an increase in the power consumption.

Several issues have a major effect on DVFS load balanc-
ing of large scale MPI applications and are investigated in
this paper. First is the question of how to manage DVFS,
discrete versus continuous frequency choice, the number of
discrete setting, etc. We investigated which is the most ap-
propriate DVFS gear set size and how frequencies should
be distributed to save more energy. Second, hardware de-
pendent parameters, such as the fraction of static power in
the total CPU power and the CPU activity factor are inves-
tigated. Third is the question of how memory bound is an
application. This can have a significant effect on the exe-
cution time. Memory boundedness determines energy-time
tradeoff for sequential and load balanced parallel applica-
tions when whole applications are run at reduced speed, as
was observed in [7] but it is especially important in load im-
balanced applications when different CPUs run at different
frequencies.

This paper explores the use of DVFS techniques that may
not have been implemented in hardware, for instance differ-
ent gear sets. Thus simulation is used to evaluate execution
time and power savings. A new simulation infrastructure
was created to support this research. The following simula-
tion approach is used. First, we collect traces of observed
applications. Next, they are processed to get per MPI pro-
cess data. Based on this information and according to the al-
gorithm used, the per CPU frequencies are assigned so that
computation times per process are balanced. One frequency
is assigned to a process for the whole execution. This ap-
proach can be applied to any application with regular, itera-
tive behavior. Finally, the execution time is simulated based
on a model described in 3.2 and the original and the new
CPU energies are compared.

The results presented in this paper show that large scale
applications can potentially save a significant amount of
CPU energy, up to 60%, in imbalanced MPI applications.
With respect DVFS gears, our results for the set of appli-
cations studied show that six DVFS gears are sufficient to
achieve gains that are close to the ideal case of a continuous
frequency set.

Main contributions of this paper are:

• A new algorithm AVG that reduces both the energy
consumption and the execution time via DVFS and
overclocking. Power dissipation and execution time
using the new algorithm and using the MAX algorithm
are presented for up to 128 processors

• The impact of CPU and application characteristics on

energy and execution time is investigated

• A new simulation methodology and infrastructure are
proposed making it easy to analyze different applica-
tions, algorithms, and system parameters

• To the best of our knowledge, this is the first study
of load imbalance driven energy and execution time
reduction for large clusters, with up to 128, and for
real world applications

• It is shown that continuous frequency scaling is not
necessary and a small set of voltage-frequency gears
can achieve almost identical results.

The rest of the paper is organized as follows. Section
2 exposes related work. Section 3 describes load balanc-
ing algorithms, the models of power and the execution time
and tested DVFS gear sets. The simulation infrastructure is
described in section 4. Metrics used to compare results, de-
scription of the observed applications and results are given
in section 5. The last section contains conclusions and fu-
ture work.

2. Related Work

Prior work on power management addressed CPU,
memory, disk interconnection network, and whole-system
power. In this section we focus on CPU power reduction
in parallel applications via DVFS since it is the work most
closely related to ours.

There are many works from the field of power profiling
of applications. Although they just report measurement re-
sults of power and execution time on concrete platforms for
different gears or numbers of nodes, they give a valuable in-
sight in relations between frequency, power and execution
time. In [20] Pan et al. investigate the tradeoff between en-
ergy and time when applications run at lower frequencies.
They tested sequential HPC programs on two different plat-
forms. Freeh et al. explore energy consumption and execu-
tion time of parallel applications across different numbers of
nodes in [5] . All measurements are done using single gear
for the whole execution. They found that for some programs
it is possible to both consume less energy and execute in less
time when using a larger number of nodes, each running at
reduced speed. In [17], power measurements are done for
different applications per node, cabinet or the whole system
of almost 20,000 nodes. Power profiles of NAS parallel
benchmarks per component (CPU, memory, disk and NIC)
and by system scale are provided in [4].

