

Master in Artificial Intelligence

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC) – BarcelonaTech

UNIVERSITAT DE BARCELONA (UB)
UNIVERSITAT ROVIRA i VIRGILI (URV)

Master Thesis

First-person activity recognition:
how to generalize to unseen users?

Director: Mariella Dimiccoli
 Co-director: Petia Radeva

FACULTAT DE MATEMÀTIQUES I INFORMÀTICA (UB)

Abstract

Recent advances in wearable technology, accompanied by the decreasing cost of data storage

and increase of data availability have made possible to take pictures everywhere at every
time. Wearable cameras are nowadays among the most popular wearable devices. Besides
leisure, wearable cameras are attracting a lot of attention for the improvement of working
conditions, productivity and safety monitoring. Since the collected data can be potentially

used for memory training and extracting lifestyle patterns useful to prevent
noncommunicable diseases as obesity, they are being investigated in the context of

Preventive Medicine. Most of these applications require to automatically recognize the
ability performed by the user. This work aims to make a step forwards towards activity

recognition from photo-streams captured by a wearable camera by developing a method that
allows to label new images with minial effort from the user and generalize well for unseen

users.

1

Contents

1 Introduction 2
1.1 Objectives 5
1.2 Related Work 7

1.2.1 Activity recognition from egocentric videos 7
1.2.2 Activity recognition from egocentric images 8
1.2.3 Active learning 8

2 Methodology 9
2.1 Supervised CNN-based methodologies 10
2.2 Semi-unsupervised methodologies 11

3 Experiments 12
3.1 Dataset 12
3.2 Experimental setting 18
3.3 Results 22
3.4 Discussion 30

4 Conclusions and Future Work 32

1 Introduction

2

Devices and technologies have taken huge part of our lives and will be used even
more in the future. We try to automate and improve as many things as possible, and exploit
them to improve our quality of life. One thing that can help in this are lifelogging camera
devices, so the growing interest for them is not a surprise. With them we can easily record
everything through the day from a first-person perspective. A lifelogging wearable camera
typically makes a few pictures per minute without requiring any action from the user, so it
can generate huge amount of data.

Analysing automatically this data and being able to automatically understand what are

the activities being performed in the pictures, has a lot of useful applications. The Activities
of Daily Living (IADL) include, but are not limited to the activities performed on a daily
basis for living at home or in a community [7]. The monitoring of IADL can be used to detect
frailty in elderly people [8], or to understand and improve our habits, since it can give us
insights about what to change. In addition, observing the activities of the user over a long
period of time has a lot of applications in Preventive Medicine, because it would allow to
estimate the habits of the user that are associate to many noncommunicable diseases [9].

An useful approach to the problem can be activity recognition through image

classification. The goal of activity recognition is to recognize common human activities,
performed on daily basis. The problem is quite challenging firstly because there is huge inter-
and intra-class variability in human activities performed by different individuals. What makes
the recognition a much more difficult task, is the case of images, captured by a wearable
camera, because the images are taken from first-person (or ego-centric) point of view.
Compared to images, taken by a third-view camera, in egocentric images the main actor is
not visible and what he is doing has to be inferred by the objects he is manipulating, the
persons he is interacting with etc.

Additionally, due to the free motion of the camera objects often appear blurred or

partially occluded, and since they are being manipulated, their appearance may undergo huge
variations. Such pictures can be seen in Table 1.1 and Table 1.2.

Table 1.1: First-person (or ego-centric) images, taken with wearable camera

3

Table 1.2: Blurred and occluded images, taken with wearable camera

Activity recognition can be done both on video or photo streams. When working with
video (35fps), a lot of contextual information is also available - for example spatio and
temporal features and optical flow sequences can be extracted. If this information is used in
the proper way, it can help a lot and improve the results.

Activity classification from egocentric photo streams is even more difficult problem
than from video, since they provide less contextual action information. We chose to work
with the second kind of sequences and focus on cameras with low temporal resolution (2
fpm), because they allow to capture the full day and therefore are suited to collect data over
long period of time. However, this imposes additional challenges to the activity recognition
problem with respect to conventional videos - the frequent sudden changes in the field of
view for example. An example for this is showed in Table 1.3. Motion cannot be used to
enhance activity recognition since optical flow cannot be reliably estimated when temporally
adjacent frames undergo abrupt changes. Observations are very sparse so that there is much
less contextual information to infer the activities of the wearer.

Another important aspect of lifelogging cameras is that, since they are worn all the
day during a long period of time, they are typically worn on the chest (Fig. 1.1) and not on
the head for social reasons. Consequently, head movement and attention cannot be used as
additional features for activity recognition.

Table 1.3: Sudden changes in the field of view in images, taken with wearable camera

4

Table 1.4: Different types of cameras: the one on the left is worn on the head and the one on the right is

worn on the chest. Images taken from

1.1 Objectives

Deep learning approaches for egocentric activity recognition often achieve very high
accuracy predictions [11,16] but remains unclear whether these performances hold also for
unseen users . By unseen users we refer to users whose images have not been feed into the
training set. Since the performance of deep learning methods strongly relies on the employed
training dataset, more than on more generalization capability, t he purpose of this work is to
create a system for automatic activity recognition from egocentric photo-streams, that could
potentially be used in real applications and by a lot of people with different lifestyles. We
compare and analyze different algorithms for automatic activity recognition and we propose
a general method for activity recognition from egocentric images, that does not require a
cumbersome annotation effort to generalise to unseen users.

