

UPCommons
Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Moore, P.R., Qassem, T., Xhafa, F. (2014) 'NoSQL' and electronic
patient record systems: opportunities and challenges. 2014 Ninth
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing, 3PGCIC 2014, 8-10 November 2014, Guangzhou, Xina:
proceedings. [S.l.]: IEEE, 2014. Pp. 300-307 Doi:
http://dx.doi.org/10.1109/3PGCIC.2014.81.

© 2014 IEEE. Es permet l'ús personal d'aquest material. S’ha de
demanar permís a l’IEEE per a qualsevol altre ús, incloent la
reimpressió/reedició amb fins publicitaris o promocionals, la creació
de noves obres col·lectives per a la revenda o redistribució en
servidors o llistes o la reutilització de parts d’aquest treball amb drets
d'autor en altres treballs.

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
http://dx.doi.org/10.1109/3PGCIC.2014.81

Moore, P.R., Qassem, T., Xhafa, F. (2014) 'NoSQL' and electronic
patient record systems: opportunities and challenges. 2014 Ninth
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing, 3PGCIC 2014, 8-10 November 2014, Guangzhou, Xina:
proceedings. [S.l.]: IEEE, 2014. Pp. 300-307 Doi:
http://dx.doi.org/10.1109/3PGCIC.2014.81.

(c) 2014 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes,
creating new collective works for resale or redistribution to servers or
lists, or reuse of any copyrighted components of this work in other
works.

http://dx.doi.org/10.1109/3PGCIC.2014.81

NoSQL and Electronic Patient Record
Systems: Opportunities and Challenges

Philip Moore
School of Information Science and Engineering

Lanzhou University
Lanzhou, China

drpmlzu@yahoo.co.uk

Tarik Qassem
Warwick Medical School

University of Warwick
Coventry, UK

T.Qassem@warwick.ac.uk

Fatos Xhafa
Technical University of Catalonia

C. Jordi Girona, 08034
Barcelona, Spain.
fatos@lsi.upc.edu

Abstract— Research into electronic health record systems can
be traced back over four decades however the penetration of
records which incorporate more than simply basic information
into healthcare organizations is relatively limited. There is a
great demand for effective health record systems which are
difficult to build with data generally stored in highly distributed
systems as unstructured data with access and updating achieved
over online systems. Internet application design must reflect
three trends in the computing landscape: (1) growing numbers of
users applications must support (along with growing user
performance expectations), (2) growth in the volume and range
and diversity in the data that developers accommodate, and (3)
and the rise of Cloud Computing. The traditional approach to
data storage has generally employed Relational Database
Systems however to address the evolving paradigm interest has
been shown in alternative database systems including NoSQL
technologies. This paper considers the requirements of online
distributed health record systems. The analysis supports the
conclusion that NoSQL database systems provide a potentially
useful approach to the implementation of HR systems in online
applications.

Keywords— unstructured data; database systems; NoSQL;
electronic health records; online transaction processing

I. INTRODUCTION
Research into Electronic Health Record (HR) systems can

be traced back over four decades however the penetration of
records which incorporate more than simply basic information
into healthcare organizations is relatively limited. There is a
great and largely unsatisfied demand for effective HR systems
by all stakeholders in healthcare provision to address a number
of issues including [1]: (1) medical record movement and
updating problems, (2) interoperability between different
systems, (3) realizing improvements in the quality and
coherence of the care process to drive process improvement,
(4) automation of guidelines and care pathways, (5) assistance
and facilitation of clinical research, outcomes, and
management, and (6) the ability to mine the data to recognize
patterns that could help in improving healthcare.

HR are however very difficult to build as data is generally
stored in distributed systems and locations in a diverse range of
formats as unstructured data with access and updating using
Online Transaction Processing (OTP). These challenges are
exacerbated because the current electronic data sources which

include: hospital systems, laboratory systems, pharmacy
systems, and physician dictation systems etc reside on multiple
data stores frequently with different structures, levels of
granularity, and coding systems [1].

An example of a project designed to implement a
comprehensive HR is the ‘National Programme for IT’
(NpfIT) [2][3] in the UK. The NpfIT project was, from its
outset, an ambitious effort aimed at introducing a national HR
system across NHS care providers for England. The project is
distinguished by its scale, unprecedented levels of investment,
complexity of systems, centrally driven delivery model, and
extremely challenging timelines. The English endeavor was
ultimately unsuccessful and demonstrates the scale of
challenges inherent in building an effective and workable HR
system [2][3]. A central feature of the NpfIT project was the
use of OTP as discussed in [2][3].

Traditionally, Relational Database Management Systems
(RDMS) have been employed to manage data. However
application needs have changed dramatically and the design of
Internet applications (including HR) must reflect current trends
in the computing landscape: (1) the growth in the numbers of
users applications must support (along with growing user
performance expectations), (2) the growth in the volume and
range and diversity in the data that developers accommodate,
and (3) the rise of Cloud Computing (CC) (which relies on a
distributed three-tier Internet architecture), and (4) possibilities
for the use the data in ‘Big data’ applications. These trends are
features of HR systems. To address these trends interest has
been shown in alternative database systems including NoSQL
(non-relational) technologies. While non-relational databases
(including hierarchical, graph, and object-oriented databases)
date back to the late 1960s NoSQL; systems are gaining
traction in Internet based enterprise systems; prominent
examples of such systems are developments by Google (Big
Table) [4] and Amazon (DynamoBD) [5]. It has been argued
that BigTable, memcached, and Amazon’s DynamoDB have
demonstrated ‘proof-of-concept which has provided the
motivation for many of the data stores that characterize NoSQL
systems.

