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Abstract 
 

Object detection is a fundamental and challenging problem in computer vision.                     
Detecting the objects visible in an image can give us a good understanding and description of                               
the image. The extracted information can later be used to improve the results of other                             
computer vision tasks like activity recognition, content-based image retrieval, scene                   
recognition   and   more.  

 
As technology and internet connection are becoming more accessible, billions of                     

people upload photos and videos every day. In order to make use of this enormous amount of                                 
data we need to be able to extract information from these images in a quick and yet reliable                                   
way. Convolutional neural networks (CNN) have made possible enormous progresses in                     
object detection and classification in recent years and have already established themself as the                           
state of the art approach for these problems. In this work, we try to improve object detection                                 
performances by employing a CNN approach able to exploit object co-occurrences in natural                         
images. Typically, real world scenes often exhibit a coherent composition of object in terms of                             
co-occurrence probability. For instance, in a restaurant we typically see dishes, bottles and                         
glasses. We aim at using this type of knowledge as a cue for disambiguating object labels in a                                   
detection   task.  
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1   Introduction 
 
One of the most investigated and challenging problems in computer                   

vision is object detection. It is the problem of automatically detecting the objects                         
that are present on a visual scene. A more formal definition states “given an                           
image, an object detection algorithm returns all the instances of one or more                         
type of objects in form of bounding boxes that tightly enclose them”. [1] As we                             
can see from these definitions numerous tasks are involved in object detection                       
including recognizing what objects are present and localizing these objects. An                     
object detection algorithms receive as input image and produce as output a set of                           
objects represented by labels with their confidence scores and bounding boxes                     
Fig. 1 . The confidence score specifies to what extend the model is confident that                           
the object in the bounding boxes corresponds to the label, usually expressed as                         
a number in the interval [0,1]. Obtaining information about the present objects                       
and   their   location   plays   a   vital   role   in   the   understanding   of   visual   scenes.   [3]  

 
Object detection is an old and fundamental problem in computer vision.                     

Despite the great progress made in the recent years it still remains an active area                             
of research. One direction of ongoing research is the improvement of                     
performance which is still lacking behind when taking human performance as a                       
reference. The task is not a difficult one for humans. We can easily identify                           
objects and their position in an image within milliseconds. The human visual                       
system is fast and accurate, allowing us to perform complex tasks like driving                         
with little conscious thought. Algorithms for object detection with fast and                     
accurate performance can allow computers to do more complex tasks without                     
the need of specialized sensors. A particularly popular and challenging                   
application example are self driving cars based only on image processing or                       
even   general   purpose   robotic   systems.   [4]   [5] 

 



 
Input   image 

 
Detected   objects 

Fig.   1 
 
 



 
In   the   early   days   of   computer   vision   the   focus   of   research   was   on   building 

models   based   on   feature   extraction   tailored   for   the   specific   domain   of 
application.   Creating   a   good   model   required   serious   amount   of   data 
preprocessing,   examining   the   specific   characteristics   of   the   target   domain   to 
extract   the   best   set   of   features.   Even   though   progress   was   made   in   the   area, 
general   purpose   models   did   not   produce   satisfying   results.   All   of   this   changed 
with   the   introduction   of   Convolutional   Neural   Networks.   Current   state   of   the   art 
solutions      for   object   detection   are   based   on      the   use   Convolutional   Neural 
Networks   (CNN).  

 
The   problem   of   object   detection   is   more   complex   than   that   of   object 

recognition.   The   current   trend   in   this   field   of   computer   vision   is   to   reduce   object 
detection   to   a   series   of   object   recognition   problems.   One   approach   for   reducing 
the   detection   task   to   an   object   recognition   task   was   proposed   by   Girshick   et   al. 
In   his   work   object   detection   is   done   by   using   exhaustive   sliding-window 
detector.   By   using   a   window   that   slides   through   the   image   horizontally   and 
vertically   we   can   try   to   recognize   an   object   in   the   current   window   location. 
Ideally   the   recognized   objects   with   a   confidence   score   above   a   given   threshold 
can   then   be   used   as   an   end   result   of   the   algorithm’s   work.   [6][7] 

 
But   the   object   detection   task   is   even   more   complex   as   it   requires   accurate 

localization   of   the   objects.   This   raises   two   main   issues.   First   is   overlapping 
object   detections.   How   do   we   know   which   of   the   overlapping   detections 
actually   point   to   the   same   object?   And   second   -   which   localization   is   the   best   of 
all   proposed?   Additional   concerns   arise   when   we   take   into   account   the 
complexity   and   performance   of   an   algorithm   that   tries   to   deal   with   the 
overlapping   detections.   A   faster   approach   that   tries   to   solve   these   issues 
described   above   is   proposed   in   another   work   by   Girshick   et   al.   The   approach   is 
called   Faster   Region-based   Convolutional   Neural   Networks   (Fast   R-CNN).   This 
method   build   on   previous   work   to   efficiently   classify   object   proposals   using 
CNNs,   while   several   innovations   have   been   utilized   to   increase   both   training 
and   testing   performance   as   well   as   accuracy   of   the   model.   The   idea   of   the   Fast 
R-CNN   is   to   start   with   over-segmentation.   Then   over   iterations   similar   regions 
are   merged   together   until   satisfying   region   object   proposals   are   produced.   In   the 



end   object   recognition   task   is   performed   on   the   candidate   region   object 
proposals. 

