-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by UPCommons. Portal del coneixement obert de la UPC

Accelerating Hash-Based Query Processing Oper ations
on FPGAs by a Hash Table Caching Technique

Behzad Salai?, Oriol Arcas-Abelh!, Nehir Sonme!, Osman Und4, and
Adrian Crista Kestelman'?3

1Barcelona Supercomputing Center (BS&)niversitat Polytecnica de Catalunya (UPC),
311A- Artificial Intelligence Research Institute- Spigh National Research Council
{behzad.salami, oriol.arcas, nehir.sonmez, osmaaluadrian.cristal}@bsc.es

Abstract. Extracting valuable information from the rapidlyoging field of
Big Data faces serious performance constraints,cedpein the software-
based database management systems (DBMS). In a grewmgssing system,
hash-based computational primitives such as thie jo&ts and the group-by are
the most time-consuming operations, as they fretiyyaped to access the hash
table on the high-latency off-chip memories and ais traverse whole the
table. Subsequently, the hash collision is an ieissue related to the hash
tables, which can adversely degrade the overdibpeance.

In order to alleviate this problem, in this pape® present a novel pure
hardware-based hash engine, implemented on the FRGdrder to mitigate
the high memory access latencies and also to festetve the hash collisions,
we follow a novel design point. It is based on d@agtthe hash table entries in
the fast on-chip Block-RAMs of FPGA. Faster accedeethe correspondent
hash table entries from the cache can lead to proirad overall performance.
We evaluated the proposed approach by running baséd table join and
group-by operations of 5 TPC-H benchmark querié® fesults show 2.9X —
4.4X speedups over the cache-less FPGA-basedmseli

1 Introduction

In the era of Internet of Things (IOT) and Big Dafast query processing is a
crucial requirement of the modern DBMS. In an afieno move the computation
closer to the storage, many previous studies hawokell into accelerating database
operations in the hardware platforms. Examples uitel employing vector
architectures [9], ASICs [18], GPUs [10], or hybiib]. Other approaches either
used FPGAs statically [15], [8], [3], [17], [26], roleveraged dynamic
reconfigurability characteristic of FPGAs to betliérthe requirements of the queries
[6], [13]. The industry has also invested in pradusuch as IBM Netezza [2] and
Teradata Kickfire [14].

The hash-based operations, i.e. hash join and g¢vgupre the most time-
consuming operations of databases query procesgstgms. Previous studies have
demonstrated that these operations account for thare40% of total execution time
while running queries from the TPC-H benchmark [9].
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The hash join operation combines two data taBlasd T together with a common
key. The algorithm consists ©f a build phase to construct a hash table usingotive
of the tableS, andii) a probe phase, where all keys in the tabde looked into the
hash table to find whole the possible matches. I8ityj the group-by operation
groups the rows of a given table based on commaresaf thekey column, which
can also be implemented using hash tables. The mmaire that can degrade the
performance of a hash engine is the hash collisidvch is the situation of mapping
two distinct keys into the same hash index. Byglesind in practice, these cases are
inevitable for database applications and need thaelled appropriately. Among the
possible solutions, software fallback mechanismg [dr rehashing [7] can cause
additional latencies that reduce the performanca. te other hand, collision
resolution in the hardware implies chaining the hhéable entries that can also
undermine the hash table performance, especiatlgrunDR memory latencies.

Due to the scarcity of on-chip BRAM resources ttainot guarantee to locate the
entire hash table, previous FPGA implementationss@ned building the hash table
in the off-chip DDR memory [17], [20]. Alternativgelin this work we propose a hash
table caching technique, exploiting the on-chip BRAof FPGAs to mitigate the
memory latencies. Also, our design resolves hadlisioms without reverting to
software fallbacks. For the evaluations, we runhthsh join and group-by operations
of 5 queries of the TPC-H benchmark suite and destnate up to 4.4X performance
speedups, compared to a hardware baseline that mmeg&mploy any caching
technique. The hardware baseline is an improvediarerof Ibex [17]. Despite Ibex
that uses software fallbacks to resolve the haBisions, in our baseline, we follow a
pure hardware-based pointer chasing method.