Why Are NoSQL Databases so Interesting? and why are
they gaining traction among Internet based organizations such
as Google, Amazon, and Facebook? It has been noted by
Sadalage & Fowler in [6] that there are two primary reasons for

2

considering a NoSQL database: (1) Application development
productivity (issues in mapping data between in-memory data
structures and a relational database), and (2) Large-scale data
sets (a relational database is designed to run on a single
machine, but it is usually more economic to run large data and
computing loads on clusters of many smaller and cheaper
machines). Database systems designed to operate on
unstructured data are generally referred to as NoSQL; the
motivation being to accommodate the diversity in the types of
data and enable dynamic high user loading. Unstructured data
is generally characterised by highly distributed datasets using
both horizontal and vertical scaling (also termed partitioning)
[7] [8] across nodes located in widely separated geographical
locations [8].However, notwithstanding the potential to
manage unstructured data NoSQL database systems must clear
many technical and commercial obstacles if widespread take-
up of the technology is to be realized [7].

This paper considers the requirements of distributed data in
HR systems along with the relative merits of traditional and
NoSQL database systems as they relate to unstructured data in
HR systems using OTP. The paper is structured as follows: HR
are considered with a brief introduction to some key
terminology used in discussing NoSQL systems to ensure
consistency in the discussion. Related research addressing
RDMS and NoSQL systems is presented followed by the
important approaches to enable implementation of NoSQL
systems. Illustrative examples of the NoSQL approaches are
set out with a scenario-based example of an HR system where
the systemic requirements are set out and an analysis is
provided. A discussion is presented, the paper closing with
concluding observations, open research questions. The analysis
provides support for the conclusion that for HR implemented
using OTP unstructured data and NoSQL database systems
provide a potentially useful and profitable approach to the
implementation of such systems.

II. ELECTRONIC HEALTH RECORDS
In a paper entitled: ‘The Barriers to Electronic Medical

Record Systems and How to Overcome Them’ [1] it is argued
that: “If everyone’’ wants HR, and the sources of electronic
patient data are so abundant, why are they so scarce?”. The
reasons are very complex and involve many factors including
ethical, security, and privacy concerns [1]. However, from a
computational perspective there are two principal reasons: [1]:
(1) sources of [electronic] patient data “reside on many isolated
‘islands’ that have been very difficult to bridge”, and (2)
effective methods of capturing data from medical professionals
based on common standards in a human and computer readable
form remain elusive and have yet to be effectively achieved.

It was reported in 1997 in that there are: “Too Many
Different Separate Systems with Different Data Structures”
[1]. Additionally, the diversity in the types of care provided
[which range from general medicine and emergency treatment
to nursing homes] only serve to add to the inherent complexity
in “birth-to-death” healthcare systems and the data sets that
combine to create an HR. With the expansion in the range,
scope, and capability of medical care pathways, the complexity
identified in [1] has only increased along with the ability to
create, store, and distribute such data. An additional

consideration is research data gathered in laboratory
experiments and medical trials which may subsequently be
used in translational research [9]. Thus, it can be seen that
medical record data is by its very nature inherently
unstructured and as we will argue, managing such data using
traditional approaches [such as a RDMS] represents a
significant challenge.

A. Terminology
Prior to considering database systems with respect to HR

systems it will be useful to define a number of important terms.
The term NoSQL has no commonly agreed definition [6][7][8],
it is however commonly accepted that the term stands for:
“Not Only SQL” or “Not Relational” [7][8]. Additionally,
there are many terms used when describing NoSQL systems
for which the definitions vary between different NoSQL’
applications and systems [8]. To ensure clarity of meaning a
number of key terms are set out below with their definitions.

A document: allows values to be nested documents or lists
or scalar values with attribute names dynamically defined for
each document at runtime. A document differs from a tuple in
that the attributes are not defined in a global schema; thus a
wider range of values are permitted. An extensible record: is a
hybrid between a tuple and a document. Collections of
attributes are defined in a schema however new attributes can
be added (within an attribute collection) on a per-record basis.
Attributes may be list-valued. An object: is analogous to an
object in high level programming languages but without the
procedural methods. Values may be references or nested
objects. Scaling (often termed partitioning): refers to
horizontal and vertical scaling. Horizontal scaling means the
ability to distribute both the data and the load of simple
operations over many servers, with no RAM or disk shared
among the servers. Vertical scaling refers to a scenario where a
database system utilizes many cores and/or CPUs that share
RAM and disks. Systems may provide both vertical and
horizontal scalability. A simple operation: relates to “key
lookups”, “reads”, and “writes” of one record or a small
number of records [8]. This is in contrast to: ‘complex queries’
or ‘joins’, ‘readmostly access’, or other application loads
typically used in SQL systems.