Using wearable cameras leads to a lot of data - if the camera takes for example two
pictures per minute, it will create almost 2000 pictures every day. State of the art algorithms
for image classification and activity recognition are based on deep learning approaches that
are supervised and require a huge annotation effort. The problem is that this should be done
manually and doing it for thousands of images is a very time consuming task. Also often
there are no good tools for annotating the pictures, so the labeling becomes even harder.
Some example images and the activities on them can be seen in Table 1.1.1.

5

https://photos.smugmug.com/Sailing/2011/Key-West-Race-Week/i-3vMQhKs/0/X2/20110117_004-X2.jpg
https://c.slashgear.com/wp-content/uploads/2015/01/Narrative-Clip-2_7-200x200.jpg

Mobile Driving Shopping Having drinks/meal

Public transport Walking outdoors Cleaning Talking

Table 1.1.1: Sample images, labeled with activities

The task of supervised algorithms is to learn how to map input data to output data and

their purpose is to assign one of the already given labels to unseen input. So they require
previously defined categories and each of the images should be labeled with one of these
categories. One of the advantages of this is that we can easily measure if and how well the
algorithm is performing. What is not so good is that we need to predefine all possible
categories, which is not always easy, especially in the case of ego-centric activity recognition
since we cannot predict all the activities a person can perform during the day.

We can think of some activities that most of the people do - like socializing, eating,
working and so on, but how many activities should we have and should they be more general
or specified? Also every person has a different lifestyle and every person does different
activities through the day - one can practise some kind of sport, while other can play a
musical instrument, one can spend time with his/her dog, but other may not have a pet.
Finding the right number of categories and the right categories and then labeling all the
pictures can sometimes really be a problem and a difficult task, but it is beneficial to the final
results.

That being said, it is logical to try with the opposite - unsupervised learning. In this

approach we do not annotate the input data - the model finds features from the input on its
own and divides the data into several groups. The results should fit better the structure of the
data. There are also some unsupervised algorithms which do not require exact number of
clusters and find the optimal number on their own. It is a really big advantage that there is no
need to annotate all the data. With the wearable cameras we can collect millions of images
almost without effort, but they are of no use for the supervised algorithms it they are not
annotated. Using unsupervised approach allows us to benefit from all the available data
without losing time and effort to prepare it for training. This advantage however is also a
drawback - it is difficult to measure the quality of the clusters and how well is the algorithm
performing.

6

Most of the models need to be trained with data which is very similar to the test data
so that they can perform well. Because of this the data is usually split in two subsets (or three
in the case of deep learning approaches) - one for training and one for test (and one for
validation in the case of DL approaches). But the approach, proposed by this work should
work well with new and unseen data without the need the model to be trained again or
fine-tuned. Here comes another advantage of the unsupervised models for performing activity
recognition. If our model is trained on images from several people and then we want to
recognise the activities in the images of another person - there is a possibility that his/her
activities are different from the ones of the others. So an unsupervised approach can find that
for this person the clusters should be a bit different and should be able to split the data, based
on his/her activities and not on predefined labels which may not fit his/her lifestyle and
activities.

1.2 Related Work

Understanding human activities from videos has been a well-studied topic in

computer vision. As the field of egocentric vision is quite new and challenging, there has
been growing interest in the last several years in recognizing activities from egocentric data
and it has became an active area of research. However, most works have focused on activity
recognition from videos [17], while activity recognition from photo-streams has been little
explored.

1.2.1 Activity recognition from egocentric videos

Fathi et al. [1] present a hierarchical method to analyze daily activities using video
from an egocentric camera. They use joint modeling of activities, actions, and objects and
introduce a novel representation of actions based on object-hand interactions. Their dataset
contained 7 kinds of daily activities, performed by 4 people and 16 kinds of objects used in
these activities.

Pirsiavash and Ramanan [2] present a new dataset of 1 million frames, annotated with

activities, object tracks, hand positions, and interaction events. They used 18 different actions
and 42 different objects and had videos of dozens of people performing unscripted, everyday
activities. Their model involves long-scale temporal structure and complex object
interactions. Their representations include temporal pyramids and composite object models
and show that the objects with which is interacted are most useful for the activity recognition.

Another multi-task clustering framework for activity analysis of daily living is

suggested by Yan et al. [4]. They sue the fact that everyday activities of multiple individuals

7

are related, since typically people perform the same actions in similar environments. For each
person, a set of samples is available and they should be segmented corresponding to the user
into parts and the resulting partitions should be consistent with each other, because people
perform about the same activities. Two clustering approaches are used - Earth Mover’s
Distance Multi-Task Clustering and Convex Multi-Task Clustering. They used two datasets.
The first consists of over two hours of data, showing five common activities in an office
environment, performed by five subjects. The second one contains videos recorded by 20
different users, performing 18 non-scripted daily activities in the house, like brushing teeth,
washing dishes, or making tea. It also has annotations about the presence of 42 relevant
objects and about temporal segmentation.

1.2.2 Activity recognition from egocentric images

To the best of our knowledge, so far there have been only two attempt to recognize
egocentric activities from photo-streams.

D. Castro et al. presented a method to analyze images taken from a passive egocentric

wearable camera along with the contextual information, such as time and day of week. They
used Convolutional Neural Network (CNN) with a classification method they introduced,
called a late fusion ensemble, which incorporates relevant contextual information and
increases the classification accuracy. The proposed approach was tested on a dataset of more
than 40 000 images over a 6 month period with 19 activity classes and an overall accuracy of
83.07% was achieved. However, the dataset was acquired only by a single person and since
the user had a routinary life, these performances are not surprising.

