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Abstract

We model the phase oscillations of electrons in race-trackatmons by means of an area preserving map with a fixed jpoithte
origin, which represents tteynchronous trajectorgf a reference particle in the beam. We study the nonlineailiy of the origin

in terms of thesynchronous phase-the phase of the synchronous particle at the injection. $tlenate the size and shape of the
stability domain around the origin, whose main connectedmanent is enclosed by an invariant curve. We describe thigtgon

of the stability domain as the synchronous phase varies.|$ectarify the role of the stable and unstable invarianvesrof some
hyperbolic (fixed or periodic) points.
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1. Introduction role is played by longitudinal oscillations of individuakee-
trons with respect to the synchronous particle [24, 49]. hSuc
Race-track microtron (RTM) is a specific type of electron gscjjjations are usually referred to as phase motion, aadeth
accelerator with beam recirculation combining propexiese  gion of initial states in the phase space which give risedblet
linear accelerator and a circular machine [16, 37]. Foriappl gscillations is callecicceptance
tions in which a modest beam power at a relatively high beam  giapility of the phase oscillations of particles in the béam
energy is required the RTM turns out to be the most optimah matter of primary concern both at the stage of the accelerat
source of electron beams. This is the case of applicati&as li design and during its operation. In particular, the sizehef t
the cargo inspection or Intraoperative Radiation Therapy f gcceptance determines th@i@ency of caption into accelera-
which RTMs allow to get pulsed and continuous beams in gjon of particles injected from a source of electrons, uguah
quite cost and energyffective way with the most optimal di- g|ectron gun. The shape and size of the acceptance depend on

mensions of the machine_. Ar_1 example of such_ accelerator is @e phase of the synchronous particle, also called synciion
compact 12 MeV RTM which is under construction at the Techphase and denoted asin this paper. The definition of these
nical University of Catalonia in collaboration with the Mmsv ~ hotions will be given in Section 2. A specific feature of the

State University and CIEMAT (Spain) [1, 20, 51]. RTM is that the range of values af; for which the accep-

In the design of a particle accelerator its main parametergynce exists is quite narrow and therefore this parametst mu
are optimized for some reference particle, usually retetee e carefully chosen and controlled during the RTM operation
as synchronous particle. Real particles of the beam perforfthe main criteria here is to keep the synchronous phase equal
transverse and longitudinal oscillations with respecht® $yn- 5, ¢lose to the value for which the size of the acceptance is
chronous particle. One of the important issues of the RTM demaximal and to avoid resonant valuesgaf The latter is im-
sign is to assure the stability of these oscillations, irtipalar portant because resonant phase oscillations lead to aipwkd
to avoid an uncontrolled growth of their amplitude that l®ad peam instabilities, rapid growth of the amplitude of the sgha
to the loss of the beam. In the RTM beam dynamics the maigscillations and eventually to a loss of the beam. Therefore

good understanding of the longitudinal dynamics of the beam
= : in RTMs in general and the phase oscillations of electrorss in
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well known [37]. The change of the acceptance under the-varie
tion of the synchronous phase, the appearance of stabtssegi
and the emergence of the stochastic regime is studied irbj29]
looking at the normal form of the flerence equations up to or-
der four. For instance, it was shown that there is a shift ef th
center of oscillations and that the oscillation frequeneyehds
on the amplitude. We will reproduce these known results.

In the present paper we will study the phase motion of the
beam in RTMs using modern dynamical systems methods. Ot 3
goal is to characterize the acceptance, called stabilitpaio
in dynamical systems, as a function of the synchronous phas.
In partlcular, we will eStab“_Sh the intervals of values(;kaffor Figure 1: Schematic view of our RTM model: 1) Acceleratingusture, 2)
which the acceptance and its central connected component eit space, 3) End magnets, 4) Electron gun, and 5) Exadtiagnet.
ist, analyze their geometry, shape and size, and calciiate t
area for the whole range af;. Our main theoretical tools
are the Moser twist theorem and several of Sim&’s staliity

the accelerating gap (in a real machine with respect to tkay,

sults [42]. Finally, we will carry out a global study of the-ac eX|tt,_ of th: Iatsr,]t cg(\j/|tylpf E[he AS n trleddw_ecttrl]or;t(r)]f the beam
ceptance and its connected component using results and a|d6‘0 |on.). nother ideafization in our study IS that the enggma
rithms, like the orbit method, developed in [25, 50]. ngts WI!| be considered as hard—_edge dipole magnets schihat t
The article is organized as follows. We give a short intro-f”n?_e'f'e'd dfect_z arehnotl takgn :jr)to Iaccr?unt. . f el
duction into the RTM beam longitudinal dynamics, define the et us consider the longitudinal (phase) motion of elec-

notion of synchronous trajectory and synchronous phase arliPns in an RTM With_ magnetic field inductioB in_the end_
derive the map describing the longitudinal beam dynamias th magnets and separatibbetween the magnets (straight section

we will refer to as RTM map in Section 2. We present some preI_ength). We assume that the injected electrons are alrdady u

liminaries on the RTM map in Section 3, where we also reIatJeIaFiViSti?’ so that in_the formulas be'OW. the yelocity bt
the RTM map with the nonzero flux area preserving map studp""rt'odes(’jIn the_belam IS glqual to ;[Ee }/elllocn)z_olf light d
ied in [7]. We summarize our analytical results in Section 4, ur dynamical variables are the full particle enekgyan

but we relegate all technical proofs to the appendices. Tdie s its phaseg, at then_-th turn at some po_mt OT the orbit. Fo_r
bility domain is numerically studied in Section 5. The iriaat the sake of convenience, we choose this point to be the exit of

curves of some hyperbolic points are analyzed in Sectiones. \/\/.th.e A.S' I_‘ert]% gnq Eo l:;)e fthe par'?-cle phase andhenerﬁxgé the
discuss our results and present some conclusions in S&ction Injection; t_at 'S, just be ore Its Tirst passage throug
We would like to note that, in some pulsed RTM, the electrons

reverse their trajectory in special reverse field magnégs tfe
2. The RTM model injection and first acceleration at the AS [20, 51]. In thatesa
Ey is the energy after the first acceleration and reflection ef th
beam in the end magnet, before the second passage through the
AS, but we will still use the term injection energy.
For the RTM model described above, the duration of the
n-th revolution of the beam is

The operation of a race-track microtron (RTM) is illustichte
in Fig. 1. The initial beam is injected from an electron s@urc
(electron gun or external pre-accelerator) into an acagler
structure (AS) consisting of a few resonant cavities. Timgio
tudinal electric component of a high frequency electronegign
wave (usually a standing wave) accelerates the electrath&in T, = 2l + 27ry _ 2 " ZﬂEn’ (1)

AS. Then the beam is bent by the magnetic field of & 1#hd- c c ec¢B

ing magnet, calle&end magnettravels through a free space, wheree is the elementary charge angis the beam trajectory
usually referred to adrift space follows along a circular tra-  radius in the end magnets. We have used Eyat ecBH, in
jectory inside the second end magnet and returns to the AS. Imending magnets for ultrarelativistic beams [37]. Relatib)

this way the beam makes a number of recirculations through thallows us to work either with time variabl&$, or energy vari-
RTM with the energy being increased at each pass through theblesE,. The beam dynamics in the phase-energy variables, for
AS. Once the beam gets the final design energy, it is deflecteal zero-length AS, is governed by thdfdrence equations

E)é ;: :((ti?cuon magnet and is directed towards the actetera a1 = b+ 20T/ Tre. Ent = En+ AmaxCOSOmis, (2)

We approximate the AS by a zero length accelerating gafrr being the period of the accelerating electromagnetic field,
and consider a stationary regime with a constant amplitdde ausually calledadiofrequency (RF) fielth the context of accel-
the accelerating field. Then the energy gain of an electrea-pa erator beam dynamics. See [37].
ing through the AS is equal thn,xC0Sp, WhereAmax is the The design of a particle accelerator requires a proper ehoic
maximum energy gain in the AS ardis the phase of the ac- of physical and technical parameters in order to guarahie t
celerating field. In accelerator physics this parametesiglly  existence of a reference trajectory, cal®ghchronous trajec-
referred to as particle phase and is used to characterizerthe tory, so that an ideal particle following this trajectory is dece
gitudinal position of the particle along the orbit with regpto  erated in the most optimal way. Namely, it can be tuned in




resonance with the accelerating field. Let us explain théceho 3. Fixed points and nonzero flux
of parameters in case of an RTM. We fix two positive integers

mandk. The resonance conditions in the case of an RTM are Under the assumptiok = 1, our model for the nonlinear

oscillations around the synchronous trajectory (4) is tied\ic

Tis _ m Tnits = Tns _ K 3 area preserving ieomorphismy;, wy) = (¥, w), defined by
Trr Trr ’ _
e - ©®)
Henceforth, the subindex “s” indicates quantities reldatethe Wi = W+ 2r(cosyy — 1) — usiny,.

