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Abstract

We model the phase oscillations of electrons in race-track microtrons by means of an area preserving map with a fixed pointat the
origin, which represents thesynchronous trajectoryof a reference particle in the beam. We study the nonlinear stability of the origin
in terms of thesynchronous phase—the phase of the synchronous particle at the injection. We estimate the size and shape of the
stability domain around the origin, whose main connected component is enclosed by an invariant curve. We describe the evolution
of the stability domain as the synchronous phase varies. We also clarify the role of the stable and unstable invariant curves of some
hyperbolic (fixed or periodic) points.
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1. Introduction

Race-track microtron (RTM) is a specific type of electron
accelerator with beam recirculation combining propertiesof the
linear accelerator and a circular machine [16, 37]. For applica-
tions in which a modest beam power at a relatively high beam
energy is required the RTM turns out to be the most optimal
source of electron beams. This is the case of applications like
the cargo inspection or Intraoperative Radiation Therapy for
which RTMs allow to get pulsed and continuous beams in a
quite cost and energy effective way with the most optimal di-
mensions of the machine. An example of such accelerator is a
compact 12 MeV RTM which is under construction at the Tech-
nical University of Catalonia in collaboration with the Moscow
State University and CIEMAT (Spain) [1, 20, 51].

In the design of a particle accelerator its main parameters
are optimized for some reference particle, usually referred to
as synchronous particle. Real particles of the beam perform
transverse and longitudinal oscillations with respect to this syn-
chronous particle. One of the important issues of the RTM de-
sign is to assure the stability of these oscillations, in particular
to avoid an uncontrolled growth of their amplitude that leads
to the loss of the beam. In the RTM beam dynamics the main
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role is played by longitudinal oscillations of individual elec-
trons with respect to the synchronous particle [24, 49]. Such
oscillations are usually referred to as phase motion, and the re-
gion of initial states in the phase space which give rise to stable
oscillations is calledacceptance.

Stability of the phase oscillations of particles in the beamis
a matter of primary concern both at the stage of the accelerator
design and during its operation. In particular, the size of the
acceptance determines the efficiency of caption into accelera-
tion of particles injected from a source of electrons, usually an
electron gun. The shape and size of the acceptance depend on
the phase of the synchronous particle, also called synchronous
phase and denoted asφs in this paper. The definition of these
notions will be given in Section 2. A specific feature of the
RTM is that the range of values ofφs for which the accep-
tance exists is quite narrow and therefore this parameter must
be carefully chosen and controlled during the RTM operation.
The main criteria here is to keep the synchronous phase equal
or close to the value for which the size of the acceptance is
maximal and to avoid resonant values ofφs. The latter is im-
portant because resonant phase oscillations lead to a buildup of
beam instabilities, rapid growth of the amplitude of the phase
oscillations and eventually to a loss of the beam. Therefore, a
good understanding of the longitudinal dynamics of the beam
in RTMs in general and the phase oscillations of electrons ina
particular machine is important.

The phase oscillations of the beam in an RTM are described
by a system of nonlinear difference equations [13, 37] that will
be derived in Section 2. It gives rise to an analytic area pre-
serving map which is the object of study in the present paper.
These difference equations cannot be approximated by differen-
tial equations without loss of accuracy, since RTMs have large
energy gain per turn and high frequency of phase oscillations.
The description of the acceptance in the linear approximation is
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well known [37]. The change of the acceptance under the varia-
tion of the synchronous phase, the appearance of stable regions,
and the emergence of the stochastic regime is studied in [29]by
looking at the normal form of the difference equations up to or-
der four. For instance, it was shown that there is a shift of the
center of oscillations and that the oscillation frequency depends
on the amplitude. We will reproduce these known results.

In the present paper we will study the phase motion of the
beam in RTMs using modern dynamical systems methods. Our
goal is to characterize the acceptance, called stability domain
in dynamical systems, as a function of the synchronous phase.
In particular, we will establish the intervals of values ofφs for
which the acceptance and its central connected component ex-
ist, analyze their geometry, shape and size, and calculate their
area for the whole range ofφs. Our main theoretical tools
are the Moser twist theorem and several of Simó’s stabilityre-
sults [42]. Finally, we will carry out a global study of the ac-
ceptance and its connected component using results and algo-
rithms, like the orbit method, developed in [25, 50].

The article is organized as follows. We give a short intro-
duction into the RTM beam longitudinal dynamics, define the
notion of synchronous trajectory and synchronous phase and
derive the map describing the longitudinal beam dynamics that
we will refer to as RTM map in Section 2. We present some pre-
liminaries on the RTM map in Section 3, where we also relate
the RTM map with the nonzero flux area preserving map stud-
ied in [7]. We summarize our analytical results in Section 4,
but we relegate all technical proofs to the appendices. The sta-
bility domain is numerically studied in Section 5. The invariant
curves of some hyperbolic points are analyzed in Section 6. We
discuss our results and present some conclusions in Section7.

2. The RTM model

The operation of a race-track microtron (RTM) is illustrated
in Fig. 1. The initial beam is injected from an electron source
(electron gun or external pre-accelerator) into an accelerating
structure (AS) consisting of a few resonant cavities. The longi-
tudinal electric component of a high frequency electromagnetic
wave (usually a standing wave) accelerates the electrons inthe
AS. Then the beam is bent by the magnetic field of a 180◦ bend-
ing magnet, calledend magnet, travels through a free space,
usually referred to asdrift space, follows along a circular tra-
jectory inside the second end magnet and returns to the AS. In
this way the beam makes a number of recirculations through the
RTM with the energy being increased at each pass through the
AS. Once the beam gets the final design energy, it is deflected
by an extraction magnet and is directed towards the accelerator
beam exit.

We approximate the AS by a zero length accelerating gap
and consider a stationary regime with a constant amplitude of
the accelerating field. Then the energy gain of an electron pass-
ing through the AS is equal to∆maxcosφ, where∆max is the
maximum energy gain in the AS andφ is the phase of the ac-
celerating field. In accelerator physics this parameter is usually
referred to as particle phase and is used to characterize thelon-
gitudinal position of the particle along the orbit with respect to

Figure 1: Schematic view of our RTM model: 1) Accelerating structure, 2)
Drift space, 3) End magnets, 4) Electron gun, and 5) Extraction magnet.

the accelerating gap (in a real machine with respect to, say,the
exit, of the last cavity of the AS in the direction of the beam
motion). Another idealization in our study is that the end mag-
nets will be considered as hard-edge dipole magnets so that the
fringe-field effects are not taken into account.

Let us consider the longitudinal (phase) motion of elec-
trons in an RTM with magnetic field inductionB in the end
magnets and separationl between the magnets (straight section
length). We assume that the injected electrons are already ultra-
relativistic, so that in the formulas below the velocity of the
particles in the beam is equal to the velocity of lightc.

Our dynamical variables are the full particle energyEn and
its phaseφn at then-th turn at some point of the orbit. For
the sake of convenience, we choose this point to be the exit of
the AS. Letφ0 andE0 be the particle phase and energy at the
injection; that is, just before its first passage through theAS.
We would like to note that, in some pulsed RTM, the electrons
reverse their trajectory in special reverse field magnets after the
injection and first acceleration at the AS [20, 51]. In that case,
E0 is the energy after the first acceleration and reflection of the
beam in the end magnet, before the second passage through the
AS, but we will still use the term injection energy.

For the RTM model described above, the duration of the
n-th revolution of the beam is

Tn =
2l + 2πrn

c
=

2l
c
+

2πEn

ec2B
, (1)

wheree is the elementary charge andrn is the beam trajectory
radius in the end magnets. We have used thatEn = ecBrn in
bending magnets for ultrarelativistic beams [37]. Relation (1)
allows us to work either with time variablesTn or energy vari-
ablesEn. The beam dynamics in the phase-energy variables, for
a zero-length AS, is governed by the difference equations

φn+1 = φn + 2πTn/TRF, En+1 = En + ∆maxcosφn+1, (2)

TRF being the period of the accelerating electromagnetic field,
usually calledradiofrequency (RF) fieldin the context of accel-
erator beam dynamics. See [37].

The design of a particle accelerator requires a proper choice
of physical and technical parameters in order to guarantee the
existence of a reference trajectory, calledsynchronous trajec-
tory, so that an ideal particle following this trajectory is accel-
erated in the most optimal way. Namely, it can be tuned in
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resonance with the accelerating field. Let us explain the choice
of parameters in case of an RTM. We fix two positive integers
m andk. The resonance conditions in the case of an RTM are

T1,s

TRF
= m,

Tn+1,s− Tn,s

TRF
= k. (3)

Henceforth, the subindex “s” indicates quantities relatedto the
synchronous trajectory. The integerm is the number of RF field
periods during the first turn and defines the synchronicity con-
dition at this turn, whereask is the increase of the multiplicity
factor due to the increase of the period of revolution of the ref-
erence particle in each turn. The ratio

jn := Tn,s/TRF = m+ (n− 1)k

is calledharmonic number. RTMs are accelerators with vari-
able harmonic numbers, sincejn depends on then-th turn.