Later, Cartas et al. [11] tried to generalize this framework to multiple users. What is
novel in it is that instead of using time information as contextual information, since this does
not make sense when the data belongs to multiple users, they used the features of the fully
connected layer. They proved that the classification accuracy of the CNNl argely improves
when its output is combined, through a random decision forest, with contextual information
from a fully connected layer. The used dataset consists of 18,674 images acquired by three
people, and an overall accuracy of 86% is achieved in the recognition on 21 classes.

1.2.3 Active learning

Supervised approaches assume a fixed set of labeled data, which is not necessarily

true in real-world applications. For example, in the case of activity recognition we assume a
fixed number of activities, but a unseen user may perform activities not included in this set.
So we may want to labels his data to improve the results of the supervised model. Getting

8

labeled data is usually expensive and time consuming. Active learning aims at achieving the
best learning result with a limited labeled data set, i.e., choosing the most appropriate
unlabeled data to get labeled.

Dasgupta and Hsu [18] presented an active learning appoach that exploits cluster

structure in data. Their method starts with a hierarchical clustering of the unlabeled points
and discover any informative pruning of the cluster tree. By doing this they get fairly pure
clusters at the leaves of the tree, so it is enough for the user to label only one item for each
leave in order to achieve estimate of the labels of the entire dataset. This is extremely useful,
as it reduces a lot the effort and time needed for labeling. With this approach they labeled
10000 training examples with only 400 labels with small error.

One very interesting work about image clustering was provided by Yang, Parikh and

Batra [6]. They propose a recurrent framework for Joint Unsupervised Learning of deep
representations and image clusters. In their framerwork, successive operations in a clustering
algorithm are expressed as steps in a recurrent process, stacked on top of representations
output by a Convolutional Neural Network (CNN). During training, image clusters and
representations are updated jointly: image clustering in the forward pass, and representation
learning in the backward pass. They combine two processes into a single model using
weighted triplet loss function. Their approach is focused on image clustering of very simple
images, but their ideas can be very useful to generate high purity clusters in an active learning
framework. The experiments on different databases of images showed that this approach
outperforms unsupervised state-of-the-art algorithms on image clustering and it finds better
representations of the images which generalize well when transferred to other tasks.

2 Methodology

Our first and main objective was to find an approach able to generalize well and

gives satisfactory results even for such unseen users. To achieve this goal, we have tried to
use and combine different methodologies - supervised and unsupervised that are detailed in
this section.

Our second goal was to define a method to easily get labels for an unseen user so that
these could be used for re-train the system and improve the performances of the algorithm.

We used several different subsets of the NTCIR egocentric dataset egocentric dataset
[10]. The dataset contains images from three lifeloggers who collected them by using a
wearable camera that takes a picture every 30 seconds for a period of about one month each.

9

First we split all the data we have in train, test and validation sets. Then we split the images
by users, who have taken them. We trained the models with the images for two of the users
and then tested with the images from the third user, using a cross validation strategy. The
reason we did this is because we wanted to see how much the performances drop when the
test images belong to an unseen user - a user whose images are seen for the first time and not
similar images have been used for training.

2.1 Supervised CNN-based methodologies

In recent researches regarding images, highest results are obtained using approaches

based on deep learning and convolutional neural networks [19]. These networks assume that
the inputs are images and are specially designed to be much more efficient than normal
convolutional networks for this kind of input. They consist of layers and receptive fields,
which process small regions of the image (Fig 2.1.1). There are several types of layers -
Convolutional Layer, Pooling Layer, and Fully-Connected Layer. The layers can be stacked
in different combinations in order to obtain the best architecture for the specific classification
task. In our case we used GoogLeNet (Fig. 2.1.2), because it is suitable for the images we
have and is deep enough to find meaningful features.

Fig. 2.1.1 Input volume (image) in red and volume of neurons in blue

http://cs231n.github.io/assets/cnn/depthcol.jpeg

10

Fig. 2.1.2 Architecture of GoogLeNet

http://www.csc.kth.se/~roelof/deepdream/googlenet2.png

We limited our analysis to state of the art supervised approaches based on CNN. It is

well known that large CNN networks may allow for more expressive power, however it is
also prone to over fitting due to the large number of parameters. Additionally, uniform
increased network size increases computational resources. Since the images captured by a
wearable camera are real world images, and recognizing activities require lot of expressive
power, we used GoogleLeNet architecture. This CNN architecture is characterized by the
presence of an inception module that by approximating a sparse structure with spatially
repeated dense components and using dimension reduction, keep the computational
complexity bounded.

We finetuned a GoogLeNet CNN and used it as a fixed feature extractor. We tried

different approaches. One was to use ensemble of classifiers - CNN + Random Forest. The
other one was to apply unsupervised clustering algorithm on the extracted features from the
network. We tried applying kMeans and Spectral Clustering.

2.2 Semi-unsupervised methodologies

We also tried to use unsupervised clustering algorithms and active labeling in order to

improve the results. We first split the new, unseen images in big clusters using agglomerative
clustering. We actually cluster not the images, but the features obtained for each image from
the CNN network. After this, using some metrcis and thresholds we obtain the clusters which
contain images from only one class and give them to the user to put labels (he/she has to put
only one label for each cluster). After this we finetune the network with the images labeled
by the user. We can then repeat this procedure until we get pure clusters. When it is not

11

possible to form good clusters anymore, the user can label all the remaining images (the
remaning images should be a small subset of all unseen images).

