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Abstract  

 
Recent   advances   in   wearable   technology,   accompanied   by   the   decreasing   cost   of   data   storage 

and   increase   of   data   availability   have   made   possible   to   take   pictures   everywhere   at   every 
time.   Wearable   cameras   are   nowadays   among   the   most   popular   wearable   devices.   Besides 
leisure,   wearable   cameras   are   attracting   a   lot   of   attention   for   the   improvement   of   working 
conditions,      productivity   and   safety   monitoring.   Since   the   collected   data   can   be   potentially 

used   for   memory   training   and   extracting   lifestyle   patterns   useful   to   prevent 
noncommunicable   diseases      as   obesity,   they   are   being   investigated   in   the   context   of 

Preventive   Medicine.      Most   of   these   applications   require   to   automatically   recognize   the 
ability   performed   by   the   user.   This   work   aims   to   make   a   step   forwards   towards   activity 

recognition   from   photo-streams   captured   by   a   wearable   camera   by   developing   a   method   that 
allows   to   label   new   images   with   minial   effort   from   the   user   and   generalize   well   for   unseen 

users. 
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Devices and technologies have taken huge part of our lives and will be used even                             
more in the future. We try to automate and improve as many things as possible, and exploit                                 
them to improve our quality of life. One thing that can help in this are lifelogging camera                                 
devices, so the growing interest for them is not a surprise. With them we can easily record                                 
everything through the day from a first-person perspective. A lifelogging wearable camera                       
typically makes a few pictures per minute without requiring any action from the user, so it                               
can   generate   huge   amount   of   data.  

 
Analysing automatically this data and being able to automatically understand what are                       

the activities being performed in the pictures, has a lot of useful applications. The Activities                             
of Daily Living (IADL) include, but are not limited to the activities performed on a daily                               
basis for living at home or in a community [7]. The monitoring of IADL can be used to detect                                     
frailty in elderly people [8], or to understand and improve our habits, since it can give us                                 
insights about what to change. In addition, observing the activities of the user over a long                               
period of time has a lot of applications in Preventive Medicine, because it would allow to                               
estimate   the   habits   of   the   user   that   are   associate   to   many   noncommunicable   diseases   [9]. 

 
An useful approach to the problem can be activity recognition through image                       

classification. The goal of activity recognition is to recognize common human activities,                       
performed on daily basis. The problem is quite challenging firstly because there is huge inter-                             
and intra-class variability in human activities performed by different individuals. What makes                       
the recognition a much more difficult task, is the case of images, captured by a wearable                               
camera, because the images are taken from first-person (or ego-centric) point of view.                         
Compared to images, taken by a third-view camera, in egocentric images the main actor is                             
not visible and what he is doing has to be inferred by the objects he is manipulating, the                                   
persons   he   is   interacting   with   etc.  

 
Additionally, due to the free motion of the camera objects often appear blurred or                           

partially occluded, and since they are being manipulated, their appearance may undergo huge                         
variations.   Such   pictures   can   be   seen   in   Table   1.1   and   Table   1.2. 

 
 

       
Table   1.1:   First-person   (or   ego-centric)   images,   taken   with   wearable   camera 

 

3 



       

Table   1.2:   Blurred   and   occluded   images,   taken   with   wearable   camera 
 
 

Activity recognition can be done both on video or photo streams. When working with                           
video (35fps), a lot of contextual information is also available - for example spatio and                             
temporal features and optical flow sequences can be extracted. If this information is used in                             
the   proper   way,   it   can   help   a   lot   and   improve   the   results.  
 

Activity classification from egocentric photo streams is even more difficult problem                     
than from video, since they provide less contextual action information. We chose to work                           
with the second kind of sequences and focus on cameras with low temporal resolution (2                             
fpm), because they allow to capture the full day and therefore are suited to collect data over                                 
long period of time. However, this imposes additional challenges to the activity recognition                         
problem with respect to conventional videos - the frequent sudden changes in the field of                             
view for example. An example for this is showed in Table 1.3. Motion cannot be used to                                 
enhance activity recognition since optical flow cannot be reliably estimated when temporally                       
adjacent frames undergo abrupt changes. Observations are very sparse so that there is much                           
less   contextual   information   to   infer   the   activities   of   the   wearer. 
 

Another important aspect of lifelogging cameras is that, since they are worn all the                           
day during a long period of time, they are typically worn on the chest (Fig. 1.1) and not on                                     
the head for social reasons. Consequently,  head movement and attention cannot be used as                           
additional   features   for   activity   recognition. 
 
 

       
Table   1.3:   Sudden   changes   in   the   field   of   view   in   images,   taken   with   wearable   camera 
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Table   1.4:   Different   types   of   cameras:   the   one   on   the    left    is   worn   on   the   head   and   the   one   on   the    right    is 

worn   on      the   chest.   Images   taken   from 

1.1   Objectives 
 

Deep learning approaches for egocentric activity recognition often achieve very high                     
accuracy predictions  [11,16]  but remains unclear whether these performances hold also for                       
unseen users . By unseen users we refer to users whose images have not been feed into the                                 
training set. Since the performance of deep learning methods strongly relies on the employed                           
training dataset, more than on more generalization capability, t he purpose of this work is to                             
create a system for automatic activity recognition from egocentric photo-streams, that could                       
potentially be used in real applications and by a lot of people with different lifestyles. We                               
compare and analyze different algorithms for automatic activity recognition and we propose                       
a general method for activity recognition from egocentric images, that does not require a                           
cumbersome   annotation   effort   to   generalise   to   unseen   users.  
 

