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Abstract 

 

Iron-Nickel alloys are perspective alloys as nuclear energy structural materials because of 

their good radiation damage tolerance and mechanical properties.  Understanding of 

experimentally observed features such as the effect of Ni content to radiation defects evolution 

is essential for developing predictive models of radiation.  Recently an atomic-scale modelling 

study has revealed one particular mechanism of Ni effect related to the reduced mobility of 

clusters of interstitial atoms in Fe-Ni alloys.  In this paper we present results of the microsecond-

scale molecular dynamics study of point defects, i.e. vacancies and self-interstitial atoms, 

diffusion in Fe-Ni alloys. It is found that the addition of Ni atoms affects diffusion processes: 

diffusion of vacancies is enhanced in the presence of Ni, whereas diffusion of interstitials is 

reduced and these effects increase at high Ni concentration and low temperature. The role of Ni 

solutes in radiation damage evolution in Fe-Ni ferritic alloys is discussed.   
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1. Introduction 

 

Vacancies and self-interstitial atoms (SIA) are point defects (PDs) profusely produced 

together with their clusters in materials under irradiation by energetic particles.  Their evolution 

governs the degradation of materials properties, therefore theoretical and experimental studies 

have been devoted to elucidate the mechanisms that control the evolution of these defects under 

irradiation [1-8]. Many of the phenomena are controlled by atomic-scale mechanisms and 

atomistic modelling in many cases is the only technique that allows to study such mechanisms.  

For example, a multiscale study of radiation damage in Fe [9] has demonstrated how atomic-

scale properties of PDs obtained by atomic level simulations such as ab initio and molecular 

dynamics (MD) modelling, used as input data for Monte-Carlo models, provide understanding 

of the experimentally observed resistivity recovery after electron irradiation. More extended 

defects and transport phenomena were also studied by atomic-scale modelling. Thus, stability 

and mobility of PD clusters in Fe, Cu and Zr were studied in [10,11] and the growth and 

shrinkage of clusters by the interaction with PDs were studied in pure Fe, Cu and Zr in [12-15].  

One-dimensional diffusion of SIA clusters in bcc-Fe and fcc-Cu was reported in [16]. More 

recently extensive MD studies of the diffusion of single SIA and SIA clusters over a wide range 

of temperatures were performed in bcc-iron [17,18] using the modelling approach described in 

[19]. It was concluded that: i) the single SIA is a <110> dumbbell at all temperatures simulated 

and it migrates by a translation–rotation mechanism; ii) diffusion mechanism changes from the 

three-dimensional (3-D) to the one-dimensional (1-D) for clusters of 4–7 SIAs; iii) the 

activation energy of 1-D moving clusters is practically independent of the number of SIAs and 

does not exceed ~0.05eV.  The 1-D migration of small interstitial clusters/dislocation loops, 

being an important mechanism of swelling under ion and neutron irradiation (see e.g. [3,4]), 

was studied in iron of different purities at room temperature under electron irradiation using a 
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high–voltage electron microscope [20,21].  The 1-D jump distance was found to be limited even 

in high-purity specimens and the distribution of jump distances was described by the 

distribution of the free path of interstitial clusters migrating through randomly distributed 

impurity atoms.  The effect of impurities to 3-D migrating point defects and small clusters, 

especially of interstitial type, is undoubtedly important for the microstructure evolution under 

irradiation; however, it cannot be studied e.g. directly by electron microscopy.   

A relevant alloying element in ferritic steels is Ni that, together with Cu and Mn, are 

considered to be the chemical elements mainly responsible for embrittlement in operation of 

reactor pressure vessels (RPV) at nuclear power plants. Meslin et al [22] showed that the role 

of Mn may be equally important than that of Ni in low-Cu RPV steels. Their concentration is 

explicitly included as a parameter in the empirical correlations describing the evolution of the 

radiation-induced ductile brittle transition temperature [23]. In addition, clusters observed in 

RPV steels contain as well Si and P solute atoms (see for instance, refs. [24-25]) that contributes 

to the embrittlement by segregating on grain boundaries and dislocations. So far, 

experimentally, not much is known about the role and mechanisms of Ni effects to the 

microstructure evolution. The first study addressing the effect of Ni exclusively was performed 

by Hoelzer and Ebrahimi [26] on the radiation-induced microstructure of pure Fe and Fe-0.7Ni. 