3 Experiments

3.1 Dataset

The proposed method was tested on a subset of the NTCIR-12 egocentric dataset [10].
This dataset consists of data from three lifeloggers who collected pictures using a Looxcie
wearable camera for a period of about one month each. The data consists of a large collection
of images - taken with a frame rate of two pictures per minute, which makes 88 124 images
in total, summing up to 18.18 GB.

There are some XML descriptions of the data like semantic locations and the physical

activities, but at a granularity of one minute. The problem is that we need a label for every
picture and we need a predefined common set of categories for all the users, so that we can
calculate how accurate is our approach. We also need the labeled pictures to be equally
distributed between the three users, so that we have equal number of images for each of the
lifeloggers.

Luckily, a large number of pictures (about 18,000) from the NTCIR dataset were

annotated for the work of Marin et al. - Recognizing Activities of Daily Living from
Egocentric Images [5]. The problem was that they were not enough and they were mostly
from the first user (about 11, 000) and much less for the second and third. So we needed more
labeled images for all of the users and had to do this manually.

The labeling work was performed using a special annotation tool [11], developed for

the work of Juan Marin. The annotation tool [11] was specially designed for labeling big
datasets of images and it made things much easier - labeling a group of consecutive images,
related to the same category is done with one click, a nice preview with what is already
annotated is provided and so on. The process of labeling can be seen in Figure 3.1.1 and
Figure 3.1.2. However the manual labeling was still a hard task. It is really time-consuming
and it is very easy to make mistakes, so the work should be also checked in the end, which
again takes a lot of time.

Another thing to take into account was the list of possible activities from which to

choose from when annotating. We already had more than 23 000 labeled images, so to
maintain full compatibility with them, the activities (categories) for the labeling were kept the

12

same as in the other work [5]. These activities are a word or short description of what is
visualized in the picture. Example activities are for instance driving, cooking, having drinks
with somebody and so on. The final list containing all the different activities is shown in
Table 3.1.1.

Public transport

Driving

Walking outdoors

Walking indoors

Biking

Having drinks with somebody

Having drinks\meal alone

Having meal with somebody

Socializing

Attending a seminar

Meeting

Reading

TV

Cleaning and chores

Working

Cooking

Shopping

Talking

Resting

Mobile

Plane

Table 3.1.1: Final list of activities

13

Having to do all this manual work again shows how better it is to have unsupervised
approach in which there is no need to annotate so many images. It also shows how difficult it
is to find the right number of activities and to choose what they to be. The final categories are
not the best, because some of them are very similar and even for a human it is very difficult
to distinguish between them - like for example socializing and talking. Also there are some
activities which are pretty common, but are not included in the final list - like doing a sport or
playing a musical instrument. Some not so common activities can be seen, too. One example
is praying or going to the church. This shows that an approach in which we do not need to
know the number of clusters in advance can be good, because it will find and model all these
differences between the different lifestyles.

However, the activities were kept the same, because of the compatibility with what is

already annotated and because it is not an easy task to come up with the perfect categories - a
new and different list can have both advantages and disadvantages.

Finally, using the annotation tool [11], more than 21 000 of images were labeled.

Together with the images, labeled for the other work - Recognizing Activities of Daily Living
from Egocentric Images, this totals to 45 000 labeled images in total, 15 000 for each of the
three lifeloggers. The concrete number of annotated images for each activity and for each
user can be seen in Table 3.1.2. Some histograms with the images for each of the lifeloggers
are presented in Figure 3.1.3 - 3.1.5. The histograms were made using Pygal [1].

Figure 3.1.1: Labeling images with the activity “Working” using the annotation tool [11]

14

 User 1 User 2 User 3 Total

Public transport 183 237 1154 1574

Driving 2159 26 816 3001

Walking outdoors 688 1743 1045 3476

Walking indoors 610 827 304 1741

Biking 0 247 0 247

Having drinks with
somebody

167 420 831 1418

Having drinks\meal
alone

510 496 646 1652

Having meal with
somebody

429 406 230 1065

Socializing 273 495 1057 1825

Attending a seminar 508 515 0 1023

Meeting 1025 751 0 1776

Reading 880 276 18 1174

TV 726 2 661 1389

Cleaning and chores 247 388 192 827

Working 1463 4326 1182 6971

Cooking 192 176 207 575

Shopping 595 250 330 1175

Talking 1660 682 309 2651

Resting 1250 1127 2988 5365

Mobile 1001 1342 2702 5045

Plane 434 268 328 1030

Total 15000 15000 15000 45000

Table 3.1.2: Number of annotated images for each user and activity

15

Figure 3.1.2: Some of the images, labeled with the activity “Walking outdoors” presented in the

annotation tool [11]

Figure 3.1.3: Histogram of the number of images for each activity for user (lifelogger) 1. We can see

that he drives a lot and also likes talking.

16

Figure 3.1.4: Histogram of the number of images for each activity for user (lifelogger) 2. He is really

dedicated to his work.

Figure 3.1.5: Histogram of the number of images for each activity for user (lifelogger) 3. He

likes to have rest and is using his mobile phone very often.

17

3.2 Experimental setting

We wanted to start our experiments by trying something simple and fast, so that we
can have a baseline and we can be sure that we are moving in the right direction and
improving the results as much as possible.

Our idea was to use a deep learning framework and with its help to fine-tune already

pretrained convolutional neural network. To do this we chose Caffe [1] - a deep learning
framework, allowing easily to perform fine-tuning over networks trained with ImageNet. The
neural networks that we used for the fine-tuning process was GoogLeNet. The base weights
were extracted from the Caffe Github Repository [14]. For writing the code and running of
the experiments, iPython notebooks were used [15].