 
Current   state   of   the   art   solutions      for   object   detection   are   based   on      the   use 

Convolutional   Neural   Networks   (CNN).  
As   we   can   deduct   from   the   proposed   approaches   a   typical   solution   is   to 

apply      a   CNN   for   object   recognition   to   each   image   region   estimated   to   be   an 
object   by   a   so   called    object   proposal    algorithm.   However,   since   the   object 
recognizer   is   applied      to   each   object   proposal   separately,   its   output   does   not   take 
into   account   the   occurrence   of   other   objects   in   the   scene.   We   can   compare   the 
current   work   object   detection   algorithms   to   a   Naive   Bayes   Classifier   as   they   do 
not   take   into   account   the   relations   between   different   objects   in   the   same   visual 
scene.   Several   studies   suggest   that   extracting   semantic   relations   between   objects 
and   using   them   in   classification   tasks   can   improve   the   accuracy   of   the   models 
by   some   margin   [8]   [11].   However,   such   experiments   have   never   been 
conducted   in   a   Convolutional   Neural   Network   framework. 

 
In   this   paper   we   propose   a   novel   approach   that   extract   semantic   relations 

between   objects   and   exploit   them   in   a   state   of   the   art   CNN   architecture.   The   aim 
is   to   produce   a   fast   and   reliable   general   purpose   model   for   object   detection 
exploiting   the   object   semantic   relations   data   to   maximize   object   label   agreement 
in   object   recognition. 

 

   



2   Related   work 
 
There are two main theories about how objects are related. The widely                       

accepted one is that our understanding of objects and their relationships with                       
one another can be usefully captured by analysing the properties they possess,                       
often referred to as semantic features. A number of large-scale feature listing                       
studies have been conducted, in which participants are asked to generate                     
features for a large set of objects (Cree & McRae, 2003; Devlin, Gonnerman,                         
Andersen, & Seidenberg, 1998; Garrard, Lambon Ralph, Hodges, & Patterson,                   
2001; Tyler, Moss, Durrant-Peatfield, & Levy, 2000; Vinson, Vigliocco, Cappa,                   
& Siri, 2003; Zannino, Perri, Pasqualetti, Caltagirone, & Carlesimo, 2006). In                     
such studies, participants tend to produce features derived from perceptual                   
experience (e.g., lemons are yellow), functional features concerned with                 
behaviours or goals associated with the object (lemons are used to make drinks)                         
and more abstract information that can typically only be expressed verbally                     
(lemons are a type of citrus fruit). On this view, two objects are conceptually                           
related to the extent that they share similar features; so oranges are semantically                         
linked with lemons because they too are citrus fruits and are used to make                           
drinks.  

 
Feature generation studies of this kind have strongly endorsed the view                     

that object knowledge is organised in terms of taxonomic category. Objects that                       
belong to the same taxonomic category tend to share features (Cree & McRae,                         
2003) and, moreover, items that share many features with other items from their                         
category are judged to be more prototypical members of the category (Garrard                       
et al., 2001). Dilkina and Lambon Ralph (2012) recently demonstrated that                     
items within the same category most frequently shared features that referred to                       
their perceptual qualities, though functional and more abstract encyclopaedic                 
features   were   also   somewhat   linked   to   taxonomic   organisation.  

The patterning of correlations amongst features and the relative salience                   
of different types of feature have also been shown to vary across living and                           
non-living things (Farah & McClelland, 1991; Garrard et al., 2001; Tyler et al.,                         
2000). Living things are more strongly associated with perceptual features, for                     



example, and manufactured artefacts with functional features. These differences                 
have been proposed to account for patterns of category-selective semantic                   
deficits sometimes observed in a variety of neurological conditions (Cree &                     
McRae,   2003;   Farah   &   McClelland,   1991;   Warrington   &   Shallice,   1984).  