If we rewrite the resonance conditions (3) using the energy
variablesEn,s and relation (1), we get thatEn,s = Es+n∆s, where

Es =

(

m
k
− 1− 2l

kλ

)

∆s, ∆s =
ecBλk

2π
,

andλ = cTRF is the wavelength of the RF field. Finally, it
is straightforward to check that if the injection phase for the
synchronous trajectoryφ0,s = φ1,s = φs satisfies relation

∆s = ∆maxcosφs,

then we get a particular solution (φn,s,En,s) of equations (1)–(2),
whose energy undergoes a constant gain∆s at each turn:

φn,s = φs + 2πin, En,s = Es + n∆s, (4)

with in = (n − 1)m+ (n − 1)(n − 2)k/2. We note thatin ∈ Z,
so this synchronous particle passes through the AS in the same
phase of the RF field at each turn:φn,s = φs (mod 2π) for all n.
We say thatφs is thesynchronous phase.

Once we realize that the synchronous trajectory (4) exists,
we wonder whether the oscillations of other trajectories around
it are stable. This depends on the synchronous phaseφs.

We study this dependence by introducing the variables

ψn = φn − φs, wn = 2πk(En − En,s)/∆s, (5)

that describe the phase and energy deviation of an arbitrarytra-
jectory from the synchronous one. Then the beam dynamics is
modeled by the map (ψn+1,wn+1) = f (ψn,wn), where

{

ψn+1 = ψn + wn,

wn+1 = wn + 2πk
(

cos(ψn+1 + φs)/ cosφs − 1
)

.

For simplicity, we will assume thatk = 1 in the rest of the paper.
The study of other values can be carried out in a similar way.

We end this section by stressing that the model of longi-
tudinal oscillations around the synchronous trajectory for non-
ultra-relativistic beams is more complicated [19].

3. Fixed points and nonzero flux

Under the assumptionk = 1, our model for the nonlinear
oscillations around the synchronous trajectory (4) is the analytic
area preserving diffeomorphism (ψ1,w1) = f (ψ,w), defined by

{

ψ1 = ψ + w,
w1 = w+ 2π(cosψ1 − 1)− µ sinψ1.

(6)

Here,µ = 2π tanφs is a parameter, andψ (respectively,w) is the
deviation of the phase (respectively, energy) of an arbitrary par-
ticle from the phase (respectively, energy) of the synchronous
trajectory. The angular coordinateψ is defined modulo 2π, so
the phase space isT × R, with T = R/2πZ.

The map (6) has two fixed points:

ps = (ψs,ws) = (0, 0), ph = (ψh,wh) := (−2φs, 0).

The pointps corresponds to the synchronous trajectory. It is
hyperbolic, parabolic or elliptic whenµ < [0, 4], µ ∈ {0, 4},
and µ ∈ (0, 4), respectively. Ifµ ∈ (0, 4), its characteristic
multipliers areλs = eiθ and 1/λs, for someθ ∈ (0, π) such that

cosθ = 1− µ/2. (7)

This means that the linear dynamics aroundps is conjugated
to a rotation by angleθ. The quantityθ/2π is calledtune in
Accelerator Physics [37]. Nevertheless, following a standard
terminology in dynamical systems, we will say thatθ/2π is the
rotation number. The elliptic pointps is called (m, n)-resonant
whenθ = 2πm/n for some relatively prime integersm andn
such that 1≤ m≤ n/2, which implies thatλn

s = 1. Besides,n is
theorder of the resonance.

The fixed pointph = (−2φs, 0) is hyperbolic for anyµ > 0.
Indeed, ifµ > 0, then the linear dynamics aroundph expands
the unstable direction by a factorλh = eh and contracts the sta-
ble direction by a factor 1/λh, where thecharacteristic exponent
h > 0 is given by coshh = 1+ µ/2.

We look for initial conditions that give rise to particles with
a bounded energy deviation from the synchronous trajectory.
More precisely, we will estimate the size and the shape of

A = {p ∈ T × R : (wn)n∈Z is bounded} .

Here,p = (ψ,w) ∈ T × R andpn = (ψn,wn) = f n(p). This do-
main is called(longitudinal) acceptancein Accelerator Physics,
andstability domainin dynamical systems. We will also study
its connected componentD ⊂ A that containsps. The mapf ,
its acceptanceA, and the connected componentD depend on
µ, but we will frequently omit this dependence. Otherwise, we
will write fµ,Aµ, andDµ, respectively.

Remark 1. We have numerically checked that

A ⊂ [−0.45, 0.35]× [−0.8, 0.8], ∀µ > 0.

Hence, if (ψn,wn) ∈ T × R is the phase-energy deviation at the
n-th turn of a trajectory contained inA and (ψ̃n,wn) ∈ R × R

denotes the lift of this trajectory determined by−π ≤ ψ̃0 < π,
then−π ≤ ψ̃n < π for all n. This means that trajectories with
bounded energy deviation, have also bounded phase deviation
respect to the synchronous one.
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Relation Local stability
µ = 2π tanφs µ ∈ (0, 4] \ {3}
cosθ = 1− π tanφs θ ∈ (0, π] \ {2π/3}
coshh = 1+ π tanφs h ∈ (0, hp] \ {hu}

Table 1: Relations among the synchronous phaseφs ∈ T, the parameterµ ∈ R,
the rotation numberθ/2π, and the characteristic exponenth > 0. Here, the
valueshp andhu are given by coshhp = 3 and coshhu = 5/2.

Our model map (6) is very similar to Chirikov’s standard
map, but with an extra wrinkle. It has nonzeronet flux. Indeed,
if we perform the change of variables

ψ + φs = −π/2− 2πx, z= w/2π,

then the map (6) becomes
{

x = x1 + z,
z = z1 +

ǫ
2π sin(2πx1) + λ,

(8)

whereλ = 1 is thenet fluxandǫ = 2π/ cosφs =
√

4π2 + µ2

quantifies theamplitudeof the forcing term.
Fox and de la Llave [7] studied the stability domain of the

map (8) for 0< λ < 1 and 0< ǫ ≤ 6. We can not take ad-
vantadge of their work, because in our caseλ = 1 andǫ ≥ 2π.
Nevertheless, one can compare their Figure 8(b) with our Fig-
ure 5(left). They graph the relative size of the stability domain
of the map (8) versusǫ whenλ = 0.6 and 0≤ ǫ ≤ 6. We graph
the area of the stability domain of the map (6) versusµ when
0 ≤ µ ≤ 4.5. One can see the reduction ofA after the fourth or-
der resonance and the collapse ofD at the third order resonance
in both graphs. See Section 5 for more details.

4. Local stability and two asymptotic formulas

First, we study whenps = (0, 0) is a locally stablefixed
point. That is, we determine the values ofµ for which all points
enough close tops remain close under iteration of the map (6).

Theorem 1. The synchronous trajectory is locally stable if and
only if µ ∈ (0, 4] \ {3}.

We will prove this theorem in Appendix A. The range of
local stability in terms ofθ andh is given in Table 1.

Next, we focus on the invariant curves (ICs) surrounding the
elliptic point ps, especially on the “last” IC (LIC). LICs (and
their rotation numbers) were studied in [27]. We have numeri-
cally computed LICs by using the algorithm described in [44].

A summary of the phenomena that take place whenµmoves
is displayed in Fig. 2. If there exist ICs around the origin, we
plot some of them, the last one (the LIC), and one unbounded
orbit very close to the LIC. If the origin is globally unstable, we
plot suitable unbounded orbits to highlight it.

Fig. 2 shows the basic skeleton from which an expert reader
can deduce the main dynamical changes. Let us describe them.

The elliptic fixed pointps and the hyperbolic fixed pointph

merge in a parabolic point asµ→ 0+; see Figs. 2(a)–2(c). This
scenario corresponds to a saddle-center bifurcation [2, 8]. The

stable and unstable invariant curves (calledseparatrices) of the
hyperbolic fixed point seem to form a small loop around the
elliptic fixed point when 0< µ ≪ 1. See Fig. 2(c). We will see
in Appendix B that, since the LIC around the elliptic point is
exponentially close (in the parameterµ) to the separatrices,

|Aµ|, |Dµ| = 6µ5/2/5π2 +O(µ3), asµ→ 0+. (9)

Therefore, both regions are almost the same whenµ → 0+. (If
R is a subset ofT × R, then|R| denotes its area.)

The LIC grows in size, changes its shape, and moves away
from the separatrices asµ increases; see Fig. 2(d). We reach the
fourth order resonanceθ = π/2 atµ = 2. The elliptic point is
locally stable at this resonance, and the ICs near it look like a
Latin cross, whose arms have a width of the order of the square
of its length; see Fig. 2(e). The Hénon map displays exactlythe
same behavior at the fourth order resonance [41].

The twist coefficient (also called first Birkhoff coefficient)
goes from negative to positive atµ = µr ≃ 2.537706 and from
positive to negative atµ = 3, where the third order resonance
θ = 2π/3 takes place. This is one of the two typical behaviors
for the twist coefficient described in [34]. It means that the
orbits around the origin rotate slower (resp., faster) as they go
away from the origin whenµ ∈ (0, µr)∪(3, 4) (resp.,µ ∈ (µr, 3)).
Figs. 2(g)–2(i) show that behavior, since we see a three-periodic
orbit near the elliptic point for bothµ . 3 andµ & 3.

