
Noise Inspector Tool
Gladys Utrera∗, Jordi Fornes∗

∗Department of Computer Architecture
Universitat Politècnica de Catalunya

c/ Jordi Girona, 1-3
08034 Barcelona, Catalunya, Spain
Email: gutrera,jfornes@ac.upc.edu

Jesus Labarta∗†
†Barcelona Supercomputing Center

c/ Jordi Girona, 31
08034 Barcelona, Catalunya, Spain

Email: jesus.labarta@bsc.es

Abstract—The operating system noise can interfere with nor-
mal execution programs. This behavior is becoming especially
important when scaling parallel programs and amplified with
global synchronizations. This work presents a tool to detect in a
non-intrusive way the alien programs that share resources with
current running applications in a multicore cluster.

Keywords-Operating system noise; Tracing tools; Profiling
tools; Performance analysis

I. INTRODUCTION

The prediction of the behavior of a parallel program is not
an easy issue. One may need to inspect the source code of the
program to understand it. Usually the behavior of a parallel
program is analyzed through tools that can gather information
regarding the application performance like the amount of time
spent in different parts of the program or the occurrence of
certain events during the execution.

However, runtime behavior may vary not only depending on
the interaction of the components of the parallel program but
on external factors to the program such as network traffic,
resource occupancy and sharing. These factors will not be
explained by analyzing the internal behavior of the program.

We are centered on the impact caused by alien programs
like operating system services. These services can arise as a
consequence of the program execution like virtual memory
services and I/O accesses, or because of regular operating
system maintenance. In the literature, the execution of such
programs, called noise or jitter, have been widely analyzed
and characterized [1]–[5]. However, from a user point of view
it is not easy to detect, or even to quantify. Moreover, it is not
obvious at all how to predict or even analyze such behavior or
the impact and scalability on the currently running programs.

The total time inverted in such external activity represents
less than 1% [5] of the total execution time of a user appli-
cation. However, the real impact comes when such activity
is constantly making micro-interruptions in a regulary often
synchronized application. The scalability of such applications
degrades dramatically (see Figure 3).

In this work we present a user-level tool that is able to
extract accurate information at runtime of any activity that is
being co-scheduled with the currently running program in a
multicore cluster and without any root intervention.

We present a methodology to analyze the current system
activity as well as its impact on regular running applications.

The applications depending on their communication type may
be affected in different proportion. In addition, system activity
may have some inherent characteristics that can be taken into
account when doing the CPU allocating applications within
nodes, to avoid as much as possible the interference.

To our knowledge, this is a first effort to visualize and iden-
tify any system activity that arises while running applications
at user level and transparent to their execution. In addition, the
tool provides information compatible with the Paraver tool [6]
format input traces to make post-mortem analysis.

II. IMPLEMENTATION DESCRIPTION

Operating system activity, is named as noise, since it inter-
feres with current program executions by performing micro-
interruptions. Our final objective is to generate information at
runtime, that describes the use of CPUs in a group of nodes
during a period of time.

The activity information must be collected in user-mode.
There is no way of triggering an event when the CPU is being
used by a different program. For this reason the only way
to gather such information is by doing polling. The monitor
tool does polling in the /proc folder (linux-like operating
systems register activity there) inspecting each program to see
if they have had activity since the last inspection. If so, the
information registered is the name of the program, amount
of time with activity, the number of context switches and the
CPU on which it last executed.

The information gathered is saved under /tmp in a special
subfolder. In this way we minimize I/O access time. However
this could generate extra memory swapping. For this reason
is necessary to control the size of this file to save it to disk
from time to time if it exceeds a pre-defined maximum size.
In practice the information gathered per node for an hour of
monitoring is in the order of a few megabytes, so no swapping
problems are arisen for such durations.

At the end of the inspection period of time, the monitor
generates a report with a summary for each of the programs
that registered use of CPU. The accuracy of the information
gathered depends on the polling interval. As the system
activity has very short running times, even less than a time
slice, we make a continuous monitoring, so a dedicated CPU
is needed to not interfere to user programs execution.

montse aragues
Texto escrito a máquina
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/PDP.2017.52

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina



Finally, after completing the period of monitoring time,
we have a different file per node, which must be combined,
synchronized, and formated to be visualized using the Paraver
tool [6]. In order to synchronize the trace generated by the
NIT tool with a trace generated by the Extrae [7] library of
the user program, a special Extrae event is inserted in the user
program at the beginning of it. In this way it is possible to see
if there is a correlation between any performance problem of
the user program with any system activity that occurred by that
time. We also use this methodology as part of the validation
of the monitoring tool.