We first tried this approach using all the data we have for all the users. The reason we

did this is because we wanted to improve the intra-class and between class generalization
capability of the CNN and to see how it performs.

Next, we wanted to simulate the case when we already have finetuned network with

images from a lot of different users and we use it to recognise the activities of a new (unseen)
user. As we have data only from three users, we split the dataset and used for traning and
validation only the images from two users. The third user is left to be new (or unseen). We
wanted to see if and how the performace drops in this case, because actually this is the
purpose of the system - it should work fine with new users and our method should allow the
customization of the system to any kind of user with any kind of activities.

Since we have the data of three users, we performed the fine-tuning process four

times. At first we used all the images for all the users. We split the data into three subsets -
one for training (about 75% of the data or around 33 750 images), one for validation (about
10% or 4500 images) and the last one for testing (about 15% or 6750 images). We did this in
order to see what performance we will get and how it will drop when we use the images for
only two of the users for training and validation and test with the images for the third user,
which will be unseen data for the model. After that we used the data for two of the users for
training and validation and then tested the results on the data for the third user, so we
fine-tuned three more times - once for each of the users.

The number of images used in each case for train, validation and test can be seen in

Table 3.2.1. The batch size for GoogLeNet was reduced to 10, so that it can be run on a
system with GPU with 2GB VRAM and the learning rate was set to 0.000067. All the
parameters for the solver are presented in Table 3.2.2.

18

In order to evaluate the model, we used the metric accuracy. When we tested the
trained networks we measured the accuracy for each class (activity) and then the global
accuracy. Since here it is interesting to compare the results for the four trained networks, all
the results are summarized in Table 3.2.3.

 Test on images
from user 1,

train and
validate on

images from
user 2 and 3

Test on images
from user 2,

train and
validate on

images from
user 1 and 3

Test on images
from user 3,

train and
validate on

images from
user 1 and 2

Using images
from all users

Training 27000
(90% of the
images from
user 2 and 3)

27000
(90% of the
images from
user 1 and 3)

27000
(90% of the
images from
user 1 and 2)

33 750
(75% of all

images)

Validation 3000
(10% of the
images from
user 2 and 3)

3000
(10% of the
images from
user 1 and 3)

3000
(10% of the
images from
user 1 and 2)

4500
(10% of all

images)

Test 15000
(100% of the
images from

user 1)

15000
(100% of the
images from

user 2)

15000
(100% of the
images from

user 3)

6750
(15% of all

images)

Total 45000 45000 45000 45000

Table 3.2.1: Number of images, used for train, validation and test sets in each case

 Test on user 1,
train on

user 2 and 3

Test on user 2,
train on

user 1 and 3

Test on user 3,
train on

user 1 and 2

Using images
from all users

batch size 10 10 10 10

test iterations 59 59 59 89

test interval 673 674 672 841

base lr 0.000067 0.000067 0.000067 0.000067

19

display 168 168 168 210

max iterations 26920 26980 26900 33670

lr policy "step" "step" "step" "step"

gamma 0.10000 0.10000 0.10000 0.10000

momentum 0.9 0.9 0.9 0.9

weight decay 0.005 0.005 0.005 0.005

stepsize 13460 13490 13450 16835

snapshot 13460 13490 13450 16835

solver mode GPU GPU GPU GPU

solver type SGD SGD SGD SGD

Table 3.2.2: Solver definition for the fine-tuning

Accuracy Test on user 1,
train on

user 2 and 3

Test on user 2,
train on

user 1 and 3

Test on user 3,
train on

user 1 and 2

Using images
from all users

Public
transport

36% 39% 29% 89%

Driving 96% 92% 57% 98%

Walking
outdoors

81% 93% 96% 92%

Walking
indoors

65% 57% 53% 69%

Biking - - - 82%

Having drinks
with somebody

62% 39% 21% 81%

Having
drinks\meal

alone

47% 64% 70% 80%

20

Having meal
with somebody

60% 57% 43% 82%

Socializing 9% 33% 21% 77%

Attending a
seminar

6% 4% - 84%

Meeting 42% 47% - 79%

Reading 64% 63% 83% 87%

TV 58% 50% 21% 85%

Cleaning and
chores

30% 27% 73% 63%

Working 54% 85% 88% 93%

Cooking 14% 65% 38% 65%

Shopping 56% 82% 70% 78%

Talking 45% 48% 42% 83%

Resting 79% 57% 63% 92%

Mobile 70% 64% 71% 86%

Plane 6% 73% 1% 87%

Total Accuracy 59% 66% 57% 87%

Table 3.2.3: Obtained accuracies after fine-tuning

As we can see from Table 3.2.3 and as expected, the accuracy dropped with between

21% and 30% when we trained on one dataset and then tested on another dataset, which is not
similar to the images, used for training and is new for the model.

What is interesting here is to explore what is the accuracy for each of the activities
and each of the users and why.

If we concentrate on the accuracies in Table 3.2.3 and on Table 3.1.2 where we have
the number of pictures for each user and category, we can notice some dependencies. For
example as we can see in Table 3.2.4. for the activity Having drinks with somebody we have
a lot of images for user 3, but much less for user 1 and 2. So when the data for user 3 is

21

unseen, we are training this activity with 587 images and we are testing with 831 images, so
probably this is the reason we get accuracy of only 21% in this case.

