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Passive fiber cavities are basic nonlinear optical systems that are described by simple models and however 
they have a rich spectrum of complex behaviors (optical bistability, period-doubling bifurcations, chaos, 
modulational instability). From a pract,ical point of view its study would have direct implications in the 
understanding of more complex cavity-based optical devices such as fiber lasers, Fabry-Perot lasers or APM 
lasers. Moreover , passive fiber cavities have potential applications in telecommunication as ultra-short pulse 
generators [l] and as optical memories using its bistable behavior. More concretely, this work is a contribution 
to  the study of those bistable behaviors with pulsed input, so the device studied could be used for pulsed 
optical memory storage. 

The device, schematically depicted in fig. 1, consists of a ring cavity made of nonlinear passive single- 
mode optical fiber with a length L ,  and two lineal directional couplers with transmission and reflection 
coefficients 8’ and p2 respectively (e2 +p2 = 1). To simplify, we consider no intensity losses in both couplers. 

The temporal separation distance between the input pulses is equal to the time needed by each pulse to 
make a round trip ( t ~ ) ,  i.e. the so called synchronous pulsed pump. 

The equations that describe the system are [2]: 

;azun(z,T) - ( d 2 ) a ; , u ( z 1 T ) +  I U n ( Z , T )  l2 U n ( Z , T )  = 0 

u ~ + ~ ( T )  = ~ u I N ( T )  + p2Un(1,T)e-i60 
I U O U T , n ( T )  1 2 =  o2 I Un(O,T) l 2  

(1) 

( 2 )  

(3) 
with Z = z / L ;  T = t - z/ws; T = r / s q r t ( l  P,’ I L ) ;  z is the longitudinal coordinate along the ring axis; 
Un(2,T) = &TEn and Un(Tj is just after the first coupler ( 2  = 0); TI is the round trip ( n  = 1, 2,  ...); E is 
the envelope of the pulses in the fiber: UIN and UOUT are the scaled input and output respectively; wg is the 
group velocity of the pulse with a carrier frequency W O ;  P’‘ is the group-velocity dispersion; 7 = p”/ I pl’ I is 
the sign of the dispersion; y = W O T I ~ / ( C A , ~ ~ ) ;  722 is the nonlinear refractive coefficient; A,,, is the effective 
core area; 60 is the detuning of the cavity with respect to  linear resonances. We work with incoming pulses 
U I N ( T )  = Asech(T). 

The numerical method used to solve the eq.(l) is the splzt s t e p  Fourzer method. The essence of this 
method is to  propagate the field along z in a dispersive and in a nonlinear way independently. We will use 
the symmetric version because it gives an error of order h3 with h the step of propagation in z .  In a more 
specific explanation of the method we can consider eq.(l) in an operational way [3]: d z U  = (fi + @)U with 
6 E -i(7/2)d& the dispersive operator and fi E iy I U l2  the nonlinear one. The field after a propagation 
distance h is then approximated by: 

h Z S h  
U ( Z +  h , ,T)  = exp(lfi)exp(/ h N(U(Z’ ,T ) )dZ’ )exp ( lB)U(Z ,T )+  O(h3) 

Z 
(4) 

The error is due to  the nonconmutativity of the two operators. The operator exp((h/2)6) is applied on 
the field U in Fourier space using the FFT algorithm. As fi depends on U(2, T )  we are not able to  integrate 
the nonlinear term. We approximate the integral by ~ N ( U D ( Z  + h / 2 ,  T ) )  where UD(Z + h / 2 ,  T )  is the field 
propagated only in a dispersive way [4]. 

In tjhe good cavity limit [5][6] wit81i a C‘IU pum,p (i.e. no dependence on T )  the input-output curve of the 
stationary states of the system is described by: X = Y3 - 2AY2 + (Az + 4)Y with X = 8 I U I N  1’ /e4, 
Y = 2 I U ~ U T  l 2  /e4 and A = 2S0/B2. A critical value of the detuning So is found. Over that value we 
find optical bistability (O.B.) and under it an univalued input-output response. Those critical values are: 
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~5o,~,.it = tJ2a. To be in the range of the good cavity limit we will concentrate our study to high reflction 
coeffcients: p2 = 0.9 - 6 0 , ~ ~ ; ~  = 0.17, p 2  = 0.8 - 60,eric = 0.34. 

Working with pulsed punrp we also tried to obtain bisLable cycles and the crihicsl values of the det.uning 
with high reflection coefficient&s.The resu1t.s are showed below. 

Normal dispersion 
With normal dispersion for p 2  = 0.9 we get O.B. with 60 2 0.7; for y 2  = 0.8 with 60 2 1.1 and for 

p2 = 0.7 with 60 2 1.5. Compa.ring the results obtained in  this dispersive regime with the cw pump case, we 
can conclude that with pulsed pump the critical detuning to achieve O.B. is much more higher than with cw 
pump (fig. 2). The intensity (i.e. the peak intensity of the input pulses) needed to switch-on in the bistable 
cycles is of the same order than with cw pump, but the input switch-off intensity is lower with cw pump 
(fig. 3). 

Anomalous dispersion 
With anomalous dispersion for p2 =: 0.9 we get O.B. with 60 2 0.2; for p2 = 0.8 with 60 2 0.3 and for 

p2 = 0.7 with 60 2 0.5. Comparing again the results of this dispersion regime with those obtained with cw 
pump, we conclude that the critical detuning necessary for O.B. is of the same order in both cases. In fact 
it is a bit lower in the pulsed case (fig. 4). The input switch-on and switch-off intensities with pulsed pump 
are much more higher than wit8h cw pump. The input, intensity range with bivalued output is larger with 
pulsed pump. 
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Figures: 1. Scheme of the fiber ring cavity. 2. Input-output peak int,ensity curve for p2 = 0.8,  60 = 0.9 and 
normal dispersion regime, with pulsed pump (continous line) and cw pump (dashed line). With c w  pump we observe 
bistability and with pulsed pump an univalued curve. 3. Same as fig.2 but with p2 = 0.9 and 60 = 1.1. 4. Same as 
previous but with p 2  = 0.8, 60 = 0.3 and anomalus dispersion. The  critical detunings with this kind of dispersion are 
of the same order with cw pump and with pulsed pump. 
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