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Abstract—Task-based programming has proven to be a
suitable model for high-performance computing (HPC) applica-
tions. Different implementations have been good demonstrators
of this fact, and have promoted the acceptance of task-based
programming in the OpenMP standard.

Furthermore, in recent years, Apache Spark has gained wide
popularity in business and research environments as a pro-
gramming model for addressing emerging Big-Data problems.
COMP Superscalar (COMPSs) is a task-based environment
that tackles distributed computing (including Clouds), and is a
good alternative for a task-based programming model for Big
Data applications.

This paper describes why we consider that task-based
programming models are a good approach for Big Data
applications. The paper includes a comparison of Spark and
COMPSs in terms of architecture, programming model and
performance. It focuses on the differences that both frame-
works have in structural terms, on their programmability
interface, and in terms of their efficiency by means of three
widely known benchmarking kernels: Wordcount, Kmeans and
Terasort. These kernels enable the evaluation of the more
important functionalities of both programming models and
analyse different workflows and conditions.

The main results achieved from this comparison are: (1)
COMPSs is able to extract the inherent parallelism from the
user code with minimal coding effort as opposed to Spark,
which requires the existing algorithms to be adapted and
rewritten by explicitly using their pre-defined functions; (2)
it is an improvement in terms of performance when compared
with Spark, and (3) COMPSs has shown to scale better than
Spark in most cases.

Finally, we discuss the advantages and disadvantages of
both frameworks, highlighting the differences that make them
unique, thereby helping to choose the right framework for each
particular objective.

Keywords-Programming models; Distributed computing;
Framework comparison; Big Data programming;

I. INTRODUCTION

One of the most important current research topics is
the efficient exploitation of huge distributed environments,
such as Datacenters and Clouds, in order to tackle the
new challenges arising from the present era of Big Data.
These efforts are mainly driven by research and business
communities and are aimed at reducing the problem-solving
time, achieving the efficient usage of the available resources,
and producing effective programming models. An additional

challenge involved in the efficient programming of Big
Data applications is the need for convergence that is now
required between the Exascale and Big Data worlds [21],
[30]. However, this challenge depends on many factors that
range from code definition, the computing framework and
hardware capabilities.

A variety of frameworks currently exist that are aimed
at exploiting distributed environments in an efficient way.
Among these frameworks, Hadoop [1] and Spark [2] have
attracted the most interest from the general public; Spark
in particular is becoming very popular. While these two
programming models focus on the definition of operators,
COMPSs appears as an alternative based on the task–based
programming paradigm.

COMP Superscalar (COMPSs) [4] is a task–based pro-
gramming model designed to facilitate the development of
applications for distributed infrastructures, such as Clusters,
Grids and Clouds. To this end, COMPSs features a runtime
system for exploiting the inherent parallelism of applications
at execution time, thereby enabling the execution of sequen-
tial applications into distributed environments leveraging the
coding effort.

Furthermore, Spark claims to be a “fast and general
engine for large–scale data processing” [2]. It has aroused
a considerable community interest and attracted a number
of contributors focused on its improvement and exploitation
for a large number of different projects and objectives. This
constitutes one of the key advantages of Spark and has
resulted in an increasing ecosystem that makes it attractive
for a larger public.

Both models are designed to tackle the same problem
while adopting a different approach. More specifically,
Spark exploits the parallelism of its given operators, while
COMPSs analyses and exploits the inherent parallelism of
the user application. As shown in this paper, these features
are relevant to the overall application development/migration
and to performance.

The contribution of this paper is that it demonstrates
how COMPSs provides a good alternative for programming
Big Data applications, and also provides a comparison of
both COMPSs and Spark frameworks in order to show
their advantages and disadvantages. Since there are clear
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differences between Spark and COMPSs, in this article they
are analysed in detail according to their:
• Architecture: internal structure and components.
• Programming model: programmability and paralleliza-

tion mechanisms.
• Performance: through the execution of three known

benchmarking applications: Wordcount, Kmeans and
Terasort, within the MareNostrum supercomputer.

There are several aspects that need to be considered in
order to perform a successful application parallelization and
execute it efficiently within distributed environments, such
as programmability and code migration ease, performance
tuning, adaptability and infrastructure management. By tak-
ing these aspects into account, this paper demonstrates that
COMPSs is a good alternative for achieving this purpose.

With this objective and motivation in mind, we also
present a discussion on the advantages and disadvantages
of these models, highlighting the differences that make them
unique and thus help to choose the right framework for each
particular objective.

This article is structured as follows: Section II presents
a brief overview of the current state of the art. Then, in
Section III, COMPSs and Spark are presented with a focus
on their architectures and programming models, as well as
a discussion on their similarities and differences in these
areas. Section IV provides the applications and performance
comparison, with an evaluation of three well–known applica-
tions widely used for benchmarking distributed computing
frameworks: Wordcount, Kmeans and Terasort. Finally, in
Section V, the conclusions and future work are presented.

II. RELATED WORK

Given the high degree of interest in determining and
improving the performance of distributed computing frame-
works, this topic is being actively evaluated. Consequently,
an extensive number of works exist that are aimed at provid-
ing thorough evaluations. In this sense, Spark has gained an
significant reputation due to its improved performance when
compared with its main competitors.

One of the first of these works that needs to be considered
[36] is by Zaharia et al., who are the creators of Spark.
In their article, the authors present Spark and provide a
brief definition of the framework. They also present its
programming model, with examples, its implementation and
finally a short performance comparison between Spark and
Hadoop.

Other works, such as [32], focus on the comparison
of specific mechanisms in Spark and Hadoop for large
scale data analytics. In this particular article, the authors
center their attention on the map reduce implementation,
and perform a thorough evaluation of the implementation
differences and a final evaluation into a real cluster. This
comparison uses the same benchmarking algorithms as our

work: Wordcount, Kmeans and Sort, but including PageR-
ank.

In [22], a comparison of Spark and Hadoop by using the
Kmeans algorithm is presented. This short work analyses
the differences in implementation and the performance re-
sults achieved. The authors claim that Spark will overtake
Hadoop, although the scope of their experiments is very
small (in terms of node and dataset sizes).