synchronous trajectory. The integais the number of RF field
periods during the first turn and defines the synchronicity-co
dition at this turn, wheredsis the increase of the multiplicity
factor due to the increase of the period of revolution of fe r
erence particle in each turn. The ratio

Here u = 2rtangs is a parameter, and (respectivelyw) is the
deviation of the phase (respectively, energy) of an antyipar-
ticle from the phase (respectively, energy) of the synchuosn
trajectory. The angular coordinateis defined modulo 2, so
the phase spaceBx R, with T = R/2nZ.

in = Tns/Tre = M+ (N — 1)k The map (6) has two fixed points:

is calledharmonic number RTMs are accelerators with vari- Ps = (Vs Ws) = (0.0, Ph = (. Wh) = (=295 0).
able harmonic numbers, singgdepends on the-th turn. The pointps corresponds to the synchronous trajectory. It is
If we rewrite the resonance conditions (3) using the energyyperbolic, parabolic or elliptic when ¢ [0,4], 1 € {0, 4},
variablesE, s and relation (1), we get th&, s = Es+nAg, where  andu € (0,4), respectively. Ifu € (0,4), its characteristic
multipliers arels = €’ and 1/ s, for somed € (0, z) such that

m 2l ecBik
Es=(E‘1—ﬁ)As, As= 2 cost =1—pu/2. (7)

This means that the linear dynamics aroyrds conjugated

to a rotation by angl®. The quantityd/2x is calledtunein
Accelerator Physics [37]. Nevertheless, following a stadd
terminology in dynamical systems, we will say tl#aPr is the
As = Amax COSds, rotation number The elliptic poin.tpS is cglled_ (n, n)-resonant

when# = 2zxm/n for some relatively prime integers andn

then we get a particular solutiof{s, Ens) of equations (1)—(2), such that 1< m < n/2, which implies thal{ = 1. Besidesh is

andd = cTgr is the wavelength of the RF field. Finally, it
is straightforward to check that if the injection phase fioe t
synchronous trajectorfos = ¢1s = ¢s satisfies relation

whose energy undergoes a constant gaiat each turn: theorder of the resonance.
The fixed pointp, = (—2¢s, 0) is hyperbolic for any: > 0.
ns = Ps+ 2rin, Ens = Es+ NAg, (4) Indeed, ifu > 0, then the linear dynamics aroupd expands

o the unstable direction by a factay = € and contracts the sta-
with in = (n—1)m+ (n - 1)(n - 2)k/2. We note that, € Z,  ple direction by a factor 1, where theharacteristic exponent
so this synchronous particle passes through the AS in the sam, < g is given by cosh = 1 + /2.
phase of the RF field at each tuit;s = ¢s (mod ) for all n. We look for initial conditions that give rise to particlesttvi
We say thatps is thesynchronous phase a bounded energy deviation from the synchronous trajectory

Once we realize that the synchronous trajectory (4) existsviore precisely, we will estimate the size and the shape of
we wonder whether the oscillations of other trajectoriesiad

it are stable. This depends on the synchronous phase A={peTxR: (Wh)nez is bounded.

We study this dependence by introducing the variables Here,p = (#,w) € T x R andpn = (¥n, Ws) = £"(p). This do-
main is calledlongitudinal) acceptancie Accelerator Physics,
andstability domainin dynamical systems. We will also study
that describe the phase and energy deviation of an arbteary S connected componefi} ¢ A that contaings. The mapf,
jectory from the synchronous one. Then the beam dynamics & acceptance, and the connected componentdepend on

modeled by the maps1, Wne1) = f(¥n, W), where u, but we will frequently omit this dependence. Otherwise, we
will write f,, A,, andD,, respectively.

Un = ¢n— s, Wh = 27K(En — Ens)/As, 5)

Unit = Yn+ Wy, ;
Remark 1. We have numerically checked that
{ Whi1 = Wy + 27k(COS{ni1 + ¢s)/ COSps — 1). y

. . ) A c [-0.45,0.35]x [-0.8,0.8], Yu > 0.
For simplicity, we will assume th&t= 1 in the rest of the paper.

The study of other values can be carried out in a similar way. Hence, if {/n,wh) € T x R is the phase-energy deviation at the
We end this section by stressing that the model of longin-th turn of a trajectory contained il and ¢n, Wy) € R X R
tudinal oscillations around the synchronous trajectorynfon-  denotes the lift of this trajectory determined by < yo < 7,
ultra-relativistic beams is more complicated [19]. then—-n < ¢y, < x for all n. This means that trajectories with
bounded energy deviation, have also bounded phase dewviatio
respect to the synchronous one.



Relation Local stability stable and unstable invariant curves (caliegaratrice¥yof the

U = 2rtangs ue(0,4]\ {3} hyperbolic fixed point seem to form a small loop around the
cosd=1-ntangs € (0,n]\ {21/3} elliptic fixed point when O< u < 1. See Fig. 2(c). We will see
coshh=1+ntangs he (0,hp]\ {hy} in Appendix B that, since the LIC around the elliptic point is

exponentially close (in the parameggrto the separatrices,
Table 1: Relations among the synchronous pligse T, the parameten € R,

the rotation numbe#/2r, and the characteristic exponemt> 0. Here, the (Al 1Dyl = 6u°'%/57% + O(13), asu — 0", (9
valueshy andhy are given by coshp = 3 and cosliy = 5/2. .
Therefore, both regions are almost the same when 0*. (If

Ris a subset of" x R, then|R| denotes its area.)
Our model map (6) is very similar to Chirikov’s standard  The LIC grows in size, changes its shape, and moves away
map, but with an extra wrinkle. It has nonzevet flux Indeed, from the separatrices asncreases; see Fig. 2(d). We reach the

if we perform the change of variables fourth order resonanag= n/2 atu = 2. The elliptic point is
locally stable at this resonance, and the ICs near it loak dik
Y+ ¢s = —n/2 - 2mX, z=w/2n, Latin cross, whose arms have a width of the order of the square

of its length; see Fig. 2(e). The HEnon map displays exaledy
then the map (6) becomes same behavior at the fourth order resonance [41].
X The twist codficient (also called first Birkhd codficient)
{ 7 (8)  goes from negative to positive at= y, ~ 2.537706 and from
positive to negative gt = 3, where the third order resonance

_oa _ _ 0 = 2r/3 takes place. This is one of the two typical behaviors
whered = 1 is thenet fluxande = 2r/ cosps = +/4n2 + u2 ) ) : .
quantifies thamplitudeof the forcing term. for the twist codficient described in [34]. It means that the

Fox and de la Llave [7] studied the stability domain of theOrbits around th(_a Qrigin rotate slower (resp., faster) ay 4o
map (8) for 0< 1 < 1 and 0< € < 6. We can not take ad- V& from the origin whep € (0, ur)U(3,4) (resp.u € (ur, 3)).
vantadge of their work, because in our cdse 1 ande > 2r. Figs. 2(g)—2(i) show that behavior, since we see a thremdier

Nevertheless, one can compare their Figure 8(b) with our FigPrPit near the elliptic point for both 5 3 andu 2 3.

ure 5(left). They graph the relative size of the stabilityreton Th-e elliptic point is unsta_ble at the _thlrd orde_r resonance;
of the map (8) versuswhena = 0.6 and 0< € < 6. We graph See Fig. 2(h). We will prove in APpe”d'X C_thatpzf: 3+ €

the area of the stability domain of the map (6) versushen with 0 < |¢] < 1, the LIC is approximately a triangle of vertices
0 < < 45. One can see the reductiondfafter the fourth or- €(1,0), €(1,-3), €(-2,3). (10)

der resonance and the collapse/oét the third order resonance T T T

in both graphs. See Section 5 for more details. In particular,

|D3,e| = 9€%/2n% + O(€°), ase — 0. (11)

The LIC grows in size and its triangular shape changes to
a “banana-like” shape as the parameter moves from the three
order resonance at= 3 to the second order resonancg at 4.
The fixed pointps is locally stable at this last resonance, and the
ICs near it look like “bananas” whose width is of the order of
Theorem 1. The synchronous trajectory is locally stable if and the square of its length. See Fig. 2(k).
only if u € (0,4] \ {3}. Finally, a period-doubling bifurcation takes place aftes t

second order resonance. To be precise, the geibhecomes a

We will prove this theorem in Appendix A. The range of saddle fou > 4, being parabolic with reflection at= 4. One
local stability in terms o andh is given in Table 1. then expects to find an elliptic two-periodic orbit fjor- 4. The

Next, we focus on the invariant curves (ICs) surrounding theseparatricesof the hyperbolic fixed poinps form two small
elliptic point ps, especially on the “last” IC (LIC). LICs (and loops around the two elliptic two-periodic points. Nevettss,
their rotation numbers) were studied in [27]. We have numerithe saddleps remains globally stable when > 4, since some
cally computed LICs by using the algorithm described in [44] of the ICs aroungps still persist. See Fig. 2(1).