The damage consisted of <100> and 1/2<111> interstitial dislocation loops, whose size, number 

density and relative fraction was found to be affected by addition of Ni. While in pure Fe, 90% 

of the loops were of a<100> type, in the Fe-Ni alloy, the fraction of 1/2<111> loops was found 

to be 75%, but their number density increased and size decreased (approximately by a factor of 

two). These results agree with more recent experiments on pure Fe and RPV, irradiated by 

neutrons at ~300°C [27]. Unlike in pure Fe, a dense population of fine, hardly resolvable 

features was noticed in the alloys under two-beam dynamical imaging conditions. To elucidate 

the dynamics of point defects and small clusters in Fe-Ni alloys non-resolvable experimentally, 

MD simulations can be applied. In a recent publication [28] we presented results on SIA clusters 
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diffusion in Fe-Ni alloys with a wide range of Ni concentrations.  A direct influence of Ni atoms 

to the 1-D glide and mobility of clusters was reported and the effects to microstructure evolution 

were discussed. In the present paper, we complete the study by reporting the results of extensive 

microsecond-scale MD modelling of 3-D diffusion by vacancy and interstitial atom 

mechanisms in Fe-Ni ferritic alloys with a variable Ni content.  

The paper is organized as follows: in section 2 the modelling technique is described; in 

section 3 the parameters describing the diffusion of vacancies, SIAs and Ni atoms are presented. 

The discussion of results and conclusions are summarized in section 4. 

 

2. Modelling technique 

The diffusion of single point defects in Fe-Ni alloys has been studied using MD technique. 

Single interstitial atoms and vacancies performing 3-D diffusion were simulated in a cubic box 

with side length of ~4.57 nm containing N≈8000 mobile atoms.  Vacancy diffusion was 

modelled in alloys with Ni concentrations of 0.8, 2.5 and 10 at.%. For the interstitial atom three 

additional Ni concentrations were considered: 0.5, 1.2 and 1.6 at.%. MD simulations were 

performed in the NVE ensemble with periodic boundary conditions in all directions. Atomic 

motion equations were integrated with the velocity-Verlet algorithm with time step in the range 

1fs - 2.5fs depending on the temperature. Temperature range 300K - 900K was used for the 

interstitial diffusion and 600K -1400K for the vacancy. The equilibrium lattice parameter was 

fitted to ensure zero pressure conditions in all modelled cases.  

The basic methods for MD diffusion data treatment used in this study were reviewed in [19] 

and applied in [17] for the study of diffusion in pure Fe.  Three diffusion coefficients are 

considered, that related to the self-diffusion, D*, and defect diffusion calculated using different 

approaches, Dd and .  D* is calculated using the atomic square displacements (ASD) that can 
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be applied either to all atoms, R2, giving the total alloy self-diffusion or matrix, R2
Fe, and solute, 

R2
Ni, atoms separately giving partial diffusion coefficients of each component: 

∗ lim
→ 2

 

being n the dimensionality of the diffusion.  If the simulated defect trajectory is long enough 

ASD is a linear function vs the simulated time and this linearity is the condition of applicability 

of this approach.  Simulation over 1s with trajectory output for every 103 time steps produces 

~106 points on the ASD(t) dependence and the statistical treatment of these generates very low 

statistical error.  Another advantage of this approach is that no defect detection is necessary 

which usually associates with additional computer resources and treatments.   

Defect diffusion coefficient  can be estimated by jump frequency analysis (JFA). The 

JFA applies the atomistic theory of diffusion, namely there is a decomposition of the whole 

defect trajectory into separate jumps with a certain jump length, Δ, frequency, , and correlation 

factor, fc: 

2
 

The correlation factor is temperature and defect size/type dependent and can be calculated from 

the analysis of the jump directions: 

	
1 	 	
1 	 	

 

where 	  is the mean cosine between the two consecutive jumps.  This method of 

estimating defect diffusion coefficient works well if there are no long-range correlations in 

defects diffusion and therefore should be applicable for dilute alloys.  