In [20], the authors compare three frameworks: the Mes-
sage Passing Interface (MPI), Spark and Flink. One of the
examples used is KMeans as in this work, although the
problem sizes used herein are larger than the ones used in the
above-mentioned work. Moreover, the computing platform
used for their experiments is slightly smaller. The results
they obtain indicates that Spark and Flink are less efficient
than MPI due to the sub-optimal implementation of the
reductions in those frameworks.

Moreover, extremely thorough works exist that conduct
deep comparisons between distributed frameworks, such as
[28]. In this master thesis, the author provides a comprehen-
sive analysis of Hadoop and Spark.

Alternatively, there are works that extend these compar-
isons and include new and emerging distributed computing
frameworks, such as Storm. For example, [19] presents a
survey on Hadoop, Spark and Storm. This survey explains
each framework in detail, focusing on their architecture and
mechanism behaviour. The authors conduct a discussion on
these topics from a theoretical point of view in order to
identify the scenarios in which each one would fit the best,
finally arriving at the conclusion that Hadoop will prevale.
This work and the discussion it contains lack any perfor-
mance comparison, which in some cases can be crucial.

There is a further work [31] that compares Spark on
Hadoop vs MPI/OpenMP on Beowulf. This article uses two
supervised learning algorithms, KNN and SVM-Pegasos,
for the vertical and horizontal scalability evaluation, with
a subset of 500,000 examples (represent 7GB) of the Higgs
Data Set [17]. The decision of this small dataset is based on
the objective of performing all the computation in memory.
Unlike the previous works described in this Section, the
authors evaluate their experiments in a larger distributed
environment through the use of Google Cloud Platform
(GCP [16]) with standard machines, but with different
configurations (5, 10 and 20 machines, with 4, 8 and 16
cores each). The results show that MPI/OpenMP achieves
a better performance under the defined conditions, although
the authors remark on some of the benefits of using Spark,
such as a distributed file-system with data replication man-
agement, hot node addition and ecosystem.

III. FRAMEWORKS

This section introduces the frameworks compared in this
work: COMPSs and Spark. They are described in detail,
with particular attention given to their architecture and



programming model, as a basis for a discussion at the end
of the section.

A. COMPSs

COMPSs [18] is a programming framework aimed at en-
abling environment unaware Java, Python and C applications
to be executed in distributed environments with minimal
effort. To this end, COMPSs implements a task-based pro-
gramming model, and while applications are written accord-
ing to the sequential paradigm, the runtime is able to exploit
their inherent parallelism, respecting the original behaviour
by detecting and taking care of the data dependencies that
may exist between tasks. Consequently, COMPSs is able
to exploit the existing inherent parallelism at task level and
deal with it across a distributed infrastructure, such as Grids,
Clusters and Clouds, empowering interoperability.

COMPSs is able to provide scaling and elasticity features
through Cloud virtual machines by adapting the number of
available resources to the actual needs of the execution. This
is achieved through the use of connectors for Infrastructure-
as-a-Service (IaaS) offerings (e.g. Amazon EC2 [13] and for
Open Cloud Computing Interface (OCCI) [14] compliant
middlewares (like OpenNebula [3], [27] and OpenStack
[15]).

The COMPSs programming model is designed to avoid
modifications of the original application as possible. Con-
sequently, its impact on the application has been reduced
to a minimum, which means that the only requirement is
to implement an interface description of the functions to
be considered as tasks for Java/C/C++ applications and
by the use of decorators [5] for Python applications. The
interface does not interfere with the sequential execution of
the application, so the application is ready to be executed in
sequential and in distributed mode without the need of any
modification.

Among the functionalities implemented by COMPSs,
there is data dependency analysis, task scheduling, data
transfer and fault tolerance.

1) Programming model: In this model, the user is re-
sponsible for identifying the functions to be executed as
asynchronous parallel tasks, and for annotating them into
an interface for Java/C/C++ applications or with a decorator
into Python applications. The functions identified as tasks
will be spawned into the available resources, thereby en-
forcing the data dependencies that may exist among them.

Figure 1 provides an example of the COMPSs program-
ming model written in Python. This example represents
the Wordcount application, in which two functions have
been identified as tasks (with the decorator @task): (i)
word count and (ii) reduce count. They are invoked for
each block within the Data list. First, the word count, which
has one parameter (each block, input by default) and an
output (a dictionary that contains all the appearances of
each word within the block). Secondly, the reduce count

Figure 1: COMPSs workflow example.

function, which has been defined to merge the partial results;
it has two parameters (two dictionaries, where the first
is defined as INOUT for the partial result accumulation).
Finally, when the loop has finished iterating over the Data
list, it a synchronization point requesting the value of the
final result has been defined (through invocation of the
compss wait on Application Programming Interface (API)
function).

At execution time, the COMPSs runtime detects that there
is a dependency between the output of each word count and
the input of each reduce count, and also another between
each reduce count as a result of the INOUT direction of
its parameter. For a very small data set were Data has four



Figure 2: COMPSs architecture.

blocks, the dependency graph would be the one depicted in
Figure 1.

It is very important to note, that this code can be executed
sequentially without COMPSs, or in parallel by executing it
with the COMPSs runtime. This obviates the need to rewrite
existing sequential applications when targeting parallel and
distributed platforms.

A more extended description of the Java/C/C++/Python
COMPSs syntax can be found in [34] and in the COMPSs
manuals [4].

2) Architecture: Although the COMPSs architecture is
complex, it can be simplified into three main layers (Figure
2). The most important, namely COMPSs runtime, imple-
ments the main runtime core functionalities. It is written in
Java and performs the entire management of the application
and environment. Consequently, Java applications can be
executed directly on top of the runtime and processed
through its customized loader which, given an application,
manages its execution on the resources (which can be
of different nature, such as Clouds or Clusters). During
the execution, the runtime distributes the tasks over the
resources, exploiting the inherent parallelism described in
the task graph and enforcing the data dependencies in order
to ensure the correctness of the application.

The layer Binding-commons lies over the COMPSs run-
time layer and its objective is to enable the functionalities
of the runtime to other languages. To this end, it has been
designed as an API with a set of defined functions, written
in C, and performs the communication with the runtime
through the JNI [24], [7].