A summary of the phenomena that take place wheroves In spite of all the above comments, the expulsion of some
is displayed in Fig. 2. If there exist ICs around the origirg w resonance is a more relevant phenomenon than any resonance a
plot some of them, the last one (the LIC), and one unboundethe elliptic fixed point, but the third order resonance. Tégson
orbit very close to the LIC. If the origin is globally unstabive  is that only the first phenomenon changes drasticalgnd D,
plot suitable unbounded orbits to highlight it. since the second one takes place ingileWe will check that

Fig. 2 shows the basic skeleton from which an expert readdiA| and|D| experiment a jump for each primary resonance that
can deduce the main dynamical changes. Let us describe them.thrown away. Besides, these primary jumps are smaller in

The elliptic fixed pointps and the hyperbolic fixed poir, |A| than in|D|. However,|A| displays many more jumps, the
merge in a parabolic point as— 0*; see Figs. 2(a)-2(c). This secondary ones, which are related to resonances insigécelli
scenario corresponds to a saddle-center bifurcation [2ZTI8¢  islands that are already outside

4

X1+ Z
21 + 5-Sin(2rxq) + 4,

4. Local stability and two asymptotic formulas

First, we study wherps = (0,0) is alocally stablefixed
point. That is, we determine the valuesdbr which all points
enough close t@s remain close under iteration of the map (6).
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5. Stability domain

5.1. Reversors

A map isreversiblewhen each orbit is related to its time re-
verse orbit by a symmetry transformation, calleeersor If a
map is reversible, many of their periodic and homocliniayp®i
are located on certasymmetry linegsand many of their invari-
ant objects are invariant under the reversors [5]. Two pgrad
matic examples of such invariant objects are ICs aroungtielli
points and stable and unstable invariant curves of hypierbol
points. We will use these facts to simplify some computation

The map (6) can be written as the compositfoa rq o g,
whererg,r1 : Tx T — T x R are the involutions

fo(Y,w) = (y +w,-w), i, w) = (@) -w). (12)
andn(y) = 2r(cosy — 1) — using. This means that the map
is reversible with reversorg andr;. See [21]. The symmetry

lines of these reversors are their sets of fixed points; that i
Fix(ro) (13)

Fix(r1)

{(,Ww) e TXxR:w=0},
{(y.w) e TXR:w=ny)/2}.
All the ICs displayed in Fig. 2 are invariant under the revess

ro andry, and so is the stability domaif. See Fig. 3.
In particular, if we consider the decomposition

A=A UA", A =AN{(Y,W) € TxR: +w > 0},
thenA* = ro(A¥). This halves the computationdfert to find
A. The connected componeftsatisfies the same property.
The symmetry lines of any reversible mép= r; o ro have
many more useful properties. Let us recall the charactéwiza
of symmetric periodic orbit6SPOs) givenin [21]. SPOs are the
periodic orbits that are invariant under both reversem@ndr;.
An orbit of f isan SPO if and only if it has exactly two points on

exists. If so, we say that (14) is thetation numbeof the point
p under the mag around the elliptic poinps. Such quantities
can be computed using an algorithm described in [25, 38].

We are interested in rotation numbers because they allow us
to distinguish the three main bounded dynamical behaviors i
analytic area-preservingftéomorphisms [17, 38, 44]:

o If Cis a Moser-like IC, then the limit (14) exists for all
p € C, and it does not depend gn so we writep(C).
Besidesp(C) is, generically, @iophantine numbefthat
is, it is badly approximated by rational numbers).

A (m, n)-periodic chain of elliptic islandss an invari-

ant region with several connected components such that
each of them surrounds a(n)-periodic elliptic point.
The (1 4)-periodic chain around arourg is displayed

in Fig. 3 for two values of:. It is formed by the four big
greendomains. Each of them is mapped onto the next one
in clockwise sense, sa(p) = 1/4 for any pointp inside
them. Similarly, ifp is inside an ih, n)-periodic chain of
elliptic islands, the limit (14) existg(p) = m/n € Q.

A chaotic segor Birkhoff instability zong is the region
between two adjacent ICs minus the stable elliptic is-
lands. If p is inside a chaotic sea, then the limit (14)
generically does not exist.

From now on, we paint the points inside chaotic seas in
blue, the ones inside elliptic islands in green, and the omes
ICs in red. Fig. 3 and Fig. 4 are samples of that convention. To
be precise, given any poipte A, we apply the algorithm de-
scribed in [38] to compute its rotation number. If the altfom
does not converge, then we papin blue. Otherwise, we paint
pin redgreen whem(p) is irrationalrational, which is decided
by looking at its continued fraction; see [18] for details.

Fix(ro) UFix(r1), in which case it has a point on each symmetry5.3. Stability domain

line if and only if it has odd period. We have displayed in g.

We compute the stability domain of the microtron map (6)

a couple of (14)-SPOs. Four is even, so one of these orbitgysing theorbit methoddescribed in [50]. Visual examples of

has two points on Fix(), and the other orbit has two points on
Fix(r1).

5.2. Rotation number

The points inside the stability domaifi rotate around the
elliptic fixed pointps = (0,0) when 0< u < 4. The points
infinitesimally close tops give 8/2x turns per iteration, where
6 is the angle defined in (7). We recall thg®r is therotation
numberof the elliptic pointps, and we writep(ps) = 6/2n.
Next, we try to define the rotation numbe(p) for any point
p € A\ {ps} following a standard approach [17].

Given anyp = (¢, W) € A, lety be its “argument”. That is,
p is the angle between the segmemy p] and the semi-straight
line {(¥,0) : ¢ > 0}. Analogously, letp, € R be the “argument”
of then-th iteratep, = f"(p). We consider these arguments on
the universal coveR, not onT = R/27Z. Then we wonder
whether the limit

1 . on—o
= =—— lim —— 14
p=p(p):= o lim — (14)

several stability domains of the H&non map provided by this
method can be found in [45-47]. Our figures show a strong
resemblance with those ones.
Let us describe our implementation of the orbit method.
First, we take a fine rectangular grid in a suitable rectangle

[¥mins Ymax] X [0, Wmax]

that contains the upper haft* of the stability domain. Second,
we paint in white all grid points such that some of their first
1000 iterates escape from the control region

{(,w) e TXxR: w| <1}.

This is a fast step, since 1000 is a relatively small number fo
any modern computer. Third, we consider thth iterates with
-10" < n < 10’ of all not-yet-white grid points adjacent to
some already-white one. If some of these iterates escapms fr
the control region, we paint in white all grid points “vigife
by its corresponding unbounded orbit or by iitssymmetric



Figure 3: The stability domain fqu = 2.037 (left) andu = 2.038 (right). Blue corresponds to chaotic seas, green todierkelliptic islands, and red to ICs.
The elliptic and hyperbolic (#)-SPO orbits are marked with solid black circles and solithb squares, respectively. The symmetry lines figixénd Fixf,) are
displayed as dashed black lines. Each SPO of even periodkhettyetwo points on a single symmetry line. A short part &f #table and unstable invariant curves
of the hyperbolic (14)-SPO is drawn with continuous black lines. These stabieuamstable invariant curves split (that is, they do not ddie); but only the outer
splitting can be seen at this scale. See Section 6 for detiaitee electronic version one can magnify the plots.

-0.2 -0.1 0 0.1 0.2

Figure 4: The stability domain for = 1.539 (left),u = 2.853 (center), and = 3.735 (right). Colors, solid black circles, solid black sqesmrdashed black lines, and
continuous black lines have the same meaning as in Figuret 3ibe the SPOs are,@)-periodic (left), (13)-periodic (center), and (8)-periodic (right). Each
SPO of odd period has exactly one point on each symmetry line.