Also, there are works based on previous profiling of the
application. Rountree et al. developed a system in [21] that
determines a bound on the energy saving for an application
and an allowable time delay. The system uses a linear pro-
gramming solver to minimize energy consumed under time



constraints. In [6], the idea is to divide programs into phases
and then assign different gears to phases according to previ-
ous measurements and a heuristic. In [9] the authors divide
the program execution into several regions and use an algo-
rithm to select a gear using the execution and power profile.
The goal of the algorithm is to minimize the sum of ener-
gies or EDP values per region. Afterwards, applications are
run at the selected combination of gears and the energy is
measured. Ge et al. investigated three different strategies
how to apply DVFS to decrease CPU power in [8].

Several runtime systems that apply DVFS in order to
save energy have been implemented. Interval based runtime
system determine at the beginning of each time interval the
frequency to use based on an allowable slowdown and an
execution time model [10]. The time model was based on
the MIPS rate and its goal was to correlate the execution
time with CPU frequency changes. Lim et al., in [19], used
an assumption that during communication regions the CPU
is not on the critical path. Their runtime system dynami-
cally reduces the CPU frequency during communication re-
gions in MPI programs and it is aimed at communication-
intensive codes. In [18], Kappiah et al. developed the Jitter
system that exploits load imbalance of MPI applications.
As we already mentioned, the MAX algorithms is a static
version of this approach.

3. Power Aware Load Balancing

3.1 Algorithms

In a MPI application there are processes that finish com-
putation phase before others and then are blocked wait-
ing for communication. According to the MAX algorithm,
the frequency of a CPU is determined so that the com-
putation time of a process that runs on the CPU would
be equal to the original maximal computation time among
all processes. Thus after frequency scaling all processes
complete the computation phase at approximately the same
time. This basically assumes an iterative application behav-
ior with fixed computation time ratio among processes so
that the frequencies can be set statically. In this way, the
CPU that has the highest load runs at the top frequency and
other CPUs run at reduced frequencies. How much a CPU
frequency should be decreased depends on the amount of
the computation load that is assigned to the process but also
on memory boundedness of the code. The execution time
model taking these into account is described in the next sec-
tion.

Since it is not possible to scale frequency to an arbitrary
value, except in the ideal case of continuous frequency set,
the new frequency is the closest higher frequency from the
gear set than the frequency that should be assigned accord-
ing to the algorithm.

In Figure 1 a visualization of a part of BT-MZ execu-
tion is given before and after the MAX algorithm is applied
assuming continuous frequency scaling. In the original ex-
ecution a lot of time was spent waiting for communication
while under the MAX algorithm almost all the time is spent
in computation.

(a) Original execution (b) After MAX algorithm

Figure 1. Visualization of BT-MZ execution

The algorithm AVG aims to balance the computation
times to the average, rather than maximum, original com-
putation time. This would require a frequency increase in
one or more CPUs. When an application is very load im-
balanced, it may not be possible to scale a high load pro-
cess to the average value because it would need an unre-
alistically high frequency. In this work we use frequency
thresholds of 10 and 20% above the manufacturer’s spec-
ified maximum frequency (e.g. amount of over-clocking).
Whenever because of high degree of load imbalance is not
possible to scale all computation times to the average value,
the frequencies are determined so that the target computa-
tion time is the closest one to the average but attainable with
the available frequency range. In [22], dynamic proces-
sor overclocking was proposed to improve performance un-
der a power constraint. This paper investigates how DVFS
load balancing can benefit from processor over-clocking
and whether it is possible to reduce both the energy and the
execution time.

3.2 Power and Time Models

CPU power represents a significant fraction of the over-
all system power. The exact percentage is system depen-
dant, but the CPU power can make approximately 45-55%
of overall system power ([18]) . Hence, it is important to
decrease the CPU power in order to save power. The CPU
power consists of the static and the dynamic power. The
dynamic power is equal to:

Pdynamic = ACfV 2 (1)

where A is the activity factor, C is the total capacity f
is the CPU frequency and V is the supply voltage. The ra-
tio between computation and communication activity fac-
tors depends on the program and the concrete processor. In



this study we initially assume it to be 1.5 and later investi-
gate other values. These values are based on measurements
from [4, 17].