Finally, the top layer is composed of various bindings.
For instance, a Python and a C/C++ binding, which enable
the execution of Python and C/C++ applications with the
COMPSs runtime.

COMPSs deployment over any infrastructure is based on

the master-worker paradigm. From a pool of nodes assigned
for the execution of an application, the first node acts as
master node and is responsible for the management of the
application, the data transfers, scheduling and infrastructure
management. All the other nodes act as workers and are in
charge of performing any action that the master requests
them to do, such as executing tasks. The workers also have
the ability to request data from other workers in order to
satisfy any data dependency that may exist within the tasks
to be performed.

By default, COMPSs works standalone with local storage,
but it also provides support for interaction with existing
storage technologies, such as dataClay [25] and Hecuba [34],
through a simple API. In addition to the exploitation of
Grids, Clusters and Cloud environments, COMPSs contains
specific connectors to enable its deployment in Dockers, and
is currently working on the integration with Mesos.

A final remark about the COMPSs runtime is that it
has been instrumented with Extrae [6] in order to generate
post-mortem runtime trace files that capture the runtime
behaviour. As a result, the runtime behaviour can be anal-
ysed using Paraver [29], [8], which enables developers to
understand how the application has been managed across
the infrastructure, conducting performance analysis and de-
tecting bottlenecks.

B. Apache Spark

On the other hand, Spark is a distributed in-memory data
processing system that has gained greater popularity than
Hadoop in the computing community. Its main objective is
to provide a set of directives that users can employ in their
applications, which internally are optimized to be executed
in distributed environments through the Spark runtime. In
order to make use of these directives, the data to be used
within Spark applications must be mapped to Resilient
Data Descriptions (RDDs), which represent immutable sets
of data, and must be defined and respected by users for
particular data structures (e.g. partitioning).

In a nutshell, the entire Spark philosophy is RDD centric
and provides a set of directives to be used for managing the
RDDs. Consequently, the user must use the given directives
in order to perform any computing action.

As a result from its wide popularity, a rich ecosystem
surrounds it, in which the libraries must be highlighted
(e.g. Machine Learning lib (MLlib), GraphX, Streaming and
SparkSQL).

Among the functionalities implemented by Spark we find
the following: task scheduling, data transfer, fault tolerance
and checkpointing.

1) Programming model: At a high level, a Spark appli-
cation consists of a driver program that runs the user’s main
function and executes the defined parallel operations on a
cluster.



Figure 3: Spark workflow example.

Figure 4: Spark architecture.

To this end, the Spark programming model revolves
around the RDD concept (Figure 3). Conceptually, RDD is
the main logical data unit in Spark. An RDD is a distributed
collection of objects, in the sense that each RDD is divided
into multiple partitions. Each partition can reside in memory
or on disk within a distributed infrastructure. Only two types
of operations – transformations and actions – can be applied
to the RDDs. The transformations are designed to perform an
operation on the RDDs, which involves the creation of a new
dataset (e.g. map, reduceByKey, etc.), while the actions are
designed to execute a query to the RDDs (e.g. count, etc.).
The complete list of transformations and actions is provided
in the Spark documentation.

An example of the well-known Wordcount application
for Spark is depicted in Figure 3. The application starts
loading the data into an RDD (file), to which some transfor-

mations will be applied inmediately after. In this particular
application, since the objective is to count the number of
appearances of each word in the data, in order to function
one initial transformation (flatMap) will be applied to all
RDD partitions, which will split the data considering the
space as a word delimiter. This transformation will produce
a new RDD, to which the next transformation (map) will
be applied. The map transformation also contains a function
to be applied to all partitions, which for the purpose of the
application will assign the value 1 to all words with a Key-
value structure. Finally, with the map results, the final trans-
formation then is applied: reduceByKey. This transformation
returns another dataset of key-value pairs where the values
for each key are aggregated using the add function. Finally,
the results of these three transformations are collected (by
calling the collect action over the counts RDD) and saved
to disk thanks to the saveAsTextFile action.

With these operations, Spark is able to manage the
parallelization of the execution, taking into account the
dependencies that exist between operations. Thus, it is
capable of performing optimizations for particular sequences
of operations, such as triggering certain operations (e.g.
shuffle) in order to improve the overall performance and
reduce the memory/storage footprint.

Spark provides a set of mechanisms for transforming raw
data (e.g. plain text) into RDDs. However, these mechanisms
may not be suitable for user-specific data structures, where
the user will be required to override the data partitioning
mechanism and implement it in accordance with the pecu-
liarities of the data structure.

One of the most salient capabilities of Spark is the RDD
fault-tolerant persistence, commonly known as caching. This
persistence is designed to keep partitions in memory between
operations in order to enhance future performance. However,
the main memory is finite, so when no more partitions can fit
into memory, Spark starts serializing and storing them into
a slower storage level, such as disk. Spark automatically
monitors the cache usage and tries to remove the unused
partitions through a Least Recently Used (LRU) policy.

2) Architecture: Spark architecture can also be simplified
into layers (Figure 4) and has a similar architecture to
COMPSs. It consists of a main module, namely Apache
Spark, which implements the runtime features. The runtime
is in charge of managing the application execution and
delegating the tasks into the underlying resources, as well
as managing them in order to keep data consistency and
transfer.

Spark provides support for Java and Scala as well as for
Python applications. This binding, known as PySpark, lies
on top of the Spark runtime. It implements all the supported
operations and transformations, as well as carrying out the
interaction between languages in order to interact with the
Spark runtime.

Moreover, given the wide adoption of Spark, a large



number of libraries have been developed and thus provide
a wide range of multi-disciplinary functionalities already
implemented for Spark (e.g. MLlib, GrapX, Streaming and
SparkSQL). One example of these libraries is MLlib, which
is currently gaining wide popularity; it implements a set of
machine learning algorithms, such as Kmeans, in order to
facilitate the development of Spark applications without the
need to rewrite these algorithms.

By default, Spark works standalone with local storage,
but it also provides support for other cluster managers,
such as Apache Mesos[23] and Hadoop YARN[35]. In
addition, Spark contains specific scripts in order to enable
the deployment of a standalone cluster within the Amazon
EC2 Cloud environment. There also exist mechanisms to
enable the interaction between Spark and existing storage
technologies, such as S3 [9] and HDFS [33].

