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Abstract

Understanding the phase behavior of active pharmaceutical ingredients is important for 

formulations of dosage forms and regulatory reasons. Nimesulide is an anti-inflammatory 

drug that is known to exhibit dimorphism. It is shown in the paper that form II is intrinsically 

monotropic in relation to form I. This result has been obtained by experimental means, 

involving high-pressure measurements. In addition, it has been shown that with very limited 

means and statistical melting data, the same conclusion can be obtained, demonstrating that in 

first instance topological high-pressure phase diagrams can be obtained without measuring 

any high-pressure data.
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1. Introduction

Nimesulide, a drug with non-steroidal anti-inflammatory (NSAID) properties, is only 

sparsely used in therapeutics, because cases of serious hepatotoxicity have been observed. Its 

molecular structure can be seen in Figure 1. The active pharmaceutical ingredient (API) has 

two known polymorphs and, for both, structural and calorimetric data are available in the 

literature. One crystal structure at 293 K had in first instance been solved by Dupont et al. in 

1995.1 The structure was later ascribed to form II. In 2011, Sanphui et al. solved the structure 

of a second polymorph and redetermined the one of form II, both at 100 K.2 The 

crystallographic data in Table 1 are in accordance with those compiled by Sanphui et al2 and 

provided for reference as the data will be used in this article.

Nimesulide polymorphism has been investigated using X-ray powder diffraction and 

DSC by Bergese et al.3 In Figure 1 of this reference,3 X-ray patterns for various nimesulide 

samples have been provided: native nimesulide (NN), supplied by Helsimm-CH, and 

polymorphic nimesulide (PN), i.e. a physical mixture of two polymorphs with a I/II 

polymorph ratio of 0.69. The two patterns have been compared to a calculated pattern (CN) 

using data from reference 1. Although no refinement of the lattice parameters was carried out 

for form II which would have provided the specific volumes of the polymorph, Bergese et al 

carried out DSC studies and reported values for the melting enthalpies of forms I and II, 

which have been compiled in Table 2 of the present paper.

A few years later, Di Martino et al. obtained the same two polymorphs as Bergese et 

al. and they demonstrated that mixtures of forms I and II obtained from ethanol consist of fine 

needles.4 They performed differential scanning calorimetry (DSC) measurements at various 

heating rates from 0.5 to 40 K min-1 of which the results appear to indicate that the melting 

temperature of form II is heating-rate dependent (although the range is rather small from 

418.9 K to the melting temperature of form I at 420.6 K), while the melting of form I occurs 

at constant temperature.4 In addition, at heating rates below 1 K min-1, it can be observed that 

the melting of form II is followed by recrystallization into form I.4 Unfortunately, no value of 

the melting enthalpy of form II was reported by the authors. Moneghini et al. obtained both 

polymorphs too and reported on it in the same year as Di Martino. Again, they only 

mentioned the melting enthalpy of form I (see Table 2).5

In 2011, Sanphui et al. obtained DSC curves from forms I and II similar to those of 

Bergese et al. for form I and to those of Di Martino et al. for form II at 5 K min-1 rate.2-4 

Sanphui et al. concluded that the two forms have an enantiotropic relationship, from data 
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indicating that form II melts at 140°C and recrystallizes into form I, which subsequently melts 

at around 147 °C.2 Because melting and recrystallization is certainly not evidence of an 

enantiotropic relationship between the two polymorphs, the dimorphism of nimesulide and its 

thermodynamic characteristics has been re-investigated. The experimental data has been 

subsequently used to construct a topological pressure-temperature phase diagram to have a 

full understanding of the polymorphic behavior of nimesulide and to avoid uncontrolled 

transformations while processing the API under increased pressure and/or temperature.

2. Materials and methods

Nimesulide was purchased from Sigma Aldrich (Madrid, Spain). A part of the sample 

was analyzed as such and another part was dissolved in various solvents yielding, after 

evaporation at room temperature, either form I (ethanol), form II (acetonitrile) or mixtures of 

the two forms (acetone).