0.18 T T T T T T T T T

0.11 1 1 1 1 1 1 1 1 1

4.5

1.55 16 1.65 17 175 18 1.85 19 1.95 2

Figure 5: Left:|A,| (continuous line) an{iD,,| (dashed line) versys. Right: A zoom of the previous figure to visualize its selar structure.
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Figure 6: The fractal setSp (left) andS; (right) in the ¢, u)-plane. Compare with Fig. 2 in [14].



orbit. We do not use the reversar sincerq is computationally (mn) Emanate at Escapeat with

cheaper and; = f o rg. We repeat this process until no more (4,9) w.~0.468 0859< u,. < 0.860
points escape from the control region. This is the hardest st (1,8) p.=2-V2~0.586 0948< u, <0.949
Fourth, we determine the color of each non-white grid poyjntb  (1,7) u. ~0.753 1071< pu, <1.072
computing its rotation number as explained before. Thip ste  (1,6) u.=1 1251< p, < 1.252
of the algorithm is not “orbitally coherent” in the sense 0], (L5) .= %(5 - V5)~1.382 1539< u, <1540
but we feel that it is the right choice, since there is no cleay (2,9) pe ~1.653 1835< u, < 1.836
to choose the color in disputed cases. Finally, we get thedow  (1,4) p, =2 2037< uy < 2.038
half of the stability domain from the identitfi~ = ro(A™"). (2,7) u. =~ 2445 2526 < u, < 2.527

We stress that all grid points in the interior (respectively  (1,3) u, =3 2.853< uy, < 2.854
“on” the border) of the stability domain have been iteratalyo (3,8) fe=2+ V23414 3589< u, < 3.590
1000 _(respectlvely,.zo7)_ times. This is good, since the interior (2,5) . =15+ VB)~3618 3735<u, <3.736
contains much more grid points than the border. (3,7) p. ~ 3802 3942< 1, < 3.943

Fig. 3 shows a couple of stability domains computed with (4,9) p. ~3.879 4023< y, < 4.024
this algorithm. Each pixel is the center of a square with side (L,2) p=4 4.080< p, < 4.081

¢ =1/4000, so the area of the stability domain is approximately
equal tof? times the number of colored pixels. We also countTable 2: Exact valueg. at which the main resonances emanate fragnand
the number of pixels in the connected component containingpproximated values, at which they escape from.
the origin following a standard algorithm in Computer Visio
See, for instance, [39, pags. 72—75]. In that way, we obleih t
|A,| ~ 1.1657-10" and|D,| ~ 1.1029- 10 for u = 2.037, but
|A,| ~ 7.6105- 102 and|D,,| ~ 1.5067- 1072 for u = 2.038.
These jumps inA,| and|D,| have a simple explanation. We
recall that the fourth order resonance takes plage-aj:, = 2.
After that value is crossed, four (4)-periodic elliptic islands
surrounded by a chaotic sea emanate from the elliptic grint

This structure (elliptic islands plus chaotic sea) movesyaw We observe that, < ,, but in the (13)-resonance, which

Ig)m Ps as;(ljgr_ttaw;, but remta;:nsLllrg,ldﬁﬂ c ZI(!‘ Whtllg_some comes as no surprise, since the twistflicent is positive if
" surroun IS . B owever,2 03?7 5 Osséurm:f? mt% It lslapp_earsand only if 2538~ u; < u < 3, see Figure A.8.

at some vallgu = i, < .( -037,2.038). er nat value 1s We end with a couple of warnings regarding the accuracy of

crossed, both the elliptic islands and the chaotic sea ave/ith

. our pictures.
away from the qoppected component, althpugh any elliptic On the one hand, we know that the red domains displayed
|sllimd_|s, by def|n|t|cr)]n,lpart Qf"h Thhus, t.hejump;]m?{,A only . in Fig. 3, and in the left picture of Fig. 4 are not completely
f[a Ze)s mtlo ai:cli)un_t tt €10S5 0 ttthecl aour; sea, w ltla_r?as_rl'limj(;J filled with ICs. Indeed, KAM theory implies that the set of
n ’f' a1so takes Into account tne loss ot many EHpUc ISTands o cq pag a complicated Cantorian structure, whose gaps ar
Similar jumps take place for any periodic elliptic islan}, a

thouah th teris the order of th lled island. tre filled with resonances. Let us explain why we do not see those
though the greaters the order otthe expelied island, 8M  resonances. We restrict our explanation to the case of Fig. 3
is the jump in both areas. For instance, we see in Fig. 4 the st

- . . Qince the phenomenon is the same in both cases. We do not see
bility domains foru = 1.539,u = 2.853, andk = 3.735, which any resonance inside the red zone displayed in Fig. 3 because
are parameter values smaller than, but very close to, thesal

at which the periodic elliptic islands of orders three ane fiv 04 1= p(Ps) = 0/21 = acos(1- . /2)/2n ~ 0.25302
are thrown away from the connected compor®nHence, the
stability domains corresponding to= 1.540,u = 2.854, and whenu = u, € (2.037,2.038), see Table 1. Therefore, all
u = 3.736 are significantly smaller, because the more extermissed resonances have ordets 83, since 2183 is the ratio-
chaotic sea is lost. nal number in the interval (4, p,) with the smallest denom-
Fig. 5 showsA,| and|D,| as a function of.. The maximal inator. Such resonances are too small to be detected with our
value|A,| ~ 1.718- 101 is attained fop ~ 1.912,|D,| = 0 for  pixel resolution. We recall that a generio,(1)-resonance in an
all x > 4.08, andA,| = 0 for all x 2 4.53. Obviously|D,| < O(n)-neighborhood of an elliptic fixed point of an analytic area
|A,l, sinceD, c A,. We note thatA,| displays many more preserving map has ai(n"/*)-size [45].
jumps thariD,|, because it isfiected bysecondary resonances On the other hand, the border of the connected component
(resonances inside the islands). The graph#t has a self- D, should be a red curve (the LIC), which is missing in the left
similar fractal structure caused by those secondary rem@sa  picture of Fig. 3 and in the three pictures of Fig. 4. The reaso
as the displayed magnification shows. is, once more, that the LIC is too thin to be detected with our
We also list in Table 2 the exact value pixel resolution. In the same way, probably there are sonse IC
in the middle of the blue zone, which would mean that that blue
pe 1= 2= 2 cos(@m/n) € [0, 4] (15) zone is composed by several chaotic seas, instead of byla sing
at which the elliptic fixed poinps becomest, n)-resonant, so  big chaotic sea.

9

that the (, n)-periodic chain of elliptic islands is created from
ps, jointly with the numerically approximated valye =

at which the fn, n)-periodic chain of elliptic islands is thrown
away from9D, for all (m, n)-resonances of order < 10. For
instance, the ()-periodic chain is thrown away at some value
Ux € (2.526 2.527), which explains the seven “holes” delimited
by the unbounded orbit displayed in Fig. 2(f) far~ 2.538.



5.4. Sections with the symmetry lines separated from the main red body in thelirection, it is no
We consider the sections of the stability domain with thelonger delimited by blue portions, because chaotic seastio n

symmetry lines (13) for two reasons. First, the stabilityndgn ~ form part of A when their resonances are thrown away. See

is symmetric with respect to these lines. Second, we reuafl t Fig. 3. Besides, the separated part of any green tongue shows

each SPO has exactly two points on these lines, and such SP&J&ape similar to the shape of the whole set, which is due to the
are the basic invariant objects that organize the dynamgigeé ~ Secondary resonances. Indeed, we see the two above-neghtion

their resonance. phenomena (major loss in the stability domain and collapse o
We look at Fig. 3 to understand how SPOs organize the reghe stability domain to a point) along many of these tongues.
onant dynamics. We see an elliptic 4)-SPO with two points Such phenomenaare clearly visible in the tonguesyghat

on Fix(r;) that organizes the stable dynamics inside the fou€over the range.88 < i < 4.53. The fixed poinps is already
big green elliptic islands, and a hyperbolic 4)-SPO with two globally unstable in that range, but there is still a localigble
points on Fixt,) whose stable and unstable invariant curves deélliptic two-periodic orbit on the symmetry line Fix(.
limit almost perfectly the red region “filled” with ICs. Hénon studied some sets simila$gandsS; for the Hénon
We do not deal with each one-dimensional section as a seftap more than forty years ago [14]. His computations already

arate object, but we gather them into the two-dimensiortal se Show many of the above-described phenomena, in spite of the
limitations of the computers in that time. Such limitatiomesre

{W.p) € T x (0, +00) : (,0) € AL, recently overcome in [33].
{W. 1) € Tx(0,+0) : (W, n(¥)/2) € A},

in order to visualize their evolution in the parameter

These sets are represented in Fig. 6 with the usual color The stable and unstable invariant curves of hyperbolicdfixe
codes. We see that the connected compo@gncollapses to  or periodic) points organize the dynamics of area presgrvin
the elliptic fixed point aju = 3, and undergoes its major loss maps in several ways. For instance, some of these invariant
at someu = u, € (2.037,2.038). The collapse is associated curves are approximate boundaries of stability domain§, [12
to the local instability of the third order resonance. Theslo and the flux through certain closed curves composed by arcs
takes place when the fourth order resonance is thrown awagf invariant curves can be easily computed [32]. Such flux is
These are the most relevant phenomena regarding the stz of texponentially small area in the analytic case [6], so that th
stability domain in generic families of area-preservingosa above-mentioned closed curves becqradial barriers of the