The deployment of Spark in a distributed environment
requires three types of components: Driver Program, Clus-
ter Manager and Workers. The most common deployment
requires one node to run the Driver Program component and
another node to run the Cluster manager, while the rest of
the pool to acts as Worker nodes.

C. Discussion

While COMPSs and Spark were both designed as pro-
gramming models, they nevertheless have significant differ-
ences that are mainly due to different philosophies behind
the design of the two environments.

1) Programming model: Both environments differ in the
programmability conception: COMPSs offers a task-based
programming model where each task represents a function
defined by the user. On the other hand, Spark provides a set
of operators ready to be applied to the RDDs, which have
been internally optimized into a set of tasks.

Spark was designed with a set of powerful and optimized
operators which developers have to use in order to develop
any application. It possesses a large amount of functions
that are internally designed to exploit the parallelism of each
operation independently. Consequently, developers need to
familiarize themselves with these functions and use them in
all algorithms in order to get performance. This hampers
the code reusability, since the algorithms already developed
cannot be used in Spark due to their lack of calls to
Spark operators, and the strict definition of functions forces
developers to re-design the algorithm, with the consequent
requirement for manpower.

A different design approach was adopted for COMPSs and
was conditioned by code reusability and programmability.
The aim of the COMPSs team was to provide an efficient
programming model capable of finding inherent parallelism
from the user code with a minimum amount of effort. With
COMPSs, developers are not required to rewrite their current
working code. An interface is offered for the definition of
those functions that are becoming tasks, and all application

and infrastructure management is delegated to the COMPSs
runtime.

Moreover, Spark is regarded as RDD centric (all the
operations are performed on the RDD partitions), whereas
COMPSs considers the functions defined by the user as
tasks. All operations over RDDs have the same defined
inputs and outputs and require the implementation of the
partition mechanism. Furthermore, COMPSs allows users to
employ their own defined objects transparently without any
partitioning requirement.

In addition to supporting the RDD operations, Spark
provides operators for collective operations (e.g. for variable
broadcasting). With this regard, COMPSs support for collec-
tive operations is limited to a task replication capability (if
a task is defined with the “isReplicated” flag enabled, it will
be executed in all nodes every time it is invoked).

With regard to the main differences, the three leading
question that arise in this context are:

1) Will the existing Spark primitives be sufficient? The
answer to this question is not easy to provide, since it
depends on what Spark users wish to use.

2) What is the cost of migrating my existing application
to Spark? The answer to this question is straightfor-
ward, because Spark forces users to use their own
primitives, thereby making it necessary to rewrite
large parts of the code. This code rewrite may even
require some of the application parts to be redesigned,
because of the data types or primitives. Alternatively,
the migration of an application to COMPSs requires
the identification of the functions to be used as tasks,
and possible changes in its structure may also be
necessary in order to improve application efficiency.

3) Which of the two can be considered more flexible? In
the case of Spark, all operations over RDDs have the
same defined inputs and outputs, whereas COMPSs is
more flexible in this regard because it allows users to
define as many parameters as necessary for the tasks
(functions represented on the interface or decorated).

These questions are not so important when COMPSs is
concerned because the user–defined functions are used as
tasks. The only restriction being user imagination, thus ob-
viating the need to rewrite the code, and using the user data
structures. This enables the existing code to be paralellized
in an easy and natural programming way. However, changes
on the application structure may be needed in order to
improve the application parallelization.

2) Architecture: The architectures are very similar con-
ceptually; both frameworks define a main core runtime,
where all the features are implemented. On top of them,
we find bindings that provide support for other languages
(e.g. Python in both frameworks, or C/C++ in COMPSs and
Scala in Spark).

One of the salient advantages of Spark is the wide range
of libraries that are available around it. Its wide popularity is



empowering the increase of these libraries due the growing
demand of known algorithms of extensive use. In this
sense, COMPSs constitutes a step backwards, since there
is no existing library containing these functions, although it
should be pointed out that COMPSs can use any existing
function as a task, which enables the existing libraries and
code to be reused.

Both of these frameworks include mechanisms for the
interaction with storage technologies. In the case of Spark,
it is ready to work with S3 and HDFS, while COMPS is
ready to work with dataClay and Hecuba. Moreover, Spark
also implements mechanisms to support Mesos and Yarn
for cluster management rather than that built by default.
Similarly, work on interoperability with Mesos is currently
under development for COMPSs.

Regarding deployment, both Spark and COMPSs share a
master-worker structure. However, two management nodes
are recommended for Spark (one for the application driver
and the other for the cluster management) due to per-
formance reasons, thus increasing the nodes needed when
compared with COMPSs. Furthermore, this capability of
sharing the management across multiple nodes leads to
scalability improvements. In this sense, the single master
structure of COMPSs represents a barrier to scalability. This
potential issue is expected to be attenuated by task nesting.

Communications within nodes or both frameworks are
performed through point to point connections. In particular,
the COMPSs communications for the requested data among
tasks is done from master to worker, or among workers
if possible (e.g. when the data requested by a task has
been produced by another task in another worker). This
communication among workers reduces the master data
management pressure. In addition, the COMPSs scheduler
tries to allocate tasks with data dependency on the same
node in order to avoid any communication among workers
and making the most of having the object in cache.

As regards the Python binding, both Spark and COMPSs
invoke remote Python tasks from Java in the same way. This
mechanism involves the creation of a process builder, which
establishes a terminal and invokes the Python interpreter
over a particular piece of code. When the execution has
finished, the runtime captures the output and destroys the
process. Performance analysis based on runtime trace files
of COMPSs applications has been useful for determining
that this mechanism is inefficient due to the new process
creation and destruction. For this reason, COMPSs imple-
ments persistent workers for Java, and the team is working
on introducing this improvement for Python as well.

IV. APPLICATIONS AND PERFORMANCE COMPARISON

We have studied the performance of Spark and COMPSs
under the same conditions in terms of applications, amount
of resources and hardware specifications. Our goal is to
illustrate the performance that they both achieve, and then

Table I: Infrastructure configurations

# Framework # Master Nodes

COMPSs 1 Master

SPARK 1 Master
1 Domain

# Worker Nodes # Cores RAM (Mb)

1 16 32

2 32 64

4 64 128

8 128 256

16 256 512

32 512 1024

64 1024 2048

compare the results in order to analyse the advantages and
disadvantages of both of when parallelizing the applications.