 
The feature-based approach to object knowledge has proved fruitful, with                   

a number of models of object knowledge assuming that object concepts are                       
structured in terms of their featural similarity (Collins & Quillian, 1969; McRae,                       
deSa, & Seidenberg, 1997; Rogers et al., 2004; Rogers & McClelland, 2004;                       
Tyler et al., 2000; Vigliocco, Vinson, Lewis, & Garrett, 2004). The idea that                         
taxonomic category is a key organising principle for object concepts has also                       
guided recent neuroimaging studies that have used multi-voxel pattern analysis                   
to investigate representational structure (Devereux, Clarke, Marouchos, & Tyler,                 
2013; Fairhall & Caramazza, 2013; Kriegeskorte et al., 2008; Peelen &                     
Caramazza,   2012).  

 
Some limitations of the feature-based approach have been noted,                 

however. It has been suggested that the feature generation task is biased towards                         
features that distinguish objects from their category neighbours and towards                   
aspects of information that can be easily expressed verbally (Hoffman &                     
Lambon   Ralph,   2013;   Rogers   et   al.,   2004).  

 
Another, perhaps more fundamental, limitation is the fact that participants                   

generating semantic features are asked to consider each object in isolation. The                       
relationships between objects are therefore inferred indirectly, in terms of their                     
feature overlap. This is not representative of our natural experience with objects.                       
Environments typically contain many objects and most activities require us to                     
interact with multiple objects simultaneously, which often have few features in                     
common. To extend our earlier example, in order to make lemonade, life must                         
give you not only lemons but water, sugar and a jug. How does the                           
co-occurrence of these objects influence our conceptual representations of each                   
of   them? 

 
An alternative approach to semantic representation has developed in the                   

field of computational linguistics, based on the idea that semantic                   



representations of words can be derived through statistical analysis of their                     
distribution in large text corpora (Firth, 1957; Griffiths, Steyvers, & Tenenbaum,                     
2007; Landauer & Dumais, 1997; Lund & Burgess, 1996; Rohde, Gonnerman,                     
& Plaut, 2006). The central tenet underpinning the distributional approach is the                       
idea that words that occur in similar linguistic contexts are related in meaning.                         
On this view, oranges and lemons would be considered similar because they                       
co-occur with a similar set of words in natural language. For example, we might                           
expect both orange and lemon to frequently occur in sentences that contain                       
words like squeeze, cut, peel, pips, juice and marmalade. On the face of it, this                             
does   not   sound   so   different   to   the   featural   approach.  
 

However, the distributional approach allows for the possibility that                 
objects from different taxonomic categories which share few features may                   
nevertheless share a semantic relationship (e.g., lemon and ice may be                     
considered semantically related because both words are used when we talk                     
about making drinks). These associative or thematic relationships are known to                     
play an important role in lexical-semantic processing. For example, significant                   
semantic priming effects occur for word pairs that share an associative                     
relationship as well as items that share semantic features (Alario, Segui, &                       
Ferrand, 2000; Perea & Gotor, 1997; Seidenberg, Waters, Sanders, & Langer,                     
1984). Furthermore, children readily group objects according to their associative                   
relationships and may even prefer this to grouping by taxonomic similarity                     
(Kagan, Moss, & Sigel, 1963; Smiley & Brown, 1979), suggesting that                     
associations play an important role in the development of concepts. Therefore                     
lexical co-occurrence likely serves as an additional source of constraint over the                       
structuring of object concepts, since it is able to capture associative relationships                       
between   items   that   share   few   features.  

 
However, semantic models based on the distributional principle have been                   

criticised because they rely solely on linguistic data and therefore do not take                         
into account, at least in any direct way, the sensory-motor information available                       
when we perceive and interact with objects in the real world (Andrews,                       
Vigliocco, & Vinson, 2009; Glenberg & Robertson, 2000). Linguistic corpora                   
may code perceptual experiences indirectly, of course, through verbal                 
descriptions   of   sensory   experiences.  



[8][12] 
 
 

We’ve witnessed a significant improvements on the object detection task                   
in   recent   years   thanks   to   the   advances   in   deep   learning[1]   . 

 
 

 

Single   neuron 

Fig.   2 
 

Convolutional Neural Networks are very similar to ordinary Neural                 
Networks: they are made up of connections of neurons. Each neuron has                       
learnable weights and biases. Each neuron receives some inputs, performs a dot                       
product and optionally follows it with a non-linearity. The whole network still                       
expresses a single differentiable score function: from the raw image pixels on                       
one end to class scores at the other. And they still have a loss function (e.g.                               
SVM/Softmax)   on   the   last   (fully-connected).[13]  
 

 



 

 

Neural   Network   (left)   and   part   of   Convolutional   Neural   Network   (right) 

Fig.   3 
 
 