Alternatively, the defect diffusion coefficient Dd can be obtained by decomposing the defect 

trajectory into smaller segments of either equal time length (TTD) or equal number of jumps 

(TJD), estimating diffusion coefficient at each segment and then apply statistical average over 

all the segments.  In TTD the trajectory of the defect is decomposed into isochronal segments 
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of duration tsd, which is the parameter of the treatment method: it should be long enough to 

include all local correlations and the number of such segments should be large enough to 

provide statistically meaningful value of Dd when it is averaged over the whole trajectory [29]. 

For example, using TTD : 

1
2

 

where Nsd is the number of segments of tsd duration.  TJD is similar to TTD but here the 

decomposition is made by segments of the same number of jumps, JSD.  The main advantage of 

TTD and TJD techniques is the possibility to estimate a statistic accuracy of the estimated Dd 

and monitoring it to identify when modelling reaches the desired accuracy.  Thus, if the defect 

trajectory is long enough, the value of Dd as a function of segment time in TTD or number of 

defect jumps in TJD converges to the value.  Moreover, if there are no long-range correlations 

this value is the same as  described above (see e.g. [17, 19]).   

In the present study all the above techniques have been used to cross-verify the accuracy of 

diffusion coefficients estimation.  Tracer correlation factor, that indicates an efficiency of defect 

migration in atomic transport, was estimated as: 
∗
. 

Interatomic many-body potential for Fe-Ni interactions developed by Bonny et al. [30], was 

used in all presented simulations. This potential provides a good description of defect properties 

in the Fe-Ni alloy, e.g.  the potential was fitted to DFT results for interaction energy of Ni–Ni 

and Ni–vacancy pairs and the binding energy for the mixed <110> dumbbell the pure Fe matrix 

[31]. For the Fe-Fe interactions we used the interatomic potential described in [32]. This 

interatomic potential was specially fitted to point defect properties in α-Fe. As in our previous 

work [17], the data we present here are obtained with a high statistical significance (up to >105 

interstitial atom jumps and ~104 vacancy jumps) by simulating a long physical time and using 

several independent simulations for the conditions where reasonable statistics of events 
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demands mesoscopic timespan. To attain enough statistics at the lower temperatures 

investigated, for which the jump frequency of the point defects is very low, several simulations 

were performed at the s-scale (up to ~3s). 

The migration energy barriers of an interstitial atom and vacancy in the presence of Ni 

solute atoms in neighbouring positions were calculated using the molecular static technique in 

a system with N ≈ 12,000 atoms and the results are presented in table 1. The calculation of the 

energy barrier has been performed by constraining the relaxation of the displaced atom in the 

hyper-plane perpendicular to the vector connecting the initial and final positions. 

 

3. Results 

3.1. Vacancy diffusion 

Self-diffusion coefficients, ∗, due to vacancy diffusion in all alloys studied are plotted in 

Fig.1a as a function of the inverse of temperature. The values of ∗ practically overlap except 

for the Fe10at%Ni alloy which demonstrates a visual difference. For this alloy, we present 

Arrhenius plots of all the coefficients calculated: 	 ,	  and ∗ in Fig.1b.  A few features can 

be noted here:  

1. Ni addition enhances self-diffusion and the effect increases at high Ni concentrations. 

2. Vacancy diffusion coefficients calculated by TTD (diamonds) and TJD (triangles) 

methods are overlapped in the plot indicating a high accuracy in estimating diffusion coefficient 

values when both methods converge to the same value.   

3. The vacancy diffusivity calculated by JFA (squares) practically overlaps with TTD and 

TJD at high temperatures and deviates towards higher values at low temperatures. This is 

because a large number of high frequency forward-backward vacancy jumps at lower 

temperatures do not contribute to its effective displacement.  In other words, a simple estimation 

of jump correlation factor, fc , by analysing angles between two consecutive  jumps (see e.g. 
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[19]) is not accurate enough at low T when the number of such jumps increases due to a 

relatively strong vacancy-Ni attraction in the second coordination sphere (0.1eV, see [30]).  We 

therefore use Dd values estimated by either TTD or TJD hereafter. 

4. An Arrhenius plot for self-diffusion coefficients (circles) is below and practically parallel 

to the 	  plots (both TTD and TJD).  This indicates that the tracer correlation factor is <1 and 

weakly dependent on the temperatures.  