The static power is equal to ([2]):

Pstatic = αV (2)

where α presents a technology and design dependent pa-
rameter. We assumed in our baseline case that static power
equals 20% of total CPU power when the CPU is loaded and
runs at the top frequency as it is assumed in [3]. It is used
to determine parameter α. Since the fraction of static power
in total CPU power increases as technology scales down,
higher percentages of static power are also investigated.

While the duration of communication does not depend
on the CPU frequency, duration of computation depends
significantly on the CPU frequency. How much a decrease
in frequency may increase the execution time depends on
how much a computation phase is memory bound and on
the memory subsystem behavior. For instance, the execu-
tion time at the new frequency is not inversely proportional
to the change in CPU frequency due to off-chip memory ac-
cesses . We used the model proposed in [10] to estimate
computation times at reduced speed. The model is based on
the following equation:

T (f)/T (fmax) = β(fmax/f − 1) + 1 (3)

where T (f) is the execution time of running at CPU fre-
quency f , T (fmax) is the execution time of running at the
top frequency fmax . The parameter β reflects how much a
phase is memory bound. β = 1 means that halving the fre-
quency doubles the execution time whereas β = 0 means
that a change in frequency does not affect the execution
time. We assume β = 0.5 on average. It is based on mea-
surement results from [20].

3.3 Gear Sets

Two continuous gear sets are used in this work. The
first one, unlimited, contains frequencies ranging from 0 to
2.3 GHz. The frequency of 2.3 GHz is assumed to be the
highest CPU frequency, per manufacturer’s specification.
The second continuous set is limited, containing frequen-
cies from 0.8 GHz to 2.3 GHz. The second set is introduced
in order to allow comparison with the discrete frequency
sets defined below.

We also used several different size gear sets that have
from 2 to 15 gears. Furthermore, we tested gear sets with
uniform and exponential distribution of frequencies.

The corresponding voltage of 2.3 GHz frequency gear is
1.5 V and for the 0.8 GHz frequency gear the corresponding
voltage is 1V. A linear DVFS scenario is assumed as in [3].
Corresponding voltages of other frequency points are val-
ues of a linear function determined by points (1V, 0.8 GHz)

and (1.5 V, 2.3 GHz). Accordingly, six gears of an evenly
distributed set are shown in Table 1 and of the exponentially
distributed set in Table 2. The voltage values in continuous
case are determined in the same way.

Frequency (GHz) 0.8 1.1 1.4 1.7 2.0 2.3
Voltage (V) 1 1.1 1.2 1.3 1.4 1.5

Table 1. 6 gear evenly distributed set

Frequency (GHz) 0.8 1.57 1.96 2.15 2.25 2.3
Voltage (V) 1 1.26 1.39 1.45 1.48 1.5

Table 2. 6 gear exponential set

4. Simulation Infrastructure

The observed benchmarks were executed on a PowerPC
based cluster with Myrinet interconnection and the execu-
tion traces were generated. Paraver [13], a tool to visualize
and analyze the execution of parallel applications through
traces, was used. We have used the Paraver trace han-
dling environment to extract a trace that corresponds ex-
actly to a period of the iterative application behavior, dis-
carding initialization. It was also used to visualize behavior
of observed applications and the degree of load imbalance.
Next, Paraver traces were translated to Dimemas trace files.
Dimemas [12] is a simulation tool for analysis of the be-
havior of message-passing applications on a configurable
parallel platform.

We have developed a power analysis module to support
our study. It works in conjunction with Dimemas to calcu-
lates the computation time per MPI process. Our module
also assigns a CPU frequency for each process according to
the algorithm and the gear set used. Using the assigned fre-
quency, the execution time of a process’ computation phase
is modified in the Dimemas tracefile. The execution time
of a phase is computed according to the time model as the
function of the frequency and the β parameter. Dimemas is
then used to simulate the modified trace in order to get the
execution time of a whole application. The power analysis
module computes the original and the new energy/power
consumed.

