
1 
 

 

Equal Channel Angular Pressing of a TWIP steel: 

Microstructure and mechanical response. 

 

 

 

L. WANG1,2,⃰, J. A. BENITO2,3, J. CALVO2 and J. M. CABRERA2 

 

1School of Materials Science and Engineering, Xian Petroleum University, Xian, 

710065, China; 

2 Department of Materials Science and Metallurgical Engineering, ETSEIB, 

Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; 

3 Department of Materials Science and Metallurgical Engineering, EUETIB, 

Universitat Politècnica de Catalunya, Comte d'Urgell 187, 08036 Barcelona, Spain; 

 

josep.a.benito@upc.edu ; jessica.calvo@upc.edu ; jose.maria.cabrera@upc.edu  

 

 

 

 

 

 

 

 

 

 

⃰ Corresponding author 

E-mail address: richard0723@163.com 

Tel. Phone: (34)-688180372 

Materials Science Department, Pavelló E. ETSEIB 

Av. Diagonal, 647. 08028 Barcelona. 

Spain 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87655036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:josep.a.benito@upc.edu
mailto:Jessica.calvo@upc.edu
mailto:jose.maria.cabrera@upc.edu


2 
 

Abstract 

A Fe-20.1Mn-1.23Si-1.72Al-0.5C TWIP steel with ultra-fine grain structure was 

successfully processed through Equal Channel Angular Pressing (ECAP) at warm 

temperature up to four passes following the BC route. The microstructure evolution 

was characterized by Electron Back Scattered Diffraction (EBSD) to obtain the grain 

maps, which revealed an obvious reduction of grain size, as well as a decrease of the 

twin fraction, with increasing number of ECAP passes. The texture evolution during 

ECAP was analyzed by Orientation Distribution Function (ODF). The results show 

that the annealed material presents Brass (B) as dominant component. After ECAP, 

the one pass sample presents A1
* and A2

* as the strongest components, while the two 

passes and four passes samples change gradually toward BB /  components. TEM 

analysis shows that all samples present twins. The twin thickness is reduced with 

increasing the number of ECAP passes. Nano-twins, as a result of secondary twinning, 

are also observed in the one and two passes samples. In the four passes sample the 

microstructure is extensively refined by the joint action of ultra-fine subgrains, grains 

and twins. The mechanical behavior was studied by tensile samples and it was found 

that the yield strength and the ultimate tensile strength are significantly enhanced at 

increasing number of ECAP passes. Although the ductility and strain hardening 

capability are reduced with ECAP process, the present TWIP steel shows significant 

uniform deformation periods with positive work-hardening rates. 
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1 Introduction 

High-manganese austenitic TWIP (Twinning-Induced Plasticity) steels exhibit an 

exceptional combination of high strength and outstanding ductility [1-3]. This optimal 

combination is especially attractive for automotive components such as structural and 

stabilizing parts. The increase in strength enables a reduction of the mass of the car 

body-in-white, and the increase in ductility admits complex component design. 

These steels, when deformed at room temperature, exhibit twinning as a characteristic 

mechanism of plastic deformation. The main parameter which controls the 

deformation mechanisms is the stacking fault energy (SFE) of the austenitic matrix 

[2-3]. The magnitude of SFE controls the ease of cross-slip and twining mechanism 

[4]. TWIP steels have intermediate SFE (15-40 mJ/m2) at room temperature due to 

their high content of manganese [5]. When deformation is applied, twinning generates 

a substructure in the microstructure where twin boundaries act by hindering the 

movement of dislocations and improving the strain hardening rate. This mechanism is 

also known as dynamic Hall-Petch effect or TWIP effect and it results in a retardation 

of localized deformation (necking) [6-7]. 

However, to some extent, the shortcoming of low yield strength of TWIP steels limits 

their wider application [8]. Grain refinement is considered a suitable way to 

strengthen the material, i.e. increase the yield strength, without changing the chemical 

composition and, therefore, maintaining the SFE value within the appropriate range 

[9-18]. In addition, other methods to increase the yield strength of TWIP steels have 

been investigated: pre-deformation [19,20], recovery annealing [21,22,23] as well as 
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the careful control of the hot and cold rolling schedules, which is the typical 

production route.  

Numerous researchers point out that the range of grain size which can be generated 

based on grain refinement is 1-25 μm [9-12]. Within this range of grain sizes, the 

deformation mechanisms which are active for these steels are twinning combined with 

dislocation glide. However, there is still discussion about the effect of a further 

reduction in the grain size on the deformation mechanisms and mechanical properties. 

A possible way to further reduce the grain size to the sub-micron scale is Severe 

Plastic Deformation (SPD), and this approach is promising for microstructure control 

of TWIP steels. So far, only a few researches have focused on SPD of high-Mn TWIP 

steels [13-17]. Matoso [13] and Abramova [14] conducted high-pressure torsion (HPT) 

on different TWIP steels separately and both found significant improvements on 

hardness. On the other side, Matoso [13] indicated that strain hardening is lost after 

SPD due to exhaustion of twinning during the deformation. Equal Channel Angular 

Pressing (ECAP) is another suitable way of SPD to strengthen the material. This 

method is suitable to apply a significant amount of strain without reducing the cross 

sectional area of the workpiece. Given the relatively high strength of TWIP steels, the 

ECAP deformation has been usually performed at relatively elevated temperatures 

[15]. Timokhina [16] has performed ECAP on a FeMnC TWIP steel at different 

temperatures, and described characteristics of the microstructure related to the 

morphology of twins and dislocations. Haase et al. [17] conducted four passes of 

ECAP on a FeMnCAl TWIP steel, and showed the refinement of the microstructure 
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and related it to the corresponding texture evolution and to the enhancement of the 

tensile strength with limited ductility. In addition, they also evaluated the effect of 

annealing on such properties.  

