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Abstract

We consider binary voting systems modeled by a simple game, in which voters vote in-
dependently of each other, and the probability distribution over coalitions is known. The
Owen’s multilinear extension of the simple game is used to improve the use and the computa-
tion of three indices defined in this model: the decisiveness index, which is an extension of the
Banzhaf index, the success index, which is an extension of the Rae index, and the luckiness
index. This approach leads us to prove new properties and inter–relations between these in-
dices. In particular it is proved that the ordinal equivalence between success and decisiveness
indices is achieved in any game if and only if the probability distribution is anonymous. In
the anonymous case, the egalitarianism of the three indices is compared, and it is also proved
that, for these distributions, decisiveness and success indices respect the strength of the seats,
whereas luckiness reverses this order.

1 Introduction

The classical model of a binary voting scenario is a simple game (N,W), defined by the set N
of voters and by the voting rules given by the set W of winning coalitions. Owen (1972) defines
the multilinear extension (MLE) of a simple game, which gives the expected utility of a random
coalition, and proves that it uniquely characterizes the game, that is to say, the set of voting
rules can be directly defined from fW . Since then the MLE has been used, with different goals,
in the study of simple games. For instance, Owen himself uses it in (Owen, 1972) to compute the
Shapley value (Shapley, 1953) and the Shapley–Shubik index (Shapley and Shubik, 1954), and in
(Owen, 1975) to compute the Banzhaf value (Banzhaf, 1965). In (Alonso-Meijide et al, 2008) the
multilinear extension, with some modifications, is used to compute the Johnston index (Johnston,
1978), the Deegan-Packel index (Deegan and Packel, 1978) and the Public Good index (Holler and
Packel, 1983).

The decisiveness of a voter in a game (N,W), that is, his/her possibility of influencing the
final result, has been measured by different ‘power indices’. Shapley and Shubik’s interpretation of
their index as the probability of being ‘pivotal’ in making a decision contributed to the association
between ‘power’ and ‘measure of decisiveness’. Banzhaf’s index is also an evaluation of decisiveness.
An alternative view is to measure the ‘success’ of a voter, that is, to focus in the likelihood
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of obtaining the result one votes for irrespective of whether one’s vote is crucial for it or not.
Rae (1969) was the first one to take an interest in a measure of success for symmetric simple
games, or k-out-of-n games. Dubey and Shapley (1979) suggest that the index can be generalized
to any simple game, leading to the definition of the Rae index. However, in simple games there
is a linear relationship between the Banzhaf index and the Rae index so that these two measures
become almost identical. Other power indices in the literature focus in aspects different from those
of success or decisiveness as, for instance, luck (Holler and Packel, 1983), satisfaction (Brams and
Lake, 1978; Van der Brink and Steffen, 2014; Davis et al, 1982), or inclusiveness (König and
Bräuninger, 1998).

Decisiveness and success notions have been given a broader prospect by Laruelle and Valenciano
(2005, 2008). In their work, additionally to the simple game (N,W), it is assumed that a probability
distribution over the coalitions of voters is known. In the present note we assume that, for any voter,
we know – or at least have an estimate of – the probability pi of voter i to vote affirmatively for
the proposal and that each voter’s vote is independent of the others. This information is captured
in a vector p = (p1, p2, . . . , pn) ∈ (0, 1)n. Clearly, if the vector p is known, then the probability
of occurrence of each coalition is known. The model considered in this situation, named assessed
simple game in (Carreras, 2004), is represented by the triple (N,W ,p). This model, also known
as generalized decision structure, has been studied by several other authors (Berg, 1999; Berg and
Marañón, 2001; Dubey and Shapley, 1979; Straffin, 1994; Wilson and Pritchard, 2007).

In our work we use the MLE of the simple game to study the decisiveness, success and luckiness
indices considered by Laruelle and Valenciano in this model. By using this technique we obtain
new characterizations of these indices which simplifies their computation. We also analyze their
properties and inter–relations, and we compare the rankings they induce on the set of voters,
extending to more general voting contexts the comparative study of success and decisiveness done
in (Freixas and Pons, 2015) for proper symmetric voting rules under independent and anonymous
distributions. Other probabilistic power indices, i.e., power indices in assessed simple games, have
been studied by using the MLE (Carreras, 2004, 2005; Freixas and Pons, 2005, 2008) but, as
far as we know, the treatment of success, decisiveness and luckiness indices by using the MLE is
novel and allows us to study new properties concerning these three indices: ordinal equivalence,
egalitarianism and coherency with the strength of the seats.