III. RELATED RESEARCH
This section we consider documented research relating to

database systems. We discuss RDMS and NoSQL database
systems with consideration of unstructured data systems. In
Section V a detailed discussion on approaches to implement
NoSQL systems is presented with illustrative scenarios in
Sections VI and VII.

A. Database Systems
A broad definition of NoSQL database systems including

systems that are not relational has been used in the literature.
Such systems include: (1) Graph database systems, (2) Object-
oriented database systems, (3) Distributed object-oriented
systems and (4) Data warehousing database systems [which
provide horizontal scaling]. These systems are not considered
to be relevant to the unstructured data in the context of the data

3

and OTP used in HR systems and are therefore beyond the
scope of this paper.

RDMS are a mature technology and the scope and nature of
such systems is generally well understood with terminology
that has acquired a (generally) agreed common definition
[6][8]. NoSQL database systems are however immature
technologies and as such the scope of such systems and the
terminology used is frequently inconsistent [7][8]. To ensure
clarity and consistency in comparing data models and
functionality we have assumed that the NoSQL systems
identified provide methods to provide a means to store scalar
values. NoSQL database systems may additionally store more
complex nested or reference values. All the systems discussed
store sets of attribute value pairs however different data
structures may be used as discussed in this paper.

B. Relational Database Management Systems
Traditionally, data has been stored in the form of structured

data in RDMS to enable access, updating, and analysis [10]. A
relational database can be viewed as a set of defragmented
tables containing data in predefined categories. Each table
contains one or more data categories in columns and each row
contains a unique instance of data for the categories defined by
the columns. Users can access, update, or create ‘views’ of the
data based on user-defined queries created using the Structured
Query Language (SQL) [10].

The advantages of RDMS are well known and as a mature
technology there exist a large number of tools and functionality
inbuilt into systems such as Oracle [11]. A schema definition
based on relational algebra [10] centralizes and simplifies data
definition, and SQL simplifies the expression of operations that
span tables. In general programmers are generally conversant
with SQL and it is arguably true that SQL is easier to program
[given the availability of developed systems and tools] than the
lower-level bespoke programmer defined commands required
by ‘NoSQL’ systems.

Transactions [in SQL-based systems] greatly simplify
coding for concurrent access and the Atomicity, Consistency,
Isolation, and Durability (ACID) transaction model [common
in the majority of RDMS] frees the developer from managing
locks, out-of-date data, update collisions, and consistency.

1) Limitations of RDMS
In RDMS the structure of the data is predefined by a

Schema which defines the layout of the tables and the fixed
names and data types of the columns [10]. There are however
important inherent and inbuilt limitations in RDMS when
viewed from the perspective of highly dynamic Internet
applications and systems designed to support very large
numbers of concurrent users, OTP, and large diverse data sets
[7][8]. Significant limitations are discussed below.

Scaling: a relational database can be scaled by running it
on a single server; however, to scale beyond a the capacity of a
single server the database must be distributed across multiple
servers. RDMS may experience issues when implemented in a
distributed system over many nodes due to difficulties in
joining the tables [8]. Additionally, RDMS are not generally
designed to function when data scaling is required; therefore

partitioning of data is difficult [10]. Elmasari and Navathe [10]
in discussing concurrency control and recovery in distributed
databases observe:

“Failure of communication links: The system must be
able to deal with one or more communication links
[that connect sites]. An extreme case of this problem is
that network partitioning may occur. This breaks up
the sites into two or more partitions, where sites
within each partition can communicate only with one
another and not with other partitions”

Complexity: in a RDMS data must be stored tables with
decomposition to implement a ‘store-once’ approach in a
unique record [10]. Where data will not fit conveniently into a
table structure the database’s structure can be complex,
difficult, and exhibit significant performance issues. SQL: is
convenient with structured data; however, using SQL [with
other types of data such as unstructured data] is difficult as it is
designed to work with structured, relationally organized
databases in a fixed table structure [8][10]. SQL can entail
large amounts of complex code and doesn’t work well with
modern Internet applications and systems using OTP [10].
Large feature sets: while a RDMS provides data integrity and
a large feature sets. Proponents of unstructured database
systems [NoSQL] argue that a large feature set may not always
be required with the related cost and complexity implications
[7][8].

C. NoSQL Database Systems
In recent years systems have been designed to provide good

horizontal scalability for simple read/write database operations
distributed over many nodes[7][8]. Many of the new systems
are classified under the term NoSQL data stores. Such systems
are essentially designed to manage unstructured data in
applications and systems characterized by dynamic loading in
online systems. NoSQL systems generally share a number of
common features [7][8].

The principal benefit of NoSQL systems is the ability to
scale horizontally scale and replicate /distribute data and
throughput over many servers. In operation such systems use a
simple call level interface or protocol (in contrast to a SQL
binding) with a weaker concurrency model predicated on a
Basically Available, Soft State, Eventually consistent (BASE)
model as opposed to the ACID transaction model. The BASE
approach is predicated on the assumption that updates are
eventually propagated, but there are limited guarantees on the
consistency of reads. In this model data returned in a search is
not guaranteed to be up-to-date; however, updates are
guaranteed to be propagated to all nodes eventually.