We appreciate a clear self-similar fractal structure irsfts ~ dynamics [26, 32]. If the map is entire, then the stable and
Sp andS;. One can magnify their pictures to appreciate severalinstable invariant curves never coincide [48], so thesdgpar
details. Let us describe the main ones. barriers are never complete barriers. Next, we discus®thes

Resonances emanate from the elliptic fixed p@inin the  ideas in the setting of map (6).
form of thin blue and green tongues, since they are sectibns o
chaotic seas surrounding elliptic islands. These tongegswb 6.1. Singular splitting near the saddle-center bifurcatio
at the pointsy, i) = (0, u.), Whereu, is defined as in (15) for We will see in Appendix B that the map (6) is approxi-
any rational numbemn/n € (0, 1/2), so there are infinitely many mated, after the rescaling (B.1), by th&?-time flow of the
of such tongues. Besides, they look symmetric with respect tHamiltonian (B.2) when O< u <« 1. Besides, the Hamilto-
the vertical line{yy = 0} in a neighborhood of that line. The nian (B.2) has a separatrix that encloses a region whicrese
resonances, but the,@)-one, have a small width when they bles the stability domain of the map wherQ: <« 1. Compare
are close t@s. Hence, most of the tongues become visible onlythe stability domain displayed in Fig. 2(c) with the phase-po
at some distance 4§ = 0}. trait of the Hamiltonian (B.2) sketched in Fig. B.10. Theaep

The elliptic islands inside a resonance grow in size whematrix is described by the homoclinic trajectory (B.3), alhis
they move away fronps. If the resonance has even order, thenanalytic in a complex strip of widtty = .
the green part becomes the biggest part of the tongue inthe se Nevertheless, the stable and unstable invariant curvéeof t
81, but not in the setSp. This means that each elliptic SPO saddle pointp, = (—2¢s, 0) of our map (6) do not coincide,
with even period has two points on FixJ, but none on Fix(). since the map is entire. This result goes back to Ushiki [&].
Fig. 3 is a sample of that empirical claim. On the contrary, ifhave displayed the stability domain and the separatricéiseof
the resonance has odd order, then the green part becomes gagldle pointp, = (-2¢s, 0) for u = 0.859 in Fig. 7 (left). The
biggest part of just one branch of the tongue, in both $gts separatrices enclose the stability domain. The reveityituf
andS;. The other branch remains blue. This is a completelyour map implies that the separatrices have a primary homiocli
expected behavior, since we know that all SPOs with odd geriopoint on each symmetry line (13). L&t be the region (such
have just one point on each symmetry line. region is calledobe) delimited by the pieces of the separatrices

We warn that red and green regions should not be in diredbetween these two primary homoclinic points. For instanee,
contact, but we have againfliculties to detect the blue chaotic display the lobeL for 4 = 0.859 in Fig. 7 (right). In that case,
seas between them with our current pixel resolution. the lobe area i8] ~ 3.808194826948494 10°°.

Resonances are thrown away frd which is the reason Fontich and Simo6 [6] proved that the splitting of the separa
for the saw-like border o8y andS;. Once a green tongue is trices for any close to the identity analytic area preserwmap
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6. On the invariant curves of some hyperbolic points
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Figure 7: Left: The stability domain fqi = 0.859. Blue corresponds to chaotic seas, green to perioditielislands, and red to ICs. The elliptic fixed point
ps = (0, 0) and the hyperbolic fixed poim, = (—2¢s, 0) are marked with a solid black circle and a solid black seuaspectively. The symmetry lines Figland
Fix(r1) are displayed as dashed black lines. A short part of théestaol unstable invariant curvesmfis shown as continuous black lines. The primary intersestio
of these invariant curves with the symmetry lines are maviighl two solid black triangles. Right: A zoom of the left figymbut without the stability domain. The
area of the lobel delimited by the separatrices between the two primary hdimiopoints marked with solid black triangles|i§| ~ 3.80819482694849% 107°.

is exponentially small in the characteristic exponkrdf the Let us consider the closed curve formed by the unstable in-
saddle point. To be precise, they established that thaisglit variant curve from the saddle poipt, to the primary homo-
size is smaller tham(e %" for any 0< d < dp = 7. Here,dg  clinic point on some fixed symmetry line plus the stable in-
is the width of the analyticity strip of the homoclinic sdbrt  variant curve from that primary point tp,. This closed curve
of the limit Hamiltonian. Since in our cask = &, we getthe encloses a planar domaikslightly bigger than the stability do-
upper boundZ£| < O(e " for any 0< ¢ < 27%. We recall that mainA, see Fig. 7 (left). The key observation is that this closed
p = 2(costh—1) = h? + O(h%), soh =< \jz asu — 0. curve is areffective barrierwhen O< y < 1. The termeffec-
Ten years later, Gelfreich [8] derived an asymptotic for-tive means that the flux through this closed curve is so small
mula for the splitting angle between the separatrices ityeina that it looks like a true barrier for a very big number of ites
saddle-center bifurcations, although he did not providera-c  of the map. For instance, if we set= 0.2, thenh ~ 0.44357,
plete proof. Gelfreich’s formula, once adapted to our mapss

that|£] = ape2"/" ash — 0* for some constardy € R. IR| > |A| ~ 2.1455% 1073, | £] ~ age™>*/" ~ 6.7000x 107,
Our numerical experiments strongly suggest that theré exis )
some asymptotic cdicientsa, € R, n > 0, such that Besides, we know that the lobe aiga is an exact measure of
the flux throughoR after one iteration of the map, see [26, 32].
|£] = e2°/h Z ah?", (h > 0). (16)  This means that after foterates of the mag, less than three
=0 thousandths parts of the points insi®éhave escaped. Thus,

one may approximate the stability domaihby the regiorR in

This fits perfectly with both Fontich-Simd’s upper boundda  many practical situations.
Gelfreich’'s asymptotic formula. Our refined asymptotic-for Finally, we note that the numerical computation of any ex-
mula (16) means that if we retain only finitely many terms Ofponentially small splitting quantity (angle, area, or diste)
the right-hand side, then the error will be of the order offtist gets complicated by problems of precision, stability, dntbt
discarded term. Such refined asymptotic formulas in Sil’lgulam order to overcome them, Simo6 proposed to use a multip|e_
splitting problems were first presented in [9] for the Stadda precision arithmetic, to expand the invariant curves upig h
map, and first proved in [28] for the perturbed McMillan map. order, and to take advantage of the reversor [43]. Thessidea

Besides, we have numerically seen that the first asymptotigave been used in [4, 11, 36]. We have also used them.
codficient in formula (16) is non-zero:
6.2. Singular splitting near the third-order resonance

We will see in Appendix C that the third power of map (6)

whereas the second asymptotic fiiméent vanishesa; = 0, so IS approximated, after the rescaling (C.1), by éeme flow
the approximations] ~ ae2*/" has ano(h%) relative error. of the Hamiltonian (C.2) whep = 3+ e with 0 < |¢] < 1.
We have also checked that the asymptotic se¥igs a,h?" is Besides, the Hamiltonian (C.2) has three saddle points &/hos
divergent, but its Borel transformi .o a,h?"/(2n)! has radius invariant curves coincide giving rise to the triangle skett in

of convergenceZ. This is a typical behaviour for many other Fig. C.12. - _
maps, see [4, 11, 33, 36]. If 4 =~ 3, then the stability domain of the map (6) has a

central part with a triangular shape, that contains many ICs
11
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and three “sheets”, that contain points with rotation numbe Letu, andu, be the values at which then(n)-resonance

equal to ¥3, attached to the vertices of that “triangle”. The ver-emanates fronps and is thrown away fronD, respectively.

tices of this “triangle” correspond to hyperbolic threeipdic  Let Rl(nm’ng)r (respectively?%f,’f}tg),) be the region enclosed by suit-

points whose stable and unstable invariant curves do not coi able parts of the inner (respectively, enclosed betwedalsai

cide. There are two ffierent splitting phenomenain this setting. parts of the inner and outer) branches of the stable andhlasta