The paper is organized as follows. In Section 2 we introduce known results directly linked
with the context of the work. New expressions of success, decisiveness and luckiness indices, using
the MLE, are included in Section 3. In Section 4 we compare the rankings given by the three
indices, and in Section 5 the particular case of anonymous probability distributions is studied.
The conclusions end the paper in Section 6.

2 Preliminaries

Assume that a proposal is put to the vote, that it must be either approved or rejected and that
each voter can only vote “yes” or “no” (any alternative to voting “yes” is assimilated to voting
“no”). A model for such a binary voting scenario is a simple game, that is to say, a pair (N,W),
where N = {1, 2, . . . , n} denotes the set of voters and W denotes the set of winning coalitions. A
coalition is any subset S ⊆ N , and is interpreted as the set of voters which vote “yes” (those in
N\S voting “no”). A coalition is winning when its occurrence causes the proposal to be accepted.
Subsets of N that are not in W are called losing coalitions. A simple game is defined to be
monotonic: if a voter joins a winning coalition then the resulting new coalition is also a winning

2



one. It is assumed that coalitions N and ∅ are respectively winning and losing.
Before the votes are cast it is not possible to know which coalition will emerge, but we assume

that an estimation pi is made of the probability that voter i is in it, so that pi is the estimated
probability that voter i will vote in favor of the proposal.

Suppose now that the vote of every voter is independent from the vote of the remaining voters.
In this case, the probability of coalition S to be formed, i.e., that the voters that vote ‘yes’ are
precisely those of S, is given by

P (S) =
∏
i∈S

pi
∏
i/∈S

(1− pi). (1)

In this way, a probability distribution on the set 2N of all coalitions is determined by the
probability vector p = (p1, p2, . . . , pn), and we will use p to refer interchangeably to both: the
probability vector and the probability distribution defined on the set of coalitions. We will denote
this model by (N,W ,p) and it will be referred to as an assessed simple game. This is the context
in which we work in this paper. From now on, the set of voters N = {1, . . . , n} is fixed, so that
we will write W instead of (N,W) to denote a simple game, and (W ,p) instead of (N,W ,p) to
denote an assessed simple game.

In an assessed simple game (W ,p), the probability of the proposal being accepted is

fW(p) =
∑
S∈W

∏
i∈S

pi
∏
i/∈S

(1− pi). (2)

The function fW is themultilinear extension (MLE) of the simple gameW which was introduced
by Owen (1972) in the general context of cooperative games. Note that fW(p) is linear in each pi
so that, if pi = p for all i ∈ N then fW(p) is a polynomial function in p of degree n.

Using a conditional probability argument, given any voter i ∈ N we can express the probability
fW(p) of acceptance of the proposal in terms of pi by:

fW(p) = pifW(1i,p) + (1− pi)fW(0i,p) (3)

where fW(1i,p) is the conditional probability of the proposal being accepted if i votes “yes”, that
is to say, it is the value of fW in (p1, . . . , pi−1, 1, pi+1, . . . , pn). Similarly, fW(0i,p) is the proba-
bility of acceptance of the proposal if i votes against it, that is to say, it is the value of fW in
(p1, . . . , pi−1, 0, pi+1, . . . , pn). By taking the partial derivative with respect to pi in equation (3) we
get:

∂fW(p)

∂pi
= fW(1i,p)− fW(0i,p) (4)

Let us recall the notions of power index that are used in this work. Let SN be the set of simple
games on N and ASN = SN × (0, 1)n denote the set of assessed simple games on N . A power
index h in ASN is a map h : ASN → Rn that assigns to every assessed simple game (W ,p) a
vector h(W ,p), with components hi(W ,p) for all i ∈ N . Observe that for any p ∈ (0, 1)n this
map h induces a power index hp in the set of simple games SN , i.e., a map hp : SN → Rn defined
by hp(W) = h(W ,p). Notice that (4) defines a power index in ASN .