We can see another interesting example in Table 3.2.5. At all we have 1023 images
for the activity Attending a seminar, so we get good accuracy when we train and test with
known data. The problem comes with unseen data, because one of the users do not have
images in this category. So when we treat the images of user 1 as unseen data and test on
them, we actually have trained the model only on the images from user 2, which makes it
really difficult, because the images from the activity Attending a seminar can look quite
different for different people - they depend on the room, if there is a screen on the pictures, if
there are other people and so on. This is why we get accuracy of 6% and 4%.

Having drinks with
somebody

User 1 User 2 User 3 Total

Number of images 167 420 831 1418

Accuracy 62% 39% 21% 81%

Table 3.2.4: Number of images and accuracies for the activity Having drinks with somebody

Attending a seminar User 1 User 2 User 3 Total

Number of images 508 515 0 1023

Accuracy 6% 4% - 84%

Table 3.2.5: Number of images and accuracies for the activity Attending a seminar

3.3 Results

The first approach we tried was to use GoogLeNet in an ensemble with another
classifier. First, we fine-tuned GoogLeNet, using the Caffe framework [13] with batch size of
10 images and a learning rate α = 6.7x10 −5 . We did this four times with the different
combinations of subsets. We then extracted features from different final output layers of the
CNN - first the softmax probability layer, giving a vector of 21 features and second, a
combination of the pool5/7x7 fully connected layer and the softmax probability layer, giving
a vector of 1045 features. After this, we trained several models by combining the different

22

final output layers of the CNN with different clustering and classification algorithms. We
tried the following ensembles:

● GoogLeNet+RandomForest - for this model we trained a random forest of 500
trees. We did this twice - first only on the softmax probability layer, giving a
vector of 21 features and then on the pool5/7x7 fully connected layer and the
softmax layer, giving a vector of 1045 features. This is a fully supervised
approach as we need all the labels for both the CNN and the Random Forest
algorithm. This corresponded to test the generalization performance of the
algorithm proposed by Juan Marin [5] to unseen users. The results can be seen
in Table 3.3.1 and Table 3.3.2.

● GoogLeNet+kMeans - we applied kMeans twice - on the softmax probability
layer (21 features) and second time on the pool5/7x7 fully connected layer and
the softmax probability layer (1045 features). Here we needed to specify the
number of classes. Results are in Table 3.3.3 and Tables 3.3.4.

● GoogLeNet+SpectralClustering - again applied the clustering algorithm twice
- on the softmax probability layer and on the pool5/7x7 fully connected layer
and the softmax probability layer. Results are in Table 3.3.5 and Tables 3.3.6.

CNN (soft-max probabilities) + RandomForest

 Test on user 1
(train on user 2
and user 3)

Test on user 2
(train on user 1
and user 3)

Test on user 3
(train on user 1
and user 2)

Accuracy 62% 67.11% 58.89%

CNN 59% 66% 57%

Table 3.3.1 Results from applying CNN (soft-max probabilites) + RandomForst

CNN (pool5-7x7_s1_probs) + RandomForest

 Test on user 1
(train on user 2
and user 3)

Test on user 2
(train on user 1
and user 3)

Test on user 3
(train on user 1
and user 2)

Accuracy 65% 70% 62%

CNN 59% 66% 57%

Table 3.3.2 Results from applying CNN (pool5-7x7_s1_probs) + RandomForst

23

As expected from [5] we can see that using the network to obtain features and then
combine them with another classifier (RandomForest in our case) improves the results. When
using only the soft-max probabilites we see an improvement in the accuracy with 1 to 3
percents. This means the network performs well as fixed feature extractor. What makes it
perform worse is the fact that is uses a very simple classifier - softmax to predict the final
label. When we replace it with a better and more complex classifier like Random Forest, we
get better results. Also as expected, using pool5-7x7_s1_probs insead of softmax
probabilities gives bettwe results.

CNN (soft-max probabilities) + kMeans

 Test on user 1
(train on user 2
and user 3)

Test on user 2
(train on user 1
and user 3)

Test on user 3
(train on user 1
and user 2)

NMI 50.15% 51.09% 49.36%

Purity 67.17% 67.64% 69.93%

Accuracy 59.29% 65.12% 63.62%

CNN 59% 66% 57%

Table 3.3.3 Results from applying CNN (soft-max probabilites) + kMeans

CNN (pool5-7x7_s1_probs) + kMeans (with default parameters)

 Test on user 1
(train on user 2
and user 3)

Test on user 2
(train on user 1
and user 3)

Test on user 3
(train on user 1
and user 2)

NMI 56.38% 50.33% 58.74%

Purity 71.68% 71% 76.49%

Accuracy 65.58% 62.33% 71.58%

CNN 59% 66% 57%

Table 3.3.4 Results from applying CNN (pool5-7x7_s1_probs) + kMeans

The results for CNN combined with kMeans are not very consecutive. It’s not very

surprising to see that when we use soft-max probabilities as features, the results are almost
the same - this is a very simple feature and it looks like there are not any well-formed
clusters. However, when we use pool5-7x7_s1_probs layers, in two of the cases, the results

24

boost quite a lot - with 6 to 14%. This is actually the higest accuracy obtained when we test
as user 3 is unseen.