Namely, the inner splitting (associated to the invariantvea  invariant curves of the hyperbolien( n)-periodic points. The

that enclose the “triangle”) and the outer splitting (agst®el  inner region usually looks like a red “polygon” withcurved

to the invariant curves that enclose the “sheets”). Eadttisgl  sides, because it is almost completely foliated by ICs, wa®r

should be studied separately. The inner one is genericalghm the outer region contains then(n)-periodic chain of elliptic

smaller than the outer one [45]. islands, and it also contains part of its surrounding cloessa
We have displayed the stability domain joe 2.853 inthe  before thefh, n)-resonance is thrown away. See Figures 3 and 4

central picture of Fig. 4. The red partis the “triangle”, ireen  for several pictures about the resonances

parts are the three “sheets”, and the continuous black éines

the invariant curves of the hyperbolic three-periodic pmiive (m,n) ={(1,4),(1,5),(1,3), (2, 5)}.

stress that, although the value|gf= |u — 3| is not very small,

the inner splitting can not be detected even after a big nfiagni

cation of our picture. This suggest that the inner splitigigx-

Since the flux through the borders of the inner and outer
regions can be geometrically interpreted as the area ddinert
ponentially small iriel = [ — 3|. G. Moutsinas [35] has studied lobes [26, 32], we obtain the following information abouéth
the inner splitting in analytic area-preserving maps ctose inner and outer flux. The inner flux is smaller than the outer

third-order resonance. He deduced, under a generic assmmpt fluX, and both of them are exponentially smallin- .| [45].
on the third-order Birkhff normal form around the elliptic fixed 1 N€innerregionis agood approximation of the connectedcom

point at the exact third-order resonance, that the innéttisgl ~ PONeNtD whenu = 4, See, for instance, the right picture in
is exponentially small in the characteristic exponent efttird ~ F19ure 3. The inner and outer regions are not completely con-
iterate of the map at the hyperbolic three-periodic poificsbe  t@ined in the stability domain whem > 4., since there is a
more precise, he found that the Lazutkin homoclinic invaria SMall, but not zero, flux through their borders [48].
(a celebrated splitting quantity introduced in [10]) asated to
some distinguished heteroclinic orbits has a refined asytiept 7. Discussion of results and conclusions
formula of the form (16), but now is the characteristic expo-
nent of the mapf® at the three-periodic points instead of the ~ We have studied the stability of longitudinal beam motion in
characteristic exponent of the méagt the origin. RTMs within a model that was previously considered in [29, 30
On the contrary, the outer splitting in the central pictufe o 37]. Oscillations of particle energy and accelerating figdse,
Figure 4 can be perceived after a suitable magnification of &sually called phase oscillations, with respect to the spae
small neighborhood of a hyperbolic three-periodic poirttisT  rameters of a reference particle referred to as synchropenus
visual inspection fits with the results given in [45, Sectioh],  ticle, are described by the area preserving map (6). Thdugh t
where it is established that the outer splitting associated = model assumes a few approximations, discussed in Section 2
generic third-order resonance does not tend to zero as we apnd summarized at the end of the present section, it captures
proach the resonance. That is, the outer splitting(ik). important features of the phase oscillations both in cacali-
We can extract two practical consequences of these resultsrotrons and in RTMs and allows to obtain the main charagteri
First, setu ~ 3 and letR™? and R;2), be the regions tics of the longitudinal beam dynamics. In fact, similar retsd
enclosed by suitable parts of the stable and unstable anari are widely used for design and characterization of othegdyp
curves of the hyperbolic three-periodic points such ﬁq%ﬁr of particle accelerators [52].
contains the triangular shaped part#@fcontaining many ICs We have analyzed the stability domath (and its central
andR%? contains all the points with rotation number equal toconnected componed) of the area-preserving map (6) that

1/3. Then the flux through theffective ba”ieﬁﬁi(i}]?gr is much  describes the phase oscillations. We have studied theatate
smaller than the flux througﬁﬂe(l’s) and calculated their area as a functioaf\We have combined

Second, lefs, € [2.853 zé’gﬁ]r be the value at which the Various approaches, theorems, and tools of dynamicalrsgste

third-order resonance is thrown away fram ThenRi(r}fgr is 1o the best of our knowledge, thg study of the stability damai
a really good approximation of the connected comporent ©f the map (6) carried out here is the most complete and de-
wheny > u,. tailed. It_ls an esser_mal v_wdemng and improvement _of rssul
reported in [30, 37], in which either the power expansiorhef t
map up to the cubic order in terms of the phase space variables
or numerical simulations with low number of turns were used.
The knowledge ofA, called longitudinal acceptance in the
theory of particle accelerators, is of much importance far t
optimization of the beam motion in RTMs. Indeed, the adjust-
ment of machine parameters for tha@ent acceleration of the

6.3. Singular splitting near high-order resonances

The singular splitting near resonances of omtler4 shares
several qualitative and quantitative features with theyiar
splitting near the saddle-center bifurcation and near tivel
order resonance. Let us explain this.
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beam during its commissioning consists in matching the doandAl < 0.14, whereAl is the bunch length andlis the wave-
main in the phase space occupied by the particles emitted Hgngth of the accelerating RF field.

an injector (often an electron gun) to the acceptance fovengi In the case of small accelerators there is no buncher and
value of¢s. The optimal beam matching allows to minimize the beam is produced by an electron gun which emits particles
beam losses and undesired excess of strayed radiationqaddu continuously, so that they occupy the whole intervaljf] in

by the accelerator and, so, maximize the output beam currettte phase variabl¢ at the AS entrance. Our results provide an
without increasing the current at the injection. For theuatlj estimate of the beam captur@eiencye; that is, the fraction of
ment to be mostféicient, the acceptance area must be maximathe initial beam that is successfully accelerated. # 2, then

and the shape of the phase domain of the injected beam must fit

the acceptance shape. Thus, a detailed description of tep-ac €= Ay ~ 0.09,

tance geometry is useful for the design of particle acctlesa 2n

especially in the case of microtrons for which the nonlirefar  oyr numerical computations show thag 0.13 for all  in the
fects in the longitudinal beam dynamics are quite strong. RTM model. See Remark 1 in Section 3. This result gives the

The results obtained here are not meant to be directly useflqoretical upper bound on the captufiégiency in RTMs with
in the design of future RTMs or operation of existing onesvNe  high number of turns. One should however keep in mind that in
ertheless, a few examples of their relation to real acc®lBSa  e3) machines the beam makes only a few turns, so the capture
can be mentioned. In particular, let us comment on two “em'eﬂiciency is usually higher.
pirical” rules useq in microtrpns [37] that can be justifie_'dth We have studied the reduction|d] in the vicinity of reso-
our results. The first rule claims that the valueggfor which nant values. For instanck)| = O at the third order resonance

an accelerator can operate are contained in the intervialezfr s = ¢u, WhereasD| ~ 0.02 after the fourth order resonance
stability of the synchronous trajectory. The second rudtest

that the optimal values afs are close to the middle point of ¢s = arctan(¥n) ~ 17.7°.

such interval. (We recall that = 2rtangs.) We have checked

that both rules are in fact quite precise within our RTM model Other resonances do not lead to so sharp decrea§Bt dhis

where the interval of linear stability is (@), with data is quite important because one of the criteria of cimgosi
the design value afs is to avoid values close to resonant ones.

¢p 1= arctan(qn) ~ 32.5". Otherwise even a small natural drift of machine parametess m

First, we have numerically seen th@) > 0 for 0 < ¢s < 33°,  lead tog¢s approaching one of the dangerous resonant values
except for the value and consequently to excessive beam losses. In this redipect,
asymptotic formulas (9) and (11) are of much interest. Aaoth
¢u 1= arctan(32r) ~ 255° important aspect of the acceptance structure are theielispt

alands and chaotic seas like the ones displayed in Figs. 3#4. F
instance, each drastic changg4] is associated to the escape
of a chain of elliptic islands fronD.

The structure of the stability domain with periodic ellipti

¢s ~ arctan(1912/2r) = 16.9° ~ ¢p/2. islands suggests an interesting possibility of beam acaiada

in different parts of the phase space. Such idea, that would

require a quite detailed knowledge of the stability domagn g

ometry, was already mentioned in the literature (see [3d] an

that corresponds to the third order resonance. Second,wee h
found that the acceptance area reaches its maximal \@|ue
0.17 atu = 1.912, which roughly corresponds to

In fact,|A| is suficiently large for a rather wide range of the
values ofu. For instance,A| > 0.1 if

w € [1.027,1.071]U [1.079,2.037]U [2.245 2.827]. references therein), however no RTM design with such accele
ation scheme has been proposed so far.
We have seen tha#l| > 0 up tou ~ 4.53 (that is,¢s ~ 35.8°), We know very few experimental data that can be compared
that exceeds the valye= 4 (that is,¢s ~ 32.5%), usually con-  ith the results obtained in the present paper. Charatiterisf
sidered as a limit in design calculations of a microtron. practical importance in microtrons are the number of aceele

The sizes ofA andD along they, andw axes are impor-  ated particles, or the beam current which is directly prtipoal
tant for the beam matching. If the beam is previously bunchegg the area of the stability region, and tteetive voltage in the
aroundgs then the bunch length in must be shorter than the accelerating structure which is inversely proportionadsegs.
corresponding size of the acceptance and the energy dispefhe area of the stability region varies with the synchronous
sion aroundE, s measured in terms af —see (5)— must be  phasep, according to the plot in Fig. 5. On the one hand, simi-
smaller than its size in this variable. For example, let us-co |ar plots obtained by numerical simulations for a small nemb
sider the cas@g = 2. ThenAy = Ymax — ¢¥min ~ 0.55 and  of turns (less than 30) were published in [29, 30, 37]. On the
AW = Wmax — Wmin ~ 0.8. See Fig. 2(e). The bunches at the pther hand, the current-voltage characteristic was med®x-
injection should fit the region with the sizésy andAw in or-  perimentally in a microtron with 30 orbits [31]. The expeem
der to avoid beam losses during the acceleration (in pgdtic  ta results, once expressed in the variablesrrent), show a

minimize beam losses). This means that good qualitative agreement with Fig. 5, though some queareit
Eo - Eos differences exist. For instance, a dip in the current-voltage ch
T A <012 acteristic that should correspond to the third order resoaa
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does not reach zero value as for the theoretical curve in5Fig. Appendix A. Proof of Theorem 1
The diterence is explained by a quite low number of beam turns
in the experiment and by measurement errors. The dip becomes
more profound as the observed number of turns grows [31].
Another interesting phenomena that was observed in opera- {

If u ¢ [0, 4], thenps is hyperbolic, and so, locally unstable.
If u = 0, then the map (6) has the form

— 2

tion of microtrons [3] is a two-humped distribution of theel :Ibvi _ :Ipv+ Crv(lp W Oa(v W),
tron bunch in the transverse direction for> 2; that is, close
to the fourth order resonance. It was observed repeatedly-in  On the other hand, the Levi-Civita criterion [23] impliesath
periments by a few groups [16]. Such bunch structure can bthe origin is unstable under any analytic map of the form
explained by the presence of four periodic elliptic islantithe
stability domain displayed in Fig. 3. See a discussion i}.[30 { Wi = WOy, W),

In our study the stability is understood in the mathematical 4! Y + W+ Oy, W),

sense. Thatis, we are dealing with perpetual stabilit] h ) 2
g perp fioalt with £Y%4.(0,0) # 0. In our concrete maé’lw‘”;(o, 0)=-2r#0.

only 2- 10’ turns were considered in our numerical computa- h W;} h . i< loct ble
tions of A. Nevertheless, the number of turns made by each pa;l- u?, t_e syrr]]c ror?ous trajectolr(y IS P?C? y unstabjef 0.
ticle is typically of just a few tens in real RTMs. For instanc If 1« =2, then the map (6) takes the form

the number of turns is roughly 90 in the RTM machine of the { Y1 o= YW

MAMI complex at the Institute for Nuclear Physics in Mainz, Wi o= -2 —w—a(),

which is nowadays the largest RTM facility in operation [15]

Thus, the physical acceptance and the true capti@esicy — wherea(y1) = 2r(1 — cosyi) — 2(¥1 — siny1) = O(¥?). We
are larger than the mathematical stability domain and tlie es consider the area preserving linear change of variables
mates of given above, respectively. In fact, as the comparison

with the experimental measurement of the current-voltage-c X=y+W, y=4y,

acteristic discussed above shows, th&edénce may not be that
large because in many cases the beam instability develdfgs qu

rapidly, after just a few iterations. ( X1 ) ( —y —a(x) ) R ( X )
= = 7'(/2 .

which transforms the previous map into

We have studied the case of the multiplicity increase factor Vi X y +a(x) (A-1)

k = 1, see Section 2. The general caseN can be analyzed in '
a similar way, and the stability domains turn out to be smalle Let }j.,ajx! be the Taylor expansion @(x). We know from
We have assumed that the acceleration gap is of zero lengfborollary 4.2 in [42] that ifa, # 0 andaz # 0, then the origin
and that the velocity of particle is equal to the speed oftlighis locally unstable under the analytic map (A.1) if and offily i
already at the injection. The latter is not the case for canhpa
RTMs with the injection from a standard electron gun. It webul
be useful tq d_evel_op an approgch in which these co_nditicms ain our concrete map, = 7 andas = —1/3. Therefore, the
relaxed. A finite-size accelerating gap can be taken intowic
by introducing a transit-time factor [52]. The non-reléttic
dynamics, which is of practical importance for the design of
small low-energy RTMs, can be considered by a corresponding { Y1 = U+ W,

2
O<az<as.

synchronous trajectory is locally stable wheg 2.
If u = 3, then the map (6) takes the form

modification of map (6); see [19]. wp = =3y —2w -y + W)? + Os(ip, W).

We have modeled the magnetic field in the RTM end mag- . ) ) o
nets by a simplified hard-edge distribution, without takingp ~ The map ¢3, ws) = (s, w) is close to the identity, since
account neither the fringe fieldfect [52] nor more complicated _ B 2
field profiles [51]. Studying the longitudinal dynamics iresie { \"Ibvs : \l,per :Eggz : 25\\/,\/\/):\,\%%’(\)’\/)@ W)
cases is also of interest for the RTM beam physics. 37 S

Inour study we have assumed that electrons do notloose efye determine the local stability of the origin under the nidp
ergy due to the synchrotron radiation. Simple estimate®/sho (and so, under the maf) by applying Simé’s criterion [42].

that the energy loss per turn grows cubically in the number ofrhat criterion states that the origin is locally stable unaie

effect of synchrotron radiation can be neglected for practipal
plications. For example, for the compact RTM described 0 [2 X1 = X+ 02AXY),
it turns out that the energy loss due to synchroton radigten yi = y+02AxY),

turnis less that 1% of th i tAgnin the first fi . . . -
huur::c;?ezsilsjrnswhgs _ gi/?ee\r/gygaln pertigin e firstiive if and only if G(xy, y) has a strict extremum at the origin, where
N ’ Jay + G(x1,Y) is the generating function of the map; that is,

Finally, let us note that in our study the phase oscillationG is & function determined by the imolicit .
of particles of the beam were considered as independengof th (x4, y) is afunction determined by the implicit equations

transverse oscillations, vertical and horizontal. Thipragi- oG G
mation is valid if the amplitudes of these oscillations arah. Xy =X+ 6—y(X1,y) and  y1=y- 3_)(1()(1’ y).
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Thus, we look for a functioG(ws, ) = Oz(ws, ¥) such that

0G

and  yYz=y - 6_V\/3(W3’ ).

W3 = W+ ﬁ(w W)
3 = 6(// 35
After a straightforward computation, we obtain that

G(ws, ) = mp(¥ + W3)(2 + W3) + Oa(¥, Wa).

This function has no strict extremum at the origin. Therefor
the synchronous trajectory is locally unstable when 3.
If u = 4, then the map (6) takes the form

{

whereb(y1) = 2r(cosys — 1) + 4(y1 — siny1) = Oy3). We
consider the area preserving linear change of variables

lp + W,
—4y — 3w+ b(y1),

1

W1

X=2+WwW, y=1y,

which transforms the previous map into

{

Let 3., bjul be the Taylor expansion di(u). We know from
Lemma 1.4 in [42] that i, # O, b # 0, and b3 + b3 > 0,
then the origin is locally stable under the analytic map JA.2
In our concrete mapy), = —r andbs = 2/3. Therefore, the
synchronous trajectory is locally stable whekg 4.

Finally, we consider the generic cage= (0,4)\ {2,3}. If
As = €7 is the characteristic multiplier of the elliptic poipt,
thena # 1 for any integen such that 1< n < 4; see Table 1.
Therefore,ps is not astrongly resonanglliptic point and the
map (6) can be put into its third ordBirkhoff normal form

X1
Y1

—X+ b(x-y),
X—V.

(A.2)

7 = 1z 4 O(12%), (A.3)

for some real coficient r, calledfirst Birkhgf cogficient or
twist cogficient After some tedious computations [22], one
gets the expression

_ 2co$60—3co8 0+ 4n°cosd + 1+ n°

7(©) (cosd — 1)(2 cod + 1) sirf 0

(A.4)

We observe that ligy,o: 8*7(6), limg_2,3(0 — 27/3)7(), and
limg_. (6 — 7)?7(6) exist and are negative. That igg) has a
negative fourth-order pole &t = 0, a negative simple pole at
0 = 2r/3, and a negative second-order pol&at n. These
properties agree with the generic behavior of twistfioients
of families of area-preserving maps described in [34].
Consequently, we deduce thgb) has at least one root in
the interval (02r7/3). Let us prove that it has no more real roots.
The numerator in (A.4) is the polynomiad® + bs? + ¢ + din
the variable/ = cosp, witha = 2, b = -3, ¢ = 47?, and
d = 1+ 2. This cubic polynomial has one real root and two
complex conjugated roots, because its discriminant isthega

A = b?c? — 4ac® - 4b%d — 27a%d? + 18abcd~ —536135
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Figure A.8: The twist cofficientr versus).