Using wearable cameras leads to a lot of data - if the camera takes for example two                                 
pictures per minute, it will create almost 2000 pictures every day. State of the art algorithms                               
for image classification and activity recognition are based on deep learning approaches that                         
are supervised and require a huge annotation effort. The problem is that this should be done                               
manually and doing it for thousands of images is a very time consuming task. Also often                               
there are no good tools for annotating the pictures, so the labeling becomes even harder.                             
Some   example   images   and   the   activities   on   them   can   be   seen   in   Table   1.1.1. 
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Mobile  Driving  Shopping  Having   drinks/meal  

       

Public   transport  Walking   outdoors  Cleaning  Talking 

 
Table   1.1.1:   Sample   images,   labeled   with   activities 

 
The task of supervised algorithms is to learn how to map input data to output data and                                 

their purpose is to assign one of the already given labels to unseen input. So they require                                 
previously defined categories and each of the images should be labeled with one of these                             
categories. One of the advantages of this is that we can easily measure if and how well the                                   
algorithm is performing. What is not so good is that we need to predefine all possible                               
categories, which is not always easy, especially in the case of ego-centric activity recognition                           
since   we   cannot   predict   all   the   activities   a   person   can   perform   during   the   day. 
 

We can think of some activities that most of the people do - like socializing, eating,                               
working and so on, but how many activities should we have and should they be more general                                 
or specified? Also every person has a different lifestyle and every person does different                           
activities through the day - one can practise some kind of sport, while other can play a                                 
musical instrument, one can spend time with his/her dog, but other may not have a pet.                               
Finding the right number of categories and the right categories and then labeling all the                             
pictures can sometimes really be a problem and a difficult task, but it is beneficial to the final                                   
results. 

 
That being said, it is logical to try with the opposite - unsupervised learning. In this                               

approach we do not annotate the input data - the model finds features from the input on its                                   
own and divides the data into several groups. The results should fit better the structure of the                                 
data. There are also some unsupervised algorithms which do not require exact number of                           
clusters and find the optimal number on their own. It is a really big advantage that there is no                                     
need to annotate all the data. With the wearable cameras we can collect millions of images                               
almost without effort, but they are of no use for the supervised algorithms it they are not                                 
annotated. Using unsupervised approach allows us to benefit from all the available data                         
without losing time and effort to prepare it for training. This advantage however is also a                               
drawback - it is difficult to measure the quality of the clusters and how well is the algorithm                                   
performing. 
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Most of the models need to be trained with data which is very similar to the test data                                   
so that they can perform well. Because of this the data is usually split in two subsets (or three                                     
in the case of deep learning approaches) - one for training and one for test (and one for                                   
validation in the case of DL approaches). But the approach, proposed by this work should                             
work well with new and unseen data without the need the model to be trained again or                                 
fine-tuned. Here comes another advantage of the unsupervised models for performing activity                       
recognition. If our model is trained on images from several people and then we want to                               
recognise the activities in the images of another person - there is a possibility that his/her                               
activities are different from the ones of the others. So an unsupervised approach can find that                               
for this person the clusters should be a bit different and should be able to split the data, based                                     
on his/her activities and not on predefined labels which may not fit his/her lifestyle and                             
activities. 

 

1.2   Related   Work 

 
Understanding human activities from videos has been a well-studied topic in                     

computer vision.  As the field of egocentric vision is quite new and challenging, there has                             
been growing interest in the last several years in recognizing activities from egocentric data                           
and it has became an active area of research. However, most works have focused on activity                               
recognition from videos [17], while activity recognition from photo-streams has been little                       
explored. 

1.2.1   Activity   recognition   from   egocentric   videos 
 

Fathi et al. [1] present a hierarchical method to analyze daily activities using video                           
from an egocentric camera. They use joint modeling of activities, actions, and objects and                           
introduce a novel representation of actions based on object-hand interactions. Their dataset                       
contained 7 kinds of daily activities, performed by 4 people and 16 kinds of objects used in                                 
these   activities. 

 
Pirsiavash and Ramanan [2] present a new dataset of 1 million frames, annotated with                           

activities, object tracks, hand positions, and interaction events. They used 18 different actions                         
and 42 different objects and had videos of dozens of people performing unscripted, everyday                           
activities. Their model involves long-scale temporal structure and complex object                   
interactions. Their representations include temporal pyramids and composite object models                   
and   show   that   the   objects   with   which   is   interacted   are   most   useful   for   the   activity   recognition. 

 
Another multi-task clustering framework for activity analysis of daily living is                     

suggested by Yan et al. [4]. They sue the fact that everyday activities of multiple individuals                               
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are related, since typically people perform the same actions in similar environments. For each                           
person, a set of samples is available and they should be segmented corresponding to the user                               
into parts and the resulting partitions should be consistent with each other, because people                           
perform about the same activities. Two clustering approaches are used - Earth Mover’s                         
Distance Multi-Task Clustering and Convex Multi-Task Clustering. They used two datasets.                     
The first consists of over two hours of data, showing five common activities in an office                               
environment, performed by five subjects. The second one contains videos recorded by 20                         
different users, performing 18 non-scripted daily activities in the house, like brushing teeth,                         
washing dishes, or making tea. It also has annotations about the presence of 42 relevant                             
objects   and   about   temporal   segmentation. 

 

1.2.2   Activity   recognition   from   egocentric      images 
 

To the best of our knowledge, so far there have been only two attempt to recognize                               
egocentric   activities   from   photo-streams. 

 
D. Castro et al. presented a method to analyze images taken from a passive egocentric                             

wearable camera along with the contextual information, such as time and day of week. They                             
used Convolutional Neural Network (CNN) with a classification method they introduced,                     
called a late fusion ensemble, which incorporates relevant contextual information and                     
increases the classification accuracy. The proposed approach was tested on a dataset of more                           
than 40 000 images over a 6 month period with 19 activity classes and an overall accuracy of                                   
83.07% was achieved. However, the dataset was acquired only by a single person and since                             
the   user   had   a   routinary   life,   these   performances   are   not   surprising. 
 

Later, Cartas et al. [11] tried to generalize this framework to multiple users. What is                             
novel in it is that instead of using time information as contextual information, since this does                               
not make sense when the data belongs to multiple users, they used the features of the fully                                 
connected layer. They proved that the classification accuracy of the CNNl argely improves                         
when its output is combined, through a random decision forest, with contextual information                         
from a fully connected layer. The used dataset consists of 18,674 images acquired by three                             
people,   and   an   overall   accuracy   of   86%   is   achieved   in   the   recognition   on   21   classes. 