In the present research, ECAP was applied to a similar composition of TWIP steel 

(FeMnCAl series) at a moderate temperature, i.e. 300°C, for four passes, and the 

ultrafine-grained microstructure was analyzed by two techniques: Electron 

Backscatter Diffraction (EBSD) and transmission electron microscopy (TEM). The 

microstructure was finally correlated to the mechanical properties evaluated by tensile 

tests. 

 

2 Experimental procedure 

The chemical composition of the investigated steel is given in Table 1. The value of 

the stacking fault energy, calculated using the formula which appears in references 

[5,24], is also included in the table. The material was supplied as a hot-rolled plate of 

15 mm in thickness from which cylindrical specimens of 8 mm in diameter and 60 

mm in length were extracted. These specimens were treated at 1200°C for 1 hour, in 

order to remove inhomogeneities and minimize segregation, followed by water 

quenching to room temperature. 

The cylindrical samples were subjected to severe plastic deformation by the ECAP 

technique at 300°C to a maximum equivalent strain of 4 approximately (i.e. 4 passes). 

The corresponding processing route was BC (sample rotation of 90° along its 

longitudinal axis in the same direction after each pass [25]). The ECAP die was 
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manufactured with a tool steel, and the insert was made of two channels intersecting 

at an internal angle Ф=90°, with an outer arc of curvature φ=37° (see Fig. 1). 

According to Iwahashi’s relationship, these angles promote approximately a true 

strain of 1 per pass [26]. The extrusion rate was 0.002m/s, and molybdenum disulfide 

was used as a lubricant. 

Micro-tensile specimens, with the dimensions specified in Figure 2, were machined 

from the middle of the longitudinal section of the samples processed by ECAP. 

Tensile testing was carried out using a Micro-test DEBEN machine at a cross head 

speed of 3.3×10-3 mm/s (quasi-static loading conditions). The fracture surfaces were 

examined under scanning electron microscope with a Field Emission Gun JEOL 

JSM-7001F (FE-SEM) operated at 20 kV. Some representative high resolution 

fracture graphs were taken for discussion. 

The EBSD analyses were carried out with the same FE-SEM described above and 

were used by the characterization of microstructure and texture. The measures were 

performed on the transverse plane of the sample processed by ECAP (xy plane, see 

Fig. 1). The axis reference system xyz is also illustrated in Figure 1, indicating the 

extrusion direction “x” (ED), the normal direction “y” (ND) and the transverse 

direction “z” (TD). The samples were cut from the center of the ECAP specimens and 

then grinded and polished using diamond paste and a final stage with 0.02 μm 

colloidal silica solution. Different scan step sizes were used: 3 μm for the annealed 

condition, 0.2 μm for the samples with 1 ECAP pass, 0.05 μm for the samples with 2 

ECAP passes and 0.03 μm for the samples with 4 passes. The indexation rate was 
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above 95% for initial condition sample and was maintained at 70% for the samples 

after ECAP procedure. They were post-processed utilizing the HKL Channel 5 

software. The grain boundaries were identified as high angle boundaries in which 

misorientation was above 15º, while sub-grain boundaries were low angle boundaries 

with a misorientation between 2º and 15º. For the twin boundaries a specific 

misorientation of 60º over the <111> axis was taken. The grain size for all the ECAP 

stages was determined from the detected grains by the software. In order to identify 

how dislocation density changes with the ECAP process, a calculation of the 

dislocation density has been performed according to the model of He et al [27] which 

obtain such values from conventional EBSD misorientation data. Dislocations are 

two-dimensional defects causing a relative displacement of the crystalline lattice. 

Through EBSD, components of dislocation vectors can be obtained and then 

dislocation density can be quantified [27]. These calculations has been done with the 

purpose of observed the general trend of the dislocation formation, understanding that 

the obtained values are approximate and better accuracy can be obtained by other 

known techniques. 

A study by transmission electron microscopy for the investigation of the twin 

morphology, the formation of subgrains as well as the evolution of the dislocation 

arrangement in the deformed samples was also carried out. The specimens were 

analyzed in a Philips C2100 microscope operating at 200 kV. The samples for TEM 

observation were firstly mechanically polished and then thinned by twin-jet 

electropolishing in an electrolyte solution of 95 vol% glacial acetic acid and 5% 
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perchloric acid at room temperature.  

 

3 Results 

 

3.1 Mechanical properties 

The micro-tensile test results of the annealed TWIP steels as well as the samples 

processed by ECAP are shown in Figure 3 and Table 2. It is apparent that the yield 

strength (YS) and the ultimate tensile strength (UTS) increase with increasing number 

of ECAP passes. It is worth mentioning that the YS increment is stronger than the 

corresponding UTS increment. Similar behaviors have been reported in the literature 

[9,16-17]. It is also evident that the total elongation and ductility of the samples is 

reduced after each ECAP pass, although the values can be considered high, especially 

in terms of the reduction of area. In general, the elongation values are similar or larger 

than the ones reported for some conventional deep drawing steels, such as FeP04, Z St 

E 180 BH, high strength IF (HS) and Q St E 500 TM [28].  