5. Experimental Evaluation

5.1 Metrics

We used two metrics to characterize parallel applica-
tions: load balance and parallel efficiency. Load balance
of an application is computed as follows:



LB =
∑Nproc

k=1 ComputationT imek

Nproc ∗maxComputationT ime
(4)

where Nproc is the number of CPUs,
ComputationT imek is the computation time of k-th
processor and maxComputationT ime is the maximal
value of computation time per process.

If TotalExecutionT ime is the execution time of an ap-
plication, its parallel efficiency is:

PE =
∑Nproc

k=1 ComputationT imek

Nproc ∗ TotalExecutionT ime
(5)

.
The results in the paper show the energy needed for ex-

ecuting an application applying DVFS normalized to the
original energy when all CPUs run at the top speed. An-
other widely used metric, the energy-delay product or EDP,
is used to account for changes in both the execution time
and energy. The EDP is also reported as a normalized value.

5.2 Applications

Several types of benchmarks were used in this work. CG,
MG, IS are benchmarks from NAS PB 2.3 [16] and BT-
MZ from NAS PB MZ 3.0 suite. Class C benchmarks were
used. Also, three real world applications, SPECFEM3D,
WRF and PEPC were used. SPECFEM3D [15] simulates
seismic wave propagation in sedimentary basin, WRF is
numerical weather prediction system [11], and PEPC is a
plasma physics code [14]. The applications are executed
varying the number of processor from 32 to 128. The num-
ber of application processes is stated in a benchmark name,
e.g. CG-32.

Potential energy savings in an application depend on its
load balance and parallel efficiency. They are shown in Ta-
ble 3. Note that the values are for an iterative region of an
application.

5.3 Results

Recall that the MAX algorithm uses only frequencies
less than or equal to the manufacturer specified maximum
CPU frequency, while the AVG algorithm allows for pos-
sible CPU over-clocking in some of the processors. The
MAX algorithm was used in all parametric studies pre-
sented in this section. The AVG algorithm was used in
5.3.6 to evaluate whether the overclocking of some proces-
sors while running other processors at reduced frequencies
can improve both the energy and the execution time.

5.3.1 Different Size Gear Sets

The size and ”continuity” of a gear set can have a large ef-
fect on the power savings. The CPU energy and EDP values

Application Load balance Parallel efficiency
BT-MZ-32 35.21% 35.07%

CG-32 97.82% 78.55%
MG-32 94.55% 87.28 %
IS-32 43.77% 8.21%

SPECFEM3D-32 92.80% 92.61%
WRF-32 90.60% 89.53%
CG-64 93.46% 63.36%
MG-64 91.50% 85.60%
IS-64 49.59% 17.00%

SPECFEM3D-96 79.07% 78.65%
PEPC-128 76.12% 67.78%
WRF-128 93.65% 85.27%

Table 3. Application characteristics

for different gear sets when DVFS is used according to the
MAX algorithm are shown in Figure 2. The first column
for each frequency set presents the energy normalized to the
original value and the second column is a normalized EDP.
The first two sets are an unlimited and a limited continuous
frequency sets. The rest of the sets are discrete, evenly dis-
tributed frequency sets with 2 to 15 gears. The results are
given for five applications due to space limitation.

These results show that with respect to the energy con-
sumption the unlimited continuous frequency set is better
than a limited one only for BT-MZ, IS-32 and IS-64. These
three applications need frequencies lower than 0.8 GHz
since they have the highest degree of load imbalance. Con-
cerning the size of a gear set, discrete gear sets with six or
seven gears are, on average, close to the continuous case, as
can be seen in Figure 3. It also shows the effect of load im-
balance on energy savings for the unlimited continuous set,
two and six discrete gear sets. Even with just two gears it
is possible to achieve savings for very load imbalanced ap-
plications. SPECFEM3D-32 and both WRFs benchmarks
need at least four gears to be able to exploit DVFS in this
way, while MG-32 needs even more - six gears. Since CG-
32 has the highest degree of load balance, it cannot achieve
any energy savings in this way. Other applications save en-
ergy with only two or three gears.