We first describe the infrastructure in which both frame-
works are deployed, considering the applications, the exper-
iments and the workloads. The performance results are also
presented and commented. Finally, a brief summary of the
comparison is provided.

A. Infrastructure

The infrastructure used in this comparison is the
MareNostrum III supercomputer [11], located at the
Barcelona Supercomputing Center (BSC). This supercom-
puter is composed of 3,056 nodes, each with two Intel
SandyBridge-EP E5-2670/1600 20M (8 cores at 2,6 Ghz
each), a main memory that varies from 32 to 128 GB, FDR-
10 Infiniband and Gigabit ethernet network interconnections,
and 3 PB of disk storage. It provides a service for researchers
from a wide range of different areas, such as life sciences,
earth sciences and engineering.

In this comparison, we requested up to 66 compute
nodes with 32 GB of main memory and Infiniband network
interconnection. More specifically, the configurations used
in this comparison, taking into account the master-worker
deployment architecture of both frameworks, are shown in
Table I.

It is important to note, that due to the master-worker
deployment architecture of COMPSs, each submission to
the system requires the number of worker nodes shown in
Table I plus one (the master node). Alternatively, SPARK
requires one extra node more than COMPSs for the domain
node. Consequently, each SPARK deployment requires the
number of worker nodes shown in Table I plus two (one
master node and one domain node).

The COMPSs version used is 2.0 and SPARK4MN 3.10
(which internally uses Spark 1.5.2). Regarding Java, the
version used is 1.8.0 66 64 bits.



1 JavaRDD<S t r i n g> t e x t F i l e = sc . t e x t F i l e ( ” / f o l d e r . . . ” ) ;
2 JavaRDD<S t r i n g> words = t e x t F i l e . f l a t M a p (
3 new Fla tMapFunc t ion<S t r i n g , S t r i n g >() {
4 p u b l i c I t e r a b l e <S t r i n g> c a l l ( S t r i n g s ) {
5 r e t u r n Ar ra ys . a s L i s t ( s . s p l i t ( ” ” ) ) ;
6 }
7 }) ;
8 JavaPairRDD<S t r i n g , I n t e g e r> p a i r s = words . mapToPair (
9 new P a i r F u n c t i o n<S t r i n g , S t r i n g , I n t e g e r >() {

10 p u b l i c Tuple2<S t r i n g , I n t e g e r> c a l l ( S t r i n g s ) {
11 r e t u r n new Tuple2<S t r i n g , I n t e g e r >(s , 1 ) ;
12 }
13 }) ;
14 JavaPairRDD<S t r i n g , I n t e g e r> c o u n t s = p a i r s . reduceByKey (
15 new Func t ion2<I n t e g e r , I n t e g e r , I n t e g e r >() {
16 p u b l i c I n t e g e r c a l l ( I n t e g e r a , I n t e g e r b ) {
17 r e t u r n a + b ;
18 }
19 }) ;
20 c o u n t s . s a v e A s T e x t F i l e ( ” / f o l d e r . . . ” ) ;

Listing 1: Spark Wordcount main code

B. Applications

The applications considered for this comparison are Word-
count, Kmeans and Terasort, since they enable us to evaluate
different workflows and requirements. Unfortunately, since
COMPSs and Spark provide different programming models,
the same application implementation can not be consid-
ered among them. However, use has been made of similar
application implementations that preserve their essential
behaviour as far as possible, as well as the particular mecha-
nisms of each programming model. The language chosen for
this comparison is Java. However, Scala is considered on the
Spark Kmeans and Terasort since they belong to well-known
and efficiently developed Spark ecosystem libraries. Each
of these applications are briefly described in the following
subsections.

1) Wordcount: A simple algorithm like Wordcount is
considered for the initial experimentation. This algorithm
performs a word count across multiple files located within a
folder (dataset) and stores the total amount of appearances
of each word within a text file.

The Wordcount algorithm used for Spark is provided as an
example in the documentation belonging to [10] (Algorithm
1). In greater detail, this algorithm performs one flatMap
transformation that splits the text by spaces (line 2), and a
map to pair transformation assigns the value of one to each
of the words (line 8). Then, a reduce by key transformation
is performed in order to accumulate all values of the same
word (line 14). Finally, an action that saves the results as a
text file (line 20) triggers the previous transformations.

On the other hand, the Wordcount algorithm used for
COMPSs follows the schema of a sequential Wordcount
code (Algorithm 2). In this implementation, two functions
have been identified as tasks: Wordcount (which reads a
file and returns a dictionary with the appearances of each
word (line 18)) and reduce (which merges two dictionaries
(line 35)). In this case, the first loop (line 4) performs

1 f i l e P a t h s = [ f i l e 0 , f i l e 1 , . . . f i l e N ] ;
2 N = f i l e P a t h s . l e n g t h ;
3 p a r t R e s = ( HashMap<S t r i n g , I n t e g e r > [ ] ) new HashMap [N ] ;
4 f o r ( i n t i = 0 ; i < N; ++ i ) {
5 p a r t R e s [ i ] = wordCount ( f i l e P a t h s [ i ] ) ;
6 }
7 i n t n =1;
8 w h i l e ( n<l ){
9 f o r ( i n t r =0 ; r<l ; r +=2∗n ){

10 i f ( r +n < l ){
11 p a r t R e s [ r ] = r e d u c e ( p a r t R e s [ r ] , p a r t R e s [ r +n ] ) ;
12 }
13 }
14 n∗=2;
15 }
16 i n t e lems = s a v e A s F i l e ( p a r t R e s [ 0 ] ) ;
17

18 p u b l i c s t a t i c HashMap<S t r i n g , I n t e g e r> wordCount ( S t r i n g
f i l e P a t h ) {

19 F i l e f i l e = new F i l e ( f i l e P a t h ) ;
20 HashMap<S t r i n g , I n t e g e r> r e s = new HashMap<S t r i n g ,