To end this section, we recall some definitions introduced by Laruelle and Valenciano (2005).
For any S ⊆ N , let P (S) denote the probability of S, that is to say, the probability that voters in
S are precisely those that vote “yes”. In an assessed simple game (W ,p) the probability P (S) is
given in (1), and the three indices defined in Laruelle and Valenciano (2005) become power indices
in the set of assessed simple games.
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Definition 2.1 Decisiveness, Success and Luckiness indices
Let (W ,p) be an assessed simple game and i ∈ N :

i) Decisiveness index:

Φi(W ,p) =
∑

S : i ∈ S ∈ W
S \ i /∈ W

P (S) +
∑

S : i /∈ S /∈ W
S ∪ i ∈ W

P (S) (5)

ii) Success index:

Ωi(W ,p) =
∑

S:i∈S∈W

P (S) +
∑

S:i/∈S/∈W

P (S) (6)

iii) Luckiness index:

Λi(W ,p) =
∑

S : i ∈ S ∈ W
S \ i ∈ W

P (S) +
∑

S : i /∈ S /∈ W
S ∪ i /∈ W

P (S)

The Banzhaf index B and the Rae index R, defined in simple games, are induced, respec-
tively, by the decisiveness index Φ and by the success index Ω defined in assessed simple games.
Specifically, B = Φp∗

and R = Ωp∗
where p∗ = (0.5, . . . , 0.5).

The following theorem was proved in (Laruelle et al, 2006).

Theorem 2.2 Let p∗ = (0.5, . . . , 0.5). Then, if p = (p1, . . . , pn),

Ωi(W ,p) = 0.5 + 0.5 Φi(W ,p)

for any i ∈ N and for any simple game W

⇔ p = p∗.

Theorem 2.2 tells us that the relationship between Banzhaf and Rae indices

R(W) = 0.5 + 0.5B(W), (7)

verified for any W , cannot be generally extended to any assessed simple game (W ,p).

On the other hand, it is obvious that for any (W ,p) we have

Ω(W ,p) = Φ(W ,p) + Λ(W ,p). (8)

and, by defining L = Λp∗
, with p∗ = (0.5, . . . , 0.5), we obtain Barry’s equation (Barry, 1980a,b),

verified for any simple game W :

R(W) = B(W) + L(W). (9)

We conclude this preliminary section of well-known results by noticing that decisiveness of a voter
only depends on the other voters’ behavior, not on his/her own, since voter i’s decisiveness can be
written as

Φi(W ,p) =
∑

S : i ∈ S ∈ W
S \ i /∈ W

(P (S) + P (S \ {i})). (10)
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3 The three indices expressed in terms of the MLE

The aim of this section is to express the indices of success, decisiveness and luckiness in terms of
fW(p) (2). The formulations in Proposition 3.1 are fundamental to achieve the results in the two
next sections. Notice that, taking into account (4), the part a) of the next proposition tells us that
Φi(W ,p) coincides with the partial derivative of fW(p) with respect to pi.

Proposition 3.1 Let (W ,p) an assessed simple game and i ∈ N :

a) Φi(W ,p) = fW(1i,p)− fW(0i,p),

b) Ωi(W ,p) = pifW(1i,p) + (1− pi)(1− fW(0i,p)),

c) Λi(W ,p) = pifW(0i,p) + (1− pi)(1− fW(1i,p)).

Proof:

a) From (1), (5), and (10) it follows

Φi(W ,p) =
∑

S : i ∈ S ∈ W
S \ i /∈ W

(∏
j∈S

pj
∏

j∈N\S
(1− pj) +

∏
j∈S\i

pj
∏

j∈(N\S)∪ i

(1− pj)

)

=
∑

S : i ∈ S ∈ W
S \ i /∈ W

(pi + (1− pi))

( ∏
j∈S\i

pj
∏

j∈N\S
(1− pj)

)

=
∑

S : i ∈ S ∈ W
S \ i /∈ W

∏
j∈S\i

pj
∏

j∈N\S
(1− pj)

On the other hand, from (2):

fW(1i,p) =
∑

S : i ∈ S ∈ W
S \ i /∈ W

∏
j∈S\i

pj
∏

j∈N\S

(1− pj) +
∑

S : i ∈ S ∈ W
S \ i ∈ W

∏
j∈S\i

pj
∏

j∈N\S

(1− pj)

and

fW(0i,p) =
∑

S : S ∈ W
i /∈ S

∏
j∈S

pj
∏

j∈N\(S∪ i)