One can concluded from the EDP values presented that
the execution time of the applications usually is not in-
creased by more than two percent. One exception is PEPC,
where execution time in the worst case is increased by 20%.
Such an increase in time for PEPC is due to two major com-
putation phases with different load imbalance in one itera-
tion, while only a single DVFS setting is used.

5.3.2 Exponential Gear Sets

In order to explore whether it is possible to achieve similar
results with smaller gear set, we have also used five different



BTMZ32

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

CG64

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

SPECFEM3D96

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

PEPC128

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

WRF128

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Figure 2. Normalized energy and EDP for different gear sets

30 40 50 60 70 80 90 100 110
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

unlimited continuous set

2 gear set

6 gear set

Figure 3. Energy as a function of load balance

size exponential gear sets. We call a gear set exponential if
the difference between two adjacent frequencies is a factor
of 2. This distribution of frequencies is expected to show
better results for less imbalanced applications since it has
greater number of higher frequency gears. The sets used
have from three to seven gears.

Figure 4 shows the energy and EDP for each of five sets.
When uniformly distributed sets were used, SPECFEM3D-
32 and WRFs needed at least four gears to save energy.
With exponential sets, they can consume less energy with a
three gear set. Similarly, MG-32 needed six uniformly dis-
tributed gears to reduce the energy, while with exponential
sets four gears are sufficient. Comparing larger gear sets,
with six or seven gears, exponentially and evenly distributed
gear sets show similar results. Concerning the execution
time, it is increased less with exponential sets. Even in the
cases of PEPC-128, the execution time is not increased by
more than 6.5%.

5.3.3 Effect of Beta

The β parameter indicates how memory bound is a com-
putation phase. Fixed β values from 0.3 to 1 were used.
The results in Figure 5 are for the evenly distributed six
gear set. The more an application is memory bounded, the
higher savings are possible - similar to the sequential case.
One can observe that there are applications whose energy
varies more for different β values and applications in which

BTMZ32 CG32 MG32 IS32 SPECFEM3D WRF32 CG64 MG64 IS64 SPECFEM3D96PEPC128 WRF128

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Figure 4. Results for exponential sets

the energy is not so much affected by change in β. How
much the different values of the β impact the savings of an
application depends on its load balance degree. The fig-
ure shows that IS-64, SPECFEM3D-96 and PEPC-128 are
more sensitive to change in β than others. These are not
well balanced applications. Well balanced applications can
not always exploit higher memory boundedness due to finite
discrete frequency sets and a smaller difference between the
original computation and the target time. BT-MZ and IS-32
are the least balanced applications but their energy does not
differ a lot for different β values. They need frequencies
lower than the lowest one in the set and that is why they can
not exploit higher memory pressure.

BTMZ32 CG32 MG32 IS32 SPECFEM3D WRF32 CG64 MG64 IS64 SPECFEM3D96 PEPC128 WRF128

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5. Impact of β parameter

5.3.4 Impact of Static Power

The results presented above used 20% as the fraction of
static power at maximum voltage/frequency for computa-
tion phases. The impact of static fraction of the total power



is investigated in this section. Figure 6 shows the new total
energy varying the static fraction. These results are obtained
for uniformly distributed six gear set and the static power
percentage varied from 0% to 90% in increments of 10%.
When static power makes 70% or more of the total power
the energy savings are only a half of those when static power
presents 20% of the total power. One can observe from the
figure that different applications have different slopes of the
energy as a function of the percentage of static in the total
power. The slope depends on the load balance of an ap-
plication - the more load imbalanced it is the higher is the
slope.

BTMZ32 CG32 MG32 IS32 SPECFEM3D32 WRF32 CG64 MG64 IS64 SPECFEM3D96 PEPC128 WRF128

0.00%

20.00%

40.00%

60.00%

80.00%

100.00% 0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Figure 6. Energy as a function of static power

5.3.5 Activity Factor

The average ratio of computation to communication activ-
ity factors, can varies significantly between benchmarks or,
for the same benchmark on different platforms. To inves-
tigate the impact of the activity factor, it was varied from
1.5 to 3 (based on reports in prior work). The results for the
evenly distributed six gear set are presented in Figure 7. The
change in energy for different activity factors is dependent
on the load balance degree.