The elliptic point is unstable at the third order resonance;
see Fig. 2(h). We will prove in Appendix C that ifµ = 3 + ǫ
with 0 < |ǫ| ≪ 1, the LIC is approximately a triangle of vertices

ǫ

π
(1, 0),

ǫ

π
(1,−3),

ǫ

π
(−2, 3). (10)

In particular,

|D3+ǫ | = 9ǫ2/2π2 +O(ǫ3), asǫ → 0. (11)

The LIC grows in size and its triangular shape changes to
a “banana-like” shape as the parameter moves from the three
order resonance atµ = 3 to the second order resonance atµ = 4.
The fixed pointps is locally stable at this last resonance, and the
ICs near it look like “bananas” whose width is of the order of
the square of its length. See Fig. 2(k).

Finally, a period-doubling bifurcation takes place after the
second order resonance. To be precise, the pointps becomes a
saddle forµ > 4, being parabolic with reflection atµ = 4. One
then expects to find an elliptic two-periodic orbit forµ > 4. The
separatricesof the hyperbolic fixed pointps form two small
loops around the two elliptic two-periodic points. Nevertheless,
the saddleps remains globally stable whenµ & 4, since some
of the ICs aroundps still persist. See Fig. 2(l).

In spite of all the above comments, the expulsion of some
resonance is a more relevant phenomenon than any resonance at
the elliptic fixed point, but the third order resonance. The reason
is that only the first phenomenon changes drasticallyA andD,
since the second one takes place insideD. We will check that
|A| and|D| experiment a jump for each primary resonance that
is thrown away. Besides, these primary jumps are smaller in
|A| than in |D|. However,|A| displays many more jumps, the
secondary ones, which are related to resonances inside elliptic
islands that are already outsideD.
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Figure 2: Race-track microtron phase dynamics in (ψ,w)-coordinates for several values of the parameterµ = 2π tanφs. In the electronic version one can magnify
the plots to check details of the invariant curves: proximity to the unbounded orbits, regularity at their “corners”, etcetera. This also applies to many other figures.

5



5. Stability domain

5.1. Reversors

A map isreversiblewhen each orbit is related to its time re-
verse orbit by a symmetry transformation, called areversor. If a
map is reversible, many of their periodic and homoclinic points
are located on certainsymmetry lines, and many of their invari-
ant objects are invariant under the reversors [5]. Two paradig-
matic examples of such invariant objects are ICs around elliptic
points and stable and unstable invariant curves of hyperbolic
points. We will use these facts to simplify some computations.

The map (6) can be written as the compositionf = r1 ◦ r0,
wherer0, r1 : T × T→ T × R are the involutions

r0(ψ,w) = (ψ + w,−w), r1(ψ,w) = (ψ, η(ψ) − w), (12)

andη(ψ) = 2π(cosψ − 1)− µ sinψ. This means that the mapf
is reversible with reversorsr0 andr1. See [21]. The symmetry
lines of these reversors are their sets of fixed points; that is,

Fix(r0) = {(ψ,w) ∈ T × R : w = 0} , (13)

Fix(r1) = {(ψ,w) ∈ T × R : w = η(ψ)/2} .

All the ICs displayed in Fig. 2 are invariant under the reversors
r0 andr1, and so is the stability domainA. See Fig. 3.

In particular, if we consider the decomposition

A = A− ∪A+, A± = A∩ {(ψ,w) ∈ T × R : ±w ≥ 0},

thenA± = r0(A∓). This halves the computational effort to find
A. The connected componentD satisfies the same property.

The symmetry lines of any reversible mapf = r1 ◦ r0 have
many more useful properties. Let us recall the characterization
of symmetric periodic orbits(SPOs) given in [21]. SPOs are the
periodic orbits that are invariant under both reversorsr0 andr1.
An orbit of f is an SPO if and only if it has exactly two points on
Fix(r0)∪Fix(r1), in which case it has a point on each symmetry
line if and only if it has odd period. We have displayed in Fig.3
a couple of (1, 4)-SPOs. Four is even, so one of these orbits
has two points on Fix(r0), and the other orbit has two points on
Fix(r1).

5.2. Rotation number

The points inside the stability domainA rotate around the
elliptic fixed point ps = (0, 0) when 0< µ < 4. The points
infinitesimally close tops give θ/2π turns per iteration, where
θ is the angle defined in (7). We recall thatθ/2π is therotation
numberof the elliptic point ps, and we writeρ(ps) = θ/2π.
Next, we try to define the rotation numberρ(p) for any point
p ∈ A \ {ps} following a standard approach [17].

Given anyp = (ψ,w) ∈ A, let ϕ be its “argument”. That is,
ϕ is the angle between the segment [ps, p] and the semi-straight
line {(ψ, 0) : ψ > 0}. Analogously, letϕn ∈ R be the “argument”
of then-th iteratepn = f n(p). We consider these arguments on
the universal coverR, not onT = R/2πZ. Then we wonder
whether the limit

ρ = ρ(p) :=
1
2π

lim
n→+∞

ϕn − ϕ
n

(14)

exists. If so, we say that (14) is therotation numberof the point
p under the mapf around the elliptic pointps. Such quantities
can be computed using an algorithm described in [25, 38].

We are interested in rotation numbers because they allow us
to distinguish the three main bounded dynamical behaviors in
analytic area-preserving diffeomorphisms [17, 38, 44]:

• If C is a Moser-like IC, then the limit (14) exists for all
p ∈ C, and it does not depend onp, so we writeρ(C).
Besides,ρ(C) is, generically, aDiophantine number(that
is, it is badly approximated by rational numbers).

• A (m, n)-periodic chain of elliptic islandsis an invari-
ant region with several connected components such that
each of them surrounds a (m, n)-periodic elliptic point.
The (1, 4)-periodic chain around aroundps is displayed
in Fig. 3 for two values ofµ. It is formed by the four big
green domains. Each of them is mapped onto the next one
in clockwise sense, soρ(p) ≡ 1/4 for any pointp inside
them. Similarly, ifp is inside an (m, n)-periodic chain of
elliptic islands, the limit (14) exists,ρ(p) = m/n ∈ Q.

• A chaotic sea(or Birkhoff instability zone) is the region
between two adjacent ICs minus the stable elliptic is-
lands. If p is inside a chaotic sea, then the limit (14)
generically does not exist.

From now on, we paint the points inside chaotic seas in
blue, the ones inside elliptic islands in green, and the oneson
ICs in red. Fig. 3 and Fig. 4 are samples of that convention. To
be precise, given any pointp ∈ A, we apply the algorithm de-
scribed in [38] to compute its rotation number. If the algorithm
does not converge, then we paintp in blue. Otherwise, we paint
p in red/green whenρ(p) is irrational/rational, which is decided
by looking at its continued fraction; see [18] for details.

5.3. Stability domain

We compute the stability domain of the microtron map (6)
using theorbit methoddescribed in [50]. Visual examples of
several stability domains of the Hénon map provided by this
method can be found in [45–47]. Our figures show a strong
resemblance with those ones.

Let us describe our implementation of the orbit method.
First, we take a fine rectangular grid in a suitable rectangle

[ψmin, ψmax] × [0,wmax]

that contains the upper halfA+ of the stability domain. Second,
we paint in white all grid points such that some of their first
1000 iterates escape from the control region

{(ψ,w) ∈ T × R : |w| ≤ 1} .

This is a fast step, since 1000 is a relatively small number for
any modern computer. Third, we consider then-th iterates with
−107 ≤ n ≤ 107 of all not-yet-white grid points adjacent to
some already-white one. If some of these iterates escapes from
the control region, we paint in white all grid points “visited”
by its corresponding unbounded orbit or by itsr0-symmetric
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Figure 3: The stability domain forµ = 2.037 (left) andµ = 2.038 (right). Blue corresponds to chaotic seas, green to periodic elliptic islands, and red to ICs.
The elliptic and hyperbolic (1, 4)-SPO orbits are marked with solid black circles and solid black squares, respectively. The symmetry lines Fix(r0) and Fix(r1) are
displayed as dashed black lines. Each SPO of even period has exactly two points on a single symmetry line. A short part of the stable and unstable invariant curves
of the hyperbolic (1, 4)-SPO is drawn with continuous black lines. These stable and unstable invariant curves split (that is, they do not coincide), but only the outer
splitting can be seen at this scale. See Section 6 for details. In the electronic version one can magnify the plots.
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Figure 4: The stability domain forµ = 1.539 (left),µ = 2.853 (center), andµ = 3.735 (right). Colors, solid black circles, solid black squares, dashed black lines, and
continuous black lines have the same meaning as in Figure 3, but here the SPOs are (1, 5)-periodic (left), (1, 3)-periodic (center), and (2, 5)-periodic (right). Each
SPO of odd period has exactly one point on each symmetry line.
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Figure 5: Left:|Aµ | (continuous line) and|Dµ | (dashed line) versusµ. Right: A zoom of the previous figure to visualize its self-similar structure.
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orbit. We do not use the reversorr1, sincer0 is computationally
cheaper andr1 = f ◦ r0. We repeat this process until no more
points escape from the control region. This is the hardest step.
Fourth, we determine the color of each non-white grid point by
computing its rotation number as explained before. This step
of the algorithm is not “orbitally coherent” in the sense of [50],
but we feel that it is the right choice, since there is no clearway
to choose the color in disputed cases. Finally, we get the lower
half of the stability domain from the identityA− = r0(A+).