High-resolution X-ray powder diffraction data were recorded by means of a 

horizontally mounted INEL cylindrical position-sensitive detector (CPS-120) using Debye-

Scherrer geometry (angular step ca. 0.029o 2θ over a 2θ-range from 2 to 115o) and 

monochromatic Cu Kα1 (λ =1.5406 Å) radiation (40 kV and 25 mA). The temperature of the 

sample was set by means of a liquid nitrogen 700 series Cryostream Cooler from Oxford 

Cryosystems with an accuracy of 0.1 K. Samples were placed into 0.5-mm-diameter 

Lindemann capillaries, which were rotating around their axes during data collection to reduce 

the effects of preferential orientation. Calibration was performed by cubic spline fitting of the 

diffraction pattern of the cubic phase of Na2Ca2Al2F4. The peak positions were determined 

after pseudo-Voigt fitting of the peaks. Patterns were fitted through a pattern matching 

procedure in the FullProf Suite Package.6,7

Differential scanning calorimetry (DSC) experiments were carried out on a Q100 

analyzer from TA Instruments (New Castle, DE, USA) with sample masses from 10 to 20 mg 

and heating rates from 1 up to 10 K min−1. The measurements were carried out on samples 

sealed in aluminum pans. 

A high-pressure differential thermal analyzer (HP-DTA) was used to study the melting 

behavior in the pressure range from 0 MPa to 250 MPa. The HP-DTA was an in-house 

constructed apparatus similar to that designed by Würflinger.8 Samples were sealed in 

cylindrical tin pans and to ensure that the pans did not contain any residual air, specimens 

were mixed with an inert perfluorinated liquid (Galden® from Bioblock Scientifics, Illkirch, 
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France) before sealing. HP-DTA scans were carried out with a heating rate of 2 K min-1. DSC 

runs at ordinary pressure with mixtures of nimesulide and perfluorinated liquid were carried 

out to verify that the mixture showed no interaction.

Isothermal vapor pressure measurements were conducted in the temperature range 

from 368-423 K for form I and 368-413 K for form II by means of a DVS Vacuum system 

from Surface Measurements Systems (London, United Kingdom). Measurements are carried 

out in a Knudsen cell with an orifice diameter of 241 μm, as determined by scanning electron 

microscopy.

3. Results

Lattice parameters were determined as a function of temperature by means of X-ray 

powder diffraction measurements (see Figure 2). The results confirm that the purchased 

powder was the orthorhombic form I (see Figure 2a). Evaporation of nimesulide in ethanol 

and acetone gave rise to a mixture of forms I and II, whereas evaporation of solutions in 

acetonitrile provided crystals of form II as demonstrated by the diffraction pattern in figure 

2b.

The specific volumes obtained from the X-ray powder diffraction patterns have been 

plotted as a function of temperature in Figure 3 and were both fitted with a second order 

polynomial, because a slight curvature can be observed:

vI /cm3 g-1= 0.6466 (±0.0011) + 7.3 (±0.9) ×10-6 T/K+ 1.03 (±0.17) ×10-7 T2/K2 (R2=0.999) 

(1)

vII /cm3 g-1= 0.6487 (±0.0011) + 5.8 (±0.9) ×10-6 T/K+ 1.43 (±0.17) ×10-7 T2/K2 (R2=0.999) 

(2)

DSC measurements at ordinary pressure (Figure 4) of the as-received sample confirm 

the melting process corresponding to form I (peak a1 in Figure 3). On cooling from the 

molten state, two slightly different behaviors have been observed, either the liquid crystallizes 

into form I on cooling as demonstrated by the subsequent heating, which leads to the melting 

of form I, or the liquid becomes a glass. In the latter case, subsequent heating shows the glass 

transition at ca. 292 K (inset in Figure 4), the recrystallization of the liquid into form I (peak 

b1 in Figure 3) and, finally, the melting of form I (peak b2 in Figure 4). Form II, obtained by 
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slow evaporation of acetonitrile, shows a melting peak in its DSC curve (peak c1 in Figure 4) 

concomitantly followed by recrystallization into form I (peak c2 in Figure 4) and, finally the 

melting of form I (peak c3 in Figure 4). Mean values for the melting temperatures and 

enthalpy changes related to the phase transitions have been reported in Table 2.