The frequently cited: Consistency, Availability, and
Partition-tolerance (CAP) theorem [8] applies to NoSQL
systems. This theorem states that: “ that a system can have
only two out of three of the properties”. As we have noted
NoSQL systems generally give up Consistency; however, the
trade-offs are generally very complex and domain specific.
NoSQL systems may incorporate Multi-version Concurrency
Control (MVCC): a concurrency control method commonly
used by RDMS to enable concurrent access [8]. Efficient use of
distributed indexes and RAM for data storage is a feature often

4

found in NoSQL systems along with the ability to dynamically
update data records and new attributes in OTP

NoSQL: systems may differ in terms of their functionality,
the variations ranging from simple distributed hashing (as
supported by the popular memcached open source cache) [12]
to to highly scalable partitioned tables (as supported by
Google’s BigTable) [4]. Memcached [12]: a high-performance
distributed memory object caching system is generic in nature
and is designed to improve performance in dynamic web
applications by alleviating database load. It has demonstrated
that in-memory indexes can, in practical applications, achieve
high scalability in distributing and replicating objects over
multiple nodes.

The Amazon DynamoDB [5]: is a fully managed NoSQL
database service that arguably pioneered the concept of
“eventual consistency” [7][8] as a way of realising increased
availability and scalability. It is claimed [5] that the
DynamoDB provides: “a cost-effective method to store and
retrieve any amount of data, and serve any level of request
traffic” in Internet applications and systems. BigTable [4]: a
Google development, it is a distributed storage system for
managing structured data that is designed to scale to a very
large size (petabytes of data across thousands of commodity
servers). It has demonstrated that persistent record storage can
be scaled over many thousands of nodes in highly distributed
systems.

A key feature of NoSQL systems is the concept of “shared
nothing” with horizontal scaling [7][8]. This approach enables
support for large numbers of concurrent simple read/write
operations in OTP which is a common feature of Internet
applications and systems [8]. NoSQL systems generally
function on the basis of the BASE concept and (by design) do
not implement ACID transactional properties and constraints;
the aim is to achieve improved performance levels and
scalability. However, the systems differ in the degree to which
the ACID functionality is used. For example, the majority of
NoSQL systems claim to be eventually consistent however a
number of NoSQL systems provide mechanisms for some
degree of consistency including MVCC) [8].

D. Unstructured Data Systems
NoSQL technologies are gaining traction among Internet

companies because it offers data management capabilities that
meet the needs of modern applications by providing: (a) better
application development productivity through a more flexible
data model, (b) greater ability to scale dynamically to support
large numbers of users and greater volume and diversity of
data, and (c) improved performance to satisfy expectations of
users [demanding rapid response with increasingly complex
data processing]. NoSQL database systems are increasingly
being considered as a viable alternative to RDMS and may be
considered as suitable solutions for interactive web and mobile
applications.

NoSQL systems may adopt different approaches; what they
have in common is that they are not relational. Their primary
advantage lies in the ability to efficiently manage unstructured
data [unlike RDMS] such as text files, e-mail, multimedia, and
social media. Additionally, they are generally easier to work

with for the many developers not familiar with the SQL.
NoSQL databases can function in a distributed setting, scaling
for a single database or vertically rather than by having to run it
on a single more powerful server(s). Moreover, proponents
argue that NoSQL databases enable improved performance;
this is particularly important for applications characterised by
large amounts of data in diverse types and highly dynamic
concurrent user interactions using OTP.

IV. NOSQL SYSTEMS
Having briefly considered related research around database

systems we now move on to consider NoSQL database systems
(also termed data stores). Data stores will be considered under
the following data models: (1) Key-value Stores, (2) Document
Stores, Extensible Record Stores, and (4) Scalable Relational
Stores.

All of the systems identified incorporate an administrative
function [a database] with data may be stored in: a single file, a
directory, or using an alternative function that defines the scope
of data used by a group of applications. Each database is
unique; this applies even where scaled over multiple nodes.
There is no concept of a “federated database” [8] as is the case
with some relational and object-oriented databases; this enables
multiple databases to appear as one. A majority of the NoSQL
systems support horizontal scaling with records stored on
different servers according to a key; this is termed “sharding”
however there are systems which provide support for vertical
partitioning where parts of a single record are stored on
different servers.

A. Key-value Stores
Key-Value Stores (KVS): store values and use indexing to

locate them based on a programmer defined key. A KVS
applies the most simple data model and operates on a single
key-value index for all related data (an approach similar to the
memcached distributed in-memory cache model). However,
unlike memcached, KVS generally provide a persistence
mechanism and additional functionality including: replication,
versioning, locking, transactions, sorting, and/or other features.
The client interface provides for inserts, deletes, and index
lookups. AS for memcached, KVS systems do not use
secondary indices or keys.

Space restricts a detailed discussion on the available KVS
however in summary all the principal KVS systems (e.g.,
Voldemort, Riak, Tokyo Cabinet, and enhanced memcached
systems provide support for insert, delete, and lookup
operations along with scalability through key distribution over
nodes. Voldemort, Riak, Tokyo Cabinet, and enhanced
memcached systems can store data in RAM or on disk, with
storage add-ons. Others KVS store data in RAM, and provide
disk as backup, or rely on replication and recovery. Scalaris
and enhanced memcached systems use synchronous replication
while the others employ asynchronous replication. Scalaris and
Tokyo Cabinet implement transactions, while the others do not.
Voldemort and Riak use MVCC, the others use locks.
Membrain and Membase are built on the popular memcached
system, adding persistence, replication, and other features.