We stress that all grid points in the interior (respectively,
“on” the border) of the stability domain have been iterated only
1000 (respectively, 2·107) times. This is good, since the interior
contains much more grid points than the border.

Fig. 3 shows a couple of stability domains computed with
this algorithm. Each pixel is the center of a square with side
ℓ = 1/4000, so the area of the stability domain is approximately
equal toℓ2 times the number of colored pixels. We also count
the number of pixels in the connected component containing
the origin following a standard algorithm in Computer Vision.
See, for instance, [39, pags. 72–75]. In that way, we obtain that
|Aµ| ≈ 1.1657·10−1 and|Dµ| ≈ 1.1029·10−1 for µ = 2.037, but
|Aµ| ≈ 7.6105· 10−2 and|Dµ| ≈ 1.5067· 10−2 for µ = 2.038.

These jumps in|Aµ| and|Dµ| have a simple explanation. We
recall that the fourth order resonance takes place atµ = µ• = 2.
After that value is crossed, four (1, 4)-periodic elliptic islands
surrounded by a chaotic sea emanate from the elliptic pointps.
This structure (elliptic islands plus chaotic sea) moves away
from ps asµ grows, but remains insideDµ ⊂ Aµ while some
IC surrounds it. However, the LIC surrounding it disappears
at some valueµ = µ⋆ ∈ (2.037, 2.038). After that value is
crossed, both the elliptic islands and the chaotic sea are thrown
away from the connected componentDµ, although any elliptic
island is, by definition, part ofAµ. Thus, the jump in|Aµ| only
takes into account the loss of the chaotic sea, whereas the jump
in |Dµ| also takes into account the loss of many elliptic islands.

Similar jumps take place for any periodic elliptic island, al-
though the greater is the order of the expelled island, the smaller
is the jump in both areas. For instance, we see in Fig. 4 the sta-
bility domains forµ = 1.539,µ = 2.853, andµ = 3.735, which
are parameter values smaller than, but very close to, the values
at which the periodic elliptic islands of orders three and five
are thrown away from the connected componentD. Hence, the
stability domains corresponding toµ = 1.540,µ = 2.854, and
µ = 3.736 are significantly smaller, because the more extern
chaotic sea is lost.

Fig. 5 shows|Aµ| and|Dµ| as a function ofµ. The maximal
value|Aµ| ≈ 1.718· 10−1 is attained forµ ≈ 1.912,|Dµ| = 0 for
all µ & 4.08, and|Aµ| = 0 for all µ & 4.53. Obviously,|Dµ| ≤
|Aµ|, sinceDµ ⊂ Aµ. We note that|Aµ| displays many more
jumps than|Dµ|, because it is affected bysecondary resonances
(resonances inside the islands). The graph of|Aµ| has a self-
similar fractal structure caused by those secondary resonances,
as the displayed magnification shows.

We also list in Table 2 the exact value

µ• := 2− 2 cos(2πm/n) ∈ [0, 4] (15)

at which the elliptic fixed pointps becomes (m, n)-resonant, so

(m, n) Emanate at Escape atµ⋆ with
(1, 9) µ• ≈ 0.468 0.859< µ⋆ < 0.860
(1, 8) µ• = 2−

√
2 ≃ 0.586 0.948< µ⋆ < 0.949

(1, 7) µ• ≈ 0.753 1.071< µ⋆ < 1.072
(1, 6) µ• = 1 1.251< µ⋆ < 1.252
(1, 5) µ• =

1
2(5−

√
5) ≃ 1.382 1.539< µ⋆ < 1.540

(2, 9) µ• ≈ 1.653 1.835< µ⋆ < 1.836
(1, 4) µ• = 2 2.037< µ⋆ < 2.038
(2, 7) µ• ≈ 2.445 2.526< µ⋆ < 2.527
(1, 3) µ• = 3 2.853< µ⋆ < 2.854
(3, 8) µ• = 2+

√
2 ≃ 3.414 3.589< µ⋆ < 3.590

(2, 5) µ• =
1
2(5+

√
5) ≃ 3.618 3.735< µ⋆ < 3.736

(3, 7) µ• ≈ 3.802 3.942< µ⋆ < 3.943
(4, 9) µ• ≈ 3.879 4.023< µ⋆ < 4.024
(1, 2) µ• = 4 4.080< µ⋆ < 4.081

Table 2: Exact valuesµ• at which the main resonances emanate fromps, and
approximated valuesµ⋆ at which they escape fromD.

that the (m, n)-periodic chain of elliptic islands is created from
ps, jointly with the numerically approximated valueµ = µ⋆
at which the (m, n)-periodic chain of elliptic islands is thrown
away fromD, for all (m, n)-resonances of ordern < 10. For
instance, the (2, 7)-periodic chain is thrown away at some value
µ⋆ ∈ (2.526, 2.527), which explains the seven “holes” delimited
by the unbounded orbit displayed in Fig. 2(f) forµr ≈ 2.538.

We observe thatµ• < µ⋆, but in the (1, 3)-resonance, which
comes as no surprise, since the twist coefficient is positive if
and only if 2.538≈ µr < µ < 3, see Figure A.8.

We end with a couple of warnings regarding the accuracy of
our pictures.

On the one hand, we know that the red domains displayed
in Fig. 3, and in the left picture of Fig. 4 are not completely
filled with ICs. Indeed, KAM theory implies that the set of
all ICs has a complicated Cantorian structure, whose gaps are
filled with resonances. Let us explain why we do not see those
resonances. We restrict our explanation to the case of Fig. 3,
since the phenomenon is the same in both cases. We do not see
any resonance inside the red zone displayed in Fig. 3 because

ρ⋆ := ρ(ps) = θ/2π = acos(1− µ⋆/2)/2π ≈ 0.25302,

when µ = µ⋆ ∈ (2.037, 2.038), see Table 1. Therefore, all
missed resonances have ordersn ≥ 83, since 21/83 is the ratio-
nal number in the interval (1/4, ρ⋆) with the smallest denom-
inator. Such resonances are too small to be detected with our
pixel resolution. We recall that a generic (m, n)-resonance in an
O(η)-neighborhood of an elliptic fixed point of an analytic area
preserving map has anO(ηn/4)-size [45].

On the other hand, the border of the connected component
Dµ should be a red curve (the LIC), which is missing in the left
picture of Fig. 3 and in the three pictures of Fig. 4. The reason
is, once more, that the LIC is too thin to be detected with our
pixel resolution. In the same way, probably there are some ICs
in the middle of the blue zone, which would mean that that blue
zone is composed by several chaotic seas, instead of by a single
big chaotic sea.
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5.4. Sections with the symmetry lines

We consider the sections of the stability domain with the
symmetry lines (13) for two reasons. First, the stability domain
is symmetric with respect to these lines. Second, we recall that
each SPO has exactly two points on these lines, and such SPOs
are the basic invariant objects that organize the dynamics inside
their resonance.

We look at Fig. 3 to understand how SPOs organize the res-
onant dynamics. We see an elliptic (1, 4)-SPO with two points
on Fix(r1) that organizes the stable dynamics inside the four
big green elliptic islands, and a hyperbolic (1, 4)-SPO with two
points on Fix(r0) whose stable and unstable invariant curves de-
limit almost perfectly the red region “filled” with ICs.

We do not deal with each one-dimensional section as a sep-
arate object, but we gather them into the two-dimensional sets:

S0 =
{

(ψ, µ) ∈ T × (0,+∞) : (ψ, 0) ∈ Aµ

}

,

S1 =
{

(ψ, µ) ∈ T × (0,+∞) : (ψ, η(ψ)/2) ∈ Aµ

}

,

in order to visualize their evolution in the parameterµ.
These sets are represented in Fig. 6 with the usual color

codes. We see that the connected componentDµ collapses to
the elliptic fixed point atµ = 3, and undergoes its major loss
at someµ = µ⋆ ∈ (2.037, 2.038). The collapse is associated
to the local instability of the third order resonance. The loss
takes place when the fourth order resonance is thrown away.
These are the most relevant phenomena regarding the size of the
stability domain in generic families of area-preserving maps.

We appreciate a clear self-similar fractal structure in thesets
S0 andS1. One can magnify their pictures to appreciate several
details. Let us describe the main ones.

Resonances emanate from the elliptic fixed pointps in the
form of thin blue and green tongues, since they are sections of
chaotic seas surrounding elliptic islands. These tongues begin
at the points (ψ, µ) = (0, µ•), whereµ• is defined as in (15) for
any rational numberm/n ∈ (0, 1/2), so there are infinitely many
of such tongues. Besides, they look symmetric with respect to
the vertical line{ψ = 0} in a neighborhood of that line. The
resonances, but the (1, 4)-one, have a small width when they
are close tops. Hence, most of the tongues become visible only
at some distance of{ψ = 0}.