High-pressure thermal analysis measurements were carried out for form I as well as 

for form II. The same behavior described for DSC measurements at ordinary pressure were 

observed for the entire analyzed pressure range. The high-pressure melting temperatures of 

both forms as a function of the pressure are shown in Figure 5. The experimental melting 

pressures as a function of temperature were fitted with a linear expression leading to:

PI-L / MPa  = 3.843 (±0.036)·T /K −1623 (±16) (3)

PII-L / MPa = 4.024 (±0.073)·T /K −1692 (±33) (4)

The natural logarithm of the vapor pressure points of forms I and II as a function of 

the reciprocal of the temperature, 1000/T, have been plotted in the inset of Figure 5. As 

expected, the vapor pressure of the stable form I is lower than that of the metastable form II 

for the temperature range studied. Using the expression ln P = B −ΔsubH / RT, with R the gas 

constant (8.3145 J mol-1 K-1) and B a fitting parameter, the sublimation enthalpy, ΔsubH, can 

be obtained:

ln(PI-vap / Pa)  = 54.2 (±0.8) – 22045 (±315)·1/(T/K) (5)

ln(PII-vap / Pa) = 53.3 (±2.2) – 21644 (±356)·1/(T/K) (6)

The sublimation enthalpies can be calculated by multiplying the ΔsubH/R values of the 

equations (5) and (6) by R: Δsub,IH = 183.3 ± 2.6 kJ mol-1 (594.5 ± 8.5 J g-1) and Δsub,IIH = 

180.0 ±3.0 kJ mol-1 (584 ±10 J g-1).

It can be observed in Figure 5 that the two-phase equilibrium lines I-L and II-L 

diverge with increasing pressure and the two-phase equilibria I-vap and II-vap converge with 

increasing temperature.

4 Discussion

The temperature of the I-II transition has not been observed experimentally by 

conventional DSC; however, with the two vapor pressure expressions, the triple point, where 
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forms I and II, and the vapor are in equilibrium can be calculated. Setting equations 5 and 6 

equal to each other, leads to the triple point temperature, TI-II-V, of 446 K. With either 

expression, it can be calculated that the vapor pressure of solid nimesulide at that temperature 

would be 112 Pa. The solid-solid transition temperature is higher than the melting 

temperatures of the two solid phases leading to the conclusion that the two forms possess a 

monotropic relationship.

Although the heat of transition from form I to form II has not been obtained 

experimentally, it can be calculated with the melting enthalpies leading to ΔI→IIH = ΔI→LH − 

ΔII→LH = 8.9 J g-1, while neglecting the contributions of the specific heats in the interval of 

2.5 degrees between the two melting temperatures. Because the transition I→II is found to be 

endothermic, the Le Chatelier principle implies that the transition is favored by an increase of 

temperature; thus at the calculated transition temperature of 446 K, form I should 

spontaneously transform into form II. Using the sublimation enthalpies from eqs. 5 and 6, the 

enthalpy difference between the two solid phases can be calculated independently of the 

melting enthalpies, which leads to 10.8 J g-1 for ΔI→IIH, which is relatively close to the value 

found with the melting enthalpies.

Because the experimental P-T melting curves diverge on increasing the pressure, the 

two equilibria should cross at negative pressure. At the intersection, forms I and II and the 

liquid are in equilibrium and this is therefore the triple point I-II-L, marked by O4 in Figure 6. 

The coordinates can be calculated by setting the two equations 3 and 4 equal to each other. 

This results in TI-II-L = 381 K, PI-II-L = −158 MPa.

The equilibrium between the two solid phases I and II must pass through triple points 

I-II-V and I-II-L. Triple point I-II-V was calculated to be TI-II-V = 446 K and PI-II-V = 112 Pa. 

If the solid-solid equilibrium is approximated by a straight line, which is generally true over a 

considerable pressure and temperature range,9-12 the equation for the I-II equilibrium 

becomes:

PI-II/MPa = 2.46 T/K – 1094 (8)

It can be seen that the hierarchy of the phase equilibrium slopes follows dP/dTII-L > 

dP/dTI-L > dP/dTI-II, respectively from the eqs. 4, 3, and 8. With the position of the I-II-L 

triple point at negative pressure, the given hierarchy of the slopes leads necessarily to a 

monotropic system as can be seen in the pressure-temperature phase diagram in Figure 6. 
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Overall monotropy is the last of the four possible phase diagrams for dimorphic systems 

described by Bakhuis-Roozeboom.13 In this case, form II does not possess a stable phase 

region in the phase diagram, because it will always be metastable against form I, the liquid, 

and the vapor phase. Other examples of monotropic APIs are biclotymol,14 rimonabant,15 

triethylenetetramine hydrochloride16,17 and rotigotine.18

One could argue that this case of polymorphism was resolved because of the 

availability of vapor pressure data. This is indeed true, as experimental proof is always better 

than approximations even if they are based on thermodynamics or on statistical information. 