BTMZ32 CG32 MG32 IS32 SPECFEM3D WRF32 CG64 MG64 IS64 SPECFEM3D96 PEPC128 WRF128

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1.5

1.75

2

2.25

2.5

2.75

3

Figure 7. Impact of activity factor

5.3.6 AVG algorithm

Recall that the AVG algorithm can apply a frequency in-
crease in some processors while decreasing frequency in
most processors. We have investigated the AVG algorithm
allowing the top frequency to be increased by 10% and 20%

for the limited continuous frequency set and adding an addi-
tional frequency-voltage pair (2.6 GHz, 1.6 V) for discrete
evenly distributed six gear set. The results for the continu-
ous case are shown in Figure 8. The energy is reduced for
all applications by an amount that depends on the load bal-
ance degree. This reduction in energy is between 0.5% for
CG-32 and 63% for BT-MZ.

BTMZ32 CG32 MG32 IS32 SPECFEM3D WRF32 CG64 MG64 IS64 SPECFEM3D96 PEPC128 WRF128

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Energy10% overclocking

EDP10% overclocking

Energy20% overclocking

EDP – 20% overclocking

Figure 8. AVG algorithm with continuous set

Normalized energy, EDP and the percentage of proces-
sors that need to be overclocked for the discrete case are
presented in Figure 9. The AVG algorithm reduces the EDP
for all observed applications, except for the most load bal-
anced CG-32 and MG-32. Almost all execution times have
decreased. PEPC execution time has increased but less than
in the case of the MAX algorithm. The applications with
high degree of load imbalance need very few CPUs over-
clocked (BT-MZ, IS-32, IS-64, PEPC). Some benchmarks,
e.g. SPECFEM3D-32, need to overclock 53.13% of its
CPUs.

BTMZ32 CG32 MG32 IS32 SPECFEM3D32 WRF32 CG64 MG64 IS64 SPECFEM3D96 PEPC128 WRF128

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Time

Energy

EDP

Overclocked

Figure 9. AVG algorithm with discrete set

Comparison of the MAX and the AVG algorithm is de-
picted in Figure 10. With respect to the CPU energy, the
MAX algorithm is better but regarding the execution time
the AVG shows better results. Decrease in the execution
time reduces energy not only in the CPUs but also in the
rest of the system and is important.

6. Conclusions

This paper presented a study of power management for
large scale MPI-based load-imbalanced parallel applica-
tions. It presented a new algorithm for doing this which
applied both DVFS and over-clocking to the CPUs to save



BTMZ32 CG32 MG32 IS32 SPECFEM3D32 WRF32 CG64 MG64 IS64 SPECFEM3D96PEPC128 WRF128

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

EnergyMAX

EnergyAVG

TimeMAX

TimeAVG

EDPMAX

EDPAVG

Figure 10. Comparison of MAX and AVG algo-
rithms

energy and to improve execution time. Furthermore, the re-
sults show that it is possible to save greater amount of CPU
energy than in the case of small clusters due to increased
load imbalance of applications. Some applications, for in-
stance IS-32, IS-64 and BT-MZ, are very imbalanced and
have a high potential for CPU energy saving, up to 60% .

The proposed new algorithm reduces the execution time
in almost all of the applications studied. It achieves CPU
energy saving similar to the previously proposed algorithm.
Overall, the new algorithm has a higher potential to save
overall system energy because it reduces the execution time.

Regarding the gear set size, we can conclude that the
gear set with just 6 gears gives good results compared to
continuous sets. For well balanced applications and small
set size, exponential distribution of frequencies in a set
gives better results both the energy and the execution time.

Many other aspects of parallel program execution have
an impact on the achievable energy savings. This paper pre-
sented an evaluation of the impact of computation to com-
munication activity factor ratio, the memory boundedness
in applications, and the fraction of static power on energy
savings.