5

B. Document Stores
Document Stores (DS): can support more complex data

than the KVS. The term DS implies that such systems can store
“documents” (e.g., articles, files, etc.); in actuality a document
[in such systems] can in computational terms be any kind of
pointerless object which may be “a one file, a directory, or
may use a ‘mechanism’ that defines the scope of some data
used by a group of applications”. DS impose on system
developers and programmers explicit utilization of indices.

Unlike KVS, DS (generally) provide support for: secondary
indexes, multiple types of documents (objects) per database,
and nested documents or lists. As for other NoSQL systems
DS fail to provide ACID transactional properties. DS do not
use a schema except for attributes (which are simply a name,
and are not pre-specified), collections (which are simply a
grouping of documents), and indexes defined on collections.

There are some differences in their data models however
DS are all very similar and. unlike KVS, DS (generally, but not
in all cases) provides methods to query collections based on
multiple attribute value constraints. DS (generally) do not
provide explicit locks and have weaker concurrency and
atomicity properties than traditional ACID databases. They
differ in how much concurrency control they do provide.
Documents can be distributed over nodes in all of the systems
however scalability differs; DS can achieve scalability by
reading (potentially) out-of-date replicas.

C. Extensible Record Stores
Extensible Record Stores (ERS): store extensible records

that may scaled (partitioned) vertically and horizontally. The
basic data model for ERS is rows and columns; the basic
scalability model being to split both rows and columns over
multiple nodes.

Rows are split across nodes using sharding on a primary
key. Typically splitting is by range as opposed to the use of a
hash function. This means that queries on ranges of values
need not be executed on every node.

Columns [in a table] are distributed over multiple nodes
using “column groups” which are a method for users to
indicate which columns are best stored together.

As discussed earlier, horizontal and vertical scaling may be
used simultaneously on the same table. For example, if a
customer table is partitioned into three column groups then
each of the three column groups is treated as a separate table
for the purposes of sharding the rows by e.g., customer ID: the
column groups for one customer may (or may not) be located
on the same server.

In ERS systems, column groups must be pre-defined; this
however is less of a constraint than may be initially envisaged
as new attributes can be defined at any time. Rows are
analogous to documents and may have a variable number of
attributes (fields) however the attribute names must be unique.
Rows are grouped into collections (tables) and an individual
row’s attributes can (with some exceptions) be of any type. The
ERS systems are generally based on the BigTable model and

notwithstanding the marked similarity there are differences in
the approaches adopted to implement concurrency.

D. Scalable Relational Database Management Systems
To address the issues and challenges around scalability

while attempting to retain the positive features of RDMS
Scalable Relational Database Management Systems (SRDMS)
have been developed to enable improved horizontal scaling for
OTP. Unlike the other data stores discussed RDMS require a
pre-defined schema, a SQL interface, and ACID transactions.

Traditionally, RDBMS have failed to achieve scalability
however recent developments have targeted improved
performance levels with the promise of good ‘per-node’
performance with improved scalability comparable with
NoSQL systems. However there are a number of caveats [8],
SRDMS use: (1) ‘small-scope operations’ (operations that span
many nodes [joins over many tables, will not scale well with
sharding], and (2) small-scope transactions (transactions
spanning many nodes are generally inefficient due to the
communication and two phase commit overhead).

NoSQL systems avoid the two issues identified by limiting
the scope (or making it difficult) to perform large scope
transactions [6][8]. In contrast, a SRDMS may implement
larger scope operations and transactions however such system
“simply penalize a customer for these operations” when used
[7][8]. SRDMS thus have an advantage over the NoSQL data
stores as they provide the convenience SQL and ACID
properties; the trade-off lies in that a price is only incurred
when nodes are spanned. In the correct domain a SRDMS may
be seen as a viable alternative to a NoSQL database system.

V. ILLUSTRATIVE SCENARIOS
Having presented an overview of the traditional RDMS and

NoSQL systems. In this section we present a number of brief
illustrative examples to demonstrate NoSQL database systems
in action. Also we present an illustrative example of a HR
scenario.

A. A Key Value Store Illustration
KVS are (generally) good solutions for simple applications

where there is a single type of object where a ‘look up’ of
objects is based on a single attribute. The simple functionality
KVS make them potentially the easiest to use (particularly if
conversant with memcached).

Consider a use-case where a web application invokes
queries over a RDBMS to create a personalised login page for
a user where the user’s data rarely changes or it is known when
changes are made as updates use the same interface. Generally
in such cases there is significant latency in the query execution.
It would be advantageous to store the user’s tailored page as a
single object in a KVS with representation in an format
suitable to respond to browser requests and with indexing of
these objects by, for example, a user ID. If such objects are
stored persistently, then RDBMS queries can be avoided with
objects reconstructed only when a user’s data is updated. KVS
may be used for ‘lookups’ based on multiple attributes by

6

creating additional key-value indexes. However, at such a point
it may be beneficial to consider using a DS approach.