The elliptic islands inside a resonance grow in size when
they move away fromps. If the resonance has even order, then
the green part becomes the biggest part of the tongue in the set
S1, but not in the setS0. This means that each elliptic SPO
with even period has two points on Fix(r1), but none on Fix(r0).
Fig. 3 is a sample of that empirical claim. On the contrary, if
the resonance has odd order, then the green part becomes the
biggest part of just one branch of the tongue, in both setsS0

andS1. The other branch remains blue. This is a completely
expected behavior, since we know that all SPOs with odd period
have just one point on each symmetry line.

We warn that red and green regions should not be in direct
contact, but we have again difficulties to detect the blue chaotic
seas between them with our current pixel resolution.

Resonances are thrown away fromD, which is the reason
for the saw-like border ofS0 andS1. Once a green tongue is

separated from the main red body in theψ-direction, it is no
longer delimited by blue portions, because chaotic seas do not
form part ofA when their resonances are thrown away. See
Fig. 3. Besides, the separated part of any green tongue showsa
shape similar to the shape of the whole set, which is due to the
secondary resonances. Indeed, we see the two above-mentioned
phenomena (major loss in the stability domain and collapse of
the stability domain to a point) along many of these tongues.

Such phenomena are clearly visible in the tongues ofS1 that
cover the range 4.08 < µ < 4.53. The fixed pointps is already
globally unstable in that range, but there is still a locallystable
elliptic two-periodic orbit on the symmetry line Fix(r1).

Hénon studied some sets similar toS0 andS1 for the Hénon
map more than forty years ago [14]. His computations already
show many of the above-described phenomena, in spite of the
limitations of the computers in that time. Such limitationswere
recently overcome in [33].

6. On the invariant curves of some hyperbolic points

The stable and unstable invariant curves of hyperbolic (fixed
or periodic) points organize the dynamics of area preserving
maps in several ways. For instance, some of these invariant
curves are approximate boundaries of stability domains [12],
and the flux through certain closed curves composed by arcs
of invariant curves can be easily computed [32]. Such flux is
exponentially small area in the analytic case [6], so that the
above-mentioned closed curves becomepartial barriers of the
dynamics [26, 32]. If the map is entire, then the stable and
unstable invariant curves never coincide [48], so these partial
barriers are never complete barriers. Next, we discuss these
ideas in the setting of map (6).

6.1. Singular splitting near the saddle-center bifurcation
We will see in Appendix B that the map (6) is approxi-

mated, after the rescaling (B.1), by theµ1/2-time flow of the
Hamiltonian (B.2) when 0< µ ≪ 1. Besides, the Hamilto-
nian (B.2) has a separatrix that encloses a region which resem-
bles the stability domain of the map when 0< µ≪ 1. Compare
the stability domain displayed in Fig. 2(c) with the phase por-
trait of the Hamiltonian (B.2) sketched in Fig. B.10. The sepa-
ratrix is described by the homoclinic trajectory (B.3), which is
analytic in a complex strip of widthd0 = π.

Nevertheless, the stable and unstable invariant curves of the
saddle pointph = (−2φs, 0) of our map (6) do not coincide,
since the map is entire. This result goes back to Ushiki [48].We
have displayed the stability domain and the separatrices ofthe
saddle pointph = (−2φs, 0) for µ = 0.859 in Fig. 7 (left). The
separatrices enclose the stability domain. The reversibility of
our map implies that the separatrices have a primary homoclinic
point on each symmetry line (13). LetL be the region (such
region is calledlobe) delimited by the pieces of the separatrices
between these two primary homoclinic points. For instance,we
display the lobeL for µ = 0.859 in Fig. 7 (right). In that case,
the lobe area is|L| ≈ 3.808194826948494× 10−5.

Fontich and Simó [6] proved that the splitting of the separa-
trices for any close to the identity analytic area preserving map
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Figure 7: Left: The stability domain forµ = 0.859. Blue corresponds to chaotic seas, green to periodic elliptic islands, and red to ICs. The elliptic fixed point
ps = (0, 0) and the hyperbolic fixed pointph = (−2φs, 0) are marked with a solid black circle and a solid black square, respectively. The symmetry lines Fix(r0) and
Fix(r1) are displayed as dashed black lines. A short part of the stable and unstable invariant curves ofph is shown as continuous black lines. The primary intersections
of these invariant curves with the symmetry lines are markedwith two solid black triangles. Right: A zoom of the left figure, but without the stability domain. The
area of the lobeL delimited by the separatrices between the two primary homoclinic points marked with solid black triangles is|L| ≈ 3.808194826948494× 10−5.

is exponentially small in the characteristic exponenth of the
saddle point. To be precise, they established that the splitting
size is smaller thanO(e−2πd/h) for any 0< d < d0 = π. Here,d0

is the width of the analyticity strip of the homoclinic solution
of the limit Hamiltonian. Since in our cased0 = π, we get the
upper bound|L| ≤ O(e−c/h) for any 0< c < 2π2. We recall that
µ = 2(coshh− 1) = h2 +O(h4), soh ≍ √µ asµ→ 0+.

Ten years later, Gelfreich [8] derived an asymptotic for-
mula for the splitting angle between the separatrices in analytic
saddle-center bifurcations, although he did not provide a com-
plete proof. Gelfreich’s formula, once adapted to our map, says
that |L| ≍ a0e−2π2/h ash→ 0+ for some constanta0 ∈ R.

Our numerical experiments strongly suggest that there exist
some asymptotic coefficientsan ∈ R, n ≥ 0, such that

|L| ≍ e−2π2/h
∑

n≥0

anh2n, (h→ 0). (16)

This fits perfectly with both Fontich-Simó’s upper bound, and
Gelfreich’s asymptotic formula. Our refined asymptotic for-
mula (16) means that if we retain only finitely many terms of
the right-hand side, then the error will be of the order of thefirst
discarded term. Such refined asymptotic formulas in singular
splitting problems were first presented in [9] for the Standard
map, and first proved in [28] for the perturbed McMillan map.

Besides, we have numerically seen that the first asymptotic
coefficient in formula (16) is non-zero:

a0 ≈ 1.42098502709189813726617259727× 105,

whereas the second asymptotic coefficient vanishes:a1 = 0, so
the approximation|L| ≈ a0e−2π2/h has anO(h4) relative error.
We have also checked that the asymptotic series

∑

n≥0 anh2n is
divergent, but its Borel transform

∑

n≥0 anh2n/(2n)! has radius
of convergence 2π2. This is a typical behaviour for many other
maps, see [4, 11, 33, 36].

Let us consider the closed curve formed by the unstable in-
variant curve from the saddle pointph to the primary homo-
clinic point on some fixed symmetry line plus the stable in-
variant curve from that primary point toph. This closed curve
encloses a planar domainR slightly bigger than the stability do-
mainA, see Fig. 7 (left). The key observation is that this closed
curve is aneffective barrierwhen 0< µ ≪ 1. The termeffec-
tive means that the flux through this closed curve is so small
that it looks like a true barrier for a very big number of iterates
of the map. For instance, if we setµ = 0.2, thenh ≈ 0.44357,

|R| > |A| ≈ 2.1455× 10−3, |L| ≈ a0e
−2π2/h ≈ 6.7000× 10−15.

Besides, we know that the lobe area|L| is an exact measure of
the flux through∂R after one iteration of the map, see [26, 32].
This means that after 109 iterates of the mapf , less than three
thousandths parts of the points insideR have escaped. Thus,
one may approximate the stability domainA by the regionR in
many practical situations.

Finally, we note that the numerical computation of any ex-
ponentially small splitting quantity (angle, area, or distance)
gets complicated by problems of precision, stability, and time.
In order to overcome them, Simó proposed to use a multiple-
precision arithmetic, to expand the invariant curves up to high
order, and to take advantage of the reversor [43]. These ideas
have been used in [4, 11, 36]. We have also used them.

6.2. Singular splitting near the third-order resonance

We will see in Appendix C that the third power of map (6)
is approximated, after the rescaling (C.1), by theǫ-time flow
of the Hamiltonian (C.2) whenµ = 3 + ǫ with 0 < |ǫ| ≪ 1.
Besides, the Hamiltonian (C.2) has three saddle points whose
invariant curves coincide giving rise to the triangle sketched in
Fig. C.12.

If µ ≃ 3, then the stability domain of the map (6) has a
central part with a triangular shape, that contains many ICs,
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and three “sheets”, that contain points with rotation number
equal to 1/3, attached to the vertices of that “triangle”. The ver-
tices of this “triangle” correspond to hyperbolic three-periodic
points whose stable and unstable invariant curves do not coin-
cide. There are two different splitting phenomena in this setting.
Namely, the inner splitting (associated to the invariant curves
that enclose the “triangle”) and the outer splitting (associated
to the invariant curves that enclose the “sheets”). Each splitting
should be studied separately. The inner one is generically much
smaller than the outer one [45].