I n t e g e r >() ;
21 B u f f e r e d R e a d e r b r = new B u f f e r e d R e a d e r ( new F i l e R e a d e r (

f i l e ) ) ;
22 S t r i n g l i n e ;
23 w h i l e ( ( l i n e = br . r e a d L i n e ( ) ) != n u l l ) {
24 S t r i n g [ ] words = l i n e . s p l i t ( ” ” ) ;
25 f o r ( S t r i n g word : words ) {
26 i f ( r e s . c o n t a i n s K e y ( word ) ) {
27 r e s . p u t ( word , r e s . g e t ( word ) + 1) ;
28 } e l s e {
29 r e s . p u t ( word , 1 ) ;
30 }
31 }
32 }
33 r e t u r n r e s ;
34 }
35 p u b l i c s t a t i c HashMap<S t r i n g , I n t e g e r> r e d u c e ( HashMap<

S t r i n g , I n t e g e r> m1 , HashMap<S t r i n g , I n t e g e r> m2) {
36 f o r ( I t e r a t o r <S t r i n g> i t e r a t o r = m2 . k eyS e t ( ) . i t e r a t o r

( ) ; i t e r a t o r . hasNext ( ) ; ) {
37 S t r i n g key = i t e r a t o r . n e x t ( ) ;
38 i f (m1 . c o n t a i n s K e y ( key ) ){
39 m1 . p u t ( key , (m1 . g e t ( key ) + m2 . g e t ( key ) ) ) ;
40 } e l s e {
41 m1 . p u t ( key , m2 . g e t ( key ) ) ;
42 }
43 }
44 r e t u r n m1 ;
45 }

Listing 2: COMPSs Wordcount main code

one Wordcount per file, and then, the results are merged
according to a reduce tree of pairs (line 8). Finally, the result
of merging all dictionaries is saved as a file.

Both applications are developed in accordance with the
way that any habitual developer would adopt for each
framework, without any improvement in performance. This
simple application enables us to show the programmatic
differences that exist among frameworks (Algorithms 1 and
2). Both applications have the same input (a set of files) and
also produce an output. This output is one file in the case of
COMPSs, and since the RDDs partitioning is left to Spark,
multiple output files are produced in its case.

Regarding the code size, the Wordcount implementation
for Spark is coded in 46 lines, while 110 lines are required
for COMPSs (plus 10 for the interface). The main reason
for this greater number of lines in the COMPSs version is



due to the fact that the user has to implement the classes and
mechanisms for reading/writing the input/output datasets.

2) Kmeans: The next application considered is Kmeans,
which is a well-known machine-learning algorithm (NP-
hard), popularly employed for cluster analysis in data min-
ing, and interesting for benchmarking and performance
evaluation. The purpose of the Kmeans algorithm to group a
set of multidimensional points into a predefined number of
clusters, in which each point belongs to the closest cluster
(with the nearest mean distance), in an iterative process.

In this case, we consider the Kmeans provided by the
Spark machine-learning library MLlib [26]. The purpose of
this library is to provide a set of machine-learning algorithms
efficiently parallelized for Spark. Consequently, the Kmeans
implementation takes the peculiarities of Spark into account
for its performance enhancement.

In contrast, we have implemented a parallel version of
Kmeans according to a similar approach, but following the
COMPSs programming model. Briefly, our implementation
parallelizes the algorithm taking into account that the entire
dataset is divided into fragments (like Spark RDDs chunk-
ing) For each of the fragments calculates the distance of each
point to all cluster centers in order to assign each point of the
fragment to the nearest cluster. The dimensions of the points
belonging to the same cluster are then added up and finally
normalized. The result from this normalization provides
the new centers, and they are compared with the previous
iteration centers to check the convergence condition. All
computation is performed distributively and the only object
that is moved between the master and the workers on each
iteration is the centers list.

Unlike the Wordcount algorithm, the Kmeans input
dataset is produced during the execution of the application
with random initialization with a specific seed. This enables
us to check the behaviour of both frameworks when working
exclusively with objects created during the execution without
performing any access to the storage. Moreover, we measure
the time required to perform 10 iterations for its evaluation
on each execution.

The complexity of the Kmeans workflow is higher than
the Wordcount workflow, with larger communications and
computation.

Regarding the code size, the Kmeans implementation for
Spark is coded in 871 lines (considering the application and
the necessary code from MLlib). On the other hand, Kmeans
for COMPSs is coded in 503 lines (plus 35 for the interface).
Since the parallelization of Kmeans is not trivial, the use of
operators defined by Spark forces a complex structure and
algorithm, which require more lines of code than a sequential
version. In this application, 7 transformations and 4 actions
were required in the Spark implementation. In COMPSs,
only 4 functions were taskified.

3) Terasort: The last application considered in this evalu-
ation is Terasort. This application sorts a large input dataset.

In particular, the Terasort used for this evaluation [12]
is fed by an input dataset generated by the Teragen tool
(available within the Terasort package), which produces
multiple binary files containing multiple 100 bytes key-value
entries (10 bytes key and 90 bytes value). In the first step,
Terasort performs a data partitioning of the input dataset by
the entry key, and then uses the sortByKey transformation
provided by Spark. To trigger the execution, saves the output
result to disk.

The Terasort implementation for COMPSs follows a sim-
ilar approach. It performs the partitioning of the data into
a set of buckets depending on the entry key, and then sorts
each bucket. The implementation consists of four tasks: one
that filters an input file and retrieves the entries within a
given range (bucket); one that reduces the filtering tasks (to
know when a bucket is complete); another that sorts an entire
bucket; and finally a task that checks that all buckets have
been sorted. Since the current COMPSs implementation does
not properly handle dependences from data in collections,
a shared disk across the worker nodes is required for
storing partial sorting results within buckets folders. This
requirement is not present in Spark implementation, since
its runtime is able to perform shuffling automatically.

The COMPSs Terasort is designed to use the same input
dataset generated by Teragen in order to provide a fair
comparison. The Terasort input and output are files, as
opposite to the Kmeans, and with higher requirements for
storing the results than Wordcount.