B. Document Store Illustration
In an application such as in a Department of Motor

Vehicles application, with vehicles and drivers [where you
need to look up objects based on multiple fields such as a
driver’s name, registration number, vehicle, or DoB] a DS may
be a sensible design choice. An important factor to consider is
the desired level of concurrency guarantee; if an eventually
consistent model with limited atomicity and isolation is
acceptable a DS may be a good option. However, in cases
where there is a systemic requirement for data be up-to-date
and atomically consistent then alternative approaches must be
considered as a DS may be an unsuitable system.

C. Extensible Record Store Illustration
Use cases where ERS form a sensible design choice are

similar to those for DS: e.g., multiple types of objects with
lookups based on any field. However, ERS projects are
generally aimed at higher throughput and may provide stronger
concurrency guarantees albeit at the cost of slightly more
complexity than in DS systems.

For example, in cases where customer information is stored
and you wish to scale the data both horizontally and vertically
it may be useful to: cluster customers by country and separate
rarely-changed ‘cor’ customer information in one place and
locate frequently-updated customer information on a different
node (to improve performance). While this approach to scaling
may be achieved by programmer implemented scaling onto a
DS by creating multiple collections for multiple dimensions,
the scaling is most easily achieved with an ERS system.

D. Scalable RDBMS Illustration
Consider the DS example quoted above and further

consider a more complex requirement specification where a
query interface for law enforcement that can interactively
search for attributes is required. In such a use-case ACID
transactions would be useful in a database being updated from
multiple locations.

Additionally, the definition of a common relational schema
and administration tools can be highly beneficial in complex
project development with multiple developers. These
advantages are dependent on a RDMS being scalable to met
the requirements specification. Additionally, there may be
issues for RDMS where applications require updates or joins
that span many nodes; the transaction co-ordination and data
movement in such cases is prohibitive. However, NoSQL
systems also (generally) fail to achieve transactions or query
joins across nodes.

VI. ELECTRONIC HEALTH RECORDS SCENARIO
This section considers HR in the light of the illustrative

examples of for the different data store classifications
discussed in this paper. Consider the National Health Service
(NHS) in the UK [a typical extremely large HR system in
global terms]. In examining and treating patients the NHS

collects, stores, and processes huge volumes of data frequently
in an unstructured format. Patient data in the form of HR may
be accessed generally in OTP in computerized systems using
with both online (Internet) and networked (internet) systems.

It has been reported in [3] that the NHS currently employs
more than 1.7m people with just under half being clinically
qualified. There are approximately: (1) 40.000 general
practitioners (GP), 380,000 nurses, 19,000 ambulance and
paramedic staff , and 106,000 Hospital and Community Health
Service medical and dental staff [?]; in addition medical staff
there are ancillary and administrative staff.

The NHS in England caters for in excess of 53 million
patients [3] (importantly, it is worth noting that an individual
can be both a patient and a member of staff simultaneously). In
terms of access to the system [by both staff and patients] the
NHS system on average deals with in excess of 1 million
patients every 36 hours [3].The vast amounts of data involved
in this operation and the inherent complexity in both the data
and the access afforded to staff and patients confirms the
challenges faced. In practice to ensure data security and
manage the ethical issues inherent in EPR there is a clear need
to implement widely controlled and variable access based on
defined access rights and permissions.

Additionally, there are complications inherent in adaptation
in the presentation and visualisation [of the patient health data]
in an appropriate Human Computer Interface (HCI) on
differing devices including: workstations, notebook computers,
tablets, and mobile phones [17]. The range of demands and
requirements only serves to emphasize the challenges in
developing and implementing a system providing 24/7 OTP
access to HR for all stakeholders while addressing a highly
dynamic system load and implementing effective data security
protocols. The scale of the challenges faced in implementing
an effective HR system is clear. Moreover, EPR provide
unique opportunity not only to deliver optimal healthcare, but
also to optimize use of resources to achieve the best
therapeutics outcome. That would have a huge impact on
maximizing the cost-effectiveness of care pathways.

A. Treatment Options
Initially consideration must be given to the treatment

options available to patients. Patients are examined and treated
in multiple locations including for example: (1) a GP practice
by a doctor or practice nurse, (2) outpatient clinics, hospital(s)
with many departments including Accident and Emergency
departments, outpatient clinics, and admissions for intensive
treatment. In addition to the treatment options there are
additional outpatient treatments such as dentistry, chiropody,
and chiropractor services. We must also consider long-term
support services such as nursing homes where e.g., patients
with including Alzheimer’s disease are treated and cared for.

When viewed from a patient data storage perspective each
of the treatment options may be delivered at a different
location (treatment centre) and further complexity is introduced
when patients are treated under a different, Primary Health
Trust (PHT) which is a local organization [in the UK] which
manages healthcare provision in, for example, a town or city

7

area. Additionally, there are instances where treatment s carried
out using private healthcare.

As alluded to in this paper such complexity in the range of
services provided in diverse locations with multiple data
structures, database systems (including legacy systems), and
data input identifies the challenges faced in creating a
comprehensive HR system with OTP. Such complexity poses
severe challenges. In a British Computer Society report on the
NpfIT project ‘The Way Forward for NHS Health Informatics’
[2] the argument is made that: “health informatics need radical
improvement” and the observation s made that:

“Meeting the challenges of delivering healthcare in
the 21st century requires much improved IT-enabled
business systems based on a new IT infrastructure,
irrespective of whether care is delivered through the
NHS or otherwise, and irrespective of the method used
to fund the healthcare system”

It is observed in [2] that there is a need to build on current
systems already in place and to: “facilitate the sharing of
knowledge, information and workflows across care
communities and to include patients and their carers”. It is
clear that such an informatics infrastructure is critical to the
successful implementation of HR systems in the
implementation of Government healthcare policy. Developing
effective HR systems in a within a Government policy
framework is extremely challenging in a complex adaptive
system such as the English NHS.