We have displayed the stability domain forµ = 2.853 in the
central picture of Fig. 4. The red part is the “triangle”, thegreen
parts are the three “sheets”, and the continuous black linesare
the invariant curves of the hyperbolic three-periodic points. We
stress that, although the value of|ǫ| = |µ − 3| is not very small,
the inner splitting can not be detected even after a big magnifi-
cation of our picture. This suggest that the inner splittingis ex-
ponentially small in|ǫ| = |µ− 3|. G. Moutsinas [35] has studied
the inner splitting in analytic area-preserving maps closeto the
third-order resonance. He deduced, under a generic assumption
on the third-order Birkhoff normal form around the elliptic fixed
point at the exact third-order resonance, that the inner splitting
is exponentially small in the characteristic exponent of the third
iterate of the map at the hyperbolic three-periodic points.To be
more precise, he found that the Lazutkin homoclinic invariant
(a celebrated splitting quantity introduced in [10]) associated to
some distinguished heteroclinic orbits has a refined asymptotic
formula of the form (16), but nowh is the characteristic expo-
nent of the mapf 3 at the three-periodic points instead of the
characteristic exponent of the mapf at the origin.

On the contrary, the outer splitting in the central picture of
Figure 4 can be perceived after a suitable magnification of a
small neighborhood of a hyperbolic three-periodic point. This
visual inspection fits with the results given in [45, Section6.1],
where it is established that the outer splitting associatedto a
generic third-order resonance does not tend to zero as we ap-
proach the resonance. That is, the outer splitting isO(1).

We can extract two practical consequences of these results.
First, setµ ≃ 3 and letR(1,3)

inner andR(1,3)
outer be the regions

enclosed by suitable parts of the stable and unstable invariant
curves of the hyperbolic three-periodic points such thatR(1,3)

inner
contains the triangular shaped part ofA containing many ICs
andR(1,3)

outer contains all the points with rotation number equal to
1/3. Then the flux through the effective barrier∂R(1,3)

inner is much

smaller than the flux through∂R(1,3)
outer.

Second, letµ⋆ ∈ [2.853, 2.854] be the value at which the
third-order resonance is thrown away fromD. ThenR(1,3)

inner is
a really good approximation of the connected componentD
whenµ & µ⋆.

6.3. Singular splitting near high-order resonances

The singular splitting near resonances of ordern ≥ 4 shares
several qualitative and quantitative features with the singular
splitting near the saddle-center bifurcation and near the third-
order resonance. Let us explain this.

Let µ• andµ⋆ be the values at which the (m, n)-resonance
emanates fromps and is thrown away fromD, respectively.
Let R(m,n)

inner (respectively,R(m,n)
outer) be the region enclosed by suit-

able parts of the inner (respectively, enclosed between suitable
parts of the inner and outer) branches of the stable and unstable
invariant curves of the hyperbolic (m, n)-periodic points. The
inner region usually looks like a red “polygon” withn curved
sides, because it is almost completely foliated by ICs, whereas
the outer region contains the (m, n)-periodic chain of elliptic
islands, and it also contains part of its surrounding chaotic sea
before the (m, n)-resonance is thrown away. See Figures 3 and 4
for several pictures about the resonances

(m, n) = {(1, 4), (1, 5), (1, 3), (2,5)}.

Since the flux through the borders of the inner and outer
regions can be geometrically interpreted as the area of certain
lobes [26, 32], we obtain the following information about the
inner and outer flux. The inner flux is smaller than the outer
flux, and both of them are exponentially small in|µ − µ•| [45].
The inner region is a good approximation of the connected com-
ponentD whenµ & µ⋆. See, for instance, the right picture in
Figure 3. The inner and outer regions are not completely con-
tained in the stability domain whenµ > µ⋆, since there is a
small, but not zero, flux through their borders [48].

7. Discussion of results and conclusions

We have studied the stability of longitudinal beam motion in
RTMs within a model that was previously considered in [29, 30,
37]. Oscillations of particle energy and accelerating fieldphase,
usually called phase oscillations, with respect to the samepa-
rameters of a reference particle referred to as synchronouspar-
ticle, are described by the area preserving map (6). Though the
model assumes a few approximations, discussed in Section 2
and summarized at the end of the present section, it captures
important features of the phase oscillations both in circular mi-
crotrons and in RTMs and allows to obtain the main characteris-
tics of the longitudinal beam dynamics. In fact, similar models
are widely used for design and characterization of other types
of particle accelerators [52].

We have analyzed the stability domainA (and its central
connected componentD) of the area-preserving map (6) that
describes the phase oscillations. We have studied their structure
and calculated their area as a function ofφs. We have combined
various approaches, theorems, and tools of dynamical systems.
To the best of our knowledge, the study of the stability domain
of the map (6) carried out here is the most complete and de-
tailed. It is an essential widening and improvement of results
reported in [30, 37], in which either the power expansion of the
map up to the cubic order in terms of the phase space variables
or numerical simulations with low number of turns were used.

The knowledge ofA, called longitudinal acceptance in the
theory of particle accelerators, is of much importance for the
optimization of the beam motion in RTMs. Indeed, the adjust-
ment of machine parameters for the efficient acceleration of the
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beam during its commissioning consists in matching the do-
main in the phase space occupied by the particles emitted by
an injector (often an electron gun) to the acceptance for a given
value ofφs. The optimal beam matching allows to minimize
beam losses and undesired excess of strayed radiation produced
by the accelerator and, so, maximize the output beam current
without increasing the current at the injection. For the adjust-
ment to be most efficient, the acceptance area must be maximal
and the shape of the phase domain of the injected beam must fit
the acceptance shape. Thus, a detailed description of the accep-
tance geometry is useful for the design of particle accelerators,
especially in the case of microtrons for which the nonlinearef-
fects in the longitudinal beam dynamics are quite strong.

The results obtained here are not meant to be directly used
in the design of future RTMs or operation of existing ones. Nev-
ertheless, a few examples of their relation to real accelerators
can be mentioned. In particular, let us comment on two “em-
pirical” rules used in microtrons [37] that can be justified with
our results. The first rule claims that the values ofφs for which
an accelerator can operate are contained in the interval of linear
stability of the synchronous trajectory. The second rule states
that the optimal values ofφs are close to the middle point of
such interval. (We recall thatµ = 2π tanφs.) We have checked
that both rules are in fact quite precise within our RTM model,
where the interval of linear stability is (0, φp), with

φp := arctan(2/π) ≈ 32.5◦.

First, we have numerically seen that|D| > 0 for 0 < φs < 33◦,
except for the value

φu := arctan(3/2π) ≈ 25.5◦

that corresponds to the third order resonance. Second, we have
found that the acceptance area reaches its maximal value|A| ≈
0.17 atµ ≈ 1.912, which roughly corresponds to

φs ≈ arctan(1.912/2π) ≈ 16.9◦ ≈ φp/2.

In fact, |A| is sufficiently large for a rather wide range of the
values ofµ. For instance,|A| ≥ 0.1 if

µ ∈ [1.027, 1.071]∪ [1.079, 2.037]∪ [2.245, 2.827].

We have seen that|A| > 0 up toµ ≈ 4.53 (that is,φs ≈ 35.8◦),
that exceeds the valueµ = 4 (that is,φs ≈ 32.5◦), usually con-
sidered as a limit in design calculations of a microtron.

The sizes ofA andD along theψ andw axes are impor-
tant for the beam matching. If the beam is previously bunched
aroundφs then the bunch length inψ must be shorter than the
corresponding size of the acceptance and the energy disper-
sion aroundEn,s measured in terms ofw —see (5)— must be
smaller than its size in this variable. For example, let us con-
sider the caseµ = 2. Then∆ψ = ψmax − ψmin ≈ 0.55 and
∆w = wmax − wmin ≈ 0.8. See Fig. 2(e). The bunches at the
injection should fit the region with the sizes∆ψ and∆w in or-
der to avoid beam losses during the acceleration (in practice, to
minimize beam losses). This means that

∣

∣

∣

∣

∣

E0 − E0,s

∆s

∣

∣

∣

∣

∣

< 0.12

and∆l . 0.1λ, where∆l is the bunch length andλ is the wave-
length of the accelerating RF field.

In the case of small accelerators there is no buncher and
the beam is produced by an electron gun which emits particles
continuously, so that they occupy the whole interval [0, 2π] in
the phase variableψ at the AS entrance. Our results provide an
estimate of the beam capture efficiencyǫ; that is, the fraction of
the initial beam that is successfully accelerated. Ifµ = 2, then

ǫ =
∆ψ

2π
≈ 0.09.

Our numerical computations show thatǫ ≤ 0.13 for allµ in the
RTM model. See Remark 1 in Section 3. This result gives the
theoretical upper bound on the capture efficiency in RTMs with
high number of turns. One should however keep in mind that in
real machines the beam makes only a few turns, so the capture
efficiency is usually higher.

We have studied the reduction of|D| in the vicinity of reso-
nant values. For instance,|D| = 0 at the third order resonance
φs = φu, whereas|D| ≈ 0.02 after the fourth order resonance

φs = arctan(1/π) ≈ 17.7◦.

Other resonances do not lead to so sharp decreases of|D|. This
data is quite important because one of the criteria of choosing
the design value ofφs is to avoid values close to resonant ones.
Otherwise even a small natural drift of machine parameters may
lead toφs approaching one of the dangerous resonant values
and consequently to excessive beam losses. In this respect,the
asymptotic formulas (9) and (11) are of much interest. Another
important aspect of the acceptance structure are the elliptic is-
lands and chaotic seas like the ones displayed in Figs. 3–4. For
instance, each drastic change in|D| is associated to the escape
of a chain of elliptic islands fromD.