Current detection systems recast the detection problem into a                 
classification problem. To detect an object, these systems first extract object                     
proposal regions at various locations and scales in a test image and then apply a                             
classifier for each proposal and evaluate it. Systems like deformable parts                     
models (DPM) use a sliding window approach where the classifier is run at                         
evenly   spaced   locations   over   the   entire   image.   [4]  
 

More recent approaches like R-CNN use region proposal methods to first                     
generate potential bounding boxes in an image and then run a classifier on these                           
proposed boxes. After classification, post-processing is used to refine the                   
bounding boxes, eliminate duplicate detections, and rescore the boxes based on                     
other objects in the scene . These complex pipelines are slow and hard to                           
optimize   because   each   individual   component   must   be   trained   separately.[4]  

 
Current state-of-the-art object detection systems are variants of the                 

following approaches: hypothesize bounding boxes, resample pixels or features                 
for each box, and apply a high quality classifier. This pipeline has prevailed on                           



detection benchmarks since the Selective Search work through the current                   
leading results on PASCAL VOC, COCO, and ILSVRC detection all based on                       
Faster R-CNN albeit with deeper features such as . While accurate, these                       
approaches have been too computationally intensive for embedded systems and,                   
even   with   high-end   hardware,   too   slow   for   real-time   applications.   [2] 

 
Often detection speed for these approaches is measured in seconds per                     

frame (spf), and even the fastest high-accuracy detector, Faster R-CNN, operates                     
at only 7 frames per second (fps). There have been many attempts to build faster                             
detectors by attacking each stage of the detection pipeline but so far,                       
significantly increased speed comes only at the cost of significantly decreased                     
detection   accuracy.   [2] 

   



3   Method 
 

3.1   Overview 

 
The   goal   of   the   proposed   approach   is   to   apply   a   kind   of   semantic 

regularization   to   object   detection,   aiming   at   disambiguate   the   recognition   of 
multiple   objects   in   the   same   image   by   taking   into   account   object   co-occurrence 
probabilities   estimated   from   a   training   set.   It’s   important   to   say   that   the   semantic 
regularization   only   affect   the   recognition   task   within   object   detection.   The 
localization   accuracy   is   not   changed   as   the   experiment   doesn’t   aim   to   improve 
localization,   but   rather   to   improve   the   recognition   of   similar   objects   by   using 
contextual   information. 
 

3.2   Co-occurrence   object   relations 

 
In   order   to   represent   contextual   object   relations   we   decided      to   use   an 

object   co-occurrence   metric   suggested   by   Dieu-Thu   Le   et.   al.   The   idea   is   to 
obtain   all   conditional   probabilities   to   gain   idea   of   the   context.   Context   is   useful 
in   visual   recognition   for   two   reasons:   Firstly,   context   can   significantly   reduce 
the   number   of   possible   object   categories   simplifying   the   problem.   Secondly, 
when   the   object   appearance   is   inconclusive   for   its   identity,   context   can   be   used 
for   disambiguation.   For   example,   a   grey   rectangle   on   a   desk   may   be   recognized 
as   a   pen,   while   a   grey   rectangle   on   a   table   may   be   recognized   as   a   knife.   As   the 
recognition   systems   are   not   always   reliable,   the   use   of   context   can   greatly 
improve   results.   [18] 
 

Given   an   image   I   with   N   detected   objects   ,   the   main   idea   is   to   force,Error  
for   each   object   ,   the   conditional   probabilities   of   finding      given   all   otheroi oi  
objects   except   ,   ,      [18]      observed   in   the   image,      to   be   similar   to   theoi  ∖ {o }  O i  
conditional   probabilities   observed   in   the   training   set.   For   example,   if    laptop 



always   co-occurrес   with    hands    and    mug    in   the   training   set,   we   expect   to   have 
the   same   in   the   test   set.  
By   using   the   Naive   Bayes   assumption,   the   conditional   probabilities   can   be 
computed   as   follows: 
 

                        (1)Error  
 
In   this   scenario,   we   need   conditional   the   relations      and   priors   (o  | o )P j i (o )P i

which   can   be   computed   as   follows. 
 

   (o  | o )P j i  

where      and      are   objects   detected   on   the      image   I.   The   probability   for   eachoi o  j  

object      we   get   from   the   following   formulaoi  

                                                                                    (2)(o )P i = #images
#images having oi  

Then 

                                       (3)(o  | o ) P j i = #images having oi

#images having o  andoj i  

 
We   can   easily   compute   (1)   from   the   training   set.   We   can   then   use   the 

obtained   co-occurrence   probabilities   to      embed   them   in   a   model   in   order   to 
improve   its   predictions.   We’ll   add   an   additional   loss   term   in   the   loss   function 
that   compares   the   difference   between   the   co-occurrence   probabilities      predicted 
by      the   model   and   the   co-occurrence   probabilities   calculated   by   (1). 