However, even without the vapor pressure data, the same topological phase diagram will be 

obtained, even if some of the phase equilibria will have a slightly different position. First of 

all, if the solid-solid transition temperature cannot be calculated from vapor pressure data, the 

following formula can be used, which is based on thermodynamics, although in the present 

case the heat capacity differences are neglected (because they are not known for this 

system):19

(9)TI→II =
Δ I→L H − Δ II→L H
Δ I→L H
TI→L

−
Δ II→L H
TII→L

With eq. 9 a transition temperature of 457 K is found, which is 11 degrees higher than with 

the vapor pressure curves. The deviation might be caused by the absence of the heat capacities 

in eq. 9; however, inaccuracies in the data cannot be ruled out either. The vapor pressure of 

nimesulide was calculated to be 112 Pa at the solid-solid transition temperature. Considering 

the slope of the solid-solid phase equilibrium of 2.46 MPa K-1, in terms of megapascal 112 Pa 

equals 0.000112 MPa and can therefore safely be “approximated” by 0 MPa. Often, vapor 

pressures of APIs are even smaller. Thus the I-II-V triple point (O2 in Figure 6) can be given 

as 457 K, 0 MPa. Using the I-II-L triple point obtained by high-pressure calorimetry 381 K, 

−158 MPa, the I-II equilibrium would be:

PI-II/MPa = 2.09 T/K – 953 (10)

It can be seen that this slope is somewhat more gradual than the slope in eq. 8, but the 

hierarchy of the phase equilibria dP/dTII-L > dP/dTI-L > dP/dTI-II remains the same and so does 

therefore the conclusion that form II is monotropic.
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This approach can be taken one step further, if the melting data as a function of 

pressure and temperature is replaced by an approach involving the Clapeyron equation. 

Instead of the measured curves, the slopes of the melting equilibria can be calculated using 

experimental data of the system in combination with statistical data for small organic 

molecules including APIs. As the Clapeyron equation provides the slope of an equilibrium 

with the differences in the entropy and the volumes of the two phases involved, dP/dT = 

Δs/Δv = Δh/(TΔv), these quantities need to be determined at the equilibrium temperature.

For the melting equilibrium of form I, which occurs at 422.4 K, the specific volume of 

form I, vI, equals 0.6681 cm3 g-1. It is found that for the highest melting polymorph, the 

volume change on melting is on average 11% for small molecules,20-22 which leads to a ΔI→Lv 

of 0.0735 cm3 g-1 and the liquid would have a specific volume at that point of 0.7415 cm3 g-1. 

Using the melting data obtained in this work and listed in Table 2 together with the volume 

change on melting of form I, the slope for the I-L equilibrium is found to be 3.79 MPa K-1, 

which is very close to the experimental value obtained by the high pressure DTA 

measurements of 3.84 MPa K-1. As the experimental slope is known, the calculation can also 

be inverted to calculate the volume change on melting, which leads to 0.0724 cm3 g-1. In that 

case, the volume of the liquid on melting would be vI + ΔI→Lv = vL = 0.7404 cm3 g-1 and the 

ratio vL/vI at melting becomes 1.108, i.e. virtually the same as the mean value of 1.11.

To calculate the slope of the melting equilibrium of form II, the volume of the liquid 

needs to be known at its melting point. For small molecular APIs, a mean liquid expansion 

coefficient, αL based on the equation vL(T) = v0 (1 + αLT) with v0 the volume of the liquid at 

the intercept T = 0 K, has been found to be 1.25 × 10-3 K-1.20,21 With this value for the 

expansion coefficient, the specific volume of the liquid as a function of temperature can be 

written as vL(T) = 0.4846 (1 + 1.25 × 10-3 T), using the known specific volume of the melt at 

the melting point of form I. The specific volume of the melt at TII-L = 419.8 K becomes 

0.7389 cm3 g-1. For the specific volume of form II at the same temperature, one obtains 

0.6763 cm3g-1, which leads to the change in specific volume, ΔII→Lv, of 0.0625cm3 g-1. With 

the Clapeyron equation, this leads to the slope for the melting equilibrium of form II of 

dP/dTII-L = 4.14 MPa K-1 (close to the experimental slope of 4.024 MPa K-1).

This result demonstrates that even relying entirely on extrapolated and statistical data, 

the same type of phase diagram will be found, making it possible to draw conclusions on the 

stability of solid forms and produce relevant topological phase diagrams for formulation 

decisions in the pharmaceutical industry just using standard laboratory equipment and without 
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having to resort to pressure measurements, either in the form of high pressure or in the form 

of vapor pressure.