Among all the above diffusion coefficients the self-diffusion coefficient, D*, is the most 

accurate for it is estimated directly from ASD without any assumptions on the defect motion. 

For an accurate estimation of Ni effects to the alloy diffusion we calculated the ratio of the alloy 

self-diffusion coefficient over the self-diffusion coefficient in pure Fe,  
∗

∗  . The results for 

different Ni concentrations are presented in Fig. 2a as a function of temperature.  We notice 

that 10at.% of Ni increases twice the value of the diffusion coefficient at T=600K but the effect 

is weakening at higher temperatures and practically vanishes at T=1400K.  Lower 

concentrations, namely, 0.8 and 2.5 at.%Ni present the same tendency but with lower values of 

the ratio.  The activation energy of the vacancy diffusion (TTD) and self-diffusion by vacancy 

mechanism as a function of Ni concentration is presented in Table 2. In both cases the activation 

energy decreases when Ni concentration increases. The reduction in the activation energy along 

with the increase of diffusion coefficient indicates that mobility of both vacancies and atoms 

(mass transport) is enhanced in the presence of Ni in solid solution. This can be related to both, 

the above mentioned attractive interaction energy, 0.10eV, between the vacancy and the Ni 

atom at 2nd nearest neighbour (nn) and the reduced energy barrier for vacancy jumps near the 

Ni atom. Actually, the vacancy located at 2nd nn of Ni can jump into either an Fe atom located 

at 1st nn position of that Ni atom  (energy barrier of 0.52eV) or to a Ni position located at 1st 

nn (energy barrier =0.61eV); in both cases the barrier is lower than in pure Fe (0.63eV) (see 
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Table 1). It is important to note that this reduction in the energy barrier is consistent with DFT 

calculations [31].  

The tracer correlation factor for vacancy diffusion,	 , is plotted in Fig. 2b for all Ni 

concentrations including pure Fe as reference.  The value of  for a given defect is a measure 

of the efficiency of its migration in the atomic transport. The accuracy of  calculations at low 

Ni concentrations is not enough to point out the Ni solute effect, however at 10 at.% the effect 

is considerable indicating strong correlations reducing the efficiency of migrating vacancy in 

producing atomic displacements, i.e. self-diffusion. However, the results reported provide 

enough evidences that in general, the presence of Ni solute atoms accelerates vacancy 

diffusion, reduces the diffusion activation energy and enhances the whole atomic transport due 

to the vacancy diffusion mechanism.    

 

3.2 Interstitial atom diffusion 

 

The self-diffusion coefficients for the interstitial atom diffusion in pure Fe and Fe-Ni alloys 

with 0.5, 0.8, 1.2, 1.6, 2.5 and 10at%Ni, estimated over the temperature range 300K-900K, are 

presented in Fig.3a.  All dependences in Fig.3a are not linear and show different slope at low 

and high temperature indicating different activation energies.  At high temperatures (T> 500K) 

the activation energy is almost not affected by Ni concentration, whereas at low temperatures 

(T< 500K) the influence of Ni concentration is remarkable.  Thus, in the 10%Ni alloy the 

activation energy at low temperature is 0.38eV whereas at high temperature is 0.20eV.  These 

values compare with the values for pure Fe reported in [17], i.e., 0.30 and 0.20eV respectively. 

In table 3 we have listed the average values per each concentration of Ni.  In general, Ni effect 

in the interstitial atom diffusion is in the reduction of self-diffusion coefficient. This reduction 

increase at low temperature and high Ni content.  This is clearly demonstrated in Fig.3b, where 
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the temperature dependence of the diffusion coefficient ratio,  
∗

∗  , is presented for different 

alloys. Actually, the ratio of self-diffusion coefficients reduces down to <0.2 when Ni 

concentration increases up to 10 at.% at 300K.  In general, the presence of Ni solute atoms 

reduces all diffusion coefficients (Figs.3a and 3b), increases the diffusion activation energy 

(Table 3), slows down interstitial atom diffusion and the total atomic transport due to the 

interstitial diffusion mechanism.  The decrease in the diffusion coefficient is due to the 

reduction in the jump frequency of the SIA, more effective at low temperature, related in turn 

to the negative binding energy of the SIA with the Ni atom.  Thus, the jump asymmetry 

introduced by the repulsive interaction with Ni and the increase in backward jumps due to the 

instability of the mixt dumbbell causes the reduction on the SIA mobility. 