In a nutshell, trading off the size and the laten€ywn/off-chip memories, wé)
can support large datasets using a hash tableetb@athe off-chip memory, an()
avoid the high memory latencies by utilizing theanp BRAMs of FPGAs as the
hash table cache. The contributions of this paperbe summarized as below:

* We propose a hash table caching mechanism thateatfiy exploits the
on-chip BRAMs of FPGA to serve some of the hashetaiquiries. This
method can be significantly faster than the corieeat way to retrieve
the hash table entries from the off-chip memories.

* We investigate the proposed technique for the hased operations of
query processing systems, i.e. hash join and gbguptash collisions are
resolved purely in the hardware, which taking adage of the hash table
caching method. We design the proposed methodveydging Bluespec,
a high-level synthesis (HLS) tool. The design ipliemented on a Virtex
7 FPGA development board (VC709). We achieved up.4X speedup,
compared to the hardware baseline.

The rest of the paper is organized as follows: i8e@ includes the background
information, as well as an illustration of the hatsiole caching technique. The
proposed architecture is elaborated in Sectione8ti® 4 introduces the evaluation
methodology. Section 5 includes discussions themxntal results. In Section 6 we
review related work and finally, Section 7 conclsidlee paper.



2 Background

Conventionally, data can be organized in eitheucstired or unstructured
management systems. Although, the proposed ha$h ¢abhing technique can be
customized in both the systems, our focus will lpetloe relational DBMS, as a
common type of structured data management systems.

In an RDBMS, data is organized into tables usimgoalel of vertical columns and
horizontal rows. The rows represent entries indatabase and columns define the
data types. Data in the tables are formed as aopdiey, value), wherekey points to
one of the columns that play the main role in therg analysis such as sort key, hash
join key, etc. Other columns are merged intovdlee. In order to access the data into
the tables, query languages such as Scripting Quanguage (SQL) have been
introduced. In a typical SQL query, several languajements such &8ELECT,
GROUPBY, ORDERBY, etc, can exist. These operations can be semantically
mapped to specialized hardware accelerators sufiheaisg, aggregation, hash join,
sorting, etc. The hash-based operations, i.e. juistand group-by are considered in
this work because they are the most time-consuBiIS operations.

2.1 Hash Join Background

One common type of join operation is the equijoirbgoin. It means combining
rows from two or more tables with a common celle ftash-based join or hash join is
the most common type of table join algorithms.

The objective in the hash join is to reduce thedeapace using a hash function
over the common cell, dey. It consists of build and probe phases. In thédplhase,
the hash table is constructed using the input té®leln this phase, for each tuple
(ks, v5) @ hash index is calculated using a hash funaiwh correspondingly, a hash
table entry is created in that given index of tashtable. In the probe phase, the hash
table is being scanned in the hash index. The sporgding hash index is generated
by the hash function applied on the each inputet@p}, v;) of data tableT). If any
match is found the resulting 3-tuplé, {5, vy) is output, wherek = kg = k.
Otherwise, it means that the current input tuplesdeot exist in the hash table and it
is skipped. It is worth noting that as the hashletatbnstruction is more costly
operation than the probing of the hash table, thallsr input table is used in the
build phase (S| < [T]).

2.2 Group-by Background

Group-by is another query processing operationdhatbe implemented using the
hash tables, as well. It is usually used in corjoncwith an aggregation function to
produce the aggregation of the rows in the samapgroalled group-by aggregation
[24]. For a given tabl& with rows (g, v51) and ks,, vs,), the group-by and group-
by aggregation operations will produce tuples wittk,vg,,vs,) and
(k,aggrFunc(vgy,vs,)) fields, respectively(k = kg; = kg;). The aggregation
function can beSUM, AVERAGE, MAX, COUNT, etc. It is worth noting that



constructing the hash table &ey consists of adding the grouped data into the hash
table. Another word, data in the hash table arsadly grouped.

2.3 Caoallision in the Hash-Based Operationsincluding Hash Join and Group-by

In practice, in the hash-based query processingatipas an ideal hash function to
generate a unique hash index for every input dapéetscarcely exist. Thus hash
collisions inevitably happen, particularly for DBM&pplications, and need to be
appropriately handled. In order to resolve thisiégssvarious mechanisms on FPGAs
are proposed. Software fallback mechanisms [17]iti#e the hardware design.
However, it may cause additional latencies dudécttansfer time between the FPGA
and the software. Rehashing [7] is another methddch could also cause extra
overheads due to additional rehashing costs. Owttier hand, supporting collision
management in the hardware implies chaining tha tetde entries. It means that the
next address to be jumped to can only be deternafted the previous line is read.
Under DDR latencies it can adversely diminish therall performance.