III. TOOL VALIDATION

We show how the data generated correlates to what happens
in the system. To that end we compare the traces generated
by our tool and by the Extrae library with the data collected
from a running user application.

Experiments were run on the MarenostrumIII supercom-
puter [8], which is based on Intel SandyBridge processors
with Linux Operating System and Infiniband FDR10 inter-
connection networks. The MPI library used is OpenMPI 1.8.1-
mellanox [9]. The performance analysis were made using the
Extrae library and Paraver tool [6].

The experiments were performed using two types of bench-
marks: 1) an MPI parallel iterative asynchronized application;
2) an MPI parallel iterative synchronized application. Both
types use the FWQ [10] for the calculation part, ensuring in
this way no cache misses and no page faults are generated
as a result of the program execution. Both benchmarks are
iteratives. The difference is that in the first one, each process
perform its iterations without any intermediate synchroniza-
tion, while the second one performs a global synchronization
at the end of each iteration (MPI Allreduce).

With the information gathered we compare how system
activity varies in the different scenarios. This would give a clue
about performance improvement not only to the programmer,
also to system administrators. In addition this would enables
programmers to differentiate between external system activity,
that is independent of the existence of the application, and
internal system activity, which is system activity generated
because of the application itself (i.e. I/O intensive).

A. Asynchronous work

Any external activity to the asynchronous benchmark will
make iterations to have different durations. By inserting Extrae
events at the end of each iteration, any variation (a longer
interval duration) reveals stolen CPU cycles.

We can see in figure 1 the histogram of the execution
generated by the Extrae library. Most of the iterations fall
down in a common region with approximately 33 milliseconds
interval duration, except for some outliers which fall apart with
intervals duration between 48 and 52 milliseconds.

Once the the outliers are identified in the Extrae trace
we can refer to the external activity trace generated by the
NIT library. After synchronizing both traces we can see what
external activity was executing at that moment (figure 2). A

Fig. 1. Zoom trace visualization with Paraver Tool of the histogram of a
sequence of the FWQ benchmark delimited with Extrae events.

Fig. 2. Zoom trace visualization with Paraver Tool of the execution of
external activity trace generated by the NIT library.

Fig. 3. Slowdown when varying interval between global synchronizations.

sequence of states (red/dark grey in this case) delimited with
flags (begin/end daemon events) are marked in the trace. The
different activities are labeled with the name of the daemon
and have an associated color.

B. Synchronized work

Figure 3 shows the slowdown of the synchronized bench-
mark when varying the number of CPUs and interval durations
between consecutive global synchronizations points. We can
observe that as the time interval between synchronizations
diminishes and the total number of CPUs increases, the
total execution time increases dramatically. As the interval
between synchronizations becomes smaller, the probability of



Fig. 4. Zoom trace visualization with Paraver Tool of the execution of the
synchronized benchmark extracted with the Extrae library.

having external activity concentrated in the same iteration
across different processes diminishes. In consequence, external
activity steals CPU cycles to processes at different intervals,
amplifying in this way, the delay effect. Then, the total
execution time is incremented.

Our NIT tool can help us to understand how the impact is
performed in applications and also identify the services that
provoked such behavior in the execution.

Figure 4 shows three complete iterations from the execution
of the synchronized benchmark visualized with the Paraver
tool. The trace was generated at runtime using the Extrae
library. The x-axis represents the time in milliseconds, while
the y-axis represents the MPI processes of the application.
The colors represent the states of the execution, in particu-
lar blue (dark-grey) means running or calculation state, and
the orange state (light-grey) represents group communication
(MPI Allreduce). We can observe that during the third
synchronization, all the processes except one, arrive to the
synchronization point and are stuck waiting for process 7
to arrive. Looking just at this trace, there is no explanation
for such delay. We could think the calculation is unbalanced,
which is not true (FWQ has fixed duration). Figure 5 visualizes
the trace with all the external activity generated with the NIT
tool and synchronized with the original trace (figure 4). Light
blue (light-grey) states means no external activiy. We can
observe narrow states of activity (in the order of magnitude of
microseconds) synchronized with the group communication
function calls. However, what calls the attention is a light-
orange state in CPU 7. This activity corresponds to a daemon,
which periodically wakes up and executes during some mil-
liseconds. This daemon steals CPU cycles from the currently
running application, provoking process 7 to arrive late to the
synchronization point, and consequently delaying the whole
application. Using the Paraver tool it is also possible to filter
a specific daemon and look at its execution pattern.