The tracer correlation factor, , is plotted in Fig.3c for 0.8, 2.5 and 10 at.%Ni. We observe 

that, for all Ni concentrations,  slightly differs from that in pure Fe indicating a weak Ni 

effect to the correlation between interstitial atom diffusion and total atomic mass transport.  

 

 

3.3 Diffusion of Ni-solute atoms 

 

Self-diffusion coefficients, ∗ , of Ni in alloys were estimated by tracing the displacement 

of Ni atoms during the modelling of both, vacancy and interstitial atom diffusion. The 

corresponding Arrhenius plots for 0.8 and 10 at.% Ni concentrations are shown in Fig.4.  Note 

that the partial diffusion coefficients presented for Fe-matrix and Ni-solute atoms are 

normalised per the corresponding component concentration. During modelling vacancy 

migration in Fe-0.8at.%Ni alloy at T=600K we did not observe significant displacements of Ni 

atoms over 2.8s, therefore the corresponding diffusion coefficients are presented at Fig.4b 

only for T800K.  Similar problems were observed in the estimation of Ni partial diffusion 
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coefficients by interstitial mechanism at low T (see Fig.4a).  The activation energy of Ni atoms 

diffusion by both, vacancy and interstitial mechanisms obtained in the Arrhenius-type treatment 

(like the results in Figs.4) are presented in Table 4 together with the activation energies of point 

defects in pure Fe and the vacancy migration barrier for fcc Ni [30] for comparison.  Table 1 

indicates that, once a mixed dumbbell is created, the migration energy barrier is the same for 

the jump of Ni to form another mixed dumbbell as for the jump of Fe forming an SIA.  Of 

course, the total energy balance is more favourable to the later event. Analysis of these results 

allows to note the following features: 

1.  In general, interstitial atoms diffusion is more efficient in transporting Ni atoms than that 

of vacancies and the difference increases significantly at lower temperatures.  

2. Effects of Ni-solute atoms to interstitial and vacancy diffusion are opposite: Ni 

accelerates vacancy diffusion and slows down interstitial diffusion.   

3. Ni-solute atoms transport is much slower than that of Fe-matrix atoms when interstitial 

diffusion occurs.  On the contrary, for vacancy diffusion Ni- and Fe- atoms transport are 

practically the same. 

4. In the case of vacancy diffusion mechanism, increasing Ni concentration leads to a 

decrease of all activation energies e.g. for vacancy diffusion and Ni-atoms diffusion.  On the 

contrary, in the case of interstitial diffusion mechanism addition of Ni increases all these 

activation energies.  

Visual analysis of solute atoms diffusion has shown the usual mechanisms of solute 

transport, i.e. exchange vacancy-Ni jumps for the vacancy diffusion mechanisms and formation 

of a mixed Fe-Ni <110> dumbbell for the interstitial diffusion mechanism. Migrating vacancy 

spends more time as a vacancy-Ni complex than in the isolated Fe site.  This is because the 

binding energy of a vacancy in the second neighbour position on Ni atom in Fe matrix is rather 

attractive, 0.10eV.   Vacancy spends some time in this position jumping out or to the first nearest 
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neighbour position (with a weak repulsion, -0.02eV) and returning.  Due to these return jumps 

vacancy correlation factor decreases although vacancy keeps the ability to displace Ni atoms 

quite effectively.  Such a specific behaviour of vacancy-solute binding energy i.e. a weak 

repulsion in the nearest neighbour and much stronger attraction in the second neighbour, is 

qualitatively consistent with DFT calculations in the bcc Fe-Ni system and also leads to a 

vacancy drag mechanism for Ni transport as was demonstrated in [33] by a combination of 

mean field  with  DFT  derived defect migration barriers.  We therefore expect that in our MD 

modelling Ni transport also occurs by vacancy drag mechanism although we did not estimate 

transport coefficients here. 