(1− pj) =
∑

S : i ∈ S ∈ W
S \ i ∈ W

∏
j∈S\i

pj
∏

j∈N\S

(1− pj)

Thus, the second term in fW(1i,p) simplifies with fW(0i,p) in fW(1i,p) − fW(0i,p) and
therefore Φi(W ,p) coincides with fW(1i,p)− fW(0i,p).

b) From (6) in Definition 2.1 it is clear that success can be written

Ωi(W ,p) = pi

 ∑
S : S ∈ W

i ∈ S

∏
j∈S\i

pj
∏

j∈N\S
(1− pj)

+ (1− pi)

 ∑
S : S /∈ W

i /∈ S

∏
j∈S

pj
∏

j∈N\(S∪ i)

(1− pj)
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But from (2):

fW(1i,p) =
∑

S : S ∈ W
i ∈ S

∏
j∈S\i

pj
∏

j∈N\S

(1− pj)

and

1− fW(0i,p) = 1−
∑

S : S ∈ W
i /∈ S

∏
j∈S

pj
∏

j∈N\(S∪ i)

(1− pj) =
∑

S : S /∈ W
i /∈ S

∏
j∈S

pj
∏

j∈N\(S∪ i)

(1− pj),

because, for any vector p, we have:

1 =
∑

S : S ∈ W
i ∈ S

∏
j∈S

pj
∏

j∈N\S
(1− pj) +

∑
S : S ∈ W

i /∈ S

∏
j∈S

pj
∏

j∈N\S
(1− pj)+∑

S : S /∈ W
i ∈ S

∏
j∈S

pj
∏

j∈N\S
(1− pj) +

∑
S : S /∈ W

i /∈ S

∏
j∈S

pj
∏

j∈N\S
(1− pj)

but, if pi = 0 then the first and the third addends are zero and the factor 1 − pi does not
appear in the remaining addends.

c) Taking into account (8) and applying parts a) and b), we get the result.

�

We remark that Theorem 2.2 can easily be proved by using the expressions of success and
decisiveness established in Proposition 3.1.

4 Comparing rankings

The main purpose of this section is to study the ordinal equivalence of decisiveness, success and
luckiness indices in assessed simple games. A similar study was done in (Freixas et al, 2012) for
the Shapley, Banzhaf and Johnston indices in the context of simple games.

Definition 4.1 Let g and h be two power indices in ASN .
i) g and h are ordinally equivalent in (W ,p) if for all i, j ∈ N :

gi(W ,p) > gj(W ,p) ⇐⇒ hi(W ,p) > hj(W ,p)

which implies that gi(W ,p) = gj(W ,p) if and only if hi(W ,p) = hj(W ,p).
ii) g and h are ordinally opposite in (W ,p) if for all i, j ∈ N :

gi(W ,p) > gj(W ,p) ⇐⇒ hi(W ,p) < hj(W ,p)

which also implies that gi(W ,p) = gj(W ,p) if and only if hi(W ,p) = hj(W ,p).

Remark 4.2
If g and h are ordinally equivalent in (W ,p) then the induced indices gp and hp verify

gpi (W) > gpj (W) ⇐⇒ hp
i (W) > hp

j (W)
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for all i, j ∈ N , and we say that gp and hp are ordinally equivalent in W.
Similarly, if g and h are ordinally opposite in (W ,p) then the induced indices gp and hp verify

gpi (W) > gpj (W) ⇐⇒ hp
i (W) < hp

j (W)

for all i, j ∈ N , and we say that gp and hp are ordinally opposite in W.

A clear consequence of (7) is that the Banzhaf and Rae indices are ordinally equivalent in any
simple game. Moreover, by combining equations (7) and (9) we deduce that, for any simple game
W , it is:

L(W) = 0.5(1−B(W)). (11)

Hence, the index L is ordinally opposite to the Banzhaf and Rae indices in any simple game W .
These relations among rankings verified when p = p⋆ can not be generally extended to other

probability distributions. The following lemma will be used to compare the rankings given by
decisiveness, success and luckiness indices for p ̸= (0.5, . . . , 0.5). The notation fW(xi, yj,p) is
used to denote the value of fW on a vector whose components are the same as those of p except
components i and j whose values are, respectively, x and y. The value of fW(xi, yj,p) is the
conditional probability of the proposal being accepted if i votes “yes” with probability x and j
votes “yes” with probability y.