IV. RELATED WORK

Performance monitoring tools for cluster environments can
be classified into two types according where we put the focus.
When interested in dynamic control of the execution of a
parallel program we need online monitoring tools, with rapid
feedback such as Unix command line top. The amount of data

Fig. 5. Zoom trace visualization with Paraver tool of the system activity
during the execution of the synchronized benchmark extracted with the NIT
tool.

collection is critical and can make impractical a postmortem
analysis.

On the contrary, to perform a global analysis it is needed
as information as possible to make a post-mortem study,
but with the lowest possible intrusion. In order to do that,
parallel programs monitoring use two different approaches:
clock driven (like Unix command line mon) or even driven
monitoring (timing, counting or tracing). Inside the last group,
the most general, portable and cheapest technique is software
tracing, although it has to deal with the lack of a global clock
[11]. KappaPI 2 [12], EXPERT [13] and Scalasa [14] perform
offline postmortem analysis using tracing.

Our tool can be used with other co-monitoring applications
for HPC. In this sense, NIT is a good allied for Paraver [6].
Graphical trace browsers constituted a topic by themselves. An
interactive 3D vision was incorporated in the TAU ParaProf
tool [15] and Paraver displays its views in a 2D array of pixels
scalable like a photo.

In fact, the question about how performance analysis tools
present their results (time-based or not) can be used to classi-
fied the tools between profile-based tools, where profiled data
comes from statistics aggregated over the time dimension and
it is structured in tables or trees; and timeline visualisation
tools, that show data, defined by time and processes, in
2D space keeping the time dimension. Although these two
approaches are usually disconnected, they both have clear
strengths and some authors have proposed to take advantage
of the benefits of both approaches, interfacing profilers like
KOJAK (an automatic performance evaluation system for MPI,
OpenMP and SHMEM, now part of the Scalasca toolset) or
PeekPerf (the control center of the IBM High Performance
Computing Toolkit [16]) with analysis tools like Paraver,
although the proposed methodology could be applicable to
any tool that fits the functionality requirements [17].

Finally, there are tools for understanding and tune dif-
ferent scheduling algorithms on parallel systems. Jedule is
a software tool which can visualize schedulings of parallel
applications [18] and VizzScheduler is a tool also dedicated
to develop and evaluate scheduling algorithms for the LogP
cost model [19].

We have shown the huge impact of our tool dealing with



the application noise. At all events, it is not the target of this
paper to characterize jitter, nevertheless there is a specially
inspiring work on system noise that influenced our work [20].
The authors analyzed the influence of OS noise on applications
with analytical modelling and simulation.

V. CONCLUSIONS AND FUTURE WORK

We present the NIT tool which traces at execution time
any activity external to the currently running user application.
In order to benefit from the NIT tool the user doesn’t need
any system privilege. The user application does not need to be
instrumented. The tool runs on a separate processor in each of
the nodes the user application is running to not interfere with
the normal execution of the user applications.

We have validated the tool by running user applications with
certain characteristics like iterative fixed work time quantum
(FWQ) where any CPU cycles leakage is detected because of
longer work intervals. At this point, this type of intervals are
correlated with the trace generated by our tool, and the external
activity is then identified. Other way of putting in relevance
CPU cycles leakage is when doing regular synchronizations.
The impact of any external activity on a process is amplified
due to the global synchronization. This shows the importance
of detecting and identifying such external activity especially
for scaling purposes.

The tool proved to be very effective for detecting and
identifying external activity of any user application. In order to
visualize the trace we used a format compatible with the Par-
aver tool, which allows us to perform statistics and operations
on the trace like filtering events, zooming, histograms gener-
ation. The minimum granularity of the information generated
depends on the number of cores per node and on the platform
used (network and memory access latencies,. . .). In the exper-
imented platform is in the order of a few milliseconds. This
is enough for system activity detection purposes.

We think that it is essential to have a global view of
the activity of the system which includes not only the user
applications but also any service which can be executed as a
result of the operating system maintenance or as a reaction
from the application system calls. Finally the tool is able to
generate a unified and synchronized trace with the information
from a set of nodes, not just within a node.

To our knowledge this is the first approach to trace infor-
mation about any activity external to user applications in user
mode in multinode-cluster. The trace generated provides such
amount of information to make post-mortem interesting anal-
ysis like to deduce system activities patterns, characterizations
and statistical information.

In the future we plan to apply the tool to other contexts,
like job scheduling or virtual machines.

