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Abstract: 

An alternative to the usual adaptive noise cancelling 
method devoted to remove interferences is presented. In 
the conventional methodology to implement adaptive 
cancellers it is necessary a reference signal, correlated 
with the interference. This requirement (not always 
possible) is a limitation of this kind of canceller. This 
paper shows the use of Model Reference Adaptive 
Systems (MRAS), designed by using the Hyperstability 
Theory, in order to cancel interferences without the 
requirement of an auxiliary input. In the proposed 
methodology it is not necessary to have a reference signal 
to identify the interference; it is enough to know the 
upper and lower boundaries of this interference. 

1.- Introduction: 

When it is not possible to use a conventional filter as a noise 
or interference canceller, a solution is the use of an adaptive 
filter [I] ,  [2], [3], [4]. Adaptive cancellers have their 
parameter variables, and they are tuned according to a 
performance index to be minimized. In figure 1. where s,(t) 
is the plant input signal, n(t) the noise added in the plant and 
&(t) the output error to be minimized according to a 
performance criterium, is shown the general structure of a 
noise canceller filter. The reference signal n,(t), correlated 
with n(t), can be obtained froin the measurement of the 
interference in another point of the system. The canceller 
filter input is this reference noise, and froin i t ,  the canceller 
is able to estimate the real interference present in the plant. 
This estimation is subtracted to the plant output i n  order to 
obtain an error signal that is used to adjust the canceller 
parameters in  order to eliminate the noise. The acijustinent 
is done according to a perforinance index. Usually the LMS 
algorithm is used to adjust the canceller parameters [4]. The 
main features of this algorithm are that i t  is easy to 
implement and it does not have large coinputational costs. If 
there are not convergence problems, it has a good 
performance. 
When i t  is not possible to have a reference signal froin the 
noise due to the impossibility of observing or measuring the 
interference noise, or due to hardware restrictiors (as is the 
number of A/D converters or analog multiplexers) [SI, the 
conventional canceller structure in not useful. In this case, 
a solution is the use of a Model Reference Adaptive System 
In this paper, after a brief exposition of the theoretical basis 
of the methodology, the proposed canceller is applied to 
continuous-time plants contaminated by bounded 
interferences. 

Filter 

Figure 1: Noise Canceller Filter. 

2.- MRAS Canceller: 

A Model Reference Adaptive Control is composed of four 
parts (61, [7] ,  [8]: a plant with unknown parameters, a 
reference model specifying the desired output, a controller 
containing adjustable parameters, and an adaptation 
mechanism to update the adjustable parameters (figure 2). 

Controller Y--P 1’ 
Figure 2: Model Reference Adaptive System. 

The plant, with response yp(t), is considered with known 
structure and unknown parameters, but these are constants 
or slowly variables compared with the velocity of the 
excitations in the system. The reference model is used to 
specify the ideal response y,,,(t) of the plant to the control 
signal u,(t). 

The objective is that the controller behaviour makes 
y,,,(t) =y,(t). The adaptation mechanisin in the controller 
synthesizes a control law u(t) which ensures that the control 
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system remains stable and the tracking error converges to 
zero according to the parameter variation. Many formalisms 
can be used to achieve this purpose, such as Lyapunov's 
direct method or Hyperstability theory [6]. 

In both formalisms, the internal states error x(t), and the 
output error equations are 

a@) =Ax@) +bqJ(t)qb(t); 
&(t) =c Tx(t); 

where A is an asymptotically stable (nxn) matrix, x(t) is an 
(1  xn) vector defined as the difference between model states 
and plant states, c(t) is the output (measurable) error, 4(t) 
and p(t) are time-variant vector functions. and b and c are 
the usual (lxn) control and output vectors. 

If the transfer function cT(sI-A)-'b is strictly positive real 
(SPR) and the identification of the state variables is possible 
(for instance with state observers), then i t  is possible to 
design a stable global system [7], [8] if the vector $(t) is 
suitablely obtained. An usual way to define the vector 4(t) 
is the integral law 

qb(t)= -RE(t)p(r); (2) 

where R is a definite positive diagonal matrix. So, in thi\ 
case it is well known that the error signal &(t), defined as the 
difference between the output plant and the output model. 
tends to zero. Moreover, if the condition of persistent 
excitation is satisfied, the parameters of the controller tends 
to the desired parameters (perfect matching). 
If there are interferences or not modelled dynamics in the 
plant it is not possible to assure the perfect behaviour of the 
Model Reference Adaptive System designed considering the 
previous ideal situation. So, the previous integral law to 
obtain 4(t) must be modified [8], [9], [ IO] ,  [ I l l .  

Global system inust satisfy the hyperstability condition in 
order to assure the convergence to zero of the outpiit error. 
Moreover. if the plant is not exactly modelled. as usual, the 
unmodelled dynamics in the reference model can be 
interpreted as additive interferences in the plant, and the 
adaptive system tries to cancel them into a bounded region 
(attractor) of unmodelled parametric variations. Outside of 
this region it can appear bifurcation problems [lo]. 

3.- Canceller System Design: 

3.1 .-Hype rstable Design: 

The error model describing the evolution of the error is 
represented by the state equations 

(3) 

Where iXt) represents the interference and u(t) is the control 
signal to be selected in order to accomplish the 
hyperstability condition (exposed below). 