2.4 lllustrating the Hash Table Caching

The data/instruction caching is a widely used o@tion mechanism to cover the
speed gap between the storage and the processempdaper is motivated by the fact
that caching can also be employed to improve théopeance of the hash-based
operations of the query processing systems. Aadare know, this is the first work
to design a hash join/group-by engine equipped avitAching mechanism.

For convenience, we illustrate the proposed teclmigsing an example in the
probe phase of the hash join operation to show Hoes this operation can take
advantage of the hash table caching techniquedateetables that include the input
dataset for probing, the hash table, and the ctstdrthe cache are shown in Fig 1.c,
1.d, and 1.e, respectively. The hash table andecach already filled in the build
phase. The cache has the corresponding hash indeaaky k1 andk3.

Step | Cycle| Operation Ste Cycle  Operation k0 i0
0 0 lookupHT i0 0 0 lookupC i0 K1 i1
1 1 lookupHT il 1 1 lookupC i1, respC i0, missC 2 | 2
lookupHT i0 e | o
2 2 lookupHT i2 2 2 lookupC i2, respC i1, hitC, wofaf
k1 (c) Dataset
3 3 lookupHT i0 3 3 lookupC i0, respC 2, missCio | k0 | pO
lookupHT i2 i1 | ki -
4 35 respHT i0, match kO 4 4 respC, missC, lookugHT po| k3 | -
5 36 respHT i1, match k1 5 31 respHT i0, match kO (d) Hash Table
6 37 respHT i2, mismatch k2 6 32 respHT i2, misim&2
7 38 respHT i3, collision k3| 7 33 respHT 0, collision k3, Iookup:I1 Ll
lookupHT p0 po PO k3
8 69 respHT i0, match k3 8 34 respC i0, hitC, match k3 (e) Cache

(@) (b)
Fig. 1: An example hash probe, baseline (a) vs. cacheEkample dataset (c), the
content of hash table (d) and the cache (e).



The dataset that needs to be probed in the hakhisabhown in Fig 1c, with four
keys and their corresponding hash indexes. The balision requires scanning a
pointer chain fromO to p0. As it can be seen in this table, there is a lca#ifsion for
kO andk3, both having the same hash ind@xThere are totally two directly matched
key, one matched key after a collision, and onematshed key.

In this example, the latency of the cache in thecloip BRAM and the hash table
in the off-chip DDR are assumed to be 1 and 30esyalespectively. The cycle-by-
cycle execution of the cache-less baseline andechabed hash probe are depicted in
Fig 1.a, and 1.b, respectively. Several terms aeel to describe the example clearer:
lookup (to send read request for the hash table —HT @rctithe -C)resp (to get
response from the hash table —HT or the cacheg(ry;)match (to show that an input
key is (mis-)matched from the hash table or from tlache)collison (to show a
detected hash collision), ahi@/miss (to show a cache hit/miss).

As described in Fig. 1a, in the baseline executidinthe accesses are served from
the hash table in DDRdokupHT). The responses arrive 30 cycles latesgHT). In
contrast, as it can be seen in Fig. 1b, in thee&ased version, all the inquiries are
being looked up from the cache, firtdgkupC). The successful requests (cache hit-
respC) are being processed in the probe engine, andirtkeccessful (missed) ones
are being forwarded to the hash talbb®KupHT). Serving some of the requests from
the cache reduces the total cycles to probe thmgeadataset from 69 to 34.

In this example, we showed both the cache hit aisd stenarios, to demonstrate
the efficiency of the hit requests against the bgad of missed cache inquiries.
However, in the real datasets other events sucla ahain of colliding keys,
redundancy chaining, the irregular latency of DORe complexity of the write
requests in the build phase, etc., may appear.

3 TheOverall Architecture of the Proposed Engine

The overall layout of the proposed acceleratoh®as in Fig. 2. The connection
of FPGA with the host and the off-chip DDR-3 isabgh the high-speed PCI-3 and
DDR-3 interfaces, respectively. The host initiadiZeDR-3 with the input data tables.
DDR-3 memory locates the hash table, as well. FA&Aomprised of several
components:i) device drivers to manage the off-chip data trangi¢ a central
controller to manage the computations and data meweés,iii) the accelerator engine
(hash join and group by), and) finally, the on-chip Block RAMs, which are
configured as the cache of the hash table.

FPGA

[ Hash Join/Groupby Englne]

5 3
e [=]
pcia || £ |28 oor3
Host N s S || eBPS -

S Central <

o Controller > Data Tables
PostgreSQL sceps|| S g

a =] Hash Table

on-chip Block RAMs (cache)
- e

Fig. 2: The overall layout of the accelerator including 5169 GA, and DDR-3.




The detailed structure of the accelerator is showirig. 3. Its overall architecture
is comprised of several componenty: a (Linear Feedback Shift Register) LFSR-
based hash function: It generates the hash index of the inkayt in a fully pipelined
fashion. The generated hash indexes are used asdée of the corresponding hash
table/cache entriegii) The logic of the accelerator, i.e. hash join build, hash join
probe, and group-by: As a part of their functionality, the hash cobiss of the
colliding keys are resolved by chained togethea ilinked list fashion. The similar
method is used to organize the repetitive keysénhash tabldiii) The hash table in
the off-chip DDR-3: In order to efficiently support pointer chasing the
aforementioned special cases, we partitioned tish hable into two distinct parts.
The first half part of the hash table can be diyeittdexed by the hash function in
normal cases. The second half part, which is exduilom the range of the hash
function, is used for only the chains of the emstridhis part of the memory is
consecutively being access€ds) A cache of the hash table in the on-chip BRAMS:
The entries of the cache are exact copies of sdritfeechash table entries. The hash
table inquiries will be served from the cache. Gthly missed requests from the cache
will be forwarded to the hash table.

In order to support the aforementioned featuresh esmtry of the cache/hash table
has several fields, including:

« valid bit to show the validity of the entry.

» key field to store the input dateys.

» valuefield to store thevalue of the input data.

* pointer. that is used to resolve the hash collisions byirgjathe index of an

allocated hash table entry, following the pointeaioing mechanism.

* pointer, that is used to manage the repetitive keys irhdsh table. Similar to
the hash collision, it uses the pointer chainingmaaism. The exception is the
group-by aggregation, where instead of storing keglf, we compute an
aggregation of the keys. Thus, there is no needpfinter chasing in this
particular case.

» cachetag field to discard false positives in the cache.

Consequently, having any successful inquiries ftoencache correspond to skip of
the hash table accesses in the off-chip DDR-3 mgmdan addition, similar to Ibex
[17], we use a Content Addressable Memory (CAM)rémove read-after-write
hazards.

FPGA DDR
L & BRAM (Data & Hash Table)
Leoe J [hputtables | ° Computing the hash index using a fully pipelined hash
A\ i=hash_f ) ° (K.v) (S&T) function.
o ash FunctionJ«—{770 T Vo @ The generated index is used to access the cache.
Cache_Read_F
L . sl The response from the cache determines the next
Ogic O cameﬁemjzc ° BRAM k2 T v2 ° appropriate action, separately for Build and Probe phases
¥ T [P 5T
g Cached Hash Table| = If the cache access is failed, we forward the missed request
1- Build Cq"l“"l-"l""‘e-]‘g o to the DDR
L - o[k vi] * | a
(JOIN) [] wolwol =3 o For any pointer chasing, to resolve collision/redundant keys
§ situations, we issue the new request to the cache first
. . 3 I
2- Probe aofk2]v2] halsh hlable ° Loading any valid hash table entry from DDR, we need to
(JOIN) ®1) update the cache, as well (direct-mapped cache policy)
V2] * In the build phase, to construct the hash table, we require a
1 HastTaio_Reas £ ofwi[va] * 1« :| @ write accesses to the DDR RAM
+—>( 111 [#> =
3- e = 3 As we have a single-port DDR in our platform, we use arbiters
GroupBy [Hesfe ! () 51 EN | ] © 1 order the concurrent requests to the hash table, and the
o . ¢ cache, as well
\ ) ° (®2) ° Pointer chasing technique to resolve the hash collisions and
| redundant keys, in the cache and the hash table

Fig. 3: The detailed architecture of the proposed enffiash table caching).



3.1 Hash Join: Build Phase- Constructing the Hash Table

In order to insert a newk(, v;) pair into the hash table, first, a hash index ois
generated by the hash function. This index poiotthé corresponding index in the
hash table/cache. We use an LFSR-based hash furotigenerate pseudo-random
hash indexes. Later on, the content of the corredipg entry of the cache is
retrieved. Due to the retrieved entfj) if it is not valid or is an undesirable (false
positive) entry, a cache miss occurs. The falséipessituations of the cache can be
recognized by checking the cache tag. In thesetiins, we forward the same
inquiry to the hash table. Qfij) if the cache hits, or we get the correspondingyent
from the hash table, three different cases canroccu

e If the retrieved entry is not valid, a new entry &lded to the
corresponding index of both the hash table andaalcbe.

« If the accessed entry is valid, with the satgeit needs to allocate a new
entry and appropriately update the pointer fields,manage repetitive
keys in a linked-list fashion. Accordingly, the hasble and cache are
updated.

« If the accessed entry is valid, but with a difféar&g, a hash collision
occurs. Similar to the case of repetitive keys,ea hash table entry is
allocated. Both the new and old entries are updietdde cache and the
hash table, to preserve the linked-list behaviallowing this chaining
method, nested hash collision can be resolvedgis w

Our engine can deal with an unlimited number ohhadlisions/repetitive keys, as
long as the hash table is not full.

3.2 Hash Join: Probe Phase- Scanning the Hash Table

In order to scan the hash table, first, we compléehash index for the nei.
Later on, retrieving the corresponding index frdme tache(i) if it is not a valid
entry or is not the desired entry (false positithls, a cache miss occurs. Therefore,
the same inquiry is forwarded to the hash tabled,Aii) if the cache hits or the
response from the hash table arrives, three casesacur:

« If keys do not match and there is no valid collspinter, field in the
retrieved entry, there is no entry in the hashetalthiich matches witky.

e If keys do not match, but there is a valid collisiainter, field in the
retrieved entry, a hash collision occurs. Therefose first scan the
subsequent hash table entries, retrieving them fracache, first. This
process may lead to a mismatch, if and only if ratam can be found
until the end of the chain. Nevertheless, at anwytpof the chain, it is
possible to find a match.

» If keys match, their combination will produce agtion row. This match
can be found directly, or after a pointer chasingcpss. Accordingly, all
the v¢ in the chain must orderly be read to generate tipdes$ of the
junction table, k, vg, vy) thatk = kg = k.

In the probe phase, the cache is updated by edih response from the hash
table.



3.3 Group-By Aggregation: Constructing a Hash Table to Group Data

Group-by operation intrinsically is similar to thmiild phase of the hash join
operation, as data in the hash table are alreanlypgd based on tHey field. The
main difference is thafi) usually in the SQL queries the group-by operati®n
accompanied by an aggregation function, such ShiM, MAX, COUNT,
AVERAGE, etc. Consequently, instead of storikey itself in the hash table, an
aggregation of thi&ey needs to be stored, without any necessity fortpoithasing to
manage the repetitive key$i) As the number of groups is usually quite smalhant
the size of the input dataset, there are oftenszeseto the same hash table entries.
This can significantly take advantage of the haablet caching technique, as the
repetitive accesses can be served from the cache.

In order to perform a group-by operation, simila@ps to the hash join build phase
are followed, except the step 2, where the irkgytis matched with an entry in the
hash table/cache. In this particular case, we parfbe aggregation on twalue field
and skip allocation a new hash table entry to stoe&ey field.

3.4 Policies of the Cache

Various accessing methods to the cache and iterdiff Read/Write policies can
impact the performance. The cache policies in thegsed technique are as below:

e Cache Contents. The cache contains a number of the recently aedess
valid entries of the hash table. Each cache estani exact copy of the
corresponding entry in the hash table.

»  Cache Replacement Policy: The hash table in the off-chip DDR memory
is significantly larger than the cache. Thus, alaepment policy is
required to substitute the new with the old entdéhe cache. We use a
direct-mapped policy, where all the valid retrievaries from the hash
table are overwritten into the cache.

e Cache access policy: For all the required hash table entries, first,l@ak
up the cache. Any cache hit leads to skipping tB¥REB accesses, but in
contrast, the missed requests need to be forwamdioe hash table. In
order to discard false positives, the cache hasduditional field, the
cachetag.

e Cache Indexing: We use the Least-Significant Bits (LSB) of the thas
table index as the cache index. The Most-Signifidaits (MSB) are
stored as theache tag field.

4 EXPERIMENTAL METHODOLOGY

We used Xilinx ISE version 14.1 and Bluespec Systamlog compiler [1] in the
development phase. Bluespec is a commonly-use@-&gdurate modern HLS tool,
desired for control-oriented designs such as hash Pur system was designed to
work at 200 MHz on a VC709 development board witirsex-7 FPGA and a 4 GB



DDR-3 memory channel. Our device has about 50 MBichip BRAMSs that are
employed as the cache. The PCI-3 controller works130 Mhz. Thus, the
synchronizing FIFOs are exploited to exchange datang different clock domains
properly. We have made all our modules fully parsin&ble. We validated the
experimental result by checking with the softwdPestgreSQL [22]) runs of the same
DBMS operations.kgy, value) pairs are 64 bits, each of which is 32-bits.

4.1 Hardwar e and Softwar e Comparison Baselines

In the hardware baseline, only DDR-3 RAM is exmditto store the hash table,
without any caching mechanism. Many FPGA implemigmta follow the similar
design point. For instance, recently Ibex [15] iegented that uses the DDR-3 to
locate the hash table but unlike our baselinealis fback software for the hash
collisions. Thus, our hardware baseline is effitierache-less, and pure hardware
FPGA-based implementation of the corresponding atjmers, i.e. the hash join and
the group-by.

The second comparison case is a state-of-the-aftivese-based DBMS
(PostgreSQL) that is running in the warm cachepsetua server with 64 GB RAM
and a Xeon E5-2630 CPU. PostgreSQL does not suppdti-threading. Thus, we
use the single-thread execution times of the qsdadethe comparisons. In order to
get the warm execution time, we run PostgreSQL d¢amsecutive times. The second
run is supposed to be from its internal buffersgrghdata tables are already located
into the system memory. There are no disk I/Osaations in the warm cache mode
of the software runs.

It is worth noting that the execution model in Hudtware baseline is different with
the FPGA-based solutions, including the proposechedased method and the
hardware baseline. We follow a dataflow executiondei in the FPGA-based
accelerators, which allows deep pipelining and dataaming capabilities to achieve
the peak performance. In contrast, PostgreSQL aum¢he scalar processor with a
control-flow execution model, which suffers frora tonventional implications.

4.2. The Structure of the Benchmarks

In order to evaluate the proposed engine, we rset @f complex queries from the
TPC-H benchmark suite [23]. Specifically, we setecQ03, Q04, Q12, Q13, and
Q14, because they have different table sizes asul d@ifferent join selectivity (the
size of the output data table divided by Cartegieoduct of the two input tables).
However, as the given queries are composed of aewdner operations, such as
sorting, aggregation, etc., we made a sub-quemxtmact only their hash join and
group-by part.

Furthermore, some of the queries such as Q03 ampazed of multiple hash-
based operations. For these cases, we extractatiffesub-queries for each hash
join/group-by operation, run them separately, aatitheir distinct execution times.
Later on, in order to compute the total executiaretof the given query, we sum up
all those separate parts.



Table. 1. The general format of the sub-queries used itémehmarks.

hash join | group-by
SELECT vo V7 SELECT __ SUM (v
FROM S, T FROM S
WHERE ke = kr GROUPBY ke

The general format of the generated subqueridsoisrs in Table. 1, separately for
the hash join and the group-by operations. We asdumo data tableS andT with
data tuplegks, vs) and(k, vy), respectivelyln addition, we used various sizes of data
tables in the experiments, including 1GB and 10G&es. We repeat the query runs
10 times. The reported total execution time of egiglen query is the average of the
execution times of its various runs.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the proposed cacheebasgine for the hash join and
group-by operations. Due to the size of the eatty efithe cache and also the size of
the available BRAMs in our device, the cache capecwith about 256K entries.
Thus, in 1GB scale, we observed that BRAMs coulitelg store the corresponding
hash tables without any need for accessing thetoff-DDR memory. Followingly,
in 1GB scale, we exploited the on-chip BRAMs as ltheh table (not as the cache).
In contrast, for 10GB scale, as the sizes of halsles are larger than the BRAMs, we
follow the proposed hash table caching technique.

5.1 Analyzing the Hash Table Caching

Table. 2 includes the experimental results for 1058Ble. In this tableable size
refers to the number of the rows (key-value paifsthe input data tables. The total
number of the collisions is also shown in this table. Another importantapaeter is
the number of lookups for the cache and for the hash table, as well.Hithmtio (H.R)
of the cache that is an important metric to deteerthe performance achievement
can be computed as the equation. 1:

_ #cach_lookup — #ht_lookup

k= t#cache_lookup @

For convenience, we describe a sample result ofeT&bprobe phase of Q03. For
this particular case, we observed thabtally 44.2M cache read requests are issued;
32.1M read requests of the original dataset antiM 2additional requests (37.6% of
the table size) for pointer chasing cases that 8odlthem are as the result of hash
collisions and the rest 3.7M as the result of riépetkeys. Furthermorei) 33.4% of
cache read requests are successfully served frematthe and the rest are forwarded
to the hash table. Thus, theRis 33.4%.



Table 2: The experimental results of hash table cachidzB scale.

tablesize | #cache lookup | #ht_lookup | Collision H.R

Query | Operation (M) (M) (M) (M) (%)
Build 1.4 1.7 1.49 0.3 12.3
Probe 32.1 44.2 294 8.4 33.4
Q03 Groupby 0.3 0.35 0.05 0.02 85
Build 0.56 0.69 0.56 0.13 18.8
Probe 37.2 57.1 41.2 13.2 27.8
Q04 Groupby 0.52 0.52 ~0 0 100
Build 0.3 0.35 0.3 0.05 14.2
Probe 15 16.2 15 1.2 7.8
Q12 Groupby 0.31 0.31 ~0 0 100
Build 15 1.8 1.56 0.3 13.3
Probe 14.8 19.5 11.9 2.6 38.9
Q13 Groupby 15 15 ~0 0 100
Build 0.7 0.78 0.7 0.08 10.2
Q14 Probe 2 2.2 2 0.2 9

The experimental results show that thé&R is on average 34.75%. It ranges from
7.8% to 100%. More specifically, about the hash ases, we observed that:

e The averagdl.R in the build phase of the given queries is 13.7%i ts
significantly less that the total averafeR (34.75%). For all of the
studied queries, the hash jokay in the build phase is a primary (no
repetitive) key. Thus, the cache is not efficientljyized as a consequence
of the less data locality in the hash table acsgdsethis case.

« Probe keys of Q12 and Q14 are the primary keyswels Thus, we
observed lesHl.R for these queries compared to others (8.4% v8%2)%.

* Input data tables in the probe phase are significdarger than in the
build phase, on average 30X. Thus, although, tish lteble construction
in the build phase is a more expensive operatian,observed that the
execution time of the probe phase is dominant.

Although, the cache misses incur additional ovetheathe substantial
improvement of the cache hits, in terms of mitiggtihe latency of the memory,
covers its side effects and leads to better pedoo® compared to the cache-less
hardware baseline.

In addition, most of the studied queries, except,@te composed of a group-by
aggregation operation. For instance, in 10GB sofl©03, 300K tuples are grouped
into about 100K individual groups, or 520K tuplés@04 are grouped into only 5
groups. The experimental results in Table. 2 shwat theH.R of the cache for the
gueries with a small number of the groups is 10@#ich is the consequence of the
small enough hash tables that can be entirely dolcit the cache. In addition, in the
group-by aggregation operation, each hash tableécaatry points to an individual
group. Thus, repetitive keys that are located §ame group are also served from the
same indexes of the hash table/cache. This situdtimds to a high hit ratio of the
cache.
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Fig. 4: The overall performance, comparing the proposegine with a cache-less hardware and also

software baselines for (left) 1GB and (right) 10 &fles.

5.2 The Overall Performance Analysis

The total execution time of the studied querieshiswn in Fig. 4. It includes the
execution time ofi) the BRAMs-based design, where BRAMs are eithed asethe
main hash table in 1GB scale or as the cache irB16¢ale,(ii) cache-less FPGA-
based hardware baseline, giig the software baseline.