ACKNOWLEDGMENT

The authors acknowledge the support of the BSC (Barcelona
Supercomputing Centre). We would like to thank the anony-
mous reviewers for their comments, which helped us to
improve the manuscript. This work has been supported by

the Spanish Ministry of Science and Innovation (contract
TIN2015-65316), the Spanish Ministry of Economy, Industry
and Competitiveness (HAR2014-57776-P) and the Generalitat
de Catalunya (2014-SGR-1051).

REFERENCES

[1] R. Mraz, “Reducing the variance of point to point transfers in the
ibm 9076 parallel computer,” in Proceedings of the 1994 ACM/IEEE
conference on Supercomputing. IEEE Computer Society Press, 1994,
pp. 620–629.

[2] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé, “Namd: Biomolecular
simulation on thousands of processors,” in Supercomputing, ACM/IEEE
2002 Conference. IEEE, 2002, pp. 36–36.

[3] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing su-
percomputer performance: Achieving optimal performance on the 8,192
processors of asci q,” in Supercomputing, 2003 ACM/IEEE Conference.
IEEE, 2003, pp. 55–55.

[4] T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner, J. Fier, R. Black-
more, P. Caffrey, B. Maskell, P. Tomlinson et al., “Improving the
scalability of parallel jobs by adding parallel awareness to the operating
system,” in Supercomputing, 2003 ACM/IEEE Conference. IEEE, 2003,
pp. 10–10.

[5] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, “System noise,
os clock ticks, and fine-grained parallel applications,” in Proceedings of
the 19th annual international conference on Supercomputing. ACM,
2005, pp. 303–312.

[6] Barcelona Supercomputing Center. Paraver: a flexible performance
analysis tool. [Online]. Available: http://www.bsc.es/computer-sciences/
performance-tools/paraver/general-overview

[7] ——. Extrae instrumentation library. [Online]. Available: https:
//www.bsc.es/computer-sciences/extrae

[8] ——. (2016) Marenostrum 3. [Online]. Available: http://www.bsc.es/
marenostrum-support-services/mn3

[9] OpenMPI Open Source HPC. OpenMPI Open Source HPC. http:
//www.open-mpi.org/. [Online]. Available: http://www.open-mpi.org/

[10] Lawrence Livermore National Laboratory. Asc sequoia benchmark
codes. https://asc.llnl.gov/sequoia/benchmarks. [Online]. Available:
https://asc.llnl.gov/sequoia/benchmarks

[11] J. C. De Kergommeaux, E. Maillet, and J. Vincent, “Monitoring parallel
programs for performance tuning in cluster environments,” Parallel
Program Development for Cluster Computing: Methodology, Tools and
Integrated Environments” book, P. Kacsuk and JC Cunha eds, 2001.

[12] J. Jorba, T. Margalef, and E. Luque, “Performance analysis of parallel
applications with kappapi 2.” in PARCO, 2005, pp. 155–162.

[13] F. Wolf and B. Mohr, “Automatic performance analysis of hybrid
mpi/openmp applications,” Journal of Systems Architecture, vol. 49,
no. 10, pp. 421–439, 2003.

[14] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker, and B. Mohr,
“The scalasca performance toolset architecture,” Concurrency and Com-
putation: Practice and Experience, vol. 22, no. 6, pp. 702–719, 2010.

[15] A. D. Malony, S. Biersdorff, W. Spear, and S. Mayanglambam, “An
experimental approach to performance measurement of heterogeneous
parallel applications using cuda,” in Proceedings of the 24th ACM
International Conference on Supercomputing. ACM, 2010, pp. 127–
136.

[16] D. Klepacki, “The ibm high performance computing toolkit,” Trace
Library Documentation, IBM, 2004.

[17] J. Giménez, J. Labarta, F. X. Pegenaute, H.-F. Wen, D. Klepacki, I.-H.
Chung, G. Cong, F. Voigtländer, and B. Mohr, “Guided performance
analysis combining profile and trace tools,” in European Conference on
Parallel Processing. Springer, 2010, pp. 513–521.

[18] S. Hunold, R. Hoffmann, and F. Suter, “Jedule: A tool for visualizing
schedules of parallel applications,” in 2010 39th International Confer-
ence on Parallel Processing Workshops. IEEE, 2010, pp. 169–178.

[19] W. Löwe and A. Liebrich, “Vizzscheduler-a framework for the visual-
ization of scheduling algorithms,” in European Conference on Parallel
Processing. Springer, 2001, pp. 62–66.

[20] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the
influence of system noise on large-scale applications by simulation,”
in Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
1–11. [Online]. Available: http://dx.doi.org/10.1109/SC.2010.12