 

1.2.3   Active   learning 
 
Supervised approaches assume a fixed set of labeled data, which is not necessarily                         

true in real-world applications. For example, in the case of activity recognition we assume a                             
fixed number of activities, but a unseen user may perform activities not included in this set.                               
So we may want to labels his data to improve the results of the supervised model. Getting                                 
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labeled data is usually expensive and time consuming. Active learning aims at achieving the                           
best learning result with a limited labeled data set, i.e., choosing the most appropriate                           
unlabeled   data   to   get   labeled.  

 
Dasgupta and Hsu [18] presented an active learning appoach that exploits cluster                       

structure in data. Their method starts with a hierarchical clustering of the unlabeled points                           
and discover any informative pruning of the cluster tree. By doing this they get fairly pure                               
clusters at the leaves of the tree, so it is enough for the user to label only one item for each                                         
leave in order to achieve estimate of the labels of the entire dataset. This is extremely useful,                                 
as it reduces a lot the effort and time needed for labeling. With this approach they labeled                                 
10000   training   examples   with   only   400   labels   with   small   error.  

 
One very interesting work about image clustering was provided by Yang, Parikh and                         

Batra [6]. They propose a recurrent framework for Joint Unsupervised Learning of deep                         
representations and image clusters. In their framerwork, successive operations in a clustering                       
algorithm are expressed as steps in a recurrent process, stacked on top of representations                           
output by a Convolutional Neural Network (CNN). During training, image clusters and                       
representations are updated jointly: image clustering in the forward pass, and representation                       
learning in the backward pass. They combine two processes into a single model using                           
weighted triplet loss function. Their approach is focused on image clustering of very simple                           
images, but their ideas can be very useful to generate high purity clusters in an active learning                                 
framework. The experiments on different databases of images showed that this approach                       
outperforms unsupervised state-of-the-art algorithms on image clustering and it finds better                     
representations   of   the   images   which   generalize   well   when   transferred   to   other   tasks.  
 
 

2   Methodology 

 
Our first and main objective was to find an approach able to generalize well and                             

gives satisfactory results even for such unseen users. To achieve this goal, we have tried to                               
use and combine different methodologies - supervised and unsupervised that are detailed in                         
this   section.  
 

Our second goal was to define a method to easily get labels for an unseen user so that                                   
these   could   be   used   for   re-train   the   system   and   improve   the   performances   of   the   algorithm.  
 

We used several different subsets of the NTCIR egocentric dataset egocentric dataset                       
[10]. The dataset contains images from three lifeloggers who collected them by using a                           
wearable camera that takes a picture every 30 seconds for a period of about one month each.                                 
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First we split all the data we have in train, test and validation sets. Then we split the images                                     
by users, who have taken them. We trained the models with the images for two of the users                                   
and then tested with the images from the third user, using a cross validation strategy. The                               
reason we did this is because we wanted to see how much the performances drop when the                                 
test images belong to an unseen user - a user whose images are seen for the first time and not                                       
similar   images   have   been   used   for   training.  
 

2.1   Supervised   CNN-based   methodologies 
 
In recent researches regarding images, highest results are obtained using approaches                     

based on deep learning and convolutional neural networks [19]. These networks assume that                         
the inputs are images and are specially designed to be much more efficient than normal                             
convolutional networks for this kind of input. They consist of layers and receptive fields,                           
which process small regions of the image (Fig 2.1.1). There are several types of layers -                               
Convolutional Layer, Pooling Layer, and Fully-Connected Layer. The layers can be stacked                       
in different combinations in order to obtain the best architecture for the specific classification                           
task. In our case we used GoogLeNet (Fig. 2.1.2), because it is suitable for the images we                                 
have   and   is   deep   enough   to   find   meaningful   features.  

 

 
Fig.   2.1.1      Input   volume   (image)   in   red   and   volume   of   neurons   in   blue 

http://cs231n.github.io/assets/cnn/depthcol.jpeg  
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Fig.   2.1.2   Architecture   of   GoogLeNet  

http://www.csc.kth.se/~roelof/deepdream/googlenet2.png  
 
We limited our analysis to state of the art supervised approaches based on CNN. It is                               

well known that  large CNN networks may allow for more expressive power, however it is                             
also prone to over fitting due to the large number of parameters. Additionally, uniform                           
increased network size increases computational resources. Since the images captured by a                       
wearable camera are real world images, and recognizing activities require lot of expressive                         
power, we used  GoogleLeNet architecture. This CNN architecture is characterized by the                         
presence of an inception module that by approximating a sparse structure with spatially                         
repeated dense components and using dimension reduction, keep the computational                   
complexity   bounded. 

 
We finetuned a GoogLeNet CNN and used it as a fixed feature extractor. We tried                               

different approaches. One was to use ensemble of classifiers - CNN + Random Forest. The                             
other one was to apply unsupervised clustering algorithm on the extracted features from the                           
network.   We   tried   applying   kMeans   and   Spectral   Clustering. 

 

2.2   Semi-unsupervised   methodologies 
 
We also tried to use unsupervised clustering algorithms and active labeling in order to                           

improve the results. We first split the new, unseen images in big clusters using agglomerative                             
clustering. We actually cluster not the images, but the features obtained for each image from                             
the CNN network. After this, using some metrcis and thresholds we obtain the clusters which                             
contain images from only one class and give them to the user to put labels (he/she has to put                                     
only one label for each cluster). After this we finetune the network with the images labeled                               
by the user. We can then repeat this procedure until we get pure clusters. When it is not                                   
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possible to form good clusters anymore, the user can label all the remaining images (the                             
remaning   images   should   be   a   small   subset   of   all   unseen   images). 
 