B. Health Record System Requirements
There are many systemic requirements in a national HR

system which can be summarised as follows: (1) technical
requirements including: dynamic OTP using both Internet
(online) and internet (Intranet (network) online systems, (2)
data structures and database design, (3) implementation of HR
using Cloud-Based solutions, and (4) adaptation in respect of
date access and presentation based on defined access rights and
permissions. There is an important constraint in that: time
critical patient data (e.g., patient observations data must be
consistent, current, accurate, and immediately available).
However there are data (e.g., historical health records data) that
will never change and form background information which,
while essential as a health record, may not be immediately
required or available.

As we have alluded to, essential considerations for HR are
security, privacy, legal, and regulatory requirements including
ethical and informed consent, patient choice, and GP
procurement options. Managing acceptance of HR by both
medical professionals, staff, and importantly the public
(patients) forms a critical element in the successful and
promotion of HR systems where OTP using Cloud-Based
Systems (CBS) are developed. Additionally, there are moves
by the UK Government to provide 24/7 online access for all
patients to their HR [2][3]. This has not received universal
approval on security and privacy grounds [3] however the trend
towards provision of this service to patients represents a
significant policy decision which has implications for both the
design and implementation of HR systems and the related data
structures and database management systems.

C. Implementation of System Requirements
We have considered database systems including NoSQL

systems and their features along with HR systems. In
considering HR systems the highly complex distributed
structure that combines to create a system designed to provide
‘birth to death’ treatment for patients has been discussed. This
structure presents severe challenges for the designers and
developers of effective and comprehensive There is a clear
requirement to implement a Internet and internet based system
and the dynamic loading characteristics of an HR system point
to a CBS as a potentially good option. Space restricts a
discussion on the relative benefits obtained using CBS (a
detailed exposition can be found in [13]) however in summary,
a CBS implemented using a Hybrid Cloud solution (a
combination of a Private Cloud and Public Cloud) offers the
ability to address security and critical data constraints while
leveraging the processing capabilities of a public cloud
infrastructure to address dynamic processing needs.

Moving on to consider the database design, as with many
computing technologies, the selection of a suitable database
system is highly domain specific. The prioritization of features
and the approach to scaling will be different depending on the
application and system needs. In considering HR systems the
range and diversity of patient data points to the unstructured
nature of such data. The volume of data managed, the multiple
locations where data is captured and stored, and the highly
dynamic OTP and concurrent access loadings arguably make
traditional technologies, such as RDMS, difficult to implement
effectively where systems are characterized by unstructured
data. It is for such cases that NoSQL systems can achieve
scalability (horizontal and vertical) with good performance
characteristics.

VII. DISCUSSION
We have considered database systems for structured and

unstructured data and a general observation is that while
RDMS are mature and well understood technology NoSQL
systems are immature and are clearly less well supported,
indeed most NoSQL are open source [7][8]. There is a
vigorous and ongoing debate on the topic SQL (relational)
versus NoSQL [7]. NoSQL databases provide a potentially
more effective method of integrating and querying various
sources of data with a better query performance; also,
scalability can be achieved to the cost of less standardisation.
NoSQL has fewer advantages in the storing and processing
linked data due to the structure of linked data, however, there
are a number of solutions being proposed for NoSQL systems
for storing, querying and exposing RDF data [18].

A controversial topic within this debate is scalability. In
actuality, neither method represents a universally good solution
as systems and applications are domain specific requiring
domain specific design to meet the diverse requirement of
domains of interest. While RDMS can be used in a federated
way, efficient SQL query to the distributed databases and
scalability become the bottlenecks [18].

The debate around the use of RDMS can be summarised as
follows: RDMS are mature technologies, where RDMS
performance and scalability matches that of a NoSQL system

8

(with the added convenience of transactions and SQL) a
RDMS represents a sensible option. RDMS have been shown
to handle specific application loads for: ‘read-only’ or ‘read-
mostly’ data warehousing, OTP on multi-core multi-disk
CPUs, in-memory databases, distributed databases, and now
horizontally scaled databases [8].

The argument for NoSQL can be summarised as follows. It
has yet to be demonstrated that RDMS can realise scaling
comparable with NoSQL database systems. Where the system
requirements require a ‘lookup’ of objects based on a single
key, then a KVS approach is generally an appropriate solution.
For a DS, the level of complexity can be domain specific.
There are applications that require a flexible schema with each
object [in a collection] having different attributes. While some
RDBMS allow efficient “packing” [8] of tuples with missing
attributes others support the addition of new attributes at
runtime (this however is not common). A RDBMS enables
multi-node multi-table) operations while NoSQL systems make
them impossible or alternatively make for increased
programmer involvement.