Regarding the code size, Spark implementation is per-
formed in 259 lines of code, while the COMPSs implemen-
tation requires 508 (plus 34 for the interface). This lower
requirement of lines in the Spark implementation is due
to the fact that it already provides a transformation for
this purpose (sortByKey), which is used after partitioning
the input dataset (with a partitionBy transformation) and is
triggered by the result saving. As in the Wordcount example,
the COMPSs implementation has to deal directly with files
reading/writing, which increases the amount of code lines.

C. Experiments and datasets

The Wordcount, Kmeans and Terasort applications are
executed within the infrastructure described in Section IV-A,
with different configurations to perform a more thorough
analysis when evaluating their performance and scalability.

For each application, we have considered two main ex-
periments for strong and weak scalability. For the strong
scalability experiments the dataset is kept fixed, while the
amount of worker nodes is increased. On the other hand,
the input dataset is increased in the same proportion as the
amount of worker nodes for the weak scalability experi-
ments. The larger dataset used for the maximum amount of
worker nodes in the weak scaling experiments matches the
dataset used for the strong scalability experiments.



Table II: Wordcount dataset configurations

Strong Weak
# Worker nodes # Files # Files

1 1024 16

2 1024 32

4 1024 64

8 1024 128

16 1024 256

32 1024 512

64 1024 1024

Table III: Kmeans configuration parameters

Strong Weak
# Worker # Points # Fragments # Points # Fragments

Nodes (M) (M)

1 131 1024 2 16

2 131 1024 4 32

4 131 1024 8 64

8 131 1024 16 128

16 131 1024 32 256

32 131 1024 65 512

64 131 1024 131 1024

For the Wordcount application, the dataset considered for
the strong scalability experiments is composed of 1024 plain
text files of 1 GB each, which represent 1 TB of input
dataset. For the weak scalability experiments it goes from
16 GB to 1 TB (the same amount of files as cores available
on each worker node) (Table II). Each file is generated using
the loremipsum Python library.

For the Kmeans application, the dataset considered for the
strong scalability experiments is composed of 131,072,000
points of 100 dimensions, 1,000 centers and 1,024 frag-
ments. Since the size of each point dimension is 8 bytes
(double), the total amount of the dataset in memory is ∼100
GB plus the data structures. Alternatively, the dimensions
and centers are kept constant, while the points and fragments
vary depending on the amount of worker nodes available for
each weak experiment (Table III).

Since we are interested in evaluating the performance
of the frameworks, the Kmeans executions are limited to
10 iterations instead of executing the application until the
convergence condition is reached. Furthermore, the dataset
initialization is set to random with a seed.

Finally, the Terasort is evaluated with an input dataset
composed of 256 files of 1 GB each for the strong scaling
experiments. They are generated by the Teragen Spark
application. In this scenario, it is left to Spark to decide the
amount of fragments that obtain the best performance (which
depends on the RDDs partitioning). Since COMPSs does not
perform any automatic partitioning of the data, the number

Table IV: Terasort configuration parameters

Strong Weak
# Worker nodes # Files # Files

1 256 4

2 256 8

4 256 16

8 256 32

16 256 64

32 256 128

64 256 256

of fragments and buckets need to be defined explicitly. In
this case, we have considered 4 fragments and 256 buckets.
Alternatively, the amount of files is varied according to the
amount of worker nodes for the weak scaling experiments
(Table IV).

Both the input and output of the executions are from and
to the General Parallel File System (GPFS) shared disk in
MareNostrum.

Each experiment and configuration has been evaluated 10
times with all loggers disabled.

D. Results

The applications are executed in the described infras-
tructure for each of the configurations. In the following
subsections, the results of the experiments are thoroughly
analysed.

1) Performance: The legitimate objective of both frame-
works is to parallelize the applications in order to improve
performance. In this sense, we present the performance
results obtained through violin plots with the results from
Spark and COMPSs overlayed. A violin plot is a boxplot
combined with a histogram per experiment kernel. The
information provided by the histograms enable users to see
the duration probability with each amount of worker cores
in COMPSs and Spark for the analised application and
experiment. Internally, they include a thin vertical line that
represents the 95% confidence interval, a thick vertical line
that represents the interquartile range, and a white dot for
the median.

A much better performance is observed with COMPSs in
the Wordcount application with all defined configurations on
both strong and weak experiments (Figure 5). The way that
both frameworks process the application workflow seems
to be the main reason for this performance difference.
However, the lower Spark performance may be due to the
way in which Spark performs the RDD partitioning in
this particular case. Spark reads all files and performs its
partitioning, while in COMPSs each file represents a chunk
and is read within the task. This partitioning gives rise to a
huge amount of tasks in the Spark Wordcount application,
thus increasing their management and communication needs.
Moreover, as a result of this partitioning schema, Spark



creates a large amount of output files, most of which are
empty or contain only one word and its appearances. The
creation of such an amount of files hampers the achievement
of better performance, since it requires a large amount of
access to disk. The only way to prevent this behaviour is
to tune the application and include specific information of
the input dataset and partitioning, which would make the
application efficient for each specific dataset, but limited to
that dataset. Moreover, this requirement means that users
must know details of Spark internals in order to achieve
good performance results, which makes it rather unfriendly
for new developers, since they need to do more than simply
adapt to their operators.

COMPSs is able to achieve a better performance, given
the Wordcount that a sequential developer would program.
The COMPSs approach does not hide the partitioning from
users, who can deal with it by processing the entire file per
Wordcount or parts of each if necessary. This is an important
consideration, since the application has not suffered any
modification and only an interface is required.

We would like to point out that Spark is unable to execute
the Wordcount with the largest dataset with only one worker
node, thus raising a memory error exception.

This large performance difference is not been observed
with the Kmeans application. In this application, the dataset
is generated in memory during the execution, thereby lever-
aging the amount of access to disk. In the strong scaling
experiment, we are unable to execute the application with
fewer than 256 worker cores (16 worker nodes) for any of
the frameworks. While Spark is been able to achieve better
than average performance with 256 worker cores, COMPSs
overtakes Spark slightly when we increase the amount of
worker nodes.

With regard to the weak scaling experiment, the results
show that COMPSs is able to achieve a better performance
in all cases.

For the Terasort example in the strong scaling experiment,
we have only been able to execute it successfully with Spark
with the largest amount of worker cores (1,024) due to
memory issues. A similar issue appears in COMPSs with
fewer than 128 worker cores (8 worker nodes). For this
experiment, and with 1,024 worker cores (64 worker nodes),
COMPSs outperforms Spark.