 

3   Experiments 

3.1   Dataset 
 

The proposed method was tested on a subset of the NTCIR-12 egocentric dataset [10].                           
This dataset consists of data from three lifeloggers who collected pictures using a Looxcie                           
wearable camera for a period of about one month each. The data consists of a large collection                                 
of images - taken with a frame rate of two pictures per minute, which makes 88 124 images                                   
in   total,   summing   up   to   18.18   GB. 

 
There are some XML descriptions of the data like semantic locations and the physical                           

activities, but at a granularity of one minute. The problem is that we need a label for every                                   
picture and we need a predefined common set of categories for all the users, so that we can                                   
calculate how accurate is our approach. We also need the labeled pictures to be equally                             
distributed between the three users, so that we have equal number of images for each of the                                 
lifeloggers.  

 
Luckily, a large number of pictures (about 18,000) from the NTCIR dataset were                         

annotated for the work of Marin et al. - Recognizing Activities of Daily Living from                             
Egocentric Images [5]. The problem was that they were not enough and they were mostly                             
from the first user (about 11, 000) and much less for the second and third. So we needed more                                     
labeled   images   for   all   of   the   users   and   had   to   do   this   manually.  

 
The labeling work was performed using a special annotation tool [11], developed for                         

the work of Juan Marin. The annotation tool [11] was specially designed for labeling big                             
datasets of images and it made things much easier - labeling a group of consecutive images,                               
related to the same category is done with one click, a nice preview with what is already                                 
annotated is provided and so on. The process of labeling can be seen in Figure 3.1.1 and                                 
Figure 3.1.2. However the manual labeling was still a hard task. It is really time-consuming                             
and it is very easy to make mistakes, so the work should be also checked in the end, which                                     
again   takes   a   lot   of   time.  

 
Another thing to take into account was the list of possible activities from which to                             

choose from when annotating. We already had more than 23 000 labeled images, so to                             
maintain full compatibility with them, the activities (categories) for the labeling were kept the                           
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same as in the other work [5]. These activities are a word or short description of what is                                   
visualized in the picture. Example activities are for instance driving, cooking, having drinks                         
with somebody and so on. The final list containing all the different activities is shown in                               
Table   3.1.1. 

 
 

Public   transport 

Driving 

Walking   outdoors 

Walking   indoors 

Biking 

Having   drinks   with   somebody 

Having   drinks\meal   alone 

Having   meal   with   somebody 

Socializing 

Attending   a   seminar 

Meeting 

Reading 

TV 

Cleaning   and   chores 

Working 

Cooking 

Shopping 

Talking 

Resting 

Mobile 

Plane 

 
Table   3.1.1:   Final   list   of   activities 
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Having   to   do   all   this   manual   work   again   shows   how   better   it   is   to   have   unsupervised 
approach   in   which   there   is   no   need   to   annotate   so   many   images.   It   also   shows   how   difficult   it 
is   to   find   the   right   number   of   activities   and   to   choose   what   they   to   be.   The   final   categories   are 
not   the   best,   because   some   of   them   are   very   similar   and   even   for   a   human   it   is   very   difficult 
to   distinguish   between   them   -   like   for   example   socializing   and   talking.   Also   there   are   some 
activities   which   are   pretty   common,   but   are   not   included   in   the   final   list   -   like   doing   a   sport   or 
playing   a   musical   instrument.   Some   not   so   common   activities   can   be   seen,   too.   One   example 
is   praying   or   going   to   the   church.   This   shows   that   an   approach   in   which   we   do   not   need   to 
know   the   number   of   clusters   in   advance   can   be   good,   because   it   will   find   and   model   all   these 
differences   between   the   different   lifestyles.  

 
However, the activities were kept the same, because of the compatibility with what is                           

already annotated and because it is not an easy task to come up with the perfect categories - a                                     
new   and   different   list   can   have   both   advantages   and   disadvantages. 

 
Finally, using the annotation tool [11], more than 21 000 of images were labeled.                           

Together with the images, labeled for the other work - Recognizing Activities of Daily Living                             
from Egocentric Images, this totals to 45 000 labeled images in total, 15 000 for each of the                                   
three lifeloggers. The concrete number of annotated images for each activity and for each                           
user can be seen in Table 3.1.2. Some histograms with the images for each of the lifeloggers                                 
are   presented   in   Figure   3.1.3   -   3.1.5.   The   histograms   were   made   using   Pygal   [1]. 

 
 

 
Figure   3.1.1:   Labeling   images   with   the   activity   “Working”   using   the   annotation   tool   [11] 
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  User   1  User   2  User   3  Total 

Public   transport  183  237  1154  1574 

Driving  2159  26  816  3001 

Walking   outdoors  688  1743  1045  3476 

Walking   indoors  610  827  304  1741 

Biking  0  247  0  247 

Having   drinks   with 
somebody 

167  420  831  1418 

Having   drinks\meal 
alone 

510  496  646  1652 

Having   meal   with 
somebody 

429  406  230  1065 

Socializing  273  495  1057  1825 

Attending   a   seminar  508  515  0  1023 

Meeting  1025  751  0  1776 

Reading  880  276  18  1174 

TV  726  2  661  1389 

Cleaning   and   chores  247  388  192  827 

Working  1463  4326  1182  6971 

Cooking  192  176  207  575 

Shopping  595  250  330  1175 

Talking  1660  682  309  2651 

Resting  1250  1127  2988  5365 

Mobile  1001  1342  2702  5045 

Plane  434  268  328  1030 

Total  15000  15000  15000  45000 

 
Table   3.1.2:   Number   of   annotated   images   for   each   user   and   activity 
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Figure   3.1.2:   Some   of   the   images,   labeled   with   the   activity   “Walking   outdoors”   presented   in   the 

annotation   tool   [11] 
 
 
 

 
Figure   3.1.3:   Histogram   of   the   number   of   images   for   each   activity   for   user   (lifelogger)   1.   We   can   see 

that   he   drives   a   lot   and   also   likes   talking. 
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Figure   3.1.4:   Histogram   of   the   number   of   images   for   each   activity   for   user   (lifelogger)   2.   He   is   really 

dedicated   to   his   work. 
 

 
Figure   3.1.5:   Histogram   of   the   number   of   images   for   each   activity   for   user   (lifelogger)   3.   He 

likes   to   have   rest   and   is   using   his   mobile   phone   very   often. 
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3.2    Experimental   setting 
 

We wanted to start our experiments by trying something simple and fast, so that we                             
can have a baseline and we can be sure that we are moving in the right direction and                                   
improving   the   results   as   much   as   possible.  

 
Our idea was to use a deep learning framework and with its help to fine-tune already                               

pretrained convolutional neural network. To do this we chose Caffe [1] - a deep learning                             
framework, allowing easily to perform fine-tuning over networks trained with ImageNet. The                       
neural networks that we used for the fine-tuning process was GoogLeNet. The base weights                           
were extracted from the Caffe Github Repository [14]. For writing the code and running of                             
the   experiments,   iPython   notebooks   were   used   [15]. 

 
We first tried this approach using all the data we have for all the users. The reason we                                   

did this is because we wanted to improve the intra-class and between class generalization                           
capability   of   the   CNN   and   to   see   how   it   performs.  

 
Next, we wanted to simulate the case when we already have finetuned network with                           

images from a lot of different users and we use it to recognise the activities of a new (unseen)                                     
user. As we have data only from three users, we split the dataset and used for traning and                                   
validation only the images from two users. The third user is left to be new (or unseen). We                                   
wanted to see if and how the performace drops in this case, because actually this is the                                 
purpose of the system - it should work fine with new users and our method should allow the                                   
customization   of   the   system   to   any   kind   of   user   with   any   kind   of   activities. 

 
Since we have the data of three users, we performed the fine-tuning process four                           

times. At first we used all the images for all the users. We split the data into three subsets -                                       
one for training (about 75% of the data or around 33 750 images), one for validation (about                                 
10% or 4500 images) and the last one for testing (about 15% or 6750 images). We did this in                                     
order to see what performance we will get and how it will drop when we use the images for                                     
only two of the users for training and validation and test with the images for the third user,                                   
which will be unseen data for the model. After that we used the data for two of the users for                                       
training and validation and then tested the results on the data for the third user, so we                                 
fine-tuned   three   more   times   -   once   for   each   of   the   users.  

 
The number of images used in each case for train, validation and test can be seen in                                 

Table 3.2.1. The batch size for GoogLeNet was reduced to 10, so that it can be run on a                                     
system with GPU with 2GB VRAM and the learning rate was set to 0.000067. All the                               
parameters   for   the   solver   are   presented   in   Table   3.2.2. 
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In order to evaluate the model, we used the metric accuracy. When we tested the                             
trained networks we measured the accuracy for each class (activity) and then the global                           
accuracy. Since here it is interesting to compare the results for the four trained networks, all                               
the   results   are   summarized   in   Table   3.2.3. 

 
 

  Test   on   images 
from   user   1, 

train   and 
validate   on 

images   from 
user   2   and   3  

Test   on   images 
from   user   2, 

train   and 
validate   on 

images   from 
user   1   and   3 

Test   on   images 
from   user   3, 

train   and 
validate   on 

images   from 
user   1   and   2 

Using   images 
from   all   users 

Training   27000 
(90%   of   the 
images   from 
user   2   and   3) 

27000 
(90%   of   the 
images   from 
user   1   and   3) 

27000 
(90%   of   the 
images   from 
user   1   and   2) 

33   750  
(75%   of   all 

images) 

Validation   3000  
(10%   of   the 
images   from 
user   2   and   3) 

3000  
(10%   of   the 
images   from 
user   1   and   3) 

3000  
(10%   of   the 
images   from 
user   1   and   2) 

4500  
(10%   of   all 

images) 

Test   15000 
(100%   of   the 
images   from 

user   1) 

15000 
(100%   of   the 
images   from 

user   2) 

15000 
(100%   of   the 
images   from 

user   3) 

6750  
(15%   of   all 

images) 

Total  45000  45000  45000  45000 

 
Table   3.2.1:   Number   of   images,   used   for   train,   validation   and   test   sets   in   each   case 

 
 

  Test   on   user   1, 
train   on  

user   2   and   3  

Test   on   user   2, 
train   on  

user   1   and   3 

Test   on   user   3, 
train   on  

user   1   and   2 

Using   images 
from   all   users 

batch   size  10  10  10  10 

test   iterations  59  59  59  89 

test   interval  673  674  672  841 

base   lr  0.000067  0.000067  0.000067  0.000067 
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display  168  168  168  210 

max   iterations  26920  26980  26900  33670 

lr   policy  "step"  "step"  "step"  "step" 

gamma  0.10000  0.10000  0.10000  0.10000 

momentum  0.9  0.9  0.9  0.9 

weight   decay  0.005  0.005  0.005  0.005 

stepsize  13460  13490  13450  16835 

snapshot  13460  13490  13450  16835 

solver   mode  GPU  GPU  GPU  GPU 

solver   type  SGD  SGD  SGD  SGD 

 
Table   3.2.2:   Solver   definition   for   the   fine-tuning 

 
 

Accuracy  Test   on   user   1, 
train   on  

user   2   and   3  

Test   on   user   2, 
train   on  

user   1   and   3 

Test   on   user   3, 
train   on  

user   1   and   2 

Using   images 
from   all   users 

Public 
transport 

36%  39%  29%  89% 
 

Driving  96%  92%  57%  98% 

Walking 
outdoors 

81%  93%  96%  92% 

Walking 
indoors 

65%  57%  53%  69% 

Biking  -  -  -  82% 

Having   drinks 
with   somebody 

62%  39%  21%  81% 

Having 
drinks\meal 

alone 

47%  64%  70%  80% 

20 



Having   meal 
with   somebody 

60%  57%  43%  82% 

Socializing  9%  33%  21%   77% 

Attending   a 
seminar 

6%  4%  -  84% 

Meeting  42%  47%  -  79% 

Reading  64%  63%  83%  87% 

TV  58%  50%  21%  85% 

Cleaning   and 
chores 

30%  27%  73%  63% 

Working  54%  85%  88%  93% 

Cooking  14%  65%  38%  65% 

Shopping  56%  82%  70%  78% 

Talking  45%  48%  42%  83% 

Resting  79%  57%  63%  92% 

Mobile  70%  64%  71%  86% 

Plane  6%  73%  1%  87% 

Total   Accuracy  59%  66%  57%  87% 

 
Table   3.2.3:   Obtained   accuracies   after   fine-tuning 

 
As we can see from Table 3.2.3 and as expected, the accuracy dropped with between                             

21% and 30% when we trained on one dataset and then tested on another dataset, which is not                                   
similar   to   the   images,   used   for   training   and   is   new   for   the   model. 
 

What is interesting here is to explore what is the accuracy for each of the activities                               
and   each   of   the   users   and   why.  
 

If we concentrate on the accuracies in Table 3.2.3 and on Table 3.1.2 where we have                               
the number of pictures for each user and category, we can notice some dependencies. For                             
example as we can see in Table 3.2.4. for the activity Having drinks with somebody we have                                 
a lot of images for user 3, but much less for user 1 and 2. So when the data for user 3 is                                             
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unseen, we are training this activity with 587 images and we are testing with 831 images, so                                 
probably   this   is   the   reason   we   get   accuracy   of   only   21%   in   this   case. 
 

We can see another interesting example in Table 3.2.5. At all we have 1023 images                             
for the activity Attending a seminar, so we get good accuracy when we train and test with                                 
known data. The problem comes with unseen data, because one of the users do not have                               
images in this category. So when we treat the images of user 1 as unseen data and test on                                     
them, we actually have trained the model only on the images from user 2, which makes it                                 
really difficult, because the images from the activity Attending a seminar can look quite                           
different for different people - they depend on the room, if there is a screen on the pictures, if                                     
there   are   other   people   and   so   on.   This   is   why   we   get   accuracy   of   6%   and   4%. 
 
 

Having   drinks   with 
somebody 

User   1  User   2  User   3  Total 

Number   of   images  167  420  831  1418 

Accuracy  62%  39%  21%  81% 

 
Table   3.2.4:   Number   of   images   and      accuracies   for   the   activity   Having   drinks   with   somebody 

 
 

Attending   a   seminar  User   1  User   2  User   3  Total 

Number   of   images  508  515  0  1023 

Accuracy  6%  4%  -  84% 

 
Table   3.2.5:   Number   of   images   and      accuracies   for   the   activity   Attending   a   seminar 

 

3.3   Results  
 

The first approach we tried was to use GoogLeNet in an ensemble with another                           
classifier. First, we fine-tuned GoogLeNet, using the Caffe framework [13] with batch size of                           
10 images and a learning rate α = 6.7x10 −5 . We did this four times with the different                                 
combinations of subsets. We then extracted features from different final output layers of the                           
CNN - first the softmax probability layer, giving a vector of 21 features and second, a                               
combination of the pool5/7x7 fully connected layer and the softmax probability layer, giving                         
a vector of 1045 features. After this, we trained several models by combining the different                             
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final output layers of the CNN with different clustering and classification algorithms. We                         
tried   the   following   ensembles: 

● GoogLeNet+RandomForest - for this model we trained a random forest of 500                       
trees. We did this twice - first only on the softmax probability layer, giving a                             
vector of 21 features and then on the pool5/7x7 fully connected layer and the                           
softmax layer, giving a vector of 1045 features. This is a fully supervised                         
approach as we need all the labels for both the CNN and the Random Forest                             
algorithm. This corresponded to test the generalization performance of the                   
algorithm proposed by Juan Marin [5] to unseen users. The results can be seen                           
in   Table   3.3.1   and   Table   3.3.2. 

● GoogLeNet+kMeans - we applied kMeans twice - on the softmax probability                     
layer (21 features) and second time on the pool5/7x7 fully connected layer and                         
the softmax probability layer (1045 features). Here we needed to specify the                       
number   of   classes.   Results   are   in   Table   3.3.3   and   Tables   3.3.4. 

● GoogLeNet+SpectralClustering - again applied the clustering algorithm twice               
- on the softmax probability layer and on the pool5/7x7 fully connected layer                         
and   the   softmax   probability   layer.   Results   are   in   Table   3.3.5   and   Tables   3.3.6. 

 
 
 
CNN   (soft-max   probabilities)   +   RandomForest 
 

  Test   on   user   1 
(train   on   user   2 
and   user   3) 

Test   on   user   2 
(train   on   user   1 
and   user   3) 

Test   on   user   3 
(train   on   user   1 
and   user   2) 

Accuracy  62%  67.11%  58.89% 

CNN  59%  66%  57% 

Table   3.3.1   Results   from   applying   CNN   (soft-max   probabilites)   +   RandomForst  
 

 
CNN   (pool5-7x7_s1_probs)   +   RandomForest 
 

  Test   on   user   1 
(train   on   user   2 
and   user   3) 

Test   on   user   2 
(train   on   user   1 
and   user   3) 

Test   on   user   3 
(train   on   user   1 
and   user   2) 

Accuracy  65%  70%  62% 

CNN  59%  66%  57% 

Table   3.3.2   Results   from   applying   CNN   (pool5-7x7_s1_probs)   +   RandomForst  
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As expected from [5] we can see that using the network to obtain features and then                               
combine them with another classifier (RandomForest in our case) improves the results. When                         
using only the soft-max probabilites we see an improvement in the accuracy with 1 to 3                               
percents. This means the network performs well as fixed feature extractor. What makes it                           
perform worse is the fact that is uses a very simple classifier - softmax to predict the final                                   
label. When we replace it with a better and more complex classifier like Random Forest, we                               
get better results. Also as expected, using pool5-7x7_s1_probs insead of softmax                     
probabilities   gives   bettwe   results. 
 
CNN   (soft-max   probabilities)   +   kMeans  
 

  Test   on   user   1 
(train   on   user   2 
and   user   3) 

Test   on   user   2 
(train   on   user   1 
and   user   3) 

Test   on   user   3 
(train   on   user   1 
and   user   2) 

NMI  50.15%  51.09%  49.36% 

Purity  67.17%  67.64%  69.93% 

Accuracy  59.29%  65.12%  63.62% 

CNN  59%  66%  57% 

Table   3.3.3   Results   from   applying   CNN   (soft-max   probabilites)   +   kMeans 
 
 
CNN   (pool5-7x7_s1_probs)   +   kMeans   (with   default   parameters) 
 

  Test   on   user   1 
(train   on   user   2 
and   user   3) 

Test   on   user   2 
(train   on   user   1 
and   user   3) 

Test   on   user   3 
(train   on   user   1 
and   user   2) 

NMI  56.38%  50.33%  58.74% 

Purity  71.68%  71%  76.49% 

Accuracy  65.58%  62.33%  71.58% 

CNN  59%  66%  57% 

Table   3.3.4   Results   from   applying   CNN   (pool5-7x7_s1_probs)   +   kMeans 
 

 
The results for CNN combined with kMeans are not very consecutive. It’s not very                           

surprising to see that when we use soft-max probabilities as features, the results are almost                             
the same - this is a very simple feature and it looks like there are not any well-formed                                   
clusters. However, when we use pool5-7x7_s1_probs layers, in two of the cases, the results                           
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boost quite a lot - with 6 to 14%. This is actually the higest accuracy obtained when we test                                     
as   user   3   is   unseen.  
 
CNN   (soft-max   probabilities)   +   Spectral   Clustering 
 

  Test   on   user   1 
(train   on   user   2 
and   user   3) 

Test   on   user   2 
(train   on   user   1 
and   user   3) 

Test   on   user   3 
(train   on   user   1 
and   user   2) 

NMI  51.1%  51.33%  49.87% 

Purity  67.81%  68.08%  68.96% 

Accuracy  60.01%  65.73%  64.42% 

CNN  59%  66%  57% 

Table   3.3.5   Results   from   applying   CNN   (soft-max   probabilities)   +   SpectralClustering  
 

 
CNN   (pool5-7x7_s1_probs)   +   Spectral   Clustering 
 

  Test   on   user   1 
(train   on   user   2 
and   user   3) 

Test   on   user   2 
(train   on   user   1 
and   user   3) 

Test   on   user   3 
(train   on   user   1 
and   user   2) 

NMI  0.402079467548  0.6%  0.4% 

Purity  0.918953201148  100%  100% 

Accuracy  0.350757727485  28.86%  25% 

CNN  59%  66%  57% 

Table   3.3.6   Results   from   applying   CNN   (pool5-7x7_s1_probs)   +   SpectralClustering  
 

 
The results for Spectral Clustering are not good in all the cases, which means this                             

approach   is   not   suitable   for   all   datasets   we   use. 
 
Semi-supervised   approach 
 

The other approach we tried uses again features obtained from the network - from                           
pool5-7x7_s1_probs layers. They are 1045-dimensional vectors. This time we apply                   
agglomerative clustering to the features in order to split the images in groups, which contain                             
similar images where the same activity is performed. As it is impossible all clusters to be                               
perfect, we should find a way to realize which of the clusters are pure (containing image with                                 
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only one activity) and which are not. The idea is to ask the user to put only one label for all                                         
the images in the pure clutsers (because all the images are with the same activity being                               
performed).  
 

The first problem here is to choose in how many clusters to split the data.                             
Unfortunaltely, there is no good metric saying this. It is nice to have as little clusters as we                                   
can, because we will have to label each cluster and more clutsers will mean more data to                                 
label, but less clusters means more images in each cluster. When we have a lot of images in                                   
the   clusters   there   is   less   chance   that   they   will   be   pure.  
 

We tried several experiments, the results from which can be seen in Table 3.3.7. We                             
used user 2 as unseen user, because only he has images for activity, which the others two do                                   
not have. Only user 2 rides a bike. We split his 15000 images into two subset - one 12750                                     
images (75%) and one 2250 images (15%). The last one is used only in the final stage for                                   
testing. So in the table the results are from clusteting of 12750 vectors, which are                             
1045-dimensional   and   are   obtained   from   the   GoogLeNet,   finetuned   for   user   1   and   user   3. 
 
 

Average   images   in 
cluster 
(number   of   clusters) 

30 
(425) 

50 
(255) 

80 
(159) 
 
 

100 
(127) 

silhouette  0.0554  0.0442  0.0393  0.0370 

calinski   harabaz  60.2473  85.3951  118.6345 
 

139.0057 

NMI  0.5533  0.5537  0.5572  0.5600 

purity  0.8572  0.8264  0.8044  0.7947 

accuracy  0.8571  0.8262  0.8043  0.79458 

Table   3.3.7   Clustering   with   different   number   of   clusters,   when   user   2   is   the   unseen   user 
 
 
Looking at the imags in the clusters we obtained and at the table above, we decided to                                 

try with around 100 images in cluster. As we have 12750 images, we got 127 clusers at all.                                   
The clusters contain different numbers of images, but after looking at the results, most of                             
them are pure and have collected images with the same activity even though the images                             
theyself are quite different. Some nice examples can be seen in Fig 3.3.1. Some of the images                                 
are   almost   identical,   so   they   logically   go   to   a   cluster   together.   Such   example   is   in   Fig.   3.3.2 
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Fig   3.3.1   Some   images   from   one   cluster   -   all   with   the   same   activity   -   Having   meal   with   someone 

 

 
Fig   3.3.2   Almost   identical   images 
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One of the bigest problems is that a big amount of the images have two activities in                                 
them - for example working and eating, walking and mobile and so on, so it’s very difficult to                                   
distinguish them, bacause they look very similar, but the small rectangle in the bottom of the                               
screen can change the right activity from walking to mobile. Such example is shown in Table                               
3.3.8.  
 

   

Public   transport  Mobile 
 

Table   3.3.8      Almost   identical   images   with   different   activities 
 
Another clusters just contain very diffent images. Our aim is to find the one which are                               

not pure and to query the user only for the pure ones. Unfortunately, here the metrics from                                 
above (silhouette index, calinski harabaz index) did not give any useful information about the                           
purity   of   the   clusters. 
 

We tried to combine several other metrics to obtain better information about how                         
good are the clusters. Again using clustering we split each cluster into two smaller clusters.                             
We then found the centroids of the two subclusters and the distance between them. If the two                                 
centroid are close - this means that maybe the cluster is pure. If they are far away, maybe we                                     
have different activities in the cluster. Another thing we measured is the distance from the                             
centroid to the point with is most far away. We sorted the clusters by this metrics and put a                                     
sensitive threshold which of them are pure and which not. Another thing we did to find good                                 
clusters was to obtain the predicted label from the network for each images in the cluster. We                                 
then measured how many percents of the images in the cluster are predicted to be from the                                 
most frequent activity - if over 85% percents of the images are from the same activity,                               
probably   the   cluster   is   pure.  
 

The reason why the user has to label manually some images is that when we have new                                 
activity,   which   is   unseen   for   the   network,   there   is   no   way   to   guess   it   automatically. 

28 



Using the approach above we selected 73 good clusters for the user to label out the of                                 
127 clusters and labeled all the images in the cluster with the same label. This means that the                                   
user have to choose 73 labels for the 73 clusters. We labeled the clusters and when applied                                 
this labels to all the images in the cluster, we actually labeled 8622 images out ot 12750 by                                   
choosing only 73 lables. The accuracy of the labels put in this way is  85.14%. We then                                 
finetuned the network we had with the new images. The global accuracy of the network                             
improved   from   64%   to   66%. 
 

As it is quite difficult to find the pure clusters and no metric is very reliable, another                                 
possible approach is to show all the clusters to the user and ask him/her to label only the ones                                     
which contain images of the same activity. We tried this approach and selected 85 clusters out                               
of 127 for pure. When labeling them (putting 85 labels) we actually labeled 8376 images with                               
accuracy 87.89%. After finetuning the network with the new images, we obtained much                         
better results. The improvements are shown below. On the left are the numbers before                           
fintuning, on the right are after finetuning. Accuracy has increased with 12%. This shows that                             
is it very important to have the new activities labeled corectly - like biking for example.                               
There were no such labels before, so the network couldn’t guess this activity, but when we                               
finetuned   it   with   some   biking   images   the   results   incresed   from   0   to   80%   for   this   caregory. 
 
public   transport:   47   ->   43 
driving:   100 
walking   outdoor:   89   ->   84 
walking   indoor:   48   ->   44 
biking:   0   ->   80 
having   drinks   with   somebody:   33   ->   76 
having   drinks/meal   alone:   71   ->   63 
having   meal   with   somebody:   40   ->   53 
socializing:   51   ->   20 
attending   a   seminar:   3   ->   53 
meeting:   31   ->   53 
reading:   60   ->   73 
tv:   0 
cleaning   and   chores:   32   ->   56 
working:   87   ->   96 
cooking:   78   ->   5 
shopping:   70   ->   48 
talking:   40   ->   75 
resting:   46   ->   77 
mobile:   66   ->   85  
plane:   91 
 
Overall   accuracy:   64%   ->   76% 
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JULE 
 

We also tried using the JULE approach for getting nice clusters. Unfortunately the                         
images they used in their experiments are more simple than our and we need a deeper                               
network to make it work and give nice results. We got a little improvement over kMeans, but                                 
it   is   not   enough   for   good   results   and   further   investigation   is   needed. 
 

kMeans: 
NMI: 
0.227110318957 
Purity: 
0.452733333333 
Accuracy: 
0.337 
 

JULE: 
NMI: 
0.270105200465 
Purity: 
0.547866666667 
Accuracy: 
0.352866666667 
 

 

3.4   Discussion 
 

In   the   table   below   are   some   correctly   classified   activities,   but   more   interesting   are   the 
mistakes   in   the   next   table. 
 

     

Working  Driving  Reading 
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Mobile  Talking  TV 

     

Resting  Walking   outdoor  Reading 

 
Table   3.4.1:   Correctly   classified   images 

 

     

Talking  Cleaning   and   chores  Attending   a   seminar 

Working  TV  Plane 

     

Having   meal   with   somebody  Plane  Having   drinks   with   smbd 

Socializing  Walking   indoor  Having   meal   with   somebody 
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Meeting  Driving  Talking 

Working  Public   transport  Meeting 

 
Table   3.4.2:   Some   mistakes 

 
 
As   we   can   see   from   the   mistakes   above,   most   of   them   are   because   we   actually   have 

two   activities   in   the   same   time.   A   possible   solution   for   this   is   to   use   the   top   2   labels   instead   of 
top   1.  

 
Trying   this   really   boost   a   lot   the   results.   In   the   normal   case,   before   finetuning   with   the 

labeled   images   from   the   clusters,   for   user   2   we   had   64%   accuracy.   When   using   top   2   results, 
this   went   to   76%.   In   the   case   wih   the   finetunig   from   76%   the   accuracy   went   to   86%. 

 
Another   thing   is   that   a   lof   of   the   labels   are   confusing   even   for   us   -   like   talking   and 

socializing   for   example. 
 
 

4   Conclusions   and   Future   Work 
 
For   the   future   we   should   address   the   problem   with   several   activities   on   one   images 

and   detect   all   performed   activities. 
 

We also worked on appling the recurrent framework for Joint Unsupervised LEarning                       
(JULE) of deep representations and image clusters [6] in the domain of egocentric images                           
and activity recognition. What we did was to use the framework to train a model and obtain                                 
clusters of images representing the same activity, instead of the agglomerative clustering we                         
used. The approach seems suitable for our work, but it should be adapted to work with a more                                   
deep   network   as   we   need   for   our   task. 

 
Maybe   a   better   selection   of   labels   can   also   help   improve   the   results. 
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