Lemma 4.3 Let (W ,p) be an assessed simple game and i, j be different voters in N . Then,

a) Φi(W ,p)− Φj(W ,p) = (pj − pi)[fW(1i, 1j,p) + fW(0i, 0j,p)− fW(1i, 0j,p)− fW(0i, 1j,p)]
+[fW(1i, 0j,p)− fW(0i, 1j,p)]

b) Ωi(W ,p)− Ωj(W ,p) = 2pi(1− pj)fW(1i, 0j,p)− 2pj(1− pi)fW(0i, 1j,p) + pj − pi

c) Λi(W ,p)− Λj(W ,p) = 2[pifW(1i, 0j,p)− pjfW(0i, 1j,p)] + (pi − pj)(bij − 1)− aij(1 + 2pipj)

where:

{
aij = fW(1i, 0j,p)− fW(0i, 1j,p)

bij = fW(1i, 1j,p) + fW(0i, 0j,p)− fW(1i, 0j,p)− fW(0i, 1j,p).

Proof:
Expressions a) and b) are obtained by using (3) in Proposition 3.1. Part c) is deduced from them
by using (8). �

7



Theorem 4.4 Let i, j be different voters in N and p ∈ (0, 1)n. Then,

a)If pi = pj then, for any game W ,

Ωi(W ,p) > Ωj(W ,p) ⇐⇒ Φi(W ,p) > Φj(W ,p) ⇐⇒ Λi(W ,p) < Λj(W ,p).

b)If N = {i, j} then, for any game W ,

Ωi(W ,p) > Ωj(W ,p) ⇐⇒ Φi(W ,p) > Φj(W ,p) ⇐⇒ Λi(W ,p) ≤ Λj(W ,p) .

c)If pi ̸= pj and there is a voter k ̸= i, j with pk ̸= 0.5, then we can find a game W such that

[Ωi(W ,p)− Ωj(W ,p)] [Φi(W ,p)− Φj(W ,p)] < 0.

d)If pi ̸= pj and for any voter k ̸= i, j it is pk = 0.5, then we can find a game W such that

Φi(W ,p) ̸= Φj(W ,p) and Ωi(W ,p) = Ωj(W ,p).

e)If n ≥ 3 and pi ̸= pj then we can find a game W such that

Φi(W ,p)− Φj(W ,p), Ωi(W ,p)− Ωj(W ,p), and Λi(W ,p)− Λj(W ,p) have the same sign.

Proof:

a) If pi = pj = p then, for any game W , using lemma 4.3 we have,

Φi(W ,p)− Φj(W ,p) = fW(1i, 0j,p)− fW(0i, 1j,p)

Ωi(W ,p)− Ωj(W ,p) = 2p(1− p)[fW(1i, 0j,p)− fW(0i, 1j,p)]

Λi(W ,p)− Λj(W ,p) = (−2p2 + 2p− 1)[fW(1i, 0j,p)− fW(0i, 1j,p)].

The fact that 0 < p < 1 leads to the conclusion.

b) If N = {i, j} then there are only four possible games, and we see that in all of them the
statement is true.

fW(p) Φi(W ,p) Φj(W ,p) Ωi(W ,p) Ωj(W ,p) Λi(W ,p) Λj(W ,p)
pi 1 0 1 1− pi − pj + 2pipj 0 1− pi − pj + 2pipj
pj 0 1 1− pi − pj + 2pipj 1 1− pi − pj + 2pipj 0
pipj pj pi 1− pi + pipj 1− pj + pipj 1− pi − pj + pipj 1− pi − pj + pipj

pi + pj − pipj 1− pj 1− pi 1− pj + pipj 1− pi + pipj 1− pi − pj + pipj 1− pi − pj + pipj

c) Assume, without loss of generality, that pi < pj, and let k ̸= i, j be such that pk ̸= 0.5.