 
From   the   output   of   the   model   we   have   )   for   each   object   detected   in(oP i  

the   image   (this   correspond   to   the   confidence   of   the   detection)   and   the 
conditional   probability   is   equal   to   1   for   each   j   as   we   always   have   (o  | o )P j i oj  

given   ,   because   they   are   present   in   the   output   obtained   from   the   network.oi  
 

A   good   candidate   for   a   loss   term   is   cross   entropy.   The   cross   entropy 
between   two   probability   distributions   p   and   q   over   the   same   underlying   set   of 
events   measures   the   average   number   of   bits   needed   to   identify   an   event   drawn 
from   the   set,   if   a   coding   scheme   is   used   that   is   optimized   for   an   "unnatural" 
probability   distribution   q,   rather   than   the   "true"   distribution   p.   It   is   commonly 



used   as   regularization   term   in   deep   learning   framework   since   has   the   benefit 
that,   unlike   the   quadratic   cost,   it   avoids   the   problem   of   learning   slowing   down. 
 

3.3   Building   the   model 

 
Current   state-of-the-art   object   detection   systems   are   variants   of   the 

following   approach:   hypothesize   bounding   boxes,   resample   pixels   or   features 
for   each   box,   and   apply   a   CNN   classifier.   This   pipeline   has   prevailed   on 
detection   benchmarks   since   the   Selective   Search   work   through   the   current 
leading   results   on   PASCAL   VOC,   COCO,   and   ILSVRC   detection   all   based   on 
Faster   R-CNN   albeit   with   deeper   features.   While   accurate,   these   approaches 
have   been   too   computationally   intensive   for   embedded   systems   and,   even   with 
high-end   hardware,   too   slow   for   real-time   applications.   [2] 

Often detection speed for these approaches is measured in seconds per                     
frame (spf), and even the fastest high-accuracy detector, Faster R-CNN, operates                     
at only 7 frames per second (fps). There have been many attempts to build faster                             
detectors by attacking each stage of the detection pipeline (see related work in                         
Sec. 4), but so far, significantly increased speed comes only at the cost of                           
significantly   decreased   detection   accuracy.   [2] 
 

System  VOC2007   test 
mAP 

FPS   (Titan   X)  FPS   (Titan   X)  Input 
resolution 

Faster   R-CNN 
(VGG16) 

73.2  7  ~6000  ~1000   x   600 

Faster   R-CNN 
(VGG16) 

63.4  45  98  448   x   448 

SSD300* 
(VGG16) 

77.2  46  8732  300   x   300 

SSD512* 
(VGG16) 

79.8  19  24564  512   x   512 

Multibox   CNNs   comparison 
Table   1 

 
 



For   the   purpose   of   applying   the   object   co-occurrence   data   to   a   CNN   we 
needed   a   fast   and   yet   reliable   CNN   capable   of   detecting   multiple   objects.   Based 
on   the   data   on    Table   1    we   decided   to   use   the   SSD   CNN. 

 
SSD   is   a   single-shot   detector   for   multiple   categories   that   is   faster   than   the 

previous   state-of-the-art   for   single   shot   detectors   (YOLO),   and   significantly 
more   accurate,   in   fact   as   accurate   as   slower   techniques   that   perform   explicit 
region   proposals   and   pooling   (including   Faster   R-CNN).   The   core   of   SSD   is 
predicting   category   scores   and   box   offsets   for   a   fixed   set   of   default   bounding 
boxes   using   small   convolutional   filters   applied   to   feature   maps.   To   achieve   high 
detection   accuracy   it   produces   predictions   of   different   scales   from   feature   maps 
of   different   scales,   and   explicitly   separate   predictions   by   aspect   ratio.   These 
design   features   lead   to   simple   end-to-end   training   and   high   accuracy,   even   on 
low   resolution   input   images,   further   improving   the   speed   vs   accuracy   trade-off. 
Experiments   include   timing   and   accuracy   analysis   on   models   with   varying   input 
size   evaluated   on   PASCAL   VOC,   COCO,   and   ILSVRC   and   are   compared   to   a 
range   of   recent   state-of-the-art   approaches.   [2] 

 

 
SSD   Framework 

Fig.   4 
 

The architecture of the SSD (on  Fig. 5 ) had to be modified following the                           
idea presented the 3.2. So we redesigned the architecture of the SSD adding a                           
few   new   layers   shown   on    Fig.   6 : 

● An   Input   layer   that   loads   the   precalculated   data   from   formulas   (2)   and   (3); 



● Calculate Probability Layer that uses as input the data from the new Input                         
layer and takes the grand truth labels. This information is used to apply                         
formula (1) and calculates the co-occurrence probabilities for the ground                   
truth   classes. 