5 Conclusions

Pressure and temperature dependence of melting and sublimation curves have been obtained 

for nimesulide forms I and II. It can be unambiguously concluded that form II is overall 

monotropic in relation to form I. The phase diagram belongs to the fourth case of four 

possible types of phase diagrams listed by Bakhuis-Roozeboom for systems with crystalline 

dimorphism.13,23 Although the other cases were based on examples known to him, for the 

phase diagram of overall monotropy, he did not provide an existing example. As mentioned 

above, the APIs biclotymol, rotigotine, rimonabant, and triethylenetetramine hydrochloride 

were recently found to be overall monotropic dimorphic systems.14-16,18 In addition, the 

organic molecules 2,2-dichloropropane and tetrachloromethane were found to exhibit overall 

monotropy.24,25
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Figure Captions

Figure 1. Chemical structure of nimesulide or 4-nitro-2-phenoxymethanesulfonanilide, 

C13H12N2O5S, M = 308.31 g mol-1.

Figure 2. Experimental (points) and fitted (lines) diffraction patterns along with the 

calculated Bragg peak positions (vertical bars) for (a) the orthorhombic form I and (b) the 

monoclinic form II of nimesulide.

Figure 3. Specific volume as a function of temperature for form I (solid circles) and form II 

(open circles). Literature data reported in Table 1 for each form are shown (solid and open 

squares for forms I and II, respectively).

Figure 4. Differential scanning calorimetry curves obtained by heating for form I (black line), 

after cooling from the liquid phase (dashed red line) and for form II (blue dotted line) 

obtained from recrystallization in acetonitrile.

Figure 5. Experimental melting pressures of forms I (solid black circles) and II (open blue 

circles) as a function of temperature. Inset: Experimental vapor pressures (in logarithmic 

scale) for forms I and II (symbols as indicated above) as a function of the reciprocal 

temperature 1000/T.
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Figure 6. Topological pressure–temperature phase diagram of the stability hierarchy of the 

nimesulide polymorphs I and II. The lines represent two-phase equilibria, solid lines: stable, 

broken lines: metastable, dashed-dotted lines: supermetastable. Solid circle marked by O1: the 

stable triple point I-L-V, open circles: metastable triple points with O2: I-II-V, O3: II-L-V, and 

O4: I-II-L.

Tables Captions

Table 1. Single crystal data of form I and form II of nimesulide

Table 2. Calorimetric data for the two known polymorphs of nimesulide















Table 2. Calorimetric data for the two known polymorphs of nimesulide

Form I Form II Reference

Tfus(onset)/K ΔfusH/ J g-1 Tfus(onset)/K ΔfusH / J g-1

421.6a 107.63 419.5a 105.97 3

420.65b - 418.95b - 4

422.35 121.1 420.5 - 5

417.73 105.87 413.85 86.73c 2

422.4 ± 1.0 117.5 ± 5.2 419.8 ± 1.0 108.6 ± 3.3 This workd

a DSC heating rate 3 K min-1

b DSC heating rate 0.5 K min-1

c value obtained by summing the enthalpies of a complex melting process including a 

broad peak with an enthalpy of 1.58 kJ mol-1 preceding a larger peak with an enthalpy 

of 25.16 kJ mol-1.
d Form I mean over 12 measurements, form II mean over 10 measurements



Table 1. Single crystal data of form I and form II of nimesulide2

form Ia form IIb form IIc

System Orthorhombic Monoclinic Monoclinic

Space group /Z Pca21 /8 C2/c /8 C2/c /8

 T /K 100(2) 100(2) 293 (2)

a/Å 16.1268 (19) 33.231 (2) 33.657 (3)

b/Å 5.0411 (6) 5.0720 (4) 5.1305 (3)

c/Å 32.761 (4) 15.8736 (12) 16.0816 (10)

β/° 90 92.712 (2) 92.368 (8)

V/Å3 2663.4 (5) 2672.46 2774.5 (3)

Dcalc/g cm−3 1.538 1.533 1.476

v/cm3 g-1 0.6502 0.6523 0.6775

R1 [I > 2 σ(I)] 0.0654 0.0341 0.0401

Diffractometer CCD-CAD-4 CCD-CAD-4 AED four circle
a Reference for the CIF of form I in the Cambridge Structural Database (CSD): 

WINWUL01
b CSD reference for the CIF: WINWUL02
c CSD reference for the CIF: WINWUL