• If pk < 0.5 then consider the game W with fW(p) = pipk + pjpk − pipjpk. In this case
it is fW(1i, 1j,p) = pk, fW(0i, 0j,p) = 0 and fW(1i, 0j,p) = fW(0i, 1j,p) = pk. Thus,
from Lemma 4.3,

Φi(W ,p)− Φj(W ,p) = (pj − pi)(−pk) < 0

Ωi(W ,p)− Ωj(W ,p) = (pj − pi)(−2pk + 1) > 0
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• If pk > 0.5 then consider the game W with fW(p) = pk + pipj − pipjpk. In this case it
is fW(1i, 1j,p) = 1 and fW(0i, 0j,p) = fW(1i, 0j,p) = fW(0i, 1j,p) = pk. Thus, from
Lemma 4.3,

Φi(W ,p)− Φj(W ,p) = (pj − pi)(1− pk) > 0

Ωi(W ,p)− Ωj(W ,p) = (pj − pi)(1− 2pk) < 0

d) Taking any k ̸= i, j, the game W with fW(p) = pk + pipj − pipjpk verifies that

Φi(W ,p)− Φj(W ,p) = 0.5(pj − pi) and Ωi(W ,p)− Ωj(W ,p) = 0

and the statement is proved.

e) Let W be the unanimity game, for which fW(p) =
n∏

k=1

pk. Then, from Lemma 4.3,

Λi(W ,p)− Λj(W ,p) = (pi − pj)

(∏
k ̸=i,j

pk − 1

)
,

Φi(W ,p)− Φj(W ,p) = (pj − pi)

(∏
k ̸=i,j

pk

)
,

Ωi(W ,p)− Ωj(W ,p) = pj − pi.

Thus, since p ∈ (0, 1)n, the three differences have the same sign.

�

As a consequence of part a) in Theorem 4.4, for a probability distribution with coincident
components, i.e., p = (p, . . . , p), success and decisiveness indices are ordinally equivalent, and
ordinally opposite to the luckiness index, in (W ,p) for any game W . In the next section we study
in more detail the rankings given by the three indices in this kind of probability distributions.

5 Anonymous probability distributions

Definition 5.1 A probability distribution p = (p1, . . . , pn) is anonymous if p1 = · · · = pn, i.e., all
voters have the same probability of voting ‘yes’. In this case, the probability of forming a coalition
S ⊆ N depends only on the number of voters s in S, and is given by P (S) = ps(1− p)n−s, where
p is the common value for all pi (1 ≤ i ≤ n). Since in this case we have p = (p, p, . . . , p), the
corresponding assessed simple game will be denoted by (W , p).

The next proposition shows that, for more than two voters, anonymous probability distributions
are the only ones for which the indices induced in simple games by success and decisiveness are
ordinally equivalent in any game, and also the only ones for which the index induced by luckiness
is ordinally opposite to both of them in any game.

Proposition 5.2 Let n ≥ 3. Then, the following statements are equivalent:

a) p is anonymous.
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b) Φ and Ω are ordinally equivalent in (W ,p) for all W.

c) Ω and Λ are ordinally opposite in (W ,p) for all W.

d) Λ and Φ are ordinally opposite in (W ,p) for all W.

Proof: From Theorem 4.4-a) it is clear that if p is anonymous then parts b), c) and d) are
verified. Conversely, if pi ̸= pj for some components i, j ∈ N then, from Theorem 4.4-c), d)
we can find a game W for which Φi(W ,p) > Φj(W ,p) but Ωi(W ,p) ≯ Ωj(W ,p), and, from
Theorem 4.4-e), we can find a game W for which Φi(W ,p) > Φj(W ,p), Ωi(W ,p) > Ωj(W ,p) and
Λi(W ,p) > Λj(W ,p). �

As a consequence of Proposition 5.2 we see that, for anonymous probability distributions, the
opposite effect that luckiness show compared with decisiveness has no additive effect on success.

Two power indices can rank voters in the same (or opposite) way but taking extremely different
numerical values. In what follows we compare the range of values of the three considered indices
for anonymous probability distributions.

Definition 5.3 Let g and h be two power indices in ASN .

i) g is more egalitarian than h in (W ,p) if for all i, j ∈ N

|gi(W ,p)− gj(W ,p)| < |hi(W ,p)− hj(W ,p)|.