In order to get a better understanding of the ductility of the material, an analysis of the 

fracture surface was carried out. The images obtained are illustrated in Figure 4 and 

they correlate well with the results of elongation and reduction in area reported in 

Table 2. The fracture surface changes from a typical ductile appearance for the 

annealed material (nucleation and growth of large dimples and voids) to very small 

voids showing no coalescence. The sample corresponding to one ECAP pass in Figure 

4b displays a mixed behavior between the high ductility of the annealed sample 

(Figure 4a) and the limited ductility of the 4 passes ECAP sample (Figure 4d). It is 
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also worth mentioning that the fracture surface of samples processed by ECAP does 

not display cleavage facets indicating that ductility mechanisms are still present, 

despite the limited strain hardening underwent by the material after ECAP processing. 

Although a limited dislocation motion is expected due to the microstructural 

refinement, the twinning mechanism could be promoting some ductility, as evidenced 

by the very small size of the voids and dimples observed in the samples processed by 

ECAP, especially those of 2 and 4 passes.  

 

3.2 Microstructure characterization 

3.2.1 EBSD analysis 

Figure 5 illustrates the microstructure of the initial condition, i.e. annealed sample. It 

reveals that in this state the material exhibits a quite homogeneous microstructure 

composed of equiaxed grains with an average grain size of 69.2 μm, when taking twin 

boundaries into account, and 99 μm when twins are not considered. The nature of 

grain boundaries indicate that almost no subgrains (plotted in green) are noticed and 

several annealing twins are present. 

Figure 6 and Table 3 report the important features of the microstructures after 1, 2 and 

4 passes. After the first pass the grains appear elongated in the shear direction and in 

some areas very fine equiaxed grains are noticed. In some of the elongated grains a 

large quantity of low-angle grain boundaries have been generated during the ECAP 

process, in other regions mechanical twins are visible (see Fig. 6b), but there are still 

some areas for which the density of subgrains or twins are still low. Even though the 
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grain size is heterogeneous, the grain size of the new grains formed after 1 ECAP pass 

is 4.1 ± 2µm. After 2 ECAP passes the average grain size is further reduced. Although 

the microstructure is still quite heterogeneous, there is an increase of new ultrafine 

grains whereas the presence of large elongated grains vanishes in a clearly refined 

microstructure (Fig. 6c). At the look of Fig. 6d, it appears that the presence of 

mechanical twins has been reduced. However, it must be taken into account that at the 

step sizes used in the EBSD analysis and the lower indexing rate in the more 

deformed samples many fine mechanical twins are not visible by this technique. 

Consequently, it is not possible to calculate with accuracy the present fraction of twins. 

By contrast, a sharp increment of low angle grain boundaries can be observed, which 

entails a large reduction of elongated grains with a low density of defects in the form 

of dislocations cells or twins. Finally, after 4 passes all the material appears severely 

deformed. Few elongated grains are noticed since they have been fragmented and in 

many areas a large amount of ultrafine grains together with some twinning activity is 

observed (Figure 6e). The microstructure has been more refined and is hard to detect 

areas without a large concentration of defects, namely mainly subgrain boundaries. As 

for the two passes sample, the presence of twin boundaries detected by EBSD seems 

to be low. However, as explained above, it must be taken into account that the fine 

mechanical twins produced in this stage are missed during the EBSD analysis. It is 

also important to point out that the amount of low angle grain boundaries is still high, 

although, as shown in Table 3, the high angle grain boundaries are now predominant. 

That means that further ECAP passes would be able to promote larger amount of high 
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angle grain boundaries, and therefore, larger strengths could be expected. 

Table 4 illustrates the approximate values of dislocation density before and after 

ECAP procedure. As it was expected, there is a large increase of dislocation density 

after the first ECAP pass. In low SFE materials, cross slip of dislocations is more 

difficult, so that dislocation movement is restricted. Therefore, pile-up and 

proliferation of dislocations takes place, increasing drastically their density. A large 

increment in the dislocation density is also noticed after the second pass, and this 

coincides well with the aspect of the microstructures in Fig. 6, in which a large 

refinement takes place between the first and second ECAP pass. From this second 

pass a further refining of the microstructure is produced at four passes, but clearly at a 

slower rate due to the large deformation already applied to the material (Fig. 6c and 

6e). Consequently, the calculated dislocation density has a lower but significant 

increase, showing a deceleration trend in the rate of dislocation formation. 

 

3.2.2 Texture analysis 

In this paper, the texture of the initial material was analyzed in triclinic symmetry, 

which refers to a 360° rotation through the transversal direction (TD) of the ECAP die. 

Figure 7 shows the ODFs for the current TWIP steel in the initial condition before the 

ECAP process. It can be observed that the material presents monoclinic symmetry, 

that is, a repetitive behavior of the texture each ϕ1=180°. The analysis of the ODF 

shows that a large number of grains are oriented close to Brass orientations, such as 

{110}<112>. This texture component is usually found in hot rolled FCC metals [29] 
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and it has also been described for low SFE metals in the as-rolled condition [30]. For 

the specific case of TWIP steels, the evolution of Brass-type rolling texture has also 

been intensively studied [31-33]. In this case, after the last annealing step and the 

increase of annealing twins, the presence of Goss and β-fiber texture components 

have practically disappeared and the brass texture components have been reinforced. 

It should be noted that in low-SFE materials, twinning has a certain degree of 

influence on texture evolution, that is, a transition from Copper to Brass-type texture 

[34,35]. 

The texture evolution of the present TWIP steel during the ECAP process was also 

analyzed in triclinic symmetry (0°<ϕ1<360°) and the ideal orientations of deformation 

by simple shear were defined according to the ones suggested by Beyerlein et al. [36]. 

The texture evolution of the TWIP steel deformed by 1, 2 and 4 ECAP passes and the 

ideal position for texture components for FCC materials deformed by simple shear are 

shown in Figure 8. Monoclinic symmetry can be observed in all cases, since the 

components are symmetrical every 180° and the intensities of the BB / and A/Ā texture 

components are almost identical. The existence of monoclinic symmetry after 2 and 4 

ECAP passes following BC route has not been observed [36], but it has been described 

in other studies [37,38] which used a die with a similar setting to the one in the 

present case. When the die has an external angle Ψ>0° the textures exhibit some 

predominant orientations with a continuous distribution along the orientation fibers 

with simple shear texture, where two symmetrical areas can be observed [37]. 

After the first ECAP pass (Figure 8b), not a high texture index was achieved (2.1), 
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and the areas of higher intensity coincide moderately well with ideal components of 

simple shear model showed in Fig. 8a, although some deviations exist, especially in 

the case of C and A2
* components. Deviations from ideal orientations are usual in 

ECAP processes and they are related to different processing factors [17,36]. For better 

comparison of the variation in intensity of the different shear texture components with 

the number of ECAP passes, the experimental intensities for every ideal component 

were normalized to the sum of all intensities of the shear texture components. The 

result is shown in Fig. 9, and it can be observed that the strongest component is A2
*, 

which is not usual for high-SFE metals like Cu [Strotzky] or even for a low-SFE 

FeMnCAl TWIP steel processed by ECAP [17]. 

The other components show similar intensities to the FeMnCAl TWIP steel studied by 

Hasse et al. [17], except for the C component that appears with a lower intensity. With 

the second ECAP pass, a very low increase of the texture index is detected (2.2) but 

there is a gradual change in the intensities of the main components (Fig. 9). On one 

hand, there is a sharp decrease in the intensity of A1
* and A2

* components and on the 

other hand, there is a clear increase of the signal for BB /  and A/Ā components. 

When the samples are deformed 4 passes by ECAP, a moderate increase of the texture 

index occurs (3.3). A further decrease of A1
* and A2

* is observed, which contrasts with 

the strengthening of the intensities for BB /  and A/Ā components. The latter results 

in a strong presence of the β fiber in the samples deformed by 4 ECAP passes. On the 

contrary, the C component shows a slight decrease of the signal with respect to the 

prior passes.  
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The trend to develop the β fiber orientations with increasing strain in low SFE metals 

has been pointed out before. The increase of β fiber has been related to the 

strengthening of the B component [36,38] mainly due to the replacement of C 

component orientations by B orientations ({112}<110>) [36], which agrees well with 

the experimental data. 

 

3.2.3 TEM analysis 

A bright field TEM image of the annealed material is shown in Figure 10. Long 

straight dislocations with few interactions between them can be observed as a result of 

the low initial dislocation density. As displayed in EBSD studies, great changes in the 

microstructure are observed after one ECAP pass, with some austenite grains 

containing bundles of twins (Figure 6a). The twin thickness in this stage ranged 

between 400 and 800 nm. One of these grains can be observed by TEM in Figure 11a. 

A careful observation allows viewing the high dislocation density inside the twins 

(Figure 11b). This fact has been described before [41] and it has been related to the 

large kinematic hardening observed in TWIP steels [42,43]. Grains with a more 

refined twin structure were also found, although less often than the grains with coarse 

twins, such as the one exposed in Figure 11a. In these cases secondary twinning was 

frequently observed (Figure 11c). The corresponding selected area electron diffraction 

(SAED) is shown in Figure 11d. The experimental SAED pattern enables to relate the 

extra diffraction spots to two different perpendicular twin systems formed on the 

(11-1) and (-111) planes [44,45]. This kind of structure has also been described in 



15 
 

TWIP steels deformed by ECAP at 300 °C [16]. 

The TEM images corresponding to the samples after two ECAP passes are shown in 

Figure 12. In this stage an overall refinement of the microstructure was noted by the 

EBSD analysis (Fig. 6c) together with a significant increase of the dislocation density 

(Table 4). On the other hand, according to the EBSD analysis, the presence of twins 

was reduced when compared to the one ECAP pass samples. However, it was fairly 

easy to find grains in which bundles of twins were identified (Fig. 12a). The twin 

thickness was 80 ± 25 nm, which revealed a decrease of the mean value with respect 

to the one pass sample. This result agrees with the observation that twin thickness 

declines as the grain size decreases [8]. Inside these primary twins two main features 

can be observed. The first one is that the dislocation density was again very high, as in 

the one pass ECAP sample (Figure 12b). The second feature is the presence of 

numerous nano-twins (Figure 12c), which can be detected in the experimental SAED 

pattern in Figure 12d. The formation of a secondary twinning system inside primary 

twins has been well described in some TWIP steel processed by ECAP [16], but it 

seems to be less frequent in others [17], since in the last case the presence of 

nano-twins was mainly described inside shear bands and subgrains. 

After four ECAP passes at 300°C, the microstructure has been further refined but, in 

this case, the dislocation density and the grain size have changed slightly in 

comparison with the two ECAP passes sample. This implies that the capability of the 

material to increase the density of defects is lower [46]. The highly disordered 

microstructure after four ECAP passes is depicted in Figure 13. In most of the grains 
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the presence of subgrains with sizes that are around 100 nm and even lower can be 

observed. Other grains present thin and short twins with a thickness within a range of 

30-40 nm. 

 

3.3. Deformation stages 

Figure 14 illustrates the true tensile stress, σ, and strain hardening rate curves, (dσ/dε) 

vs strain, ε, and the ln(dσ/dε) vs lnσ plots for the annealed specimen and the samples 

after 1, 2 and 4 ECAP passes. The ln(dσ/dε)-lnσ plot of the annealed sample shows 

that the plastic deformation can be divided into five stages. First, a dramatic decrease 

in the strain range of 0-0.028 (stage A); second, a constant value up to 0.1 strain 

(stage B); third, a slightly increase until 0.16 strain (stage C); then, there is another 

steady region (stage D) in the strain of 0.16-0.27, and finally, over 0.27 strain, the 

strain hardening rate starts to drop until the failure of the specimen (stage E). 

According to different authors [47,48], these stages can be related to the following 

mechanisms: The transition point from stage A to stage B corresponds to the onset of 

twinning within grains deformed by multi-slip; the constant level of stage B can be 

due to the introduction of primary deformation twins; then the increase period of stage 

C can be associated to the activation secondary deformation twinning; the following 

constant plateau (stage D) is attributed to a decrease of the twinning rate; the stage E 

finally takes place when twinning activity slows down and the plastic instability occur. 

This behavior is similar to the one found for others FeMnCAl TWIP Steels, with no 

increase of the strain hardening rate during stage B and with a little or even no 
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increase during stage C [41,48,49]. The presence of aluminum in TWIP steels 

increases the SFE which promotes an overall decrease in the mechanical twinning 

activity. This decrease is even more pronounced in secondary twinning since 

secondary twinning systems are less active [49] and is reflected in lower strain 

hardening rates during stage B and especially in stage C than other TWIP steels such 

as FeMnC TWIP steels [44,49,50]. 

After the first ECAP pass at 300 ºC, there is a significant increase of the yield strength 

together with a reduction of the elongation. However, it must be noted that the 

material still retains some strain hardening ability since in the evolution of strain 

hardening with strain (Fig. 14c and 14d) the material hardens up to a true strain of 

0.15. After the high decreasing rates of stage A there is a period in which a low 

decreasing rate of hardening can be observed, called stage B. This stage ends in a 

stabilization zone (stage C) in which a slight increase of the strain hardening can be 

detected. After it, the strain hardening decreases up to the necking point. 

The Figure 14e and 14f show the evolution of strain hardening during tensile test for 

the samples after two ECAP passes. It is interesting to note that the strain hardening 

follows the same pattern than the one ECAP pass sample: a stage B of smooth 

reduction can be defined with a further recovery period in which even a slight 

increase of strain hardening is observed (stage C). From stage C, the strain hardening 

decreases during stage E up to the necking at a true strain value of 0.11.  

Finally, in the evolution of the strain hardening rate during tensile test for the four 

ECAP passes sample (Fig. 14g and 14h), the uniform elongation has decreased with 
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respect to the 2 ECAP pass samples (0.046) and the total elongation is reduced until 

7%. In this case, although the material retains some strain hardening ability, no 

intermediate stages in which the work-hardening rate stabilizes or increases have been 

detected. 

 

4 Discussion 

With respect to the mechanical properties of the present FeMnCAl based TWIP steel, 

after the first ECAP pass at 300°C, there is a significant increase of the yield strength. 

This behavior has also been described in other previous studies on severe plastic 

deformation by ECAP at similar temperatures for FeMnC based TWIP steels [16] and 

FeMnCAl based TWIP steels [17]. The high yield strength comes from the large 

increase of dislocation activity forming a large number of subgrains together with the 

interaction with mechanical twins [32,33]. Despite the large SFE values at 300°C 

[5,9], mechanical twinning has been repeatedly observed in a large number of 

austenite grains for the present TWIP steel, in the same way than in the other TWIP 

steels processed by ECAP [16,17]. The TEM analysis has shown that inside these fine 

mechanical twins the dislocation density is very high (Fig. 10b).  

Together with the increase of strength, there is a reduction of the elongation. However, 

the material retains a significant uniform elongation (up to 0.15) and even positive 

work-hardening rates (Fig. 14d), which is rather unusual in ECAP processed materials 

[51]. The FeMnCAl TWIP steel deformed at 300ºC by Haase et al [17] also shows a 

similar uniform elongation and work-hardening period, but the work hardening rate is 
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not positive. This fact could be explained taking into account the initial microstructure 

of the present TWIP steel after one ECAP pass and the deformation mechanisms of 

TWIP steel in tensile tests at room temperature. In the first point, from the analysis of 

microstructure by EBSD in Figure 6 it is clear that, although a significant number of 

elongated grains with high density of subgrains or mechanical twins can be observed, 

there are some grains that show less number of defects. This is in line with the studies 

of Barbier et al. [52] in which was compared the microstructural evolution of a 

FeMnC TWIP steel in tensile and shear test. In the case of shear test, the number of 

twinned grains was only 70%, whereas for tensile test the 90% of grains presented at 

least one active twining system. In addition, the microstructure of the FeMnCAl after 

one ECAP pass was defined as “bimodal” reflecting the existence of certain areas 

with a less intense refining of the microstructure [17]. In the second point, during the 

tensile tests at room temperature the SFE of the FeMnCAl TWIP steel is again low, 

which increases twinning activity. In addition, tensile deformation favor the activation 

of secondary twinning at very low strains [52]. Therefore, the combination of 

low-deformed grains and the greater ease for twinning in room-temperature tensile 

tests may explain the positive work-hardening rates for one pass ECAP samples. In 

this sense, the study of the microstructural evolution during tensile tests of the 

FeMnCAl TWIP steel previously deformed by ECAP reinforces this reasoning since 

mechanical twinning was considered the main deformation mechanism [17]. It was 

found that, after one ECAP pass, a great number of new mechanical twins was 

observed at low strains (5% and 10%) interacting with the pre-existing dislocation 
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cells. New mechanical twins were easily detected even in the samples with four 

ECAP passes when strained to 5% and 10%. In addition, secondary twinning was 

detected inside primary twins, probably due to the high applied stress in these samples, 

which shows the work-hardening ability of the TWIP steel after ECAP processing 

[17]. 

In the case of two ECAP passes at 300 °C, the same trend is observed, i.e. there is an 

increase of the strength while the total elongation decreases. Both aspects can be 

related to the evolution of the microstructure since the EBSD analysis in Figure 6 

shows a significant reduction of the size of subgrains as a result of a high dislocation 

activity. Twinning activity was also observed in the TEM analysis in Figure 12, and it 

must be pointed out the large presence of nanotwins inside the primary twins due to 

secondary twinning. The interaction between both mechanisms reduces sharply the 

mean free path of dislocations that renders a large increase of strength. 

Regarding work hardening after two ECAP passes, the behavior is similar to that of 

the one ECAP pass, with a slight decrease in the strain-hardening period (up to 0.11). 

The material maintains an intermediate stage in which the work-hardening rate is 

positive (Fig. 14f). As explained above, this good behavior may be related to the 

existence of twinning as main deformation mechanism in tensile tests at room 

temperature. In this case, this response is much better than for the other FeMnCAl 

steel processed by ECAP since in the latter the hardening period is clearly shorter 

(≈0.03) with no signs of any intermediate recovery stage [17]. Comparing the 

evolution of the microstructure in both FeMnCAl TWIP steels, it seems fairly similar 
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and thus it is difficult to find a reason for this difference. A possible explanation may 

be the differences in the ECAP process, as for example the presence of an outer arc of 

curvature in the die of the present work (Ѱ=37°). As a result of this outer angle, the 

equivalent strain achieved in every pass is 1.0 for the present work, less than the 1.155 

achieved in [17]. Another reason could be that the present steel shows a greater 

easiness for secondary twinning. Secondary twinning systems have been observed in 

the present steel after one and two ECAP passes, more commonly after two passes.  

In the case of FeMnC based TWIP steels, the overall strain hardening values are 

higher than the ones for the present FeMnCAl steel [16] which can be again related to 

the larger twinning activity of FeMnC based TWIP steels [49]. However, there is a 

continuous decrease of the strain hardening for the FeMnC samples processed at 

300°C. In this case, it is possible that the larger twinning activity at 300ºC has 

exhausted faster the ability of the steel to harden after the ECAP passes at that 

temperature [16]. 

Finally, the samples with four ECAP passes showed the maximum strength with a 

further reduction of elongation. It coincides well with the analysis by EBSD and TEM 

that shows a large refinement of the microstructure. Many subgrains formed in 

previous ECAP passes have led to new fine grains with equiaxed morphology, and the 

remaining dislocation cells have reduced the diameter up to 100 nm or less as well as 

mechanical twins appeared distorted with twin thicknesses around 30-40 nm. In 

addition, the evolution of dislocation density in Table 4 shows that the dislocation 

density has increased at a very low rate during the third and fourth passes. All these 
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observations lead to the conclusion that after 4 ECAP passes the present TWIP steel 

have a reduced ability to further refinement of the microstructure. However, some 

strain hardening is visible (up to 0.046) and the steel retains a 7% elongation to 

fracture.  

To explain this good behavior it is necessary to compare the current FeMnCAl steel 

with the one processed by ECAP by Hasse et al. [17]. It can be said that the 

microstructure in the latter steel seems to be a bit more refined than in the present case, 

probably due to the higher equivalent strain achieved in each pass, as described above. 

However, it is important to note that even under those conditions mechanical twinning 

was observed in that steel with intense presence of secondary twinning. This was 

reflected in an elongation of 14% and a short strain-hardening period. In the current 

TWIP steel it also seems likely that twinning should be acting during the tensile test 

and that fact would help to explain the short but significant existence of a strain 

hardening period and little elongation. Finally, it can be concluded that the presence 

of strain hardening is in agreement with the analysis of the fracture surface for the 

samples with four ECAP passes that shows still some dimples (Fig. 4). 

Another important topic is the evolution of texture during ECAP processing of TWIP 

steels, and its implications in the mechanical properties described above. In the Fig. 9 

the main shear texture components after one ECAP pass were presented, and the 

direct comparison with the texture data of the FeMnCAl TWIP steel also processed by 

ECAP at 300ºC shows similar behavior, although with some significant variation. The 

main difference is the higher intensity of the A2
* and a slight decrease of A1

* texture 
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components in the present steel [17]. The strong presence of A2
* component has been 

reported before in low-SFE metals: Barbier et al. [52] reported that in shear tests of a 

FeMnC TWIp steel, A2
* and A1

* components showed larger intensities than the other 

shear components, although in this case the equivalent strain was low (0.3) comparing 

with the one achieved in one ECAP pass. Chowdhury et al. [53] showed that A2
* was 

the main component of texture for Ag processed by ECAP in a die with an outer angle 

of 20º and similar result was obtained by Beyerlein and Toth [36]. In the last case, the 

authors linked these results with mechanical twinning since the formed twins have 

{111}<112> orientations which belong to A2
*. To finish with the comparison in the 

case of one ECAP pass, it is interesting to remark than in the present steel the 

normalized intensity for C component is slightly lower than for the case of the 

FeMnCAl in [17]. However, in both cases the obtained intensity for C is clearly lower 

than in the case of a high-SFE metal as Cu [39,40,54]. 

The evolution of texture index for the present steel with ECAP passes more or less 

coincides with the one for TWIP steel in [17]. In the second pass there is a negligible 

increase of texture strength, being the increase more remarkable after four passes. The 

analysis made in [17] shows that normally high-SFE metals show no increase of 

texture strength between 2 and 4 passes, which could be related to a saturation of 

deformation mechanisms [17,40,54]. However, for metals with low-SFE such as 

silver or the FeMnCal TWIP steel which deform by twinning [17,53], an increase of 

the texture strength has been reported. In this case, the increase of texture strength 

detected in the present steel could reinforce the idea that in this topic low-SFE metals 
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behave different than high-SFE metals when deformed by ECAP. 

Regarding the evolution of the main shear texture components with subsequent ECAP 

passes, it must be said that with the successive changes in the position of the samples 

following the route Bc, there is a large decrease in the A2
* and A1

* accompanied by a 

clear increase of the signal for BB /  and A/Ā components. The existence of a large 

decrease of both A2
* and A1

* components has been no reported in the other low-SFE 

metals studied [17,53], although for the FeMnCAl TWIP steel in [17] A2
* clearly 

decreases and A1
* shows a little decrease in its intensity. It could be that the drop in 

the signal of these components might be related to the difficulties of EBSD analysis to 

detect all the new twins formed at high deformations. On the other hand, the increase 

of BB /  components and more generally the increase of the β fiber with increasing 

strain in low-SFE metals have been previously reported [36]. This increase has been 

related basically to the strengthening of the B component, mainly due to the 

replacement of C component orientations by B orientations ({112}<110>) [36,38]. 

This reasoning coincides partially well with the present texture evolution since a clear 

decrease of C component is observed after four passes. 

The general evolution of the texture with ECAP in the present steel has rather 

common points with other studies in which the trends in texture of low-SFE materials 

have been studied [36,55-57]. Here it must be assumed that texture is largely 

influenced by small changes in the features of the process what implies some 

variations even for the same metal. But in general, with the diminution of SFE values 

a decrease of the C component together with an increase of BB / components is 
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expected. This general trend agrees well with the texture evolution of the present 

steel. 

Regarding the relationship between texture and deformation mechanisms, it has been 

suggested by Suwas et al. [30,56] that the effect of decreasing SFE on texture 

evolution during ECAP could be compared to the texture development in cold rolling 

procedure, and some correspondence between texture components is proposed: 

S→A1
*, Cu→C, Brass→ BB /  [17,30]. According to this, A1

* and C components 

should be reduced whereas BB /  components should be strengthened by ECAP 

strain as the SFE decreases. On the basis of this assumption, Haase et al. defined the 

texture obtained for the FeMnCAl as “transition texture” [17]. This was driven by the 

strong presence of C component together with the increase of BB / components with 

ECAP passes. A hypothesis was formulated in which the strong C presence would be 

related to the dislocation glide as main deformation mechanism and the increase in 

BB /  components would correspond to the effect of deformation twins. In the case of 

the present FeMnCAl steel, the evolution of texture corresponds better with the 

proposed correspondence proposed by Suwas et al., since C and A1
* are reduced and 

BB /  increased with successive ECAP passes. This would mean that the importance 

of deformation by twinning would be greater in the present case, and this could help 

to explain the existence of positive work-hardening rates in the intermediate stages 

during tensile deformation for the one and two pass ECAP samples and the longer 

periods of uniform elongation for the samples after two and four ECAP passes. 
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5 Conclusions 

In the current work, the isothermal equal channel angular pressing of a 

Fe-20.1Mn-1.23Si-1.72Al-0.5C TWIP steel was successfully performed. The 

corresponding mechanical behavior and microstructure evolution was investigated. 

The main findings were: 

 

1) The yield strength and ultimate tensile strength increased significantly during the 

ECAP procedure. On the other hand, the ductility decreased with increasing of 

number of passes. The fracture surface analysis showed that the number and size of 

dimples decreased with increasing number of ECAP passes, up to four ECAP passes, 

for which the sample showed limited ductile fracture features. 