In the weak scaling experiment, the results are uneven
for both frameworks. Spark is able to achieve better per-
formance with fewer than 512 worker cores, but COMPSs
outperforms Spark from 256 worker cores. Additionally, the
time spent by Spark increases exponentially for the largest
deployment configurations (512/32 and 1,024/64 worker
cores/nodes), while for COMPSs an increase in time is even
observed and follows a linear behaviour.

2) Variability: With regard to variability (Figure 5), the
results show that Spark presents the highest variability with
the Wordcount application, which is not present when using

COMPSs. However, this variability is lower in Kmeans and
Terasort.

Although the Wordcount and Terasort applications require
access to input and output datasets, the Terasort applications
is enhanced for reading and writing binary data, which may
lead to a variability reduction from the I/O reading and
writing operations.

In general, both frameworks present a low variability.
3) Scalability: Speed-up and efficiency are calculated for

the strong and weak experiments (see Figures 6, 7 and 8).
While the speed-up is computed according to the results
obtained with Spark, the efficiency is computed for each
framework with regard to itself with one worker node.1

The speed-up plots show better results for COMPSs in
the Wordcount and Kmeans examples. It is interesting to
observe that in the Wordcount application, Spark shows a
flat curve in the speed-up for the strong scaling experiment,
and a decreasing one for the weak scaling experiment.
The situation improves a little for the Kmeans application
in Spark, but still with better behavior than that shown
by COMPSs. In the weak scaling experiments, COMPSs
achieves slightly better speed-up in both cases, although
the overall behaviour is quite similar and the performance
decays in almost the same proportion when the worker node
counts are increased.

For the Terasort application, we only show the speed-up
and efficiency curves for the weak scaling experiment, since
for the strong scaling case we are only able to measure the
performance with 64 nodes. The curves show the uneven
behavior already commented on in previous paragraphs.

V. CONCLUSION

Enabling users to tackle Big Data problems is a chal-
lenging issue for which Spark is currently regarded as the
Goliath framework due to its wide popularity and adoption.
As an alternative, COMPSs is the contender as the David
competing for the throne of Big Data programming mod-
els. To this end, COMPSs provides support for exploiting
the inherent parallelism of existing sequential applications
execution in distributed environments, as opposed to Spark,
which forces users to use their pre-defined operators. This
means that the existing applications must be rewritten and
the existing algorithms adapted to the operators, which in
some cases can be difficult.

In the experiments performed, COMPSs has proven ca-
pable of achieving better performance and scalability in
most cases when compared with Spark. In applications
like Wordcount, the difference is indeed significant. On the

1For cases when the value with one node is not available, this value
is estimated as a perfect scaling value from other node counts. For the
computation of the speed-up for the strong scaling experiments, the value
is scaled to the number of nodes, but for weak scaling the ratio between
the elapsed time with COMPSs when compared with the elapsed time with
Spark is computed.



(a) Wordcount results with strong scaling (b) Wordcount results with weak scaling

(c) Kmeans results with strong scaling (d) Kmeans results with weak scaling

(e) Terasort results with strong scaling (f) Terasort results with weak scaling

Figure 5: Applications performance shown with violin plots: for each experiment the plot shows the performance and
variability.

other hand, the Kmeans and Terasort applications achieve a
similar performance, and although Spark has shown a better
performance for small datasets with a reduced set of worker
nodes, COMPSs is able to overtake it for larger datasets and

greater numbers of worker nodes.
The details of the performance comparison becomes dif-

ficult to analyse due to the lack of tools for analysing
Spark behaviour and the reduced amount of metrics that



(a) Speed-up with strong scaling (b) Efficiency with strong scaling (c) Speed-up with weak scaling (d) Efficiency with weak scaling

Figure 6: Speed-up and efficiency for the Wordcount application.

(a) Speed-up with strong scaling (b) Efficiency with strong scaling (c) Speed-up with weak scaling (d) Efficiency with weak scaling

Figure 7: Speed-up and efficiency for the Kmeans application

(a) Speed-up with weak scaling (b) Efficiency with weak scaling

Figure 8: Speed-up and efficiency for the Terasort application

it provides. In this regard, COMPSs is instrumented with
Extrae, which is able to generate runtime trace files with a
rich amount of performance metrics. This is not only inter-
esting for performance comparison, but also important for
analysing the application behaviour and bottleneck detection.

Although the current results show that COMPSs is able
to achieve better performance and scalability than Spark,
we are convinced that we can improve the COMPSs results
presented in this work by enhancing the scheduling policy.
Nevertheless, one of the main advantages of Spark is the rich
ecosystem that it features. In this ecosystem, the growing
amount of libraries leverages users from implementing the
most common applications.

In a nutshell, the main advantages of COMPSs are as
follows: it enables a natural development without operators,
keeps the sequential functioning of the applications and is
able to achieve a better performance than Spark. Alterna-
tively, the Spark advantages are: it enjoys a wide popularity
and its adoption strenghtens the growth of its ecosystem. On
the other hand, the fact that COMPSs requires users to define
the tasks may constitute its main drawback. This flexibility,
which empowers programmability, has a direct performance
impact that relies on a good selection of the functions to be

used as tasks and their parameters. However, improvement
on this may be gained by the fact that COMPSs is able
to generate the task dependency graph resulting from any
application execution and runtime trace files with Extrae,
which allows users to analyse the application behaviour with
the Paraver tool. Spark’s main disadvantage is the need to
use its pre-defined operators, which makews code migration
difficult because it requires the rewriting of a new code that
only works with Spark.

Future work will consider the evaluation of these two
frameworks with Python applications; that is, through the
existing python bindings (PyCOMPSs vs. PySPARK) and
other distributed frameworks different from SPARK. An-
other future work line could be to extend the comparison
with other applications.

In addition, we have detected inefficiencies in the execu-
tion of reduce phases by the COMPSs runtime and plan to
implement strategies to improve this situation by providing
a syntax for reductions similar to the user-defined reductions
in OpenMP, as well as implementing an efficient mechanism
in the runtime to handle them.
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