From a design perspective, it is generally recognised that
attempting to impose an inappropriate solution onto a problem
generally results in a poorly performing solution [14]. Thus it
is clear that all of the SQL (relational) and NoSQL approaches
have their place when appropriately used. Focussing on HR
systems our analysis provides support for the conclusion that
for distributed systems with large data sets made up of
unstructured data a ‘NoSQL’ database solution may provide a
potentially useful and profitable approach to the
implementation of HR for online systems where OTP forms an
important feature.

VIII. CONCLUSIONS AND FUTURE WORK
In considering traditional RDMS and NoSQL non-

relational database systems in summary each of the database
systems considered has its place in the domain specific
environments that characterise applications and systems.

The research to date has investigated the potential of
NoSQL systems for HR systems; future work will investigate
in greater detail the individual data store approaches including
KVS, DS, ERS, and SRDMS (in single or hybrid systems) and
programming languages such as the Erlang programming
language [15] to address the programming requirements
identified for NoSQL systems to realise an effective HR
system. Erlang is a declarative language for programming
concurrent and distributed systems [16] and has been proposed
as a solution to three issues in the development of “highly
concurrent, distributed “soft real-time systems”: (1) effective
development of software, (2) tolerance to hardware failures
resulting in software errors, and (3) the ability to update
software on the fly (i.e., without stopping execution). Erlang
has been successfully used in diverse applications including:
distributed databases, financial systems, and chat servers and
represent a potentially useful approach to develop NoSQL
database systems.

Given the high profile failures in implementing a national
HR system with OTP the scale the challenges faced are not
underestimated (the NpfIT project identified in the introduction
serves as an alarm call) however there are exciting
opportunities for the creation of an effective HR systems
implemented using NoSQL solutions.

REFERENCES
[1] C. J. McDonald, “The Barriers to Electronic Medical Record Systems

and How to Overcome Them”, Journal of the American Medical
Informatics Association, Vol 4(3), May / Jun 1997, 1997.

[2] BMJ, “Implementation and adoption of nationwide electronic health
records in secondary care in England: final qualitative results from
prospective national evaluation in “early adopter” hospitals”, BMJ,
2011;343:d6054 doi: 10.1136/bmj.d6054, 2014.

[3] NHS, “The NHS in England”, [online], Available from:
http://www.nhs.uk/NHSEngland/thenhs/about/Pages/overview.aspx,
Accesed: June, 2014.

[4] Chang. F. et al, “ Bigtable: A Distributed Storage System for Structured
Data”, [online], Available from:
http://static.googleusercontent.com/media/research.google.com/en//archi
ve/bigtable-osdi06.pdf, Accessed: June, 2014.

[5] Amazon Web Services, “Amazon DynamoDB”, [online], Available
from: http://aws.amazon.com/dynamodb, Accessed: June, 2014.

[6] J. P. Sadalage and M. Fowler, “NoSQL distilled: a brief guide to the
emerging world of polyglot persistence”. Pearson Education, 2012.

[7] N. Leavitt, “Will NoSQL Databases Live Up to Their Promises”,
Computer, February, 2010, 2010.

[8] R. Cattell, “Scalable SQL and NoSQL Dara Stores”, SIGMOD Record,
Vol 39(4), December 2010, 2010.

[9] R. Ashford, P. Moore, B. Hu, M. Jackson and J. Wan, “Translational
Research and Context in Health Monitoring Systems, In Proc of the
Fourth International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS 2010). Krakow, Poland, February 15-18, pp
81-86, 2010.

[10] R. Elmasari and S. B. Navathe, “Fundamentals of Database Systems”,
Benjamin/Cummings, 1994.

[11] Oracle, “Oracle”, [online], Available from:
http://www.oracle.com/index.html, 2014.

[12] Memcached, “What is Memcached?”, [online], Available from:
http://memcached.org/, Accessed: June, 2014.

[13] P. Moore. and M. Sharma, “Enhanced Patient Management in a Hospital
Setting”, IT CoNvergence PRActice (INPRA), vol 1(3), pp 1-21,
[online], Available from: http://isyou.info/inpra/papers/inpra-v1n3-
01.pdf., 2013.

[14] P. Moore. and H. V. Pham, “Personalization and Rule Strategies in Data
Intensive Intelligent Context-Aware Systems”, The Knowledge
Engineering Review, Cambridge University Press, UK (to appear), 2014.

[15] F. Cesarini. and S. Thompson, “Erlang Programming”, O’Reilly,
Cambridge, UK, 2009.

[16] J. Armstrong, “Programming Erlang: Software for a Concurrent
World”, Pragmatic Programmers, LLC, 2013.

[17] A. Gentile, A. Santangelo, S. Sorce and S. Vitabile, S. “Novel human-
to-human interactions from the evolution of HCI”, In Proc of the
International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS), pp. 600-605, 2011.

[18] O. Curé, R. Hecht, C. Le Duc and M. Lamolle. “Data integration over
NoSQL stores using access path based mappings”. In Proc of the 22nd
international conference on Database and expert systems applications,
Volume Part I (DEXA'11), Abdelkader Hameurlain, Stephen W. Liddle,
Klaus-Dieter Schewe, and Xiaofang Zhou (Eds.), Vol. Part I. Springer-
Verlag, Berlin, Heidelberg, pp. 481-495, 2011.

	caratulaIEEE1.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints

