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Abstract: This article is a survey on boundedness results for stable solutions to semilinear elliptic problems.
For these solutions, we present the currently known L∞ estimates that hold for all nonlinearities. Such esti-
mates are known to hold up to dimension 4. They are expected to be true also in dimensions 5 to 9, but this
is still an open problem which has only been established in the radial case.
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1 Introduction. The Known L∞ Estimates
This article is a survey on regularity results for stable solutions of semilinear elliptic problems. For these
solutions, we present the currently known L∞ estimates that hold for all nonlinearities, or at least for a large
class of them. It is Haïm Brezis who stressed, since the mid-nineties, the significance of this problem.

Even thoughwewill briefly comment at the end of this introduction on related results for other nonlinear
elliptic problems, the rest of the paper concerns the semilinear problem

{
−∆u = f(u) in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ ℝn is a smooth bounded domain, n ≥ 1, and f is a locally Lipschitz nonlinearity.
Following [2], we say that u is a weak solution of (1.1) if, with dΩ = dist( ⋅ , ∂Ω), we have u ∈ L1(Ω),

f(u)dΩ ∈ L1(Ω) and −∫Ω u∆ζ dx = ∫Ω f(u)ζ dx for all ζ ∈ C1(Ω) with ζ = 0 on ∂Ω.
A weak solution u of (1.1) is said to be stable if f �(u) ∈ L1loc(Ω) and

∫
Ω

f �(u)ξ2 dx ≤ ∫
Ω

|∇ξ|2 dx for all ξ ∈ C1c (Ω), (1.2)

i.e., for all C1 functions ξ with compact support in Ω. If the solution u is bounded, its stability is equivalent to
the nonnegativeness of the first Dirichlet eigenvalue in Ω of the linearized operator−∆ − f �(u) for (1.1) at u. As
a consequence, localminimizersof the energy (i.e.,minimizers under small perturbations) are stable solutions
– whenever the energy and all objects are well defined within a proper functional analytic framework.

In dimensions 10 and higher, there are explicit examples of unbounded (also called singular) stable
solutions. The following is one of them.
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2 | X. Cabré, Boundedness of Stable Solutions to Semilinear Elliptic Equations

Proposition 1.1. For n ≥ 3, the function ũ = −2 log|x| is a weak solution of (1.1) in Ω = B1, the unit ball, for the
nonlinearity f(u) = 2(n − 2)eu. For n ≥ 10, the function ũ is an H1

0(B1) stable weak solution.

This result is easily proved.One verifies that ũ is aweak solutionwhenever n ≥ 3.Next, the linearized operator
at ũ is given by

−∆ − 2(n − 2)eũ = −∆ −
2(n − 2)
|x|2

.

Thus, if n ≥ 10, then its first Dirichlet eigenvalue in B1 is nonnegative. This is a consequence of Hardy’s
inequality

(n − 2)2
4 ∫

B1

ξ2

|x|2
≤ ∫
B1

|∇ξ|2 for every ξ ∈ H1
0(B1)

and the fact that 2(n − 2) ≤ (n − 2)2/4 if n ≥ 10.
Thus, in dimensions n ≥ 10 there exist unbounded H1

0 stable solutions of (1.1), even in the unit ball and
for the exponential nonlinearity. One may wonder if the same could happen in a lower dimension, perhaps
for another nonlinearity and in another domain. The regularity results that we present next indicate that
dimension10 should be optimal. However,amain open question is still to be answered in dimensions5 ≤ n ≤ 9
– see Open Problem 1.6 below. Let us emphasize that here we are talking about regularity results that hold
for all nonlinearities f , or at least for a very large class of them. In particular, wewill allow nonlinearities with
supercritical growth with respect to the Sobolev exponent, as in Proposition 1.1. It is therefore the stability
of the solution that will lead to L∞ estimates.

All this is reminiscent of important results within the theories of minimal surfaces and of harmonicmaps
(see the survey [6] for these analogies), in which regularity of stable solutions also holds only in certain low
dimensions.

There aremany nonlinearities for which (1.1) admits a stable weak solution uwith u ̸≡ 0. Indeed, replace
f(u) by λf(u) in (1.1) with λ ≥ 0. That is, consider the problem

{
−∆u = λf(u) in Ω,
u = 0 on ∂Ω.

(1.3)

Assume that f is positive, nondecreasing, and superlinear at +∞, that is,

f(0) > 0, f � ≥ 0, lim
t→+∞

f(t)
t

= +∞. (1.4)

Note that in this case we look for positive solutions (when λ > 0).
Assume (1.4); then there exists an extremal parameter λ∗ ∈ (0, +∞) such that if 0 ≤ λ < λ∗, then (1.3)

admits aminimal classical solution uλ. Hereminimalmeans smallest. On the other hand, if λ > λ∗, then (1.3)
has no classical solution. The family of classical solutions {uλ : 0 ≤ λ < λ∗} is increasing in λ, and its limit as
λ ↑ λ∗ is a weak solution u∗ = uλ∗ of (1.3) for λ = λ∗. The function u∗ is called the extremal solution of (1.3).
Moreover, for every λ ∈ [0, λ∗] the function uλ is a stable weak solution of (1.3).

The proofs of the previous statements can be found in the book [12, Chapter 3] by Dupaigne. There,
among many others, two further interesting results are proved under the hypothesis that f is convex and
satisfies (1.4). First, the nonexistence of weak solutions of (1.3) for λ > λ∗, a result established in a seminal
paper in this topic by Brezis, Cazenave, Martel, and Ramiandrisoa [2]. Second, Martel’s result stating that
u∗ is the unique weak solution of (1.3) for λ = λ∗. The book [12] by Dupaigne also contains proofs of the
statements and estimates that we present below. Another nice monograph in this subject is by Dávila [11].

1.1 L∞ Estimates

We now turn to the core of the paper: L∞ estimates for stable solutions. As usual, the key point will be to
establish a priori L∞ estimates for stable classical solutions of (1.1). Once this is done, they lead to the bound-
edness (and thus regularity) of the extremal solution u∗ of (1.3) – simply by approximation of u∗ by the stable
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X. Cabré, Boundedness of Stable Solutions to Semilinear Elliptic Equations | 3

classical solutions uλ with λ ↑ λ∗ since the a priori estimates will be uniform in λ as λ ↑ λ∗. In this respect,
we could now forget about the extremal problem (1.3), come back to equation (1.1) and ask whether a stable
weak solution of (1.1) can be approximated by classical solutions to similar problems. A nice answer was
given in [2] (see also [12, Corollary 3.2.1]) and states that this is always possible if u ∈ H1

0(Ω) is a stable weak
solution of (1.1) and f is nonnegative and convex. The approximating functions can be taken to be stable
classical solutions to problem (1.1) with f replaced by (1 − ε)f , where ε ↓ 0.

There is extensive literature on a priori estimates for stable solutions, beginning with the seminal paper
of Crandall and Rabinowitz [10] from 1975. In more recent years, there have been strong efforts to obtain
a priori bounds under minimal assumptions on f , mainly after Brezis and Vázquez [3] raised several open
questions – see also the open problems raised by Brezis in [1].

The following three theorems collect all what is currently known in terms of L∞ estimates. We will give
their proofs (with most of details) in Sections 2–4.

We start with a result that suggests the sharpness of dimension 10. However, it requires the nonlinearity f
to be convex, satisfy (1.4) and also that

f ∈ C2(ℝ) and the limit lim
t→+∞

f(t)f ��(t)
f �(t)2

exists. (1.5)

It is easy to see that if the limit exists, then it must belong to [0, 1], otherwise f would blow up somewhere
in (0, +∞). These hypotheses are satisfied by many nonlinearities, including f(u) = eu, f(u) = eeu as well as
f(u) = (1 + u)p with p > 1.

Theorem 1.2 ([10, 16, 17, 19]). Let u∗ be the extremal solution of (1.3).
(i) Let f be convex and satisfy (1.4) and (1.5). If n ≤ 9, then u∗ ∈ L∞(Ω).
(ii) If Ω = B1, f(u) = eu and n ≥ 10, then u∗ = −2 log|x| and λ∗ = 2(n − 2).

Note that in part (i) we may take f(u) = eu. Together with part (ii) – which contains more information than
Proposition 1.1 – this gives a quite detailed answer to the boundedness of the extremal solution, in any
dimension, for the exponential nonlinearity. Part (ii) was first established in [16] by using ODEs techniques,
while a more flexible PDE proof was given in [3].

Part (i) also applies to f(u) = (1 + u)p with p > 1. For these power nonlinearities, the boundedness of
stable solutions holds indeed for n ≤ 10, and also for n ≥ 11 and p smaller than the Joseph–Lundgren expo-
nent. For the rest of couples (n, p), the explicit radial solution is given by |x|−2/(p−1) − 1 and coincideswith the
extremal solution u∗ when Ω = B1. See [3, 5] for more details on this power case.

Theorem 1.2 (i) was proven by Crandall and Rabinowitz [10] and by Mignot and Puel [17], not only for
the exponential nonlinearity but also for some others. The improved result under assumption (1.5) is due to
Sanchón [19]. The proofs use the equation in (1.3) together with the stability condition (1.2) applied to

ξ := (f(u) − f(0))α or ξ := f(u)α − f(0)α (1.6)

for a well chosen positive exponent α. In Section 2, we will present the proof with all details in the case
f(u) = eu.

Note that assumption (1.5) on a convex nonlinearity f prevents f �� ≥ 0 to oscillate at infinity. Think that f
could be linear within some intervals approaching infinity, and grow exponentially in the complement of the
intervals. We will see that to establish regularity for stable solutions without the additional assumption (1.5)
on f is a much harder task.

However, the radial case Ω = B1 was settled by Cabré and Capella [5] in 2006, as we state next. Note that
the estimates apply to every nonlinearity f . This work does not use phase plane analysis, but PDE techniques
instead.

Theorem 1.3 ([5]). Let n ≥ 1 and f : ℝ → ℝ be a locally Lipschitz function. Let u ∈ H1
0(B1) be a stable radial

weak solution of (1.1). Then u is either constant, radially increasing or radially decreasing in B1. Moreover, the
following holds:
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4 | X. Cabré, Boundedness of Stable Solutions to Semilinear Elliptic Equations

(i) If n ≤ 9, then u ∈ L∞(B1) and

‖u‖L∞(B1) ≤ Cn(‖u‖L1(B1) + ‖f(u)dB1‖L1(B1)) (1.7)

for some constant Cn depending only on n, where dB1 = dist( ⋅ , ∂B1).
(ii) If n = 10, then |u(|x|)| ≤ C|log|x|| in B1 for some constant C.
(iii) If n ≥ 11, then

!!!!u(|x|)
!!!! ≤ C|x|

− n
2+√n−1+2!!!!log|x|

!!!!
1
2

in B1 for some constant C.

In this result, the assumption that the weak solution belongs to H1
0(B1) is needed; see [12, Example 3.2.1]

for this statement. The proof of the theorem will be given in Section 3, but later in this introduction we will
comment on it.

From the theorem, and by working with the stable classical solutions u = uλ of (1.3), it is easy to bound
the right-hand side of (1.7) uniformly in λ, assuming λ > λ∗/2 and (1.4) on the nonlinearity. Indeed, one first
multiplies (1.3) by the first Dirichlet eigenfunction φ1 of the Laplacian. We obtain

λ1 ∫
Ω

uφ1 dx = λ∫
Ω

f(u)φ1 dx.

Using now the superlinearity of f at infinity, we deduce a bound for ∫Ω f(u)φ1 dx uniform in λ > λ∗/2. From
this, multiplying (1.3) by the solution w of −∆w = 1 in Ω with zero Dirichlet boundary values, and controlling
w by φ1, we finally bound ‖u‖L1(Ω) uniformly as λ ↑ λ∗. Therefore, since the classical solutions u = uλ are
radially decreasing by themoving planesmethod, from the previous theoremwe deduce the following result.

Corollary 1.4 ([5]). Assume that f satisfies (1.4) and that Ω = B1. Let u∗ be the extremal solution of (1.3).
If 1 ≤ n ≤ 9, then u∗ ∈ L∞(B1).

We turn now to the nonradial case. We present the currently known estimates that hold for all nonlinearities.
These estimates coincide with the available ones for convex nonlinearities satisfying (1.4) – nothing better
is known in this case. An a priori L∞ estimate is known only up to dimension 4.

Theorem 1.5. (i) ([4]) Let f be any smooth function satisfying f ≥ 0 inℝ and let Ω ⊂ ℝn be a smooth bounded
domain. Assume that 2 ≤ n ≤ 4 and let u be a stable classical solution of (1.1). Then, for any compact set
K ⊂ Ω, we have

‖u‖L∞(Ω) ≤ C(Ω, K, ‖u‖L1(Ω), ‖∇u‖L4(Ω\K)), (1.8)

where C is a constant depending only on the quantities within the parentheses.
(ii) ([4, 18, 20]) Let f satisfy (1.4), let Ω ⊂ ℝn be a smooth bounded domain and let 1 ≤ n ≤ 4. If n ∈ {3, 4},

assume either that f is a convex nonlinearity or that Ω is a convex domain. If u∗ is the extremal solution
of (1.3), then u∗ ∈ L∞(Ω).

Note that part (ii) of this theorem does not require assumption (1.5) on f .
In dimensions 2 and 3, and for convex nonlinearities, part (ii) was proved by Nedev [18] in 2000. We

will briefly describe its proof in Section 2. Ten years later, Cabré established the first result in dimension 4
in [4]. Note that part (i) holds for all nonnegative nonlinearities and that the L4 norm of ∇u is computed in
an arbitrarily small neighborhood of the boundary ∂Ω. As a consequence, we will see that the estimate leads
easily to the boundedness of the extremal solution in convex domains. This is part of the statement in (ii).

In part (ii), for 3 ≤ n ≤ 4, the paper [4] requires Ω to be convex, while f does not need to be convex. Some
years later, Villegas [20] succeeded to use both [4] and [18], when n = 4, to remove the requirement that Ω is
convex by further assuming that f is convex.

Open Problem 1.6. For convexnonlinearities satisfying (1.4), the boundedness of the extremal solution u∗ or
the existence of an a priori L∞ bound for stable classical solutions is still unknown in dimensions 5 ≤ n ≤ 9.
This is the case even for convex domains which are symmetric with respect to each coordinate hyperplane
{xi = 0}. It is only known, by Theorem 1.3, in balls.
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X. Cabré, Boundedness of Stable Solutions to Semilinear Elliptic Equations | 5

Let us explain where the convexity of Ω comes into play in Theorem 1.5, and raise an open problem in
this direction. As we showed after Theorem 1.3, for a solution u of (1.1) and for nonlinearities f which are
superlinear at infinity, one can give a bound for ‖u‖L1(Ω) depending only on f and Ω. Therefore, estimate (1.8)
in Theorem 1.5 reduces the L∞ bound for a stable solution u to a bound for u in a sufficiently small neighbor-
hood Ω \ K of the boundary. In this case, we need an L4 estimate for ∇u in Ω \ K. Thus, the question is now
whether there are boundary estimates for stable positive solutions of semilinear elliptic problems. This turns
out to be true in convex domains (and here the stability of the solution is not needed) since themoving planes
method gives a cone ofmonotonicity for u at all points close enough to ∂Ω. Such a cone ofmonotonicity gives
automatically an L∞ control for u near ∂Ω in terms of ‖u‖L1(Ω\K), a quantity that, as ‖u‖L1(Ω), is under control.
See [4, 12] for more details.

In dimension 2, Chen and Li [9] extended this boundary estimate to general domains – they removed the
convexity assumption on the domain after doing a Kelvin transform at boundary points. One only needs to
assume that f ≥ 0; see [4, 9] for more details. However, in dimensions n ≥ 3 boundary estimates for stable
solutions remain open.

Open Problem 1.7. Are there a priori boundary estimates (for instance L∞ bounds in a neighborhood of the
boundary) for stable classical solutions in nonconvex domains Ω ofℝn, n ≥ 3, for all nonnegative nonlinear-
ities f or at least for a large class of them? It would be desirable that the control is in terms of ‖u‖L1(Ω).

In this respect, Nedev’s estimate (2.1) presentedbelow is a global integral bound–and thus also abound-
ary integral bound. In Section 4, it will be used to control, when n ≤ 4, the “boundary quantity” ‖∇u‖L4(Ω\K)
in (1.8).

Let us finally comment on the proofs. Recall (1.6): for Theorem 1.2 the key point is to use a power of f as the
test function ξ in the stability condition (1.2). Instead, for Theorems 1.3 and 1.5 we will use other type of test
functions. The proofs start bywriting the stability condition (1.2) for the test function ξ = cη, where η|∂Ω ≡ 0.
Integrating by parts, we easily deduce that

∫
Ω

(∆c + f �(u)c)cη2 dx ≤ ∫
Ω

c2|∇η|2 dx. (1.9)

Next, a key point is to choose a function c satisfying an appropriate equation for the linearized operator
∆ + f �(u). In the radial case the choice of c and the final choice of ξ are

c = ur and ξ = urr(r−α − (
1
2)

−α
)
+
,

where r = |x|, α > 0 and ξ is later truncated arbitrarily near the origin to make it Lipschitz. Note that, differ-
entiating urr + (n − 1)r−1ur + f(u) = 0 with respect to r, we get

(∆ + f �(u))ur = (n − 1)ur
r2
. (1.10)

This way of proceeding was motivated by the study of stable minimal cones in the theory of minimal
surfaces, where one takes c = |A| (the norm of the second fundamental form of the cone), and then later
ξ = cr−α (properly truncated), where r is the distance to the vertex of the cone.

For the estimate up to dimension 4 in the nonradial case, as in Theorem 1.5, we will take

c = |∇u| and ξ = |∇u|φ(u), (1.11)

where, in dimension n = 4, the function φ will be chosen depending on the solution u itself – thus not
depending only on f as in Theorem 1.2. A simple computation (see Section 4) shows that

(∆ + f �(u))|∇u| = 1
|∇u| (

|∇T |∇u||2 + |A|2|∇u|2) in Ω ∩ {|∇u| > 0}, (1.12)

where |A|2 = |A(x)|2 is the squared norm of the second fundamental form of the level set of u passing through
a given x ∈ Ω ∩ {|∇u| > 0}, i.e., the sum of the squares of the principal curvatures of the level set. On the other
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6 | X. Cabré, Boundedness of Stable Solutions to Semilinear Elliptic Equations

hand, ∇T denotes the tangential gradient to the level set. Thus, (1.12) involves geometrical information of
the level sets of u. As we will see in Section 4, the choice of the function φ = φ(t) in (1.11) will depend on
certain integrals on the level set {u = t}.

The next crucial point in dimensions n ≤ 4 is the use of theMichael–Simon and Allard Sobolev inequality
(Proposition 4.2 below) in every regular level set of u. This is a remarkable Sobolev inequality on general
hypersurfaces of ℝn that involves their mean curvature but has a best constant that is independent of the
hypersurface – it depends only on the dimension n.

1.2 Other Nonlinear Elliptic Problems

The previous questions have been studied also for semilinear elliptic problems involving other opera-
tors. For the p-Laplace operator and f(u) = eu, minimal and extremal solutions of (1.3) were studied by
García-Azorero, Peral and Puel [14, 15]. They established the boundedness of the extremal solution when
n < p + 4p/(p − 1), and showed that this condition is optimal. Under hypotheses (1.4) and (1.5), Theorem1.2
has been extended to the p-Laplace case by Sanchón [19]. The radial case in Theorem 1.3 has been extended
by Capella, Sanchón and Cabré [7].

Other works treat the case of the bilaplacian, the mean curvature operator for graphs, the fractional
Laplacian, boundary reaction problems (this is related with fractional diffusion), and elliptic systems.
Optimal L∞ bounds are still unknown for many of these problems, in particular for the fractional Laplacian.

Finally, the semilinear equation−∆u = λf(u)has also been studied for nonlinearities f : [0, 1) → ℝwhich
blow up at u = 1. This is connected with micro-electro-mechanical devices (MEMS); see the monograph [13].

For more information and references in all these problems, see Dupaigne’s monograph [12] – mainly
Chapter 8.

2 The Exponential Nonlinearity. Nedev’s Result
The proof of Theorem1.2 uses the stability conditionwith the test function ξ being essentially a power of f(u).
Let us give all details of the proof in the case of the exponential nonlinearity.

Proof of Theorem 1.2 (i) when f(u) = eu. Let u be a stable solution of (1.3) with f(u) = eu. Take λ ∈ (0, λ∗) so
that u is a classical solution, and ξ = eαu − 1 in the stability condition (1.2). We deduce

∫
Ω

λeu(eαu − 1)2 dx ≤ ∫
Ω

α2e2αu|∇u|2 dx =
α
2 ∫
Ω

∇(e2αu − 1) ⋅ ∇u dx

=
α
2 ∫
Ω

(e2αu − 1)(−∆u) dx =
α
2 ∫
Ω

λeu(e2αu − 1) dx,

where we have used that u solves problem (1.3). From the first and last integrals in these inequalities, we
deduce that

(1 −
α
2)∫

Ω

e(1+2α)u dx ≤ 2∫
Ω

e(1+α)u dx.

Taking any α < 2 and using the Hölder inequality, we can bound ∫Ω e
(1+2α)u dx by a constant depending

only on α and |Ω|. Denoting p := 1 + 2α, we conclude that λeu ∈ Lp(Ω) for every p < 5, with an a priori bound
independent of λ. Thus −∆u is in Lp(Ω), and hence u is controlled in W2,p(Ω) uniformly in λ. If n ≤ 9, the
exponent p can be chosen such that n2 < p < 5, and therefore we deduce a uniform L∞(Ω) bound for u by the
Sobolev embedding.

Nedev extended the previous argument to give an L∞ bound in dimensions 2 and 3 for all convex nonlin-
earities satisfying (1.4). His proof uses the stability condition with ξ = f(u) − f(0), and also tests the equation
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X. Cabré, Boundedness of Stable Solutions to Semilinear Elliptic Equations | 7

in (1.3) by multiplying it by g(u) := ∫u0 f
�(t)2 dt. After some clever bounds on several nonlinearities which

come up in the argument (see [12, 18]), he deduces the a priori bound

∫
Ω

f �(u)f(u) dx ≤ C. (2.1)

Next, since f is convex, we have −∆(f(u) − f(0)) ≤ f �(u)(−∆u) = λf �(u)f(u). Thus 0 ≤ f(u) − f(0) ≤ v, where v
is the solution of −∆v = λf �(u)f(u) with zero Dirichlet boundary values. From (2.1) we deduce that v, and
hence also f(u) − f(0), belong to Lp(Ω) for all p < n/(n − 2). We conclude that u is bounded inW2,p(Ω) for all
p < n/(n − 2). This gives an L∞ estimate in dimensions 2 and 3.

An alternative proof of Nedev’s bound (2.1) was recently found by Sanchón, Spruck and Cabré [8].

3 The Radial Case
We give here the main ideas in the proof of Theorem 1.3 concerning the radial case. See [5, 12] for the proof
with all details. As stated in the theorem, the proof requires u ∈ H1

0(B1), a condition which is needed by
[12, Example 3.2.1]. Instead, the equation may be assumed to hold only in B1 \ {0} since the test functions
in the following argument can be cut off near the origin.

We use the stability in the form (1.9) with c = ur, together with the linearized equation (1.10), to obtain

(n − 1) ∫
B1

u2r
η2

r2
dx ≤ ∫

B1

u2r |∇η|2 dx. (3.1)

Choose now η = r(r−α − (12 )
−α)+, after being cut off near the origin tomake it Lipschitz. In the following, how-

ever, we do not give all the details of the cut-off argument, which are standard. We deduce

(n − 1) ∫
B1

u2r (r−α − (
1
2)

−α
)
2

+
dx ≤ ∫

B1

u2r
!!!!!!!
∇(r(r−α − (

1
2)

−α
)
+
)
!!!!!!!

2
dx.

The most singular term near the origin on the right-hand side is (α − 1)2 ∫Ω u
2
r r−2α dx. The same integral

appears as the most singular term on the left-hand side, but with constant n − 1 in front. After a simple inter-
polation argument, we deduce that

∫
B1/2 u

2
r r−2α dx ≤ Cα,n ∫

B1/2 u
2
r rn−1 dx (3.2)

if (α − 1)2 < n − 1. That is, we need to take α such that

1 ≤ α < 1 + √n − 1. (3.3)

Since u is radial, it is not difficult to see that the integral on the right-hand side of (3.2) can be bounded
by the right-hand side of (1.7).With this at hand, the bound in (3.2), valid for the above range of exponents α,
leads to an L∞ estimate for u whenever n ≤ 9. To see this we just notice that, for 0 < s ≤ 1

2 , we have

!!!!!!u(s) − u(
1
2)

!!!!!! =
!!!!!!!

1
2

∫
s

−ur dr
!!!!!!!
≤

1
2

∫
s

|ur|r−α+
n−1
2 rα−

n−1
2 dr

≤ Cn( ∫
B1/2 u

2
r r−2α dx)

1
2
(

1
2

∫
s

r2α+1−n dr)
1
2

(3.4)

by Cauchy–Schwarz.
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8 | X. Cabré, Boundedness of Stable Solutions to Semilinear Elliptic Equations

The last integral in (3.4) is finite with s = 0 if we take 2α + 1 − n > −1, i.e.,

n − 4
2 < α − 1.

Since n ≤ 9, we have (n − 4)/2 < √n − 1 and we can choose α satisfying this last condition as well as (3.3).
The pointwise estimates in dimensions n ≥ 10 stated in Theorem1.3 also follow from (3.2), used together

with (3.4). These pointwise bounds give Lq integrability results for H1
0 stable radial solutions with a range

of exponents q depending only on the dimension n ≥ 10. The range turns out to be optimal, as it is checked
with the explicit radial solutions r−2/(p−1) − 1 (see [5]).

4 Dimensions n ≤ 4
In this section, we give most of the details of the proof of Theorem 1.5; see [4, 12] for all details. The key
estimate is the following theorem.

Theorem 4.1 ([4]). Let f be any smooth function and Ω ⊂ ℝn any smooth bounded domain. Assume that
2 ≤ n ≤ 4. Let u be a positive stable classical solution of (1.1). Then, for every t > 0,

‖u‖L∞(Ω) ≤ t +
C
t
|Ω|

4−n
2n ( ∫

{0<u<t}

|∇u|4 dx)
1
2
, (4.1)

where C is a universal constant (in particular, independent of f , Ω and u).

To establish this result it will be essential to apply on every regular level set of u the following remarkable
Sobolev inequality.

Proposition 4.2 (Allard; Michael and Simon; see [4, 12]). Let M ⊂ ℝm+1 be an immersed smooth m-dimen-
sional compact hypersurface without boundary. Then, for every p ∈ [1,m), there exists a constant C = C(m, p)
depending only on the dimension m and the exponent p such that, for every C∞ function v : M → ℝ,

(∫
M

|v|p∗ dV) 1
p∗

≤ C(m, p)(∫
M

(|∇v|p + |Hv|p) dV)
1
p
, (4.2)

where H is the mean curvature of M and p∗ = mp/(m − p).

Note that when M is a minimal surface and p = 1, inequality (4.2) is equivalent to a universal isoperimetric
inequality on subsets of any minimal surface.

Let us start by showing how to use Theorem 4.1 to deduce Theorem 1.5 (i), as well as Theorem 1.5 (ii) in
convex domains. After this, we will explain the proof of Theorem 1.5 (ii) for convex nonlinearities. Finally,
we will establish Theorem 4.1.

4.1 Proof of Theorem 1.5 (i), and Theorem 1.5 (ii) in Convex Domains

We use a well-known estimate for a positive solution of (1.1) (note that u is positive since we assume f ≥ 0).
We have

u ≥ cΩ(∫
Ω

f(u)dΩ dx)dΩ in Ω,

where dΩ = dist( ⋅ , ∂Ω) and cΩ is a constant depending only on Ω; see [12, Proposition A.4.2]. We deduce
that in (4.1) we have {0 < u < t} ⊂ {0 < dΩ < s}, where s = t/(cΩ‖f(u)dΩ‖L1(Ω)). Now, as explained right after
Theorem 1.3, ‖f(u)dΩ‖L1(Ω) can be bounded by below (and by above) by ‖u‖L1(Ω).

Therefore, given the compact set K in Theorem 1.5 (i), we simply need to take t small enough such that
{0 < dΩ < s} ⊂ Ω \ K. Part (i) is now proved.
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X. Cabré, Boundedness of Stable Solutions to Semilinear Elliptic Equations | 9

From part (i) we easily deduce part (ii) when Ω is convex. First, as we mentioned in the introduction,
there are a priori bounds for positive solutions (not necessarily stable) in convex domains, thanks to the
moving planes method; see [4, Proposition 3.2] or [12, Theorem 4.5.3]. For n = 2, the convexity of Ω is not
needed. We apply these boundary bounds to the minimal solutions u = uλ of (1.3) with λ < λ∗. We deduce
a bound for ‖u‖L∞({dΩ<ε}) by a constant depending only on Ω and ‖u‖L1(Ω), where ε > 0 depends only on Ω. As
a consequence, ‖f(u)‖L1({dΩ<ε}) is also under control by a constant that depends on f in addition. All bounds
are, in particular, uniform in λ.

Next, we use standard elliptic regularity theory to control

‖∇u‖L4({dΩ<ε/2})

by
‖u‖L∞({dΩ<ε}) and ‖f(u)‖L∞({dΩ<ε}).

We now use part (i) of the theorem applied with the compact set K := {dΩ ≥ ε/2}. Finally, as explained right
after Theorem 1.3, the superlinearity of f gives a bound for ‖u‖L1(Ω) which is uniform in λ > λ∗/2.

4.2 Proof of Theorem 1.5 (ii) for Convex Nonlinearities

We explain here the argument of Villegas [20] to remove the hypothesis that Ω is convex when the dimension
n = 4, at the price of assuming that f is convex and satisfies (1.4). See [20] for all details.

Weconsider theminimal solution u = uλ of (1.3)with λ < λ∗. Since f is convex,wehave f(u) − f(0) ≤ uf �(u).
Thus, Nedev’s estimate (2.1) gives a control on∫Ω(f(u) − f(0))f(u)/u dx. From this, and by limt→+∞ f(t) = +∞,
it is easy to deduce a uniform bound

∫
{u>1}

f(u)2

u
dx ≤ M. (4.3)

Taking t := ‖∇u‖L4(Ω) in Theorem 4.1, we deduce ‖u‖L∞(Ω) ≤ C‖∇u‖L4(Ω). Therefore, using that n = 4 in
the Sobolev embedding, we obtain

‖u‖L∞(Ω) ≤ C‖∇u‖L4(Ω) ≤ C‖u‖W2,2(Ω) ≤ C‖f(u)‖L2(Ω)

≤ C(f(1)2|Ω| + ∫
{u>1}

f(u)2 dx)
1
2
≤ C(1 + ∫

{u>1}

f(u)2

u
u dx)

1
2

≤ C(1 +M‖u‖L∞(Ω))
1
2 ,

where we have used (4.3). From this, we conclude a bound for ‖u‖L∞(Ω) that is uniform in λ.

4.3 Proof of Theorem 4.1

We make the choice (1.11) and, in particular, we take c = |∇u| in (1.9). It is easy to check that, in the set
{|∇u| > 0}, we have

(∆ + f �(u))|∇u| = 1
|∇u| (∑i,j

u2ij −∑
i
(∑
j
uij

uj
|∇u| )

2
).

Taking an orthonormal basis in which the last vector is the normal ∇u/|∇u| to the level set and the other
vectors are the principal directions of the level set, we easily see that the last expression coincides with the
right-hand side of (1.12). Therefore, using the stability condition (1.9), we conclude the following result of
Sternberg and Zumbrun.

Proposition 4.3 (Sternberg and Zumbrun; see [4, 12]). Let Ω be a smooth bounded domain ofℝn and let u be
a smooth positive stable solution of (1.1). Then, for every Lipschitz function η in Ω with η|∂Ω ≡ 0,

∫
{|∇u|>0}

(|∇T |∇u||2 + |A|2|∇u|2)η2 dx ≤ ∫
Ω

|∇u|2|∇η|2 dx, (4.4)
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10 | X. Cabré, Boundedness of Stable Solutions to Semilinear Elliptic Equations

where ∇T denotes the tangential or Riemannian gradient along a level set of u and

|A|2 = |A(x)|2 =
n−1
∑
l=1
κ2l ,

with κl being the principal curvatures of the level set of u passing through x for a given x ∈ Ω ∩ {|∇u| > 0}.

Note that in the radial case (4.4) reduces exactly to (3.1).
The proof of Theorem 4.1 proceeds as follows. We denote

T := max
Ω
u = ‖u‖L∞(Ω) and Γs := {x ∈ Ω : u(x) = s}

for s ∈ (0, T). By Sard’s theorem, almost every s ∈ (0, T) is a regular value of u. For these regular values, we
thus can apply Proposition 4.2 with M = Γs.

We first use Proposition 4.3 with η = φ(u), where φ is a Lipschitz function in [0, T] with φ(0) = 0. The
right-hand side of (4.4) becomes

∫
Ω

|∇u|2|∇η|2dx = ∫
Ω

|∇u|4φ�(u)2dx

=
T

∫
0

(∫
Γs

|∇u|3 dVs)φ�(s)2 ds,

by the coarea formula. Thus, (4.4) can be written as

T

∫
0

(∫
Γs

|∇u|3 dVs)φ�(s)2 ds ≥ ∫
{|∇u|>0}

(|∇T |∇u||2 + |A|2|∇u|2)φ(u)2dx

=
T

∫
0

( ∫
Γs∩{|∇u|>0}

1
|∇u| (

|∇T |∇u||2 + |A|2|∇u|2) dVs)φ(s)2 ds

=
T

∫
0

( ∫
Γs∩{|∇u|>0}

(4!!!!∇T |∇u|
1
2 !!!!
2 + (|A||∇u|

1
2 )2) dVs)φ(s)2 ds.

We conclude that
T

∫
0

h1(s)φ(s)2 ds ≤
T

∫
0

h2(s)φ�(s)2 ds (4.5)

for all Lipschitz functions φ : [0, T] → ℝ with φ(0) = 0, where

h1(s) := ∫
Γs

(4!!!!∇T |∇u|
1
2 !!!!
2 + (|A||∇u|

1
2 )2) dVs , h2(s) := ∫

Γs

|∇u|3 dVs (4.6)

for every regular value s of u.
Inequality (4.5), with h1 and h2 as defined above, will lead to our L∞ estimate of Theorem 4.1 after

choosing an appropriate test function φ in (4.5).
The rest of the proof differs in every dimension n = 2, 3, 4. But in all three cases it will be useful to denote

Bt :=
1
t2

∫
{u<t}

|∇u|4dx =
1
t2

t

∫
0

h2(s) ds, (4.7)

where t > 0 is a given positive constant as in the statement of the theorem. Note that the quantity Bt is the
main part of the right-hand side of our estimate (4.1). Let us start with the following two cases.
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Cases n = 2 and n = 3. In these dimensions we take the simple test function

φ(s) =
{
{
{

s
t

if s ≤ t,

1 if s > t.

With this choice of φ and since h1(s) ≥ ∫Γs |A|
2|∇u| dVs (see definition (4.6)), inequality (4.5) leads to

T

∫
t

∫
Γs

|A|2|∇u| dVs ds ≤
t

∫
0

h2(s)
1
t2
ds = 1

t2
∫

{u<t}

|∇u|4 dx =: Bt . (4.8)

Next, we use a well-known geometric inequality for the curve Γs (n = 2) or the surface Γs (n = 3). It also
holds in every dimension n ≥ 2 and it states

|Γs|
n−2
n−1 ≤ Cn ∫

Γs

|H| dVs , (4.9)

where H is the mean curvature of Γs, Cn is a constant depending only on n and s is a regular value of u. In
dimension n = 2 this simply follows from the Gauss–Bonnet formula. For n ≥ 3, inequality (4.9) follows from
the Michael–Simon and Allard Sobolev inequality (Proposition 4.2 above) applied with p = 1 and v ≡ 1.

We also use the classical isoperimetric inequality

V(s) := !!!!{u > s}!!!! ≤ Cn|Γs|
n
n−1 . (4.10)

Now, (4.9) and (4.10) lead to

V(s)
n−2
n ≤ Cn ∫

Γs

|H| dVs ≤ Cn(∫
Γs

|A|2|∇u| dVs)
1
2
(∫
Γs

dVs
|∇u| )

1
2

for all regular values s, by Cauchy–Schwarz and since |H| ≤ |A|. From this, we deduce

T − t =
T

∫
t

ds ≤
T

∫
t

Cn(∫
Γs

|A|2|∇u| dVs)
1
2
(V(s)

2(2−n)
n ∫

Γs

dVs
|∇u| )

1
2
ds

≤ Cn(
T

∫
t

∫
Γs

|A|2|∇u| dVs ds)
1
2
(
T

∫
t

V(s)
2(2−n)
n ∫

Γs

dVs
|∇u|

ds)
1
2

≤ CnB
1
2
t (

T

∫
t

V(s)
2(2−n)
n ∫

Γs

dVs
|∇u|

ds)
1
2
, (4.11)

where we have used (4.8) in the last inequality.
Finally, since V(s) = |{u > s}| is a nonincreasing function, it is differentiable almost everywhere and, by

the coarea formula,
−V�(s) = ∫

Γs

dVs
|∇u|

for a.e. s ∈ (0, T).

In addition, for n ≤ 3, also V(s)(4−n)/n is nonincreasing in s and thus its total variation satisfies

|Ω|
4−n
n ≥ V(t)

4−n
n = [V(s)

4−n
n ]s=ts=T

≥
T

∫
t

4 − n
n

V(s)
2(2−n)
n (−V�(s)) ds

=
4 − n
n

T

∫
t

V(s)
2(2−n)
n ∫

Γs

dVs
|∇u|

ds.
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12 | X. Cabré, Boundedness of Stable Solutions to Semilinear Elliptic Equations

This, together with the first and the last inequality in (4.11) leads to the desired inequality

T − t ≤ CnB
1
2
t |Ω|

4−n
2n

for n ≤ 3.
Note that this argument gives nothing for n ≥ 4 since the integral

T

∫
t

V(s)
2(2−n)
n (−V�(s)) ds =

V(t)

∫
0

dr
r
2(n−2)
n

in (4.11) is not convergent at s = T (i.e., r = 0) because 2(n − 2)/n ≥ 1.
We now turn to the other case.

Case n = 4. For n ≥ 4, we apply the Michael–Simon and Allard Sobolev inequality (4.2) with M = Γs,
p = 2 < m = n − 1 and v = |∇u|1/2. Note that we have |H| ≤ |A|. Recalling (4.6), we obtain

(∫
Γs

|∇u|
n−1
n−3 dVs) n−3

n−1
≤ Cnh1(s) (4.12)

for all regular values s of u. This estimate combined with (4.5) leads to

T

∫
0

(∫
Γs

|∇u|
n−1
n−3 dVs) n−3

n−1
φ(s)2 ds ≤ Cn

T

∫
0

(∫
Γs

|∇u|3 dVs)φ�(s)2 ds (4.13)

for all Lipschitz functions φ in [0, T] with φ(0) = 0. We only know how to derive an L∞ estimate for u (i.e.,
a bound on T = maxΩ u) from (4.13) when the exponent (n − 1)/(n − 3) on its left-hand side is larger than or
equal to the one on the right-hand side, i.e., 3. That is, we need (n − 1)/(n − 3) ≥ 3, which means n ≤ 4.

Therefore, by taking n = 4, then (n − 1)/(n − 3) = 3 and (4.12) becomes

h
1
3
2 ≤ Ch1 a.e. in (0, T) (when n = 4), (4.14)

where C is a universal constant.
To proceed, the idea is to choose a function φ that tries to violate the inequality (4.5), by imposing

h1φ2 = 2h2φ�2. This ODE will lead to the choice (4.16) below. The ODE will not be satisfied in all [0, T] since
we must have φ(0) = 0. For this reason, (4.5) will not be violated, but instead will lead to an estimate.

For every regular value s of u, we have 0 < h2(s) and h1(s) < ∞ (simply by their definition). This together
with (4.14) gives h1/h2 ∈ (0, +∞) a.e. in (0, T). Thus, defining

gk(s) := min(k, h1(s)h2(s)
)

for regular values s and for a positive integer k, we have that gk ∈ L∞(0, T) and

gk(s) ↗
h1(s)
h2(s)

∈ (0, +∞) as k ↑ ∞, for a.e. s ∈ (0, T). (4.15)

Since gk ∈ L∞(0, T), the function

φk(s) :=

{{{{{
{{{{{
{

s
t

if s ≤ t,

exp( 1
√2

s

∫
t

√gk(τ) dτ) if t < s ≤ T,
(4.16)

is well defined, Lipschitz in [0, T] and satisfies φk(0) = 0.
Since

h2(φ�
k)
2 = h2

1
2 gkφ

2
k ≤

1
2h1φ

2
k in (t, T),
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X. Cabré, Boundedness of Stable Solutions to Semilinear Elliptic Equations | 13

inequality (4.5) used with φ = φk leads to

T

∫
t

h1φ2
k ds ≤

2
t2

t

∫
0

h2 ds =
2
t2

∫
{u<t}

|∇u|4 dx = 2Bt . (4.17)

Recall that Bt was defined in (4.7) and that we need to establish T − t ≤ CB1/2t .
By (4.15) we have

T − t =
T

∫
t

ds = sup
k≥1

T

∫
t

4√ h2gk
h1

ds. (4.18)

Using (4.17) and Cauchy–Schwarz, we have that

T

∫
t

4√ h2gk
h1

ds =
T

∫
t

(√h1φk)( 4√
h2gk
h31

1
φk

) ds

≤ (2Bt)
1
2 (

T

∫
t

√
h2gk
h31

1
φ2
k
ds)

1
2

≤ (2Bt)
1
2 (C

T

∫
t

√gk
1
φ2
k
ds)

1
2
. (4.19)

In the last inequality we have used our crucial estimate (4.14).
Finally, we bound the integral in (4.19), using the definition (4.16) of φk, as follows:

T

∫
t

√gk
1
φ2
k
ds =

T

∫
t

√gk
1
φ2
k

φ�
k

1
√2√gkφk

ds

= √2
T

∫
t

φ�
k

φ3
k
ds =

√2
2 [φ−2

k (s)]s=ts=T

≤
√2
2 φ−2

k (t) =
√2
2 .

This bound, together with (4.18) and (4.19) finishes the proof in dimension 4.

Funding: The author is supported by MINECO grant MTM2014-52402-C3-1-P and is part of the Catalan
research group 2014 SGR 1083.
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