● Lastly we added a Cross Entropy Loss layer which takes as input both the                           
predictions from the original SSD model and the co-occurrence                 
probabilities   and   acts   as   semantic   regularization.  

 

 

SSD   architecture 

Fig.   5 
 
 



 

Proposed   design 

Fig.   6 
 
 

 

   

https://www.draw.io/?scale=2#G0B16a57t25KZWQkh5TmtQOTMwZDQ


4   Data 
As our experiments rely heavily on extracting a correct and reasonable                     

data about the semantic relations of objects, we need data sets that match                         
specific criteria. For a dataset to be usable for this work, except for the large                             
amount of data and quality, which are essential for any machine learning task, it                           
needs to have a good variety of objects, it needs to have bounding box                           
annotations and there should be multiple objects per image. Each of this should                         
be true for us to be able to extract the necessary semantic object relations                           
information. Finding such natural images is hard[3][8] Throughout our research                   
we inspected several data sets that match our criteria - MS-COCO, VOC Pascal                         
Visual   Object   Classes   (VOC),   ILSRVC2016   and   more. 

   

 

 

MS   COCO   examples 

Fig.   7 



Microsoft COCO (Common Objects in COntext) is “a new large-scale                   
dataset that addresses three core research problems in scene understanding:                   
detecting non-iconic views (or non-canonical perspectives) of objects,               
contextual reasoning between objects and the precise 2D localization of                   
objects”[3]. It’s focus is on collecting images that depict scenes in order to push                           
research in contextual reasoning rather than objects in isolation. The dataset                     
consists of 91 common object categories with 82 of them having more than                         
5,000 labeled instances. In total the dataset has 2,500,000 labeled instances in                       
328,000   images.   Some   examples   can   bee   seen   on    Fig.   7 . 

 
Following the current trends in computer vision we investigated the                   

available databases of wearable devices. Wearable devices or just wearables are,                     
as the name suggests, small electronic devices that people wear with them                       
throughout the day. They come in many forms - bracelets, necklaces, glasses,                       
etc.  Fig. 8 Usually their goal is to collect and/or transmit some sort of data. For                               
example the fitness oriented wearables are used to track the physical activities                       
of the wearer such as steps count, walking distance, burned calories as well as                           
sleep data. Some of these devices focus on images and collect data about human                           
interactions and activities in the form of videos or image sequences. This last set                           
of devices is of particular interest as it presents the wearers world in a                           
perspective close to his own vision. Also the rich amount of information present                         
on a visual scene allows for many applications like tracking habits and lifestyle -                           
physical activity, diet, surroundings, etc. This data can later be used in                       
conjunction   with   health   reports   to   extract   correlations.   [14][15][16] 
 



 

Some   wearable   devices 

Fig.   8 
 
 

One such dataset constructed from wearable cameras and matching the                   
criteria for our experiment is the Activities of Daily Living dataset or ADL ( Fig.                           
9 ). ADL is a dataset of 1 million frames of dozens of people performing                           
unscripted, everyday activities. The dataset is annotated with activities, object                   
tracks, hand positions, and interaction events. ADLs differ from typical actions                     
in that they can involve long-scale temporal structure (making tea can take a few                           
minutes) and complex object interactions (a fridge looks different when its door                       
is open). The dataset itself consists of several videos of daily activities. For each                           
video there is labeled data with bounding boxes for some of the more interesting                           
frames - the appearances and disappearances of objects on the visual scene. One                         
downside of the dataset is that the frames have to be extracted manually from                           
the   full   videos   in   order   to   be   used   for   training   and   testing   purposes.   [9] 
 

 



   

   

Sample   of   annotated   frames   from   the   ADL   dataset 

Fig.   9 
 

 

   



5   Implementation 
 

5.1   Co-occurrence   probabilities 

 
Researchers today across all academic disciplines often need to write                   

computer code in order to collect and process data, carry out statistical tests, run                           
simulations or draw figures. The widely applicable libraries and tools for this                       
are often developed as open source projects (such as NumPy, Julia, or FEniCS),                         
but the specific code researchers write for a particular piece of work is often left                             
unpublished,   hindering   reproducibility.  

Notebooks - documents integrating prose, code and results - offer a way                       
to   publish   a   computational   method   which   can   be   readily   read   and   replicated.  
 