The transfer function H(s) between e(t) and v(t) is 

H(s) =c T(s! -A) - 'b ;  

If we select the control signal as 

u(t) =&t)k(t) + U i @ ) ;  

the equivalent error equations are 

i ( f )  =Ax(t) +bv(t); 
&(t) =c TI@); 

v(t) =p7(t)(k(t) -a) +U#@)  +Vt); 
w(t)=-v(r);  

The block diagram of this system is 

1 
Block 

Figure 3: Hyperstable Representation. 

The aim is to determine a signal v(t) so when t-- then 
&(t)+. 

The stability of this system can be analyzed using the 
Hyperstability criterion. Necessary and sufficient conditions 
to be hyperstable [7] are: 

il The linear part H(s) must be strictly positive real (SPR): 
Re[H(s)] > 0 for all Re[s] 20. 

ii/ The integral inequality 

W(t)&( t )dt  2 -y, v T >  0; i 
must be satisfied. That is possible with 

k( t )=  -Rp(t)&(t);  
( U # ( t )  +i/(f))&(t) I O ;  

(7) 

where R is a positive definite diagonal matrix. 
The previous inequality is satisfied if 

U,@) = -sgn(&) MAX( I $1 ); (9) 

where the function sgn(x) is defined as the sign of x, and 
MAX( I x I ) the maximum of the absolute value. 



3.2.- Lyapunov Analysis: 

We consider the previous error equations in state form 

st(t)=Ax(t) +bv(t):  
& ( f )  =c T-.(t); (10) 

v(t) =d(t)+(t)  +u,(t) +i,@); 
+(t) =k( t )  -a; 

The Lyapunov function candidate is 

L=x T(t)Px(t) ++r(t)R-l+(t);  (11) 

where P is a positive definite matrix, and R is a positive 
definite diagonal matrix. 
The time derivative of L is given by 

L=-~(t) 'Qx(t)+ (12) 
+2&(t)( -sgn(&)MAX( I $1 ) +iAf)) I O ;  

Hence L is bounded and converges to a finite value. Since 
the signal v(t) is bounded then x(t) is uniformly continuous. 
In this case it follows from Barbalat's lemma that e ( t ) 4  
when t-m [8]. 

4.- Example of Application: 

It is considered a first order plant with input u(t) and output 
y,(t), described by 

l y s ) = a ,  U(s)+Z(s): 
s+bp 

(13) 

The reference model is described by the transfer function 

The Laplace transform of the error is given by 

(14) 

This leads to the expression 

where Y&), Y,(s), U,(s), U(s) and 1,(s) are the Laplace 
transforms of y,,,(t), y,(t), u,(t), u(t) and ;At) respectively. 
The obtained error equation has the form 

and the ai are defined as 

it follows from (1 8) 

V(t )=(K, ( t ) -a , )Y , , ( z , ( t )+(~ , ( t ) -~ , )  U,([) + l l , ( ~  +ijf): (21) 

The hyperstability conditions becomes: 
i/ The linear part is characterized by the transfer function 
Ws) 

that is SPR for % > 0 and b,, > 0. 

ii/ In order to have the hyperstability inequality condition 

(24) 

These conditions are possible by choosing u,(t) as 

y ( t )= - sgn(e )  MAX( l i f l ) ;  (25) 

5.- Simulation Results: 

Simulation 1 : 
The previous system has been simulated with the normalized 
values 

\ . b n, > % = I ;  b = I ;  

The input signal is an unit step, and it is considered a 
sinusoidal interference of frequency w,= 1 in  the plant. 

Some SIMNON simulation results are 

I b  as ,e 

Figure 4: Plant and Model outputs. 
a/ Without Canceller. 
b/ With Hyperstable Canceller. 
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Figure 5: d(t) 
a/ Without Canceller. 
h/ With Hyperstahle Canceller. 

Simulation 2: 
Changing the plant parameters a,, and b,, with the same 
model and interference values 

" , = l ;  b,,,=I; a,,=0.9; b,=1.2; 

b 

I. ae 30 

igurr 6: Phnt and Model responses. 
a/  without Canceller. 
hi With Hyperstnhle Canceller. 

In figure 7 is shown the behaviour of the classical LMS 
canceller simulated with different j~ (step parameter) values. 
The behaviour is similar to the proposed method but with 
the requirement of an auxiliary input (reference noise). 

6.- Conclusions: 

The simulation results show a good behaviour of the 
proposed adaptive system, even if the interference signal is 
in the spectral band of the plant it is cancelled. The 
cancelling signal u,(t), added to the plant set-point, has a 
high content of high frequencies. This is due to the 
continuous tracking of the interference (through the error 
signal). 
The methodology has been studied in other kinds of 
perturbations, as is the case of random noise, unmodelled 
dynamics and non-linearities in the plant. The behaviour has 
been similar to the one shown above. The only requirement 
to apply the design is the knowledge of the boundaries of the 
perturbations. 
If the plant has unmodelled high order dynamics, the control 
can leave instabilities in critical situations. That can be 
reduced by smoothing the switching adaptive law. 
The main idea of the method is to design an adaptive system 
that runs according to a switching law, assuring that the 
hyperstability condition is always satisfied. The methodology 
runs satisfactorily for bounded interferences, and without the 
requirement to have a reference from the noise. 
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gure 7: LMS Canceller oulput. 
a/ With p=0.3 
h/ With p = 3  
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