We can also say that h is less egalitarian than g in (W ,p).

ii) g is a k-reduction of h in (W ,p) if there exists k (0 < k < 1) such that, for all i, j ∈ N

|gi(W ,p)− gj(W ,p)| = k|hi(W ,p)− hj(W ,p)|

k is said to be the reduction coefficient.

i) If g is a k-reduction of h in (W ,p) then,
if g and h are ordinally equivalent in (W ,p) we say that g is a direct k-reduction of h

in (W ,p),
if g and h are ordinally opposite in (W ,p) we say that g is an inverse k-reduction of h

in (W ,p).

Remark 5.4 In any assessed simple game (W ,p):

• If g is a k-reduction of h for some k then g is more egalitarian than h.

• If g1 is a k1-reduction of h and g2 is a k2-reduction of h, then
k1 < k2 implies that g1 is more egalitarian than g2.

• If g is a direct k-reduction of h then, for all i, j ∈ N it is gi(W ,p)−gj(W ,p) = k(hi(W ,p)−
hj(W ,p)).

• If g is an inverse k-reduction of h then, for all i, j ∈ N it is gi(W ,p) − gj(W ,p) =
k(hj(W ,p)− hi(W ,p)).

10



Remark 5.5 All the notions introduced in Definition 5.3 about two power indices g and h in ASN

have an immediate translation on the power indices they induce in simple games. In particular:

• If g is more egalitarian than h in (W ,p) then, for all i, j ∈ N it is

|gpi (W)− gpj (W)| < |hp
i (W)− hp

j (W)|

and we say that gp is more egalitarian than hp in W.

• If g is a direct k-reduction of h in (W ,p) then, for all i, j ∈ N it is

gpi (W)− gpj (W) = k(hp
i (W)− hp

j (W))

and we say that gp is a direct k–reduction of hp in W.

• If g is an inverse k-reduction of h in (W ,p) then, for all i, j ∈ N it is

gpi (W)− gpj (W) = k(hp
j (W)− hp

i (W))

and we say that gp is an inverse k–reduction of hp in W.

According to equations (7) and (11) we deduce that the success index Ω is a direct 0.5-reduction
of the decisiveness index Φ, and the luckiness index Λ is an inverse 0.5-reduction of it, in (W ,p∗)
for any W . In other words, the Rae index is a direct 0.5-reduction of the Banzhaf index, and the
index L is an inverse 0.5-reduction of it, in any simple game W . Thus, in particular, both indices
are more egalitarian than Banzhaf’s in any W . Next corollary is a generalization of this result for
anonymous probability distributions, and it follows from Lemma 4.3.

Corollary 5.6 Let W be a simple game, p ∈ (0, 1), and n ≥ 3. Then,

a) Ω is a direct k–reduction of Φ in (W , p) with k = 2p(1− p).

b) Λ is an inverse k–reduction of Φ in (W , p) with k = 1 + 2p(p− 1).

c) Ω and Λ are both more egalitarian than Φ in (W , p).

From this corollary, for any anonymous probability distribution p = (p, . . . , p), the indices Ωp and
Λp, induced in simple games respectively by success and luckiness, are more egalitarian than the
index Φp, induced by decisiveness, in any game W .

Notice that for any p ∈ (0, 1) it is 2p(1− p) ≤ 0.5 ≤ 1+2p(p− 1), so that, for any simple game
W and i, j ∈ N we have

| Ωp
i (W)− Ωp

j(W) |≤ 0.5 | Φp
i (W)− Φp

j(W) |≤| Λp
i (W)− Λp

j(W) |,

and these inequalities become equalities if and only if p = 0.5.

When the probability distribution is anonymous, it seems intuitive that those voters that occupy
a stronger seat should be more powerful. A tool to compare the strength of the seats of two voters
in a simple game W is the weak desirability relation %W (Carreras and Freixas, 2008).
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Definition 5.7 Weak desirability relation
Let W be a simple game and i, j ∈ N .

i %W j iff |Ci(k)| ≥ |Cj(k)| for all k = 1, 2, . . . , n,

where Ci(k) is formed by the coalitions of k voters for which i is crucial, i.e., winning coalitions
which become losing if voter i leaves them.
The relation %W is a preorder on N . We write i ≻W j when i %W j and j %/ W i. When the weak

desirability relation %W is total, i.e., for all i, j ∈ N it is either i %W j or j %W i, we say that the
simple game W is weakly complete.