 
Jupyter   notebook   calculating   co-occurrence   for   the   COCO   dataset 

Fig.   10 
 



   

a) MS   COCO  b)   ADL 

MS   COCO   and   ADL   simple   co-occurrence   heat   map 

Fig.   11 
 

One such Notebook is Jupyter. Jupyter is an open source project, which                       
can work with code in many different programming languages. Different                   
language backends, called kernels, communicate with Jupyter using a common,                   
documented protocol; over 50 such backends have already been written, for                     
languages ranging from C++ to Bash. Jupyter grew out of the IPython project                         
(Pérez & Granger, 2007), which initially provided this interface only for the                       
Python language. IPython continues to provide the canonical Python kernel for                     
Jupyter.   [17] 
 

The logic behind calculating the co-occurrence probabilities and               
preparing the ADL dataset in format suitable for the SSD convolutional neural                       
network is implemented in python in the form of Jupyter Notebooks ( Fig. 10 ).                         
The   heatmaps   of   the   two   data   sets   co-occurrence   can   be   seen   seen   on    Fig.   11-13 
 



 

Detailed   ADL   co-occurrence   heatmap 

Fig.   12 
 
 



 

Detailed   MS   COCO   co-occurrence   heatmap 

Fig.   13 
 
 
 
 

5.2   Models 

 
The Single Shot Detector is implemented using the Caffe framework.                   

Caffe provides multimedia scientists and practitioners with a clean and                   



modifiable framework for state-of-the-art deep learning algorithms and a                 
collection of reference models. The framework is a BSD-licensed C++ library                     
with Python and MATLAB bindings for training and deploying general purpose                     
convolutional neural networks and other deep models efficiently on commodity                   
architectures. Caffe fits industry and internet-scale media needs by CUDA GPU                     
computation, processing over 40 million images a day on a single K40 or Titan                           
GPU (≈ 2.5 ms per image). By separating model representation from actual                       
implementation, Caffe allows experimentation and seamless switching among               
platforms for ease of development and deployment from prototyping machines                   
to cloud environments. Caffe is maintained and developed by the Berkeley                     
Vision and Learning Center (BVLC) with the help of an active community of                         
contributors on GitHub. It powers ongoing research projects, large-scale                 
industrial applications, and startup prototypes in vision, speech, and multimedia.                   
[10] 

Having the majority of the code written using this framework and having                       
a lot of pretrained models and CNN architectures in format for this specific                         
framework, the right decision was to implement the designed modifications on                     
that   platform. 

This was the most complex part of the whole experiment. The SSD                       
implementation has brought many changes to the Caffe framework. This                   
includes modifications to existing code, addition of new functions and even new                       
custom layers. The Caffe framework by itself lacks good documentation and the                       
addition of custom implementations on top of it makes modifications on the                       
framework extremely hard. A lot of effort was put into understanding the                       
concepts of the framework itself as well as the implementation and behavior of                         
the SSD additions brought to it. This knowledge was used to later build the                           
additional layers and required modifications to the SSD code to make the object                         
co-occurrence   experiment   be   possible   on   the   SSD   network. 

   



6   Experimental   results 
As   the   ADL   data   set   is   a   new   dataset   for   the   Single   Shot   Detector,   the   first 

part   of   experiments   was   designed   around   training   and   fine   tuning   a   model   based 
on   this   dataset.   On    Table   2    are   shown   some   of   the   results   of   for   several 
configurations.   We   iterate   over   different   batch   sizes,   learning   rates,   solutions 
including   additional   back   propagation   to   layers,   reducing   the   number   of   classes 
to   the   most   common   ones,   fine   tuning   a   pretrained   COCO   mode   and   different 
learning   rates.   Some   experiments   were   terminated   prematurely   due   the   lack 
perspective   of   achieving   good   results   compared   to   other   competitor 
configurations   over   the   same   iterations.  

Dataset  Number   of 
classes 

Iterations  Score 

ADL   (batch   size 
8) 

44  70   000  25% 

ADL   (batch   size 
16) 

44  35   000  29% 

ADL   FT   (batch 
size   16,   low   lr,   no 

back 
propagation) 

44  2   000  3% 

ADL   FT   (batch 
size   16,   no   back 

propagation) 

44  30   000  22% 

ADL   FT   (batch 
size   16,   no   back 

propagation) 

44  120   000  39% 

ADL   (batch   size 
16) 

44  120   000  40.05% 

ADL   (batch   size 
16)  

21  40   000  30% 

ADL   SSD   models 
Table   2 



The   second   part   of   experiments   was   oriented   towards   improving   the   SSD 
model   accuracy   by   using   object   co-occurrence   data.   As   with   the   first   experiment 
we   conducted   experiments   on   a   wide   range   of   parameters   and   tweaks   to   the   way 
we   calculate   the   cross   entropy   loss.   One   of   the   first   set   of   experiments   was   to   try 
to   apply   the   regularization   while   we   also   do   the   initial   training   of   the   model. 
This   approach   gave   somewhat   optimistic   hopes   as   it   managed   to   beat   the 
standard   training   with   about    1%    for   the   first   30k   iterations   ( Fig.   14 ). 
Unfortunately   it   had   just   the   opposite   effect   on   the   MS   COCO   dataset   where   the 
model   could   not   pass   the   1%   test   accuracy   barrier   on   the   first   10k   iterations. 
 