The interaction between an interstitial atom and Ni-solute affects strongly the interstitial 

diffusion mechanism. The binding energy of a Ni atom with SIA <110> dumbbell is repulsive 

and depends on the relative position of the Ni atom, i.e. -0.14eV and -0.12eV when it is in the 

tensile region and compressive region, respectively [30]. Despite the binding energy of the 

mixed Fe-Ni <110> dumb-bell is quite repulsive, -0.35eV [30], in good agreement with DFT 

calculations [31], there is experimental evidence of its formation [34].  One would expect a low 

probability to form mixed dumb-bells and therefore a very low efficiency of interstitial 

diffusion mechanism in providing Ni-atoms transport.  In principle, this is what we have 

observed and atomic displacements of Ni-atoms (event normalised per their concentration) and, 

therefore, the tracer diffusion coefficient, D*
Ni, are a few times lower than those of Fe-atoms as 

seen in Fig.4a. Moreover, we almost did not observe formation of mixed dumb-bells, and 

therefore Ni atoms transport, at low T where the repulsion effect is maximum.  At high enough 

T mixed dumb-bells were formed providing therefore displacements of Ni-solute atoms. Since 

there is not attraction between interstitial configuration and Ni-solute there are no correlation 

effects as to vacancy described above.  This is consistent with the results presented in Fig.3c 

where practically no Ni-effect to tracer correlation factors was pointed out.   
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5. Discussion and concluding remarks 

 

The transport properties due to vacancy and interstitial atom diffusion in Fe-Ni alloys were 

studied using microsecond-scale molecular dynamics. This work is an extension of our previous 

study of interstitial clusters mobility in Fe-Ni alloys [28] where it was demonstrated that Ni 

impurities slowdown one-dimensional glide of interstitial clusters up to complete 

immobilization of large clusters or in high Ni content alloys.  Complete damping of 1-D glide 

mechanism reduces or even prevents completely the so called production bias [3, 4, 28] which 

is a powerful mechanism of swelling under neutron and ion irradiation. In addition, damping 1-

D glide increases a concentration of interstitial clusters /dislocation loops left in the bulk.  In 

the present work we report the effect of Ni to the 3-D mobility of point defects and the possible 

consequences of this.   

First, the Ni effect to 3-D mobility of point defects is significantly weaker than the found in 

[28]  effect to the 1-D glide.  

Second, Ni-solute atoms affect both vacancy and interstitial diffusion. The effects are 

opposite: for vacancy diffusion is accelerated (see Figs.1 and 4) whereas interstitial diffusion is 

decelerated in the presence of Ni-atoms (see Figs.3 and 4).  The effect is stronger for the 

interstitial mechanism and weaker for the vacancy one.  In general we conclude that Ni effects 

to 3-D diffusion studied here enhance more the effects to 1-D glide of interstitial clusters 

reported earlier [28].  Thus, acceleration of vacancy diffusion together with deceleration of 

interstitial atom diffusion should affect the swelling behaviour due to a) decreasing the 

conventional dislocations bias (i.e. creating vacancy supersaturation due to preferential 

absorption of interstitial atoms on edge dislocations) and b) increasing recombination of 

vacancies and interstitial atoms in the bulk.  The results on point defects and cluster mobility in 

Fe-Ni alloys obtained here and in [28] used in mesoscale and continuum modelling will allow 



 

 14

to obtain qualitatively new and quantitative more accurate results on microstructure evolution 

under irradiation. 

And finally third, the enhanced mobility of Ni-atoms by vacancy mechanism should affect 

the alloys phase transformation and segregation under irradiation.  Thus, the pressurized water 

reactors at Ringhals, Sweden, with low copper and phosphorus content but anomalously high 

concentration of manganese and nickel, ≳ 1.6%, in the welds [24], appear to brittle more 

severely than expected [24, 25]. The reason for this is likely to be the enhanced formation of 

large volume fraction of nickel-manganese precipitates observed by APT [25, 35]. These 

elements are suspected to agglomerate by segregating on previously formed point-defect 

clusters, transported by diffusion of point defects. Based on this mechanisms Chiapetto et al 