The structure of the stability domain with periodic elliptic
islands suggests an interesting possibility of beam acceleration
in different parts of the phase space. Such idea, that would
require a quite detailed knowledge of the stability domain ge-
ometry, was already mentioned in the literature (see [37] and
references therein), however no RTM design with such acceler-
ation scheme has been proposed so far.

We know very few experimental data that can be compared
with the results obtained in the present paper. Characteristics of
practical importance in microtrons are the number of acceler-
ated particles, or the beam current which is directly proportional
to the area of the stability region, and the effective voltage in the
accelerating structure which is inversely proportional tocosφs.
The area of the stability region varies with the synchronous
phaseφs according to the plot in Fig. 5. On the one hand, simi-
lar plots obtained by numerical simulations for a small number
of turns (less than 30) were published in [29, 30, 37]. On the
other hand, the current-voltage characteristic was measured ex-
perimentally in a microtron with 30 orbits [31]. The experimen-
tal results, once expressed in the variables (µ, current), show a
good qualitative agreement with Fig. 5, though some quantitave
differences exist. For instance, a dip in the current-voltage char-
acteristic that should correspond to the third order resonance
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does not reach zero value as for the theoretical curve in Fig.5.
The difference is explained by a quite low number of beam turns
in the experiment and by measurement errors. The dip becomes
more profound as the observed number of turns grows [31].

Another interesting phenomena that was observed in opera-
tion of microtrons [3] is a two-humped distribution of the elec-
tron bunch in the transverse direction forµ & 2; that is, close
to the fourth order resonance. It was observed repeatedly inex-
periments by a few groups [16]. Such bunch structure can be
explained by the presence of four periodic elliptic islandsof the
stability domain displayed in Fig. 3. See a discussion in [30].

In our study the stability is understood in the mathematical
sense. That is, we are dealing with perpetual stability, although
only 2 · 107 turns were considered in our numerical computa-
tions ofA. Nevertheless, the number of turns made by each par-
ticle is typically of just a few tens in real RTMs. For instance,
the number of turns is roughly 90 in the RTM machine of the
MAMI complex at the Institute for Nuclear Physics in Mainz,
which is nowadays the largest RTM facility in operation [15].
Thus, the physical acceptance and the true capture efficiency
are larger than the mathematical stability domain and the esti-
mates ofǫ given above, respectively. In fact, as the comparison
with the experimental measurement of the current-voltage char-
acteristic discussed above shows, the difference may not be that
large because in many cases the beam instability develops quite
rapidly, after just a few iterations.

We have studied the case of the multiplicity increase factor
k = 1, see Section 2. The general casek ∈ N can be analyzed in
a similar way, and the stability domains turn out to be smaller.

We have assumed that the acceleration gap is of zero length
and that the velocity of particle is equal to the speed of light
already at the injection. The latter is not the case for compact
RTMs with the injection from a standard electron gun. It would
be useful to develop an approach in which these conditions are
relaxed. A finite-size accelerating gap can be taken into account
by introducing a transit-time factor [52]. The non-relativistic
dynamics, which is of practical importance for the design of
small low-energy RTMs, can be considered by a corresponding
modification of map (6); see [19].

We have modeled the magnetic field in the RTM end mag-
nets by a simplified hard-edge distribution, without takinginto
account neither the fringe field effect [52] nor more complicated
field profiles [51]. Studying the longitudinal dynamics in these
cases is also of interest for the RTM beam physics.

In our study we have assumed that electrons do not loose en-
ergy due to the synchrotron radiation. Simple estimates show
that the energy loss per turn grows cubically in the number of
turns, but remains very small in the first turns. Therefore, the
effect of synchrotron radiation can be neglected for practicalap-
plications. For example, for the compact RTM described in [20]
it turns out that the energy loss due to synchroton radiationper
turn is less that 1% of the energy gain per turn∆s in the first five
hundred turns when∆s = 2 MeV.

Finally, let us note that in our study the phase oscillations
of particles of the beam were considered as independent of the
transverse oscillations, vertical and horizontal. This approxi-
mation is valid if the amplitudes of these oscillations are small.

Appendix A. Proof of Theorem 1

If µ < [0, 4], thenps is hyperbolic, and so, locally unstable.
If µ = 0, then the map (6) has the form

{

w1 = w− π(ψ + w)2 +O4(ψ,w),
ψ1 = ψ + w.

On the other hand, the Levi-Civita criterion [23] implies that
the origin is unstable under any analytic map of the form

{

w1 = w+O2(ψ,w),
ψ1 = ψ + w+O2(ψ,w),

with ∂2w1

∂ψ2 (0, 0) , 0. In our concrete map,∂
2w1

∂ψ2 (0, 0) = −2π , 0.
Thus, the synchronous trajectory is locally unstable ifµ = 0.

If µ = 2, then the map (6) takes the form
{

ψ1 = ψ + w,
w1 = −2ψ − w− a(ψ1),

wherea(ψ1) = 2π(1 − cosψ1) − 2(ψ1 − sinψ1) = O(ψ2
1). We

consider the area preserving linear change of variables

x = ψ + w, y = ψ,

which transforms the previous map into
(

x1

y1

)

=

(

−y− a(x)
x

)

= Rπ/2

(

x
y+ a(x)

)

. (A.1)

Let
∑

j≥2 a j x j be the Taylor expansion ofa(x). We know from
Corollary 4.2 in [42] that ifa2 , 0 anda3 , 0, then the origin
is locally unstable under the analytic map (A.1) if and only if

0 < a3 ≤ a2
2.

In our concrete map,a2 = π anda3 = −1/3. Therefore, the
synchronous trajectory is locally stable whenµ = 2.

If µ = 3, then the map (6) takes the form
{

ψ1 = ψ + w,
w1 = −3ψ − 2w− π(ψ + w)2 +O3(ψ,w).

The map (ψ3,w3) = f 3(ψ,w) is close to the identity, since
{

ψ3 = ψ − π(3ψ2 + 2ψw) +O3(ψ,w),
w3 = w+ π(6ψ2 + 6ψw+ w2) +O3(ψ,w).

We determine the local stability of the origin under the mapf 3

(and so, under the mapf ) by applying Simó’s criterion [42].
That criterion states that the origin is locally stable under an
analytic area preserving map of the form

{

x1 = x+O2(x, y),
y1 = y+O2(x, y),

if and only if G(x1, y) has a strict extremum at the origin, where
x1y + G(x1, y) is the generating function of the map; that is,
G(x1, y) is a function determined by the implicit equations

x1 = x+
∂G
∂y

(x1, y) and y1 = y− ∂G
∂x1

(x1, y).
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Thus, we look for a functionG(w3, ψ) = O3(w3, ψ) such that

w3 = w+
∂G
∂ψ

(w3, ψ) and ψ3 = ψ −
∂G
∂w3

(w3, ψ).

After a straightforward computation, we obtain that

G(w3, ψ) = πψ(ψ + w3)(2ψ + w3) +O4(ψ,w3).

This function has no strict extremum at the origin. Therefore,
the synchronous trajectory is locally unstable whenµ = 3.

If µ = 4, then the map (6) takes the form
{

ψ1 = ψ + w,
w1 = −4ψ − 3w+ b(ψ1),

whereb(ψ1) = 2π(cosψ1 − 1) + 4(ψ1 − sinψ1) = O(ψ2
1). We

consider the area preserving linear change of variables

x = 2ψ + w, y = ψ,

which transforms the previous map into
{

x1 = −x+ b(x− y),
y1 = x− y.

(A.2)

Let
∑

j≥2 b ju j be the Taylor expansion ofb(u). We know from
Lemma 1.4 in [42] that ifb2 , 0, b3 , 0, and 2b3 + b2

2 > 0,
then the origin is locally stable under the analytic map (A.2).
In our concrete map,b2 = −π andb3 = 2/3. Therefore, the
synchronous trajectory is locally stable whenµ = 4.

Finally, we consider the generic caseµ ∈ (0, 4) \ {2, 3}. If
λs = eiθ is the characteristic multiplier of the elliptic pointps,
thenλn

s , 1 for any integern such that 1≤ n ≤ 4; see Table 1.
Therefore,ps is not astrongly resonantelliptic point and the
map (6) can be put into its third orderBirkhoff normal form

z1 = ei(θ+τ|z|2)z+O(|z|4), (A.3)

for some real coefficient τ, calledfirst Birkhoff coefficient or
twist coefficient. After some tedious computations [22], one
gets the expression

τ(θ) =
2 cos3 θ − 3 cos2 θ + 4π2 cosθ + 1+ π2

(cosθ − 1)(2 cosθ + 1) sin2 θ
. (A.4)

We observe that limθ→0+ θ
4τ(θ), limθ→2π/3(θ − 2π/3)τ(θ), and

limθ→π− (θ − π)2τ(θ) exist and are negative. That is,τ(θ) has a
negative fourth-order pole atθ = 0, a negative simple pole at
θ = 2π/3, and a negative second-order pole atθ = π. These
properties agree with the generic behavior of twist coefficients
of families of area-preserving maps described in [34].