For 1GB scale we achieved on average 4.6X and 1&6@X for 10GB scale the
speedup is on average 3X and 9.7X, comparing pezpbash join engine against
hardware and software baselines, respectively. Mpeeifically, we observed that:

* For 1GB scale that we could run all the studiedchemarks by exploiting
BRAMs as the hash table, the speedup ranges fromt@®X.5X,
comparing proposed architecture to the hardwarelinas

» For the cache-based version in 10GB scale, thedspemnges from 1.2X
(Q14) to 4.4X (Q04). In Q14, thd.R of the cache is 9.6% on average,
while it is 45.9% on average for the other queriEse main reason oh
lessH.R in Q14 is that it has no group-by operation, whive cache
efficiently works.

Furthermore, comparing the proposed hash join engithe software baseline, the
achieved throughput improvement is mainly the cqosece of the inherent
capability of FPGA to perform dataflow executionardeep pipelined fashion. As it
can be seen, even baseline hardware version ivenage 4X faster than software.
However, additional optimizations in the proposeabth table caching mechanism
substantially increase the speed up. We observedenage 14.3X speed up.

5.3 The Resour ce Utilization

The hardware resource usage of the baseline aqpbged cache-based engines are
shown in Table. 3. We observed that although, tilzation rates of the Look-Up
Table (LUT) and Flip-Flop (FF) are almost similar both versions, the usage of
BRAMs is significantly different. Entirely 62% ofvailable BRAMs are used as the
cache that can deal with about 256K entries.




Table. 3: Hardware Resource Utilization Rates

LUT | FF | BRAM
Baseline 128581 (1%) 150123 (2%) 12 (19%)
Cache-based 16368 (1.5%) 163854 (2%) 724 (62%)

6 RELATED WORK

Our design can be seen as a combination of thedhgine [17] and the hardware
hash table chaining approach [8] with the main Gbation of caching. For joining
tables, hash joins are the most commonly used appr¢l9]. However, many
examples of other types of table joins exist suzlthe merge join algorithm [3], the
handshake join [16], etc.

Multithreading the build and probe phase enginegehshown to offer direct
performance benefits [7], [12]. Multithreading caffectively mitigate the DDR
access latencies, with the overhead of needing M@rbandwidth and the additional
circuit to manage the concurrent threads. Howethés, technique can be integrated
with the proposed hash table caching mechanisimsmpgper to achieve a significant
throughput.

In [3], the authors design an FPGA prototype that perform a parallel sort-
merge join, making use of a sort tree as a preséquin this work, we implement a
hash join that can be inherently faster, as weatgarform any initial sorting step on
the input data tables.

In Widx [12], an out of order SPARC v9 processorecis powered with a small
core to accelerate the hash join operation withexnevalkers that walk multiple
buckets, concurrently. This technique improves xmg performance of the TPC-H
queries by 3.1X on average, while saves on ave8ageof energy. Widx is similar to
our approach, as it also aims to reduce the ovdshebthe pointer chasing (walking).
However, Widx is a hardware-software codesign fodbws a different approach
with the proposed hash table caching method inpler, which is entirely deployed
in the hardware.

LINQits [4] accelerates a domain-specific queryglamge called LINQ and is
prototyped on a Zynq processor. It compares quen&s hardware accelerator
templates and for the hash join case, keeps thie tadde in a sparse key table. It
keeps the collided hash keys in the Spill QueueeeQrading its current partition is
finished, it re-circulates the content of the Sgilleue (and its partition) until all the
elements have been processed. Our proposed teehisigesigned not to require any
Spill Queue or rehashing.

Finally, the proposed design could also be usedthmy with the recent research
on key-value stores [5], [11], [20]. Key-value sisrare kind of unstructured (non-
relational) databases, where the hash table is Kiegi comprising component. The
proposed hash table caching mechanism can be aastbio improve the throughput
of the key-value stores, as well.



7 CONCLUSIONS

In this paper, we have demonstrated the design nbwel cache-based query
processing operations, i.e. hash join and groumbyFPGAs. Our contributions
include hash table caching in the hardware andifiegf collision, without reverting
any software fallbacks. We showed the usefulneseeoproposed hash table caching
technique to process relevant hash join and grqukgenels in the TPC-H queries,
with a maximum of 4.2X speedup over a pipelinecebas. Our experimental results
show that we are enabled to b@thuse the full capacity of the DDR memory to store
complete hash tables, and by employing a “hasle tedathe”(ii) to mitigate the long
and irregular latencies of DDR memories, exploitthg fast BRAM resources of
FPGA, which in turn significantly improves the pmrhance of the hash join and
group-by operations.
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