2) After one and two ECAP passes, the present FeMnCAl based steel showed 

hardening up to 0.15 and 0.12 strain, respectively. In the strain hardening evolution 

with strain, periods of constant strain hardening rate and subsequent zones of a slight 

increase of the strain hardening rate were observed. This behavior could be related to 

the ability of the material to deform by twinning, activating primary and secondary 

twin systems. After 4 passes the strain hardening rate decreased constantly with strain 

but still showing some uniform elongation. 

3) The evolution of the microstructure after one and two ECAP passes showed that the 

grains were elongated in the shear direction and that a large number of subgrains were 

introduced. At the same time, mechanical twins were created with smaller thickness as 

deformation proceeded. Secondary twinning was active in the first and second ECAP 
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passes. During the third and fourth passes, dislocation and twinning activity led to a 

further refinement of the microstructure, hindering further deformation and resulting 

in the low hardening rate obtained during the tensile test of the four ECAP passes 

sample. 

4) After the ECAP process, simple shear textures were identified. One ECAP pass 

samples presented a preference toward A2
* component, while the two and four ECAP 

passes samples showed a preference toward the β fiber, represented by its BB /  

components. This increase of BB / components together with the decrease of C shear 

texture component may indicate a large effect of deformation twinning in the 

processing of FeMnCAl by ECAP at 300 ºC. 
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TABLES AND FIGURES 

 

 

 

Table 1 

Chemical composition in %mass and stacking fault energy of the TWIP steel of this study. 

C Mn Si Al Fe SFE 

0.5 20.1 1.23 1.72 Bal. 27.3mJ/m2 

 

 

Table 2 

Mechanical properties (defined from the true stress – true strain curves) of the studied TWIP steel 

in different conditions 

 

ECAP 

schedules 

YS  

(MPa) 

UTS 

(MPa) 

YR Elongation to 

fracture (%) 

Tensile 

toughness 

(J/m3)×103 

Reduction of 

area  

(%RA) 

Initial 

condition 

590 1370 0.43 40 489.3 64% 

1 PASS 1150 1400 0.82 19 256.5 36% 

2 PASS 1390 1520 0.91 14 224.4 28% 

4 PASS 1490 1600 0.93 7 97.5 19% 

 

 

Table 3 

Information of the microstructure of the ECAPed TWIP steel. 

ECAP PASS Grain size of new formed 

grains (μm) 

Misorientation 

HAGB (%) LAGB (%) 

Initial condition 99.0 92.9 7.1 

1 pass 4.1±2 40.5 59.5 

2 passes 1.2±0.6 41 59 

4 passes 0.4±0.2 51.1 48.9 

 

 

Table 4 

Dislocation density of TWIP steels of different passes 

Number of pass 0 pass 1 pass 2 pass 4 pass 

Dislocation density (m-2) 1.31×1013 7.65×1014 2.64×1015 4.33×1015 
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Fig. 1 ECAP die configuration and the corresponding coordinates system used in current research; 

ND (normal direction), ED (extrusion direction) and TD (transverse direction) 

 

 

 

 

 

 

 

Fig. 2 Dimensions of micro-tensile samples (in mm). 
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Fig. 3 True stress vs. True strain tensile curves for the samples before and after ECAP 
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Fig. 4. Fracture surface of TWIP steel: (a) initial condition, (b) 1 pass, (c) 2 passes, and (d) 4 

passes samples 
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Fig. 5. EBSD grain map (a), and grain boundary map (b) of initial TWIP steel samples (grain 

boundary map: black line-high angle grain boundary, green line-low angle grain boundary, white 

line-twin boundary)  
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Fig. 6. EBSD grain map and grain boundary map of: 1 pass sample (a, b), 2 passes sample (c, d) 

and 4 passes sample (e, f), (grain boundary map: black line-high angle grain boundary, green 

line-low angle grain boundary, white line-twin boundary)  



40 
 

 

 

 

 

 

 

 

 

 

Fig. 7. ODF (a) ideal component [38] (b) initial conditions of investigated samples. 
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Fig. 8. (a): Ideal components in triclinic symmetry of FCC materials deformed by simple shear 

[36], (b)-(d):Texture components of investigated TWIP steels after (b) 1 ECAP pass , (c) 2 ECAP 

passes, and (d) 4 ECAP passes 
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Fig. 9. Normalized frequency of main shear texture component for the investigated TWIP steel 

after ECAP process. (a) 1pass, (b) 2 passes and (c) 4 passes 
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Fig. 10. TEM bright field images of initial condition TWIP steels 

 

 

Fig. 11. TEM micrographs of one pass at 300°C: (a) general view of twins; (b) high density of 

dislocations inside a twin(c) Dark field image of an area with secondary twinning (d) SAED 

experimental pattern of (c) 
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Fig. 12. TEM micrographs of two passes at 300°C: (a) general view of twins;  

(b) high dislocation density inside twins; (c) secondary twinning inside primary twins; (d) SAED 

pattern of (c) 

 

 

 

Fig. 13. TEM micrograph for four ECAP passes at 300°C 
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Fig. 14. True tensile stress (σ)-strain (ε) curve, strain hardening rate (dσ/dε) and the plot of 

ln(dσ/dε) vs. lnσ of the: (a) and (b) initial condition sample, (c) and (d) 1 pass sample, (e) and (f) 2 

passes sample, (g) and (h) 4 passes sample. 

 

 