Consequently, we deduce thatτ(θ) has at least one root in
the interval (0, 2π/3). Let us prove that it has no more real roots.
The numerator in (A.4) is the polynomialaζ3 + bζ2 + cζ + d in
the variableζ = cosθ, with a = 2, b = −3, c = 4π2, and
d = 1 + π2. This cubic polynomial has one real root and two
complex conjugated roots, because its discriminant is negative:

∆ = b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd≃ −536135.
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Figure A.8: The twist coefficientτ versusθ.

This means thatτ(θ) has just one rootθr in the interval (0, π). It
was numerically computed in [22] that

θr ≃ 1.8429983434122∈ (0, 2π/3).

We have plotted the twist coefficientτ versusθ in Fig. A.8.
Finally, we recall that the Moser twist theorem [40] implies

that the origin is a stable elliptic fixed point of any analytic
map of the form (A.3) whenτ , 0. Hence, the synchronous
trajectory is locally stable whenθ ∈ (0, π) \ {π/2, θr, 2π/3}; or,
equivalently, whenµ ∈ (0, 4) \ {2, µr, 3}, where

µr = 2− 2 cosθr ≃ 2.5377060556582.

If µ = µr, then the third order Birkhoff normal form (A.3)
does not provide much information because the first Birkhoff

coefficientτ1 = τ vanishes. Thus, we should compute the fifth
order Birkhoff normal form

z1 = ei(θr+τ1|z|2+τ2|z|4)z+O(|z|6),

whereτ1 = 0 andτ2 ∈ R is the second Birkhoff coefficient.
The analytical computation ofτ2 is cumbersome, so we have
taken a simpler numerical approach. First, we have computed
the rotation numberρ(p) of the points of the formp = (ψ, 0).
Next, we have checked that

ρ(ψ, 0) = θr/2π + ρ2ψ
4 +O(ψ5), (A.5)

for some non-zero coefficient ρ2 ≈ −200, which implies that
τ2 , 0. Then the Moser twist theorem implies that the origin is
a stable elliptic fixed point [40].

The flat behavior (A.5) is clearly observed in Fig. A.9. The
small gaps that appear in the graph correspond to the sections
of some chaotic seas with the symmetry line Fix(r0) = {w = 0}.
The rotation number is not well defined on those sections.

This completes the proof of Theorem 1.

Appendix B. Proof of the asymptotic formula (9)

Let us study the size and shape ofDµ ⊂ Aµ whenµ→ 0+.
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Figure A.9: The rotation numberρ(ψ,0) versusψ for µ = µr.
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Figure B.10: The separatrix (thick line), some level curves(thin lines), and the
two equilibrium points (small circles) of the limit Hamiltonian (B.2) associ-
ated to the saddle-center bifurcation. The black arrows show the Hamiltonian
dynamics on the separatrix.

The elliptic fixed pointps = (ψs, 0) = (0, 0) and the hy-
perbolic fixed pointph = (ψh, 0) of the map (6) collapse as
µ → 0+. The following rough quantitative estimates are typ-
ical for saddle-center bifurcations. The size ofAµ in the ψ-
coordinate isO(|ψs − ψh|) = O(µ). Its size in thew-coordinate
is O(|ψs − ψh|) × O(µ1/2) = O(µ3/2), since the angle between
the eigenvectors of the matrixMh is O(µ1/2). Consequently,
Aµ = O(µ) × O(µ3/2) = O(µ5/2). Finally, |Aµ| ≍ |Dµ| when
µ→ 0+. We will confirm and refine these rough estimates.

Following the above comments, we scale theψ-coordinate
(respectively,w-coordinate) by a factor of orderµ (respectively,
orderµ3/2). To be precise, we consider the change of scales

x = ψ/µ, y = w/µ3/2. (B.1)

If 0 < µ ≪ 1, then the map (6) is transformed under this
change into a map (x1, y1) = f̃ (x, y) of the form

{

x1 = x+ µ1/2y,
y1 = y− µ1/2(x+ πx2) +O(µ).

The mapf̃ is close to the identity map I(x, y) = (x, y), since

f̃ = I + µ1/2 f̃1 +O(µ), f̃1(x, y) = (y,−x− πx2).

The term f̃1 is a Hamiltonian vector field with Hamiltonian

H̃1(x, y) =
x2 + y2

2
+
π

3
x3 − 1

6π2
. (B.2)

We have subtracted the constant 1/6π2 for convenience. We
denote byφt

H thet-time flow of a HamiltonianH. Then

f̃ = I + µ1/2 f̃1 +O(µ) = φµ
1/2

H̃1
+O(µ) = φ1

µ1/2H̃1
+O(µ),

since the Euler method has a second order local truncation error.
Therefore, the integrable dynamics of the HamiltonianH̃1

approximates the dynamics of the mapf̃ in the limit µ → 0+.
We say thatH̃1 is thelimit Hamiltonianassociated to the saddle-
center bifurcation. It has two equilibrium points. Namely,the
elliptic point q̃s = (0, 0) and the saddle point ˜qh = (−1/π, 0).
Besides, the unstable and stable invariant curves of the saddle
point coincide along one branch, giving rise to the separatrix

S̃ =
{

q̃ = (x, y) ∈ R2 : H̃1(q̃) = 0, x > −1/π
}

.

Let R̃ be the domain enclosed bỹS∪{q̃h}. The phase portrait of
Hamiltonian (B.2) is sketched in Fig. B.10. Only points inside
R̃ give rise to bounded trajectories, soR̃ is a good approxima-
tion of the scaled versions ofAµ andDµ when 0< µ≪ 1.

The separatrixS̃ is described by a homoclinic trajectory
q̃(t) = (x(t), y(t)) to the saddle point: limt→±∞ q̃(t) = q̃h. If we
impose the initial conditiony(0) = 0 and solve the Hamiltonian
equations on the separatrix̃S, we get that

x(t) =
3

2π cosh2(t/2)
− 1
π
, y(t) =

3 sinh(t/2)

2π cosh3(t/2)
. (B.3)

Therefore,|R̃| =
∮

S̃
ydx =

∫ +∞
−∞ y(t)x′(t)dt = 6/5π2. The first

identity follows from Green’s theorem, the last one follows
from the residue’s theorem. The asymptotic estimate (9) fol-
lows from the change of scales (B.1).

Fig. B.11 shows a strong agreement between the numeri-
cally computed values of|Aµ| and |Dµ| and their asymptotic
estimateµ 7→ 6µ5/2/5π2, even for relatively big values ofµ.

Appendix C. Proof of the asymptotic formula (11)

Let us study the size and shape of the connected component
Dµ of the acceptance whenµ = 3 + ǫ with 0 < |ǫ| ≪ 1. We
will see thatD3+ǫ is approximately a triangle of vertices (10),
which implies that the asymptotic estimate (11) holds. We scale
the variables according to these claims, which suggest thatall
the interesting dynamics takes place in aO(ǫ)-neighborhood of
the origin. To be precise, we consider the change of scale

x = πψ/ǫ, y = πw/ǫ. (C.1)
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If µ = 3+ ǫ with |ǫ| ≪ 1, then the map (6) is transformed under
this change into a map (x1, y1) = f̃ (x, y) of the form

{

x1 = x+ y,
y1 = −3x− 2y− x1(x1 + 1)ǫ +O(ǫ2).

The mapf̃ 3 is close to the identity:̃f 3 = I + ǫ f̃1 +O(ǫ2), with

f̃1(x, y) = (3x+ 2y− 3x2 − 2xy,−6x− 3y+ 6x2 + 6xy+ y2).

The term f̃1 is a Hamiltonian vector field with Hamiltonian

H̃1(x, y) = (1− x)(x+ y− 1)(2x+ y+ 1). (C.2)

Therefore,f̃ 3 = φ1
ǫH̃1
+ O(ǫ2), and the integrable dynamics of

the HamiltonianH̃1 approximates the dynamics of the mapf̃ 3

whenµ ≃ 3. Thus,H̃1 is the limit Hamiltonian associated to
the third order resonance. It has four equilibrium points. One
elliptic point: q̃s = (0, 0), and three saddle points:

q̃1 = (1, 0), q̃2 = (1,−3), q̃3 = (−2, 3).

Let R̃ be the triangle whose vertices are these three points.
Clearly, |R̃| = 9/2. Each side of̃R is both the stable invariant
curve of a saddle, and the unstable invariant curve of another
saddle. That is,∂R̃ is formed by the three saddles and the three
straight separatrices connecting them. See Fig. C.12.

Only the points insidẽR give rise to bounded trajectories,
so R̃ is a good approximation of the scaled version ofDµ for
µ ≃ 3. Thus, we get the quadratic asymptotic estimate (11). We
have displayed a comparison between|D3+ǫ | and its asymptotic
estimate 9ǫ2/2π2 in Fig. C.13. We note that|A3| > 0, because
of the traces of the (1, 3)-periodic chain of elliptic islands that
was thrown away from the main connected componentDµ at
some valueµ⋆ ≈ 2.85. We visualized these traces in Fig. 6.
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