This relation is weaker than the well–known desirability relation (Isbell, 1958) in the sense that
if a voter i is at least as desirable as a voter j then i %W j (Diffo Lambo and Moulen, 2002), and
the class of weakly complete games includes the class of complete games, i.e. the games for which
the desirability relation is complete.

In (Freixas, 2010) the following proposition was proved.

Proposition 5.8 Let W be a simple game, i, j ∈ N and p = (p, . . . , p) with p ∈ (0, 1). Then,

a) i %W j ⇒ fW(1i, 0j,p)− fW(0i, 1j,p) ≥ 0.

b) i ≻W j ⇒ fW(1i, 0j,p)− fW(0i, 1j,p) > 0.

Thus, from Lemma 4.3 and Proposition 5.8 the next corollary follows.

Corollary 5.9 Let W be a simple game, i, j ∈ N and p = (p, . . . , p) with p ∈ (0, 1). Then,

a) If i %W j then Φi(W , p) ≥ Φj(W , p), which is equivalent to:
Ωi(W , p) ≥ Ωj(W , p) and Λi(W , p) ≤ Λj(W , p).

b) If i ≻W j then Φi(W , p) > Φj(W , p), which is equivalent to:
Ωi(W , p) > Ωj(W , p) and Λi(W , p) < Λj(W , p).

Thus, for anonymous probability distributions the strategic part of the model (W , p), which is
captured by the vector p = (p, . . . , p), is neutral since all voters have a common probability.
Therefore, what really matters is the strength of the seats that they occupy. Next result follows
from the previous corollary.

Corollary 5.10 Let W be a weakly complete simple game and p = (p, . . . , p) with p ∈ (0, 1).
Then, the following items are equivalent:

a) 1 %W 2 %W · · · %W n,

b) Φ1(W , p) ≥ Φ2(W , p) ≥ · · · ≥ Φn(W , p),

c) Ω1(W , p) ≥ Ω2(W , p) ≥ · · · ≥ Ωn(W , p),

d) Λ1(W , p) ≤ Λ2(W , p) ≤ · · · ≤ Λn(W , p).

As a consequence of this corollary, the decisiveness and the success indices rank the voters in the
same way as the weak desirability relation in any weakly complete game W , for any p ∈ (0, 1),
while luckiness rank them in an opposite way. That is, the less significant is the seat of a voter
the more lucky the voter is.

12



6 Conclusions

In this paper we use the multilinear extension of simple games to study three power indices in
assessed simple games. An assessed simple game (N,W ,p) is defined by a simple game (N,W),
which model a voting scenario, and a vector p = (p1, . . . , pn) ∈ (0, 1)n. Each component pi is
the assumed a priori probability that voter i ∈ N votes in favor of a proposal, independently of
each other. The multilinear extension turns out to be a useful tool to compute the indices of
decisiveness, success and luckiness in assessed simple games, and to establish some new properties
covering the issues of ordinal equivalence and egalitarianism.

In particular, the rankings among voters given by the success index Ω, the decisiveness index
Φ and the luckiness index Λ in (N,W ,p), are compared by using the multilinear extension fW of
the game (N,W). In Theorem 4.4 it is proved that if two voters i and j have the same probability
of voting ‘yes’, i.e., pi = pj in the vector p, then decisiveness and success indices rank them in the
same way in (N,W ,p) for any simple game W , while luckiness rank them in the reverse order.
It is also proved that, for n > 2, if pi ̸= pj we can always find games for which this relationship
between rankings is not maintained. From these results we prove that success and decisiveness
are ordinally equivalent in (N,W ,p) for any W if and only if p is anonymous. And it is also
proved that anonymous probability distributions are the only ones for which success (decisiveness)
is ordinally opposite to luckiness in any game.

In the anonymous case, the egalitarianism of the three studied indices is compared and we
prove that, for any pair of these indices, one of them is a k–reduction of the other for some k. It is
also proved that the common ranking given by success and decisiveness coincides with the ranking
given by the weak desirability relation in weakly complete simple games, that is to say, the success
or the decisiveness of voters depend only on their position in the game. Instead, luckiness give a
ranking of voters opposite to that given by the weak desirability relation.

Weakly complete games may not be the only kind of games for which all anonymous and
independent probability distributions induce the same ranking among the voters. An open question
to be studied is to characterize the simple games with this property.
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