References

[1] C. Boneti, R. Gioiosa, F. J. Cazorla, and M. Valero. A dy-
namic scheduler for balancing hpc applications. In SC ’08:
Proceedings of the 2008 ACM/IEEE conference on Super-
computing, pages 1–12, Piscataway, NJ, USA, 2008. IEEE
Press.

[2] J. Butts and G. Sohi. A static power model for architects.
Microarchitecture, 2000. MICRO-33. Proceedings. 33rd An-
nual IEEE/ACM International Symposium on, pages 191–
201, 2000.

[3] Y. Ding, K. Malkowski, P. Raghavan, and M. Kandemir. To-
wards energy efficient scaling of scientific codes. Parallel
and Distributed Processing, 2008. IPDPS 2008. IEEE Inter-
national Symposium on, pages 1–8, April 2008.

[4] X. Feng, R. Ge, and K. Cameron. Power and energy profil-
ing of scientific applications on distributed systems. Parallel
and Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International, pages 34–34, April 2005.

[5] V. Freeh, F. Pan, N. Kappiah, D. Lowenthal, and R. Springer.
Exploring the energy-time tradeoff in mpi programs on a
power-scalable cluster. Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International,
pages 4a–4a, April 2005.

[6] V. W. Freeh and D. K. Lowenthal. Using multiple en-
ergy gears in mpi programs on a power-scalable cluster. In
PPoPP ’05: Proceedings of the tenth ACM SIGPLAN sym-
posium on Principles and practice of parallel programming,
pages 164–173, New York, NY, USA, 2005. ACM.

[7] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah,
R. Springer, B. L. Rountree, and M. E. Femal. Analyzing the
energy-time trade-off in high-performance computing appli-
cations. IEEE Transactions on Parallel and Distributed Sys-
tems, 18(6):835–848, 2007.

[8] R. Ge, X. Feng, and K. W. Cameron. Performance-
constrained distributed dvs scheduling for scientific appli-
cations on power-aware clusters. sc, 0:34, 2005.

[9] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and
D. Takahashi. Profile-based optimization of power perfor-
mance by using dynamic voltage scaling on a pc cluster.
ipdps, 0:340, 2006.

[10] C. hsing Hsu and W. chun Feng. A power-aware run-time
system for high-performance computing. sc, 0:1, 2005.

[11] http://wrf model.org/index.php. Wrf weather prediction sys-
tem.

[12] http://www.cepba.upc.edu/dimemas/. Dimemas tool web
page.

[13] http://www.cepba.upc.edu/paraver/. Paraver tool web page.
[14] http://www.deisa.eu/science/benchmarking/codes/pepc.

Pepc application.
[15] http://www.gps.caltech.edu/

jtromp/research/downloads.html. Specfem3d sofware
package.

[16] http://www.nas.nasa.gov/Resources/Software/npb.html.
Nas parallel benchmarks.

[17] S. Kamil, J. Shalf, and E. Strohmaier. Power efficiency in
high performance computing. Parallel and Distributed Pro-
cessing, 2008. IPDPS 2008. IEEE International Symposium
on, pages 1–8, April 2008.

[18] N. Kappiah, V. W. Freeh, and D. K. Lowenthal. Just in time
dynamic voltage scaling: Exploiting inter-node slack to save
energy in mpi programs. sc, 0:33, 2005.

[19] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal. Adaptive,
transparent frequency and voltage scaling of communication
phases in mpi programs. sc, 0:14, 2006.

[20] F. Pan, V. Freeh, and D. Smith. Exploring the energy-time
tradeoff in high-performance computing. Parallel and Dis-
tributed Processing Symposium, 2005. Proceedings. 19th
IEEE International, pages 9 pp.–, April 2005.

[21] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R.
de Supinski, and M. Schulz. Bounding energy consumption
in large-scale mpi programs. In SC ’07: Proceedings of the
2007 ACM/IEEE conference on Supercomputing, pages 1–9,
New York, NY, USA, 2007. ACM.

[22] J. Rubio, K. Rajamani, F. Rawson, H. Hanson, S. Ghiasi, and
T. Keller. Dynamic processor overclocking for improving
performance of power-constrained systems. IBM Research
Report.