[36] have applied an OKMC model to predict the microstructure evolution of the RPV steel 

from the Ringhals reactors.  In their model the presence of impurities such as Mn and Ni is 

treated with a "grey-alloy" approach, i.e. the solute atoms are not explicitly present in the 

simulation system, but their effect is introduced by modifying the mobility parameters that 

characterize point defects (both interstitial and vacancy) and their clusters.  They report that 

even such a simple “grey-alloy” approach allows to identify the qualitatively correct trends in 

terms of defects density and average size as compared to the experimental material 

characterization.  The explicit accounting of solute transport by atomic-scale mechanisms 

studied in the present work would be a step forward in the accurate description of the 

microstructure evolution.  
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Figure 1. (a) Self-diffusion coefficient D* versus T-1 for the single vacancy in pure Fe and Fe-

Ni alloys. (b) Defect diffusivity and self-diffusion coefficients versus T-1 for the single vacancy 

in Fe-10%Ni alloy.  
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Figure 2. (a) Ratio of self-diffusion coefficients 
∗

∗  versus T obtained for the vacancy 

diffusion mechanism in different alloys.  (b) Tracer correlation factor for the single vacancy for 

all Ni concentrations. 
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Figure 3. (a) Self-diffusion coefficient D* versus T-1 for the single SIA in pure Fe and Fe-Ni 

alloys. (b) Ratio of self-diffusion coefficients 
∗

∗  versus T obtained for the interstitial 

diffusion mechanism in different alloys.  (c) Tracer correlation factor for the single SIA for all 

Ni concentrations.   



 

 23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Self-diffusion coefficients for Fe-0.8at.%Ni and Fe-10at.%Ni alloys, D*, and its 

components, D*
Fe and D*

Ni versus T-1 estimated for (a) interstitial atom and (b) vacancy 

diffusion mechanisms.  Note that the components diffusion coefficients are normalised per their 

concentration. 

 

 
TABLES 

 

 

Table 1. Energy barriers in eV for elementary jumps of different type around vacancy and 

interstitial atom in Fe matrix with Ni impurity. If there is asymmetry in the jump, the backward 

jump energy is indicated.  The values with * symbol are obtained from reference [30]. For the 

vacancy migration it is indicated which atom is jumping (Fe or Ni). We have also considered 

migration of the vacancy with a solute on the vicinity; Em(Fe, Ni Xnn): the solute atom is Xth 

neighbour of the Fe atom before jumping. 
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Vacancy migration energy barrier (eV) SIA migration energy barriers (eV) 

Fe 0.63* Fe-Fe (bulk) 0.31 

Ni 0.61* 
Fe-Fe Ni(1nn) tension 

Backward jump 

0.35 

0.34 

Fe, Ni 2nn 0.52* 
Fe-Fe Ni(1nn) compres. 

Backward jump 

0.23 

0.33 

Fe, Ni 3nn 0.71* Fe-Ni to Ni-Fe 0.13 

Fe, Ni 5nn 0.68* 
Ni-Fe to Fe-Fe 

Backward jump 

0.13 

0.37 

 
 

 

Table 2. Activation energy for the single vacancy calculated by two different methods (eV). 

 

alloy 
Activation energy for vacancy diffusion mechanism (eV) 

Vacancy diffusion (TTD) Self-diffusion (ASD) 

Fe 0.57 0.56 

Fe-0.8%Ni 0.55 0.54 

Fe-2.5%Ni 0.54 0.55 

Fe-10%Ni 0.52 0.50 

 

 

 

 

Table 3. Averaged activation energy for the single SIA calculated by two different methods 

(eV). 

 

alloy 
Activation energy for interstitial diffusion mechanism (eV) 

Interstitial diffusion (TTD) Self-diffusion (ASD) 

Fe 0.27 0.26 
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Fe-0.8%Ni 0.28 0.27 

Fe-2.5%Ni 0.29 0.28 

Fe-10%Ni 0.29 0.31 

 
 
 
 
Table 4. Activation energy in eV for Ni atoms in Fe-Ni alloys for different diffusion 

mechanisms as a function of Ni impurity concentration. Data for pure Ni and Fe are also 

presented for comparison. 

 

Ni concentration, 

at.% 

 

Activation energy for Ni diffusion (eV) 

Mechanism 

Vacancy Interstitial 

0.8 0.62 0.34 

2.5 0.57 0.31 

10 0.53 0.28 

fcc Ni 0.98 [30] 0.13 

bcc Fe 0.56 0.26 

 
 