This means that(6) has just one rodt, in the interval (). It
was numerically computed in [22] that

~

6, ~ 1.8429983434122 (0, 27/3).

We have plotted the twist cfiecientr versus) in Fig. A.8.

Finally, we recall that the Moser twist theorem [40] implies
that the origin is a stable elliptic fixed point of any anaiyti
map of the form (A.3) whernr # 0. Hence, the synchronous
trajectory is locally stable whethe (0, ) \ {n/2, 6;,27/3}; or,
equivalently, whem € (0, 4)\ {2, u, 3}, where

M =2—-2cos = 2.5377060556582

If u = ur, then the third order Birkhd normal form (A.3)
does not provide much information because the first Bifkho
codficientr; = r vanishes. Thus, we should compute the fifth
order Birkhdf normal form

7= dbrrmiz+ralz) 5, o(z®),

wherer; = 0 andr, € R is the second Birkhg cogficient
The analytical computation af, is cumbersome, so we have
taken a simpler numerical approach. First, we have computed
the rotation numbep(p) of the points of the fornp = (¥, 0).
Next, we have checked that

p(¥,0) = 6:/21 + poys* + O°),

for some non-zero cdéicientp, ~ —200, which implies that
72 # 0. Then the Moser twist theorem implies that the origin is
a stable elliptic fixed point [40].

The flat behavior (A.5) is clearly observed in Fig. A.9. The
small gaps that appear in the graph correspond to the ssction
of some chaotic seas with the symmetry line Rix& {w = 0.
The rotation number is not well defined on those sections.

This completes the proof of Theorem 1.

(A.5)

~

Appendix B. Proof of the asymptotic formula (9)

Let us study the size and shapeff c A, whenu — 0*.



0294 , , , , , The mapf is close to the identity mapx(y) = (x, y), since

0293 |- /—\ 1 f =1+ ,Lll/zﬂ_ + O(/J), ﬂ_(X, y) = (y» —X— 7TX2).
0202 | The termf; is a Hamiltonian vector field with Hamiltonian

0.291

T

\
_—

~ _X+y? om 1
029 | / ] Hl(X’y) = 2 + §X3 - @ (BZ)

0.289

T

1 We have subtracted the constari64? for convenience. We
denote by}, thet-time flow of a HamiltoniarH. Then

0.288

o | [ ] F= 14 126+ O@) = ¢ +O) = ¢y, + O),

N

0286 o5 o1 005 o 005 o since the Euler method has a second order local truncation er
Therefore, the integrable dynamics of the Hamiltori&n
Figure A.9: The rotation numbei(y, 0) versusy for u = ;. approximates the dynamics of the mﬁp‘n the limity — 0*.
We say that; is thelimit Hamiltonianassociated to the saddle-
' ' ' ' center bifurcation. It has two equilibrium points. Nameheg
elliptic point §s = (0, 0) and the saddle poim,"= (-1/x,0).
Besides, the unstable and stable invariant curves of thalesad
point coincide along one branch, giving rise to the separatr

S={a=(xy) e R?: Hy(®) = 0. x> -1/n}.

LetR be the domain enclosed kﬁu {€h}. The phase portrait of
Hamiltonian (B.2) is sketched in Fig. B.10. Only points tfesi
- R give rise to bounded trajectories, €ds a good approxima-
tion of the scaled versions o1, andD,, when O< u < 1.
The separatrle is descrlbed by a homoclinic trajectory
. 4 = (x(¥), y(t)) to the saddle point: lim,.. §(t) = Gn. If we
e da o . o o o o impose the initial conditioy(0) = 0 and solve the Hamiltonian
equations on the separat we get that

Figure B.10: The separatrix (thick line), some level curftem lines), and the 3 1 3 sinh¢/2)
two equilibrium points (small circles) of the limit Hamiléan (B.2) associ- Xt) = ————— - =, yt) = ————. (B.3)
ated to the saddle-center bifurcation. The black arrowsvshe Hamiltonian 2r cosﬁ(t /2) « 2r cosﬁ’(t /2)

dynamics on the separatrix.
Therefore|R| = § ydx = 7 y(hx (t)dt = 6/572. The first
identity follows from Green’s theorem, the last one follows
from the residue’s theorem. The asymptotic estimate (9) fol
lows from the change of scales (B.1).

Fig. B.11 shows a strong agreement between the numeri-
cally computed values gfA,| and|D,| and their asymptotic
estimateu — 6u>2/572, even for relatively big values ¢f.

The elliptic fixed pointps = (¥s,0) = (0,0) and the hy-
perbolic fixed pointp, = (¥n, 0) of the map (6) collapse as
u — 0%. The following rough quantitative estimates are typ-
ical for saddle-center bifurcations. The sizedf in the y-
coordinate i90(lys — y¥nl) = O(w). Its size in thew-coordinate
is O(ls — ¥nl) x OY?) = O®?), since the angle between
the eigenvectors of the matridy, is O(u*/?). Consequently,

= O(u) x O(®?) = Ow®?). Finally, |4, =< |D, when  Appendix C. Proof of the asymptotic formula (11)

u — 0%. We will confirm and refine these rough estimates.

Following the above comments, we scale ¢heoordinate Let us study the size and shape of the connected component

(respectivelyw-coordinate) by a factor of ordar(respectively, Dy Of the acceptance when= 3 + e with 0 < |¢] < 1. We

Orderlu3/2) To be prec|se we consider the Change of scales W|” see thatZ)3+€ is appI’OXImately a tnangle of vertices (10)
which implies that the asymptotic estimate (11) holds. Waesc

X=uylu, y=w/u¥? (B.1) the variables according to these claims, which suggestthat
the interesting dynamics takes place i®@)-neighborhood of
If 0 < u < 1, then the map (6) is transformed under thisthe origin. To be precise, we consider the change of scale
change into a mapx(, y1) = f(x, y) of the form
X =mp/e, y = tW/e. (C.1)
xi = x+ptl?y,
{ yi = y-pt(x+mx) + o).
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Figure B.11: |A,| (continuous line),D,| (dashed line),
estimate f%2/5x72 (dotted line) versug.
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Figure C.12: The three separatrices (thick lines), soned wves (thin lines),
and the four equilibrium points (small circles) of the thmaitiHamiltonian (C.2)
associated to the third order resonance.
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Figure C.13:|A,| (continuous line),|D,| (dashed line), and the asymptotic [10]

estimate §¢ — 3)2/2x2 (dotted line) versus the parameter

and the asymptotic
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If u =3+ e with |l < 1, then the map (6) is transformed under
this change into a map{, y1) = f(x,y) of the form

{

The mapf3 is close to the identityf3 = | + f; + O(e2), with

X1
Y1

X+Y,
—3x— 2y — X1(x1 + L)e + O(€?).

fi(x,y) = (3x + 2y — 3x% — 2Xy, —6X — 3y + 6X + 6XY + Y°).
The termf; is a Hamiltonian vector field with Hamiltonian

Hi(x,y) = (1 - X)(x+y—1)(2x +y + 1). (C.2)

Therefore,f3 ¢iﬁl + O(€?), and the integrable dynamics of

the HamiltoniarH; approximates the dynamics of the mé&b
whenu =~ 3. Thus,H; is thelimit Hamiltonian associated to
the third order resonance. It has four equilibrium pointsieO
elliptic point: §s = (0, 0), and three saddle points:

0=(10). G=(1-3), G=(-23)

Let R be the triangle whose vertices are these three points.
Clearly,|R| = 9/2. Each side of is both the stable invariant
curve of a saddle, and the unstable invariant curve of anothe
saddle. That isgR is formed by the three saddles and the three
straight separatrices connecting them. See Fig. C.12.

Only the points insideR give rise to bounded trajectories,
SoR is a good approximation of the scaled versionzyf for
u = 3. Thus, we get the quadratic asymptotic estimate (11). We
have displayed a comparison betwé¢®w, | and its asymptotic
estimate 8%/272 in Fig. C.13. We note thdtAs| > 0, because
of the traces of the (B)-periodic chain of elliptic islands that
was thrown away from the main connected comporfentat
some valug:, ~ 2.85. We visualized these traces in Fig. 6.
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