CNN (soft-max probabilities) + Spectral Clustering

 Test on user 1
(train on user 2
and user 3)

Test on user 2
(train on user 1
and user 3)

Test on user 3
(train on user 1
and user 2)

NMI 51.1% 51.33% 49.87%

Purity 67.81% 68.08% 68.96%

Accuracy 60.01% 65.73% 64.42%

CNN 59% 66% 57%

Table 3.3.5 Results from applying CNN (soft-max probabilities) + SpectralClustering

CNN (pool5-7x7_s1_probs) + Spectral Clustering

 Test on user 1
(train on user 2
and user 3)

Test on user 2
(train on user 1
and user 3)

Test on user 3
(train on user 1
and user 2)

NMI 0.402079467548 0.6% 0.4%

Purity 0.918953201148 100% 100%

Accuracy 0.350757727485 28.86% 25%

CNN 59% 66% 57%

Table 3.3.6 Results from applying CNN (pool5-7x7_s1_probs) + SpectralClustering

The results for Spectral Clustering are not good in all the cases, which means this

approach is not suitable for all datasets we use.

Semi-supervised approach

The other approach we tried uses again features obtained from the network - from
pool5-7x7_s1_probs layers. They are 1045-dimensional vectors. This time we apply
agglomerative clustering to the features in order to split the images in groups, which contain
similar images where the same activity is performed. As it is impossible all clusters to be
perfect, we should find a way to realize which of the clusters are pure (containing image with

25

only one activity) and which are not. The idea is to ask the user to put only one label for all
the images in the pure clutsers (because all the images are with the same activity being
performed).

The first problem here is to choose in how many clusters to split the data.
Unfortunaltely, there is no good metric saying this. It is nice to have as little clusters as we
can, because we will have to label each cluster and more clutsers will mean more data to
label, but less clusters means more images in each cluster. When we have a lot of images in
the clusters there is less chance that they will be pure.

We tried several experiments, the results from which can be seen in Table 3.3.7. We
used user 2 as unseen user, because only he has images for activity, which the others two do
not have. Only user 2 rides a bike. We split his 15000 images into two subset - one 12750
images (75%) and one 2250 images (15%). The last one is used only in the final stage for
testing. So in the table the results are from clusteting of 12750 vectors, which are
1045-dimensional and are obtained from the GoogLeNet, finetuned for user 1 and user 3.

Average images in
cluster
(number of clusters)

30
(425)

50
(255)

80
(159)

100
(127)

silhouette 0.0554 0.0442 0.0393 0.0370

calinski harabaz 60.2473 85.3951 118.6345

139.0057

NMI 0.5533 0.5537 0.5572 0.5600

purity 0.8572 0.8264 0.8044 0.7947

accuracy 0.8571 0.8262 0.8043 0.79458

Table 3.3.7 Clustering with different number of clusters, when user 2 is the unseen user

Looking at the imags in the clusters we obtained and at the table above, we decided to

try with around 100 images in cluster. As we have 12750 images, we got 127 clusers at all.
The clusters contain different numbers of images, but after looking at the results, most of
them are pure and have collected images with the same activity even though the images
theyself are quite different. Some nice examples can be seen in Fig 3.3.1. Some of the images
are almost identical, so they logically go to a cluster together. Such example is in Fig. 3.3.2

26

Fig 3.3.1 Some images from one cluster - all with the same activity - Having meal with someone

Fig 3.3.2 Almost identical images

27

One of the bigest problems is that a big amount of the images have two activities in
them - for example working and eating, walking and mobile and so on, so it’s very difficult to
distinguish them, bacause they look very similar, but the small rectangle in the bottom of the
screen can change the right activity from walking to mobile. Such example is shown in Table
3.3.8.

Public transport Mobile

Table 3.3.8 Almost identical images with different activities

Another clusters just contain very diffent images. Our aim is to find the one which are

not pure and to query the user only for the pure ones. Unfortunately, here the metrics from
above (silhouette index, calinski harabaz index) did not give any useful information about the
purity of the clusters.

We tried to combine several other metrics to obtain better information about how
good are the clusters. Again using clustering we split each cluster into two smaller clusters.
We then found the centroids of the two subclusters and the distance between them. If the two
centroid are close - this means that maybe the cluster is pure. If they are far away, maybe we
have different activities in the cluster. Another thing we measured is the distance from the
centroid to the point with is most far away. We sorted the clusters by this metrics and put a
sensitive threshold which of them are pure and which not. Another thing we did to find good
clusters was to obtain the predicted label from the network for each images in the cluster. We
then measured how many percents of the images in the cluster are predicted to be from the
most frequent activity - if over 85% percents of the images are from the same activity,
probably the cluster is pure.

The reason why the user has to label manually some images is that when we have new
activity, which is unseen for the network, there is no way to guess it automatically.

28

Using the approach above we selected 73 good clusters for the user to label out the of
127 clusters and labeled all the images in the cluster with the same label. This means that the
user have to choose 73 labels for the 73 clusters. We labeled the clusters and when applied
this labels to all the images in the cluster, we actually labeled 8622 images out ot 12750 by
choosing only 73 lables. The accuracy of the labels put in this way is 85.14%. We then
finetuned the network we had with the new images. The global accuracy of the network
improved from 64% to 66%.