   

a) Regular   ADL   training  b)   ADL   training   with   cross   entropy 

Fig.   14 
 

Our   second   set   of   this   experiment   was   targeted   around   applying   the   cross 
entropy   loss   layer   to   pretrained   models   by   fine   tuning.   This   time   both   datasets 
showed   consistent   behavior.   Unfortunately   the   proposed   approached   worsen   the 
results   on   the   pretrained   models   by   a   little   margin   as   seen   on   the   table   below. 
 
 

Dataset  Pretrained   model 
accuracy 

Accuracy   after   fine 
tuning   1k   iterations 

MS   COCO  43.0362  43.0265 

ADL  40.05  40.04 



6   Conclusions   and   future   work 
The best result that was achieved for the ADL data set is  40.05% . This                           

result was achieved over  120,000 iterations with batch size  16 , learning rate of                         
0.006 on a fresh training over  44 classes. This result does not seem high by                             
itself. However, if we take into account that the dataset was created to be                           
difficult for object detection having objects looked from different perspectives                   
and after some transformations (for example close look at a fridge with opened                         
door). Also the images in the dataset were extracted from video files shot with a                             
low quality wearable camera which adds some blur and motion noise (see  Fig.                         
15 ). In addition the size of the dataset is not that large compared to the sizes of                                 
other   state   of   the   art   datasets. 
 

 

   

Example   of   noisy   samples   from   the   ADL   dataset 

Fig.   15 

 

The   results   of   the   application   of   object   co-occurrence   on   convolutional   neural 
networks   are   a   bit   disappointing.   However,   this   can   be   expected   when 
experimenting   with   something   that   has   not   been   done   before.   What’s   interesting 
is   the   big   gap   in   the   behavior   of   the   model   on   the   two   datasets   on   a   fresh   train. 
The   model   performed   a   bit   better   on   the   ADL   dataset   with   cross   entropy   layer 
added   while   on   the   MS   COCO   side   the   result   was   disastrous.   This   is   probably 
caused   by   the   nature   of   the   datasets   and   the   calculations   used   to   get   the 
co-occurrence   scores. 



The   ADL   dataset   has   a   very   limited   number   of   co-occurrences   per 
picture.   They   average   at   about   2   objects   per   picture.   This   can   be   seen   on   the 
heatmap   for   ADL   on    Fig.   12 .   Having   a   look   back   at   formula   (1)   this   means   that 
the   time   the   co-occurrence   score   for   an   object   will   be   just   the   product 

.(o ) (o  | o )P i * P j i   

On   the   other   hand   the   MS   COCO   has   a   lot   of   objects   per   image   -   “s 
2,500,000   labeled   instances   in   328,000   images”.   This   means   an   average   of   7.6 
detections   per   image.   Let’s   look   at   formula   (1)   and   think   about   the   following 
scenario   -   that   each   co-occurrence   is   equally   likely   and   .(o  | o )P j i = y (o )P i = x  

Then   for   ADL   we’ll   have   on   average      and   for   COCO   we’ll   have   .x * y x * y7  
taking   into   account   that   x   and   y   are   in   the   interval   [0,1]   the   chances   are   that   for 
MS   COCO   we’ll   get   results   very   close   to   zero   as   co-occurrence   most   of   the 
time.   As   these   co-occurrences   are   considered   ground   truth   at   the   cross   entropy 
layer,   it’s   no   surprise   that   we   see   a   negative   effect   on   the   performance   of   the 
model. 
 
Further   enhancement   of   object   detection   by   taking   into   account   relative 
positions   between   objects:    Bar   et   al.   [M.   Bar   and   S.   Ullman.   Spatial   context   in 
recognition.   Perception.   25:343-352.,   1993]   examined   the   consequences   of 
pairwise   spatial   relations   between   objects   that   typically   co-occur   in   the   same 
scene   on   human   performance   in   recognition   tasks.   This   study   has   shown   that 
proper   spatial   relations   among   objects   decreases   error   rates   in   the   recognition   of 
individual   objects.   Future   work   will   aim   to   exploit   the   knowledge   about   spatial 
relations   to   improve   the   recognition   performances.  
 
Enhancement   of   image   tagging:    Exploiting   object   co-occurrence   has   a   direct 
application   to   image   tagging,   whose   goal   is   to   label   an   image   with   a   set   of   tags 
that   describe   the   image   content,   including   the   objects   appearing   in   it.      In   image 
tagging   there   is   no   need   of   localising   objects,   so   the   proposed   framework   could 
be   easily   adapted   to   this   context   in   the   future. 
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