As it is quite difficult to find the pure clusters and no metric is very reliable, another
possible approach is to show all the clusters to the user and ask him/her to label only the ones
which contain images of the same activity. We tried this approach and selected 85 clusters out
of 127 for pure. When labeling them (putting 85 labels) we actually labeled 8376 images with
accuracy 87.89%. After finetuning the network with the new images, we obtained much
better results. The improvements are shown below. On the left are the numbers before
fintuning, on the right are after finetuning. Accuracy has increased with 12%. This shows that
is it very important to have the new activities labeled corectly - like biking for example.
There were no such labels before, so the network couldn’t guess this activity, but when we
finetuned it with some biking images the results incresed from 0 to 80% for this caregory.

public transport: 47 -> 43
driving: 100
walking outdoor: 89 -> 84
walking indoor: 48 -> 44
biking: 0 -> 80
having drinks with somebody: 33 -> 76
having drinks/meal alone: 71 -> 63
having meal with somebody: 40 -> 53
socializing: 51 -> 20
attending a seminar: 3 -> 53
meeting: 31 -> 53
reading: 60 -> 73
tv: 0
cleaning and chores: 32 -> 56
working: 87 -> 96
cooking: 78 -> 5
shopping: 70 -> 48
talking: 40 -> 75
resting: 46 -> 77
mobile: 66 -> 85
plane: 91

Overall accuracy: 64% -> 76%

29

JULE

We also tried using the JULE approach for getting nice clusters. Unfortunately the
images they used in their experiments are more simple than our and we need a deeper
network to make it work and give nice results. We got a little improvement over kMeans, but
it is not enough for good results and further investigation is needed.

kMeans:
NMI:
0.227110318957
Purity:
0.452733333333
Accuracy:
0.337

JULE:
NMI:
0.270105200465
Purity:
0.547866666667
Accuracy:
0.352866666667

3.4 Discussion

In the table below are some correctly classified activities, but more interesting are the
mistakes in the next table.

Working Driving Reading

30

Mobile Talking TV

Resting Walking outdoor Reading

Table 3.4.1: Correctly classified images

Talking Cleaning and chores Attending a seminar

Working TV Plane

Having meal with somebody Plane Having drinks with smbd

Socializing Walking indoor Having meal with somebody

31

Meeting Driving Talking

Working Public transport Meeting

Table 3.4.2: Some mistakes

As we can see from the mistakes above, most of them are because we actually have

two activities in the same time. A possible solution for this is to use the top 2 labels instead of
top 1.

Trying this really boost a lot the results. In the normal case, before finetuning with the

labeled images from the clusters, for user 2 we had 64% accuracy. When using top 2 results,
this went to 76%. In the case wih the finetunig from 76% the accuracy went to 86%.

Another thing is that a lof of the labels are confusing even for us - like talking and

socializing for example.

4 Conclusions and Future Work

For the future we should address the problem with several activities on one images

and detect all performed activities.

We also worked on appling the recurrent framework for Joint Unsupervised LEarning
(JULE) of deep representations and image clusters [6] in the domain of egocentric images
and activity recognition. What we did was to use the framework to train a model and obtain
clusters of images representing the same activity, instead of the agglomerative clustering we
used. The approach seems suitable for our work, but it should be adapted to work with a more
deep network as we need for our task.

Maybe a better selection of labels can also help improve the results.

32

5 References

1. A. Fathi, A. Farhadi, and J. M. Rehg. Understanding egocentric activities. In 2011
International Conference on Computer Vision, pages 407–414. IEEE, 2011.

2. H. Pirsiavash and D. Ramanan. Detecting activities of daily living in first-person
camera views. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 2847–2854. IEEE, 2012.

3. Xu Sun, Hisashi Kashima, Ryota Tomioka, Naonori Ueda, and Ping Li. A New
Multi-Task Learning Method for Personalized Activity Recognition. In Data Mining
(ICDM), 2011 IEEE 11th International Conference on

4. Yan Yan, Elisa Ricci, Gaowen Liu, and Nicu Sebe. Egocentric Daily Activity
Recognition via Multitask Clustering

5. Alejandro Cartas, Juan Marin, Petia Radeva, and Mariella Dimiccoli. Recognizing
Activities of Daily Living from Egocentric Images

6. Jianwei Yang, Devi Parikh, Dhruv Batra. Joint Unsupervised Learning of Deep
Representations and Image Clusters

7. I. Martin-Lesende, K. Vrotsou, I. Vergara, A. Bueno, A. Diez, et al. Design and
validation of the vida questionnaire, for assessing instrumental activities of daily
living in elderly people. J Gerontol Geriat Res, 4(214):2, 2015.

8. Dent, E., Kowal, P., & Hoogendijk, E. O. (2016). Frailty measurement in research and
clinical practice: a review. European journal of internal medicine, 31, 3-10.

9. S. M. Sch¨ussler-Fiorenza Rose, M. G. Stineman, Q. Pan, H. Bogner, J. E. Kurichi, J.
E. Streim, and D. Xie. Potentially avoidable hospitalizations among people at
different activity of daily living limitation stages. Health services research, 2016.

10. http://research.nii.ac.jp/ntcir/permission/ntcir-12/perm-en-Lifelog.html
11. https://github.com/hermetico/TFG/tree/master/annotation-tool
12. http://pygal.org/en/stable/
13. http://caffe.berkeleyvision.org/
14. https://github.com/BVLC/caffe
15. https://ipython.org/notebook.html
16. D. Castro, S. Hickson, V. Bettadapura, E. Thomaz, G. Abowd, H. Christensen, and I.

Essa. Predicting daily activities from egocentric images using deep learning. In
proceedings of the 2015 ACM International symposium on Wearable Computers,
pages 75–82. ACM, 2015.

17. Nguyen THC, Nebel JC, Florez-Revuelta F, et al., Recognition of activities of daily
living with egocentric vision: A review. Sensors 2016; 16(1):72

18. Sanjoy Dasgupta, Daniel Hsu. Hierarchical sampling for active learning. ICML '08
Proceedings of the 25th international conference on Machine learning, pages 208-215

19. http://cs231n.github.io/convolutional-networks/

33

http://research.nii.ac.jp/ntcir/permission/ntcir-12/perm-en-Lifelog.html
http://pygal.org/en/stable/
http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe
https://ipython